WorldWideScience

Sample records for glucocorticoid response reveals

  1. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation.

    Science.gov (United States)

    Malyukova, A; Brown, S; Papa, R; O'Brien, R; Giles, J; Trahair, T N; Dalla Pozza, L; Sutton, R; Liu, T; Haber, M; Norris, M D; Lock, R B; Sangfelt, O; Marshall, G M

    2013-04-01

    Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

  2. Fecal glucocorticoid response to environmental stressors in green iguanas (Iguana iguana)

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Timm, Jeanette; Ibsen, Ida

    2012-01-01

    Quantification of glucocorticoid metabolites in feces has been shown to be a powerful tool in evaluating well-being in vertebrates. Little is known however about the hypothalamic–pituitary–adrenal axis response to stressors, and consequent glucocorticoid excretion, in reptiles. In a longitudinal...

  3. Fecal glucocorticoid response to environmental stressors in green iguanas (Iguana iguana).

    Science.gov (United States)

    Kalliokoski, Otto; Timm, Jeanette A; Ibsen, Ida B; Hau, Jann; Frederiksen, Anne-Marie B; Bertelsen, Mads F

    2012-05-15

    Quantification of glucocorticoid metabolites in feces has been shown to be a powerful tool in evaluating well-being in vertebrates. Little is known however about the hypothalamic-pituitary-adrenal axis response to stressors, and consequent glucocorticoid excretion, in reptiles. In a longitudinal study, fecal corticosterone metabolite (FCM) levels in green iguanas (Iguana iguana) were quantified during periods of rest and exposure to hypothesized stressors. FCM quantification was combined with behavioral analysis to further contextualize the measured increases. It was shown that both daily 5-minute handling/restraint, as well as housing devoid of climbing opportunity, resulted in increased FCM excretion. Behavioral analysis suggested that the iguanas were chronically stressed by the lack of climbing opportunity, whereas handling may have induced only a transient stress response. The experimental design, using repeated periods of stressor-exposure, also revealed a facilitating effect, where the two stressors potentiated one another. Furthermore, the order of the two stressors was found to be important. The study provides insight into the functioning of the hormonal stress response in green iguanas, and to the refining of their housing and handling. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  5. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene.

    Directory of Open Access Journals (Sweden)

    Marinus F van Batenburg

    2010-01-01

    Full Text Available Glucocorticoids act in part via glucocorticoid receptor binding to hormone response elements (HREs, but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.

  7. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  8. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  9. Activated Glucocorticoid Receptor Interacts with the INHAT Component Set/TAF-Iβ and Releases it from a Glucocorticoid-responsive Gene Promoter, Relieving Repression: Implications for the Pathogenesis of Glucocorticoid Resistance in Acute Undifferentiated Leukemia with Set-Can Translocation

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    SUMMARY Set/template-activating factor (TAF)-Iβ, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Iβ interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Iβ was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Iβ from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Iβ acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids. PMID:18096310

  10. Activated glucocorticoid receptor interacts with the INHAT component Set/TAF-Ibeta and releases it from a glucocorticoid-responsive gene promoter, relieving repression: implications for the pathogenesis of glucocorticoid resistance in acute undifferentiated leukemia with Set-Can translocation.

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P; Kino, Tomoshige

    2008-02-13

    Set/template-activating factor (TAF)-Ibeta, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Ibeta interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Ibeta was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Ibeta from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Ibeta acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids.

  11. Diabetes insipidus is an unfavorable prognostic factor for response to glucocorticoids in patients with autoimmune hypophysitis.

    Science.gov (United States)

    Lupi, Isabella; Cosottini, Mirco; Caturegli, Patrizio; Manetti, Luca; Urbani, Claudio; Cappellani, Daniele; Scattina, Ilaria; Martino, Enio; Marcocci, Claudio; Bogazzi, Fausto

    2017-08-01

    Autoimmune hypophysitis (AH) has a variable clinical presentation and natural history; likewise, its response to glucocorticoid therapy is often unpredictable. To identify clinical and radiological findings associated with response to glucocorticoids. 12 consecutive patients with AH, evaluated from 2008 to 2016. AH was the exclusion diagnosis after ruling out other pituitary masses and secondary causes of hypophysitis. Mean follow-up time was 30 ± 27 months (range 12-96 months). MRI identified two main patterns of presentation: global enlargement of the pituitary gland or panhypophysitis ( n  = 4, PH), and pituitary stalk abnormality only, or infundibulo-neuro-hypophysitis ( n  = 8, INH). Multiple tropin defects were more common in PH (100%) than those in INH (28% P  = 0.014), whereas diabetes insipidus was more common in INH (100%) than that in PH (50%; P  = 0.028). All 4 PH and 4 out of 8 INH were treated with glucocorticoids. Pituitary volume significantly reduced in all PH patients ( P  = 0.012), defective anterior pituitary function recovered only in the two patients without diabetes insipidus (50%) and panhypopituitarism persisted, along with diabetes insipidus, in the remaining 2 (50%). In all INH patients, either treated or untreated, pituitary stalk diameter reduced ( P  = 0.008) but diabetes insipidus persisted in all. Glucocorticoid therapy may improve anterior pituitary function in a subset of patients but has no effect on restoring posterior pituitary function. Diabetes insipidus appears as a negative prognostic factor for response to glucocorticoids. © 2017 European Society of Endocrinology.

  12. Glucocorticoid exposure in preterm babies predicts saliva cortisol response to immunization at 4 months.

    Science.gov (United States)

    Glover, Vivette; Miles, Rachel; Matta, Simon; Modi, Neena; Stevenson, James

    2005-12-01

    Preterm babies are exposed to multiple stressors and this may have long-term effects. In particular, high levels of endogenous cortisol might have a programming effect on the hypothalamic-pituitary-adrenal axis as may administered glucocorticoids. In this study, we aimed to test the hypothesis that the level of endogenous and exogenous glucocorticoid exposure during the neonatal period predicts the saliva cortisol response to immunization at 4 mo of age. We followed 45 babies born below 32 wk gestation. We showed that their concentration of plasma cortisol during the first 4 wk was 358, 314, 231, and 195 nmol/L cortisol, respectively (geometric mean). This is four to seven times higher than fetal levels at the same gestational age range. We used routine immunization at 4 mo and 12 mo as a stressor and measured the change in saliva cortisol as the stress response. Mean circulating cortisol in the first 4 wk predicted the cortisol response at 4 but not at 12 mo. Path analysis showed that birthweight for gestational age, therapeutic antenatal steroids, and therapeutic postnatal steroids also contributed to the magnitude of the saliva cortisol response at 4 mo. This provides evidence that the magnitude of glucocorticoid exposure, both endogenous and exogenous, may have an effect on later stress responses.

  13. Impact of HSCT conditioning and glucocorticoid dose on exercise adherence and response

    OpenAIRE

    Wiskemann, Joachim; Herzog, Benedikt; Kuehl, Rea; Schmidt, Martina E.; Steindorf, Karen; Schwerdtfeger, Rainer; Dreger, Peter; Bohus, Martin

    2017-01-01

    Abstract: Purpose: Evidence from randomized controlled trials (RCT) that exercise interventions have beneficial effects in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) is growing. However, intensive chemotherapy conditioning and glucocorticoid (GC) treatment is always part of an allo-HSCT and possibly affect exercise adherence and training response. Therefore, we aimed to examine whether various conditioning protocols or different doses of GC treatment af...

  14. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors.

    Science.gov (United States)

    Walker, Sophie E; Zanoletti, Olivia; Guillot de Suduiraut, Isabelle; Sandi, Carmen

    2017-10-01

    Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models. To address this, we generated three lines of Wistar rats selectively bred for the magnitude of their glucocorticoid responses following exposure to a variety of stressors over three consecutive days at juvenility. Here, we present findings following observations of a high level of variation in glucocorticoid responsiveness to stress in outbred Wistar rats, and the strong response to selection for this trait over a few generations. When challenged with different stressful challenges, rats from the three lines differed in their coping behaviors. Strikingly, the line with high glucocorticoid responsiveness to stress displayed enhanced aggression and anxiety-like behaviors. In addition, these rats also showed alterations in the expression of genes within both central and peripheral nodes of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced reactivity to acute stress exposure. Together, these findings strongly link differences in glucocorticoid responsiveness to stress with marked differences in coping styles. The developed rat lines are thus a promising model with which to examine the relationship between variation in reactivity of the HPA axis and stress-related pathophysiology and could be employed to assess the therapeutic potential of treatments modulating stress habituation to ameliorate psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Puff and bite: the relationship between the glucocorticoid stress response and anti-predator performance in checkered puffer (Sphoeroides testudineus).

    Science.gov (United States)

    Cull, Felicia; O'Connor, Constance M; Suski, Cory D; Shultz, Aaron D; Danylchuk, Andy J; Cooke, Steven J

    2015-04-01

    Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  17. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  18. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  19. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.

    Science.gov (United States)

    Ahmed, Mona A

    2013-06-01

    Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.

  20. The Role of Osteopontin and Its Gene on Glucocorticoid Response in Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Yanchen Xie

    2017-05-01

    Full Text Available Biomarkers that assess treatment response for patients with the autoimmune disorder, myasthenia gravis (MG, have not been evaluated to a significant extent. We hypothesized the pro-inflammatory cytokine, osteopontin (OPN, may be associated with variability of response to glucocorticoids (GCs in patients with MG. A cohort of 250 MG patients treated with standardized protocol of GCs was recruited, and plasma OPN and polymorphisms of its gene, secreted phosphoprotein 1 (SPP1, were evaluated. Mean OPN levels were higher in patients compared to healthy controls. Carriers of rs11728697*T allele (allele definition: one of two or more alternative forms of a gene were more frequent in the poorly GC responsive group compared to the GC responsive group indicating an association of rs11728697*T allele with GC non-responsiveness. One risk haplotype (AGTACT was identified associated with GC non-responsiveness compared with GC responsive MG group. Genetic variations of SPP1 were found associated with the response to GC among MG patients.

  1. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  2. The effects of glucocorticoids on the inhibition of emotional information: A dose-response study.

    Science.gov (United States)

    Taylor, Véronique A; Ellenbogen, Mark A; Washburn, Dustin; Joober, Ridha

    2011-01-01

    There is evidence that cortisol influences cognitive and affective processes such as selective attention and memory for emotional events, yet the effects of glucocorticoids on attentional inhibition in humans remain unknown. Consequently, this double-blind study examined dose-dependent effects of exogenous glucocorticoids on the inhibition of emotional information. Sixty-three university students (14 male, 49 female) ingested either a placebo pill or hydrocortisone (10mg or 40mg), and completed a negative priming task assessing the inhibition of pictures depicting angry, sad, and happy faces. The 10mg, but not the 40mg hydrocortisone dose elicited increased inhibition for angry faces relative to placebo. Thus, moderate glucocorticoid elevations may have adaptive effects on emotional information processing, whereas high glucocorticoid elevations appear to attenuate this effect, consistent with the view that there are dose-dependent effects of glucocorticoids on cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Fecal glucocorticoid metabolite response of captive koalas (Phascolarctos cinereus) to visitor encounters.

    Science.gov (United States)

    Webster, Koa; Narayan, Edward; de Vos, Nicholas

    2017-04-01

    Physiological responses of wildlife species to zoo visitors should be studied to better understand how wildlife perceive human encounters. We conducted an experimental test of the effect of changes in zoo visitor encounter experiences on the glucocorticoid (GC) response of koalas (Phascolarctos cinereus) in a Sydney zoo. Koalas were housed in a multiple-bay enclosure (two to three koalas per bay) for photography sessions with zoo visitors (no touching of koalas permitted by visitors). Following a one-week no-photography baseline period, photography sessions were rotated between three enclosure bays for four weeks (Intensive photography), then between five enclosure bays for an additional four weeks (Standard photography). A sixth enclosure bay was never included in the photography sessions (control bay); koalas in this bay showed no significant change in fecal cortisol metabolites (FCMs) during the course of the study. In the five experimental bays differences were seen between male and female koalas. Males had higher mean FCMs than females, and individual FCM traces showed that two male koalas that were related and of similar age responded strongly to the experimental manipulation. These two males showed a peak in FCMs at the beginning of the Intensive photography period, then a decline when photography sessions returned to the Standard protocol. No systematic pattern in response to photography sessions was observed in females. Our results demonstrate successful application of a non-invasive endocrinology tool for assessing the stress biology and welfare of captive zoo wildlife. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Alcohol dysregulates corticotropin-releasing-hormone (CRH promoter activity by interfering with the negative glucocorticoid response element (nGRE.

    Directory of Open Access Journals (Sweden)

    Magdalena M Przybycien-Szymanska

    Full Text Available EtOH exposure in male rats increases corticotropin-releasing hormone (CRH mRNA in the paraventricular nucleus of the hypothalamus (PVN, a brain region responsible for coordinating stress and anxiety responses. In this study we identified the molecular mechanisms involved in mediating these effects by examining the direct effects of EtOH on CRH promoter activity in a neuronal cell line derived from the PVN (IVB. In addition, we investigated the potential interactions of EtOH and glucocorticoids on the CRH promoter by concomitantly treating cells with EtOH and the glucocorticoid receptor (GR antagonist RU486, and by sequentially deleting GR binding sites within glucocorticoid response element (GRE on the CRH promoter. Cells were transiently transfected with a firefly luciferase reporter construct containing 2.5 kb of the rat wild type (WT or mutated CRH promoter. Our results showed that EtOH treatment induced a biphasic response in CRH promoter activity. EtOH exposure for 0.5 h significantly decreased promoter activity compared to vehicle treated controls, whereas promoter activity was significantly increased after 2.0 h of EtOH exposure. Treatment with RU486, or deletion of the GR binding sites 1 and 2 within the GRE, abolished the EtOH-induced increase in the promoter activity, however did not affect EtOH-induced decrease in CRH promoter activity at an earlier time point. Overall, our data suggest that alcohol exposure directly regulates CRH promoter activity by interfering with the normal feedback mechanisms of glucocorticoids mediated by GR signaling at the GRE site of the CRH promoter.

  5. Glucocorticoid-induced leucine zipper expression is associated with response to treatment and immunoregulation in systemic lupus erythematosus.

    Science.gov (United States)

    Mohammadi, Saeed; Ebadpour, Mohammad Reza; Sedighi, Sima; Saeedi, Mohsen; Memarian, Ali

    2017-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder in which cytokine balance is disturbed. Glucocorticoids (GCs) are shown to balance immune response by transcriptional regulation of glucocorticoid receptor target genes such as Glucocorticoid-induced leucine zipper (GILZ) which has been introduced as an endogenous anti-inflammatory mediator. In the present study, we assessed the expression of GILZ in association with interferon-γ (IFN-γ), interleukine-10 (IL-10), and B lymphocyte stimulator (BLyS) plasma levels in SLE patients. A total of 40 female patients (18 under treatment and 22 newly diagnosed) were recruited in this study. Real-time RT PCR was conducted to quantify the mRNA expression of GILZ. The plasma levels of IFN-γ, IL-10, and BLyS were evaluated using ELISA method. GILZ was overexpressed among under treatment SLE patients. The mRNA expression of GILZ was significantly correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score. IFN-γ and BLyS were downregulated in response to therapies with negative correlations to GILZ. Moreover, IL-10 was upregulated among treated patients. The levels of IFN-γ and BLyS were correlated with the severity of disease, while IL-10 was negatively correlated with SLEDAI score. GILZ could be introduced as one of the acting molecules in mediating the regulatory effects of GCs on producing pro- and anti-inflammatory cytokines in SLE.

  6. Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people.

    Science.gov (United States)

    Creel, Scott; Christianson, David; Schuette, Paul

    2013-01-01

    Large carnivore populations are in global decline, and conflicts between large carnivores and humans or their livestock contribute to low tolerance of large carnivores outside of protected areas. African lions (Panthera leo) are a conflict-prone species, and their continental range has declined by 75% in the face of human pressures. Nonetheless, large carnivore populations persist (or even grow) in some areas that are occupied by humans. Lions attain locally high density in the Olkiramatian and Shompole Group Ranches of Kenya's South Rift region, despite residence by pastoralist Maasai people and their sheep, goats, and cattle. We have previously found that these lions respond to seasonal movements of people by moving away from occupied settlements, shifting into denser habitats when people are nearby, and moving into a protected conservation area when people move into the adjacent buffer zone. Here, we examined lion stress responses to anthropogenic activities, using enzyme-linked immunoassay to measure the concentration of faecal glucocorticoid metabolites in 136 samples collected from five lion groups over 2 years. Faecal glucocorticoid metabolite concentrations were significantly lower for lions in the conservation area than for lions in the human-settled buffer zone, and decreased significantly with increasing distance to the nearest occupied human settlement. Faecal glucocorticoid metabolite concentrations were not detectably related to fine-scaled variation in prey or livestock density, and surprisingly, faecal glucocorticoid metabolite concentrations were higher in the wet season, when regional prey abundance was high. Lions coexist with people and livestock on this landscape by adjusting their movements, but they nonetheless mount an appreciable stress response when conditions do not allow them to maintain adequate separation. Thus, physiological data confirm inferences from prior data on lion movements and habitat use, showing that access to undisturbed

  7. A translational approach to clinical practice via stress-responsive glucocorticoid receptor signaling.

    Science.gov (United States)

    Juruena, Mario F; Agustini, Bruno; Cleare, Anthony J; Young, Allan H

    2017-01-01

    A recent article by Kwan and colleagues could elegantly demonstrate the necessary interaction between neuronal serotonin (5-HT) systems and the hypothalamic-pituitary-adrenal (HPA) axis through glucocorticoid receptors (GR), producing an adequate stress response, in this case, responding to hypoxia with an increase in hematopoietic stem and progenitor cells (HSPC). There is an intricate system connecting brain, body and mind and this exchange is only possible when all these systems-nervous, endocrine, and immune-have receptors on critical cells to receive information (via messenger molecules) from each of the other systems. There is evidence that the expression and function of GR in the hippocampus, mainly MR, is regulated by the stimulation of 5-HT receptors. Stressful stimuli increase 5-HT release and turnover in the hippocampus, and it seems reasonable to suggest that some of the changes in mineralocorticoid and GR expression may be mediated, in part at least, by the increase in 5-HT. Also serotonin and HPA axis dysfunctions have already been implicated in a variety of psychiatric disorders, especially depression. Early life stress (ELS) can have profound impact on these systems and can predispose subjects to a variety of adult metabolic and psychiatric conditions. It is important to analyze the mechanisms of this complex interaction and its subsequent programming effects on the stress systems, so that we can find new ways and targets for treatment of psychiatric disorders. Different areas of research on basic biological sciences are now being integrated and this approach will hopefully provide several new insights, new pharmacological targets and improve our global understanding of these highly debilitating chronic conditions, that we now call mental disorders.

  8. Glucocorticoid-related bone changes from endogenous or exogenous glucocorticoids.

    Science.gov (United States)

    Warriner, Amy H; Saag, Kenneth G

    2013-12-01

    Glucocorticoids have a negative impact on bone through direct effects on bone cells and indirect effects on calcium absorption. Here, recent findings regarding glucocorticoid-induced osteoporosis, bone changes in patients with endogenous glucocorticoid derangements, and treatment of steroid-induced bone disease are reviewed. Although the majority of our understanding arises from the outcomes of patients treated with exogenous steroids, endogenous overproduction appears to be similarly destructive to bone, but these effects are reversible with cure of the underlying disease process. Additionally, there are bone changes that occur in diseases that interrupt adrenal glucocorticoid production, both in response to our inability to perfectly match glucocorticoid replacement and also related to the underlying disease process. More investigation is required to understand which patients with endogenous overproduction or underproduction of glucocorticoid would benefit from osteoporosis treatment. Better understood is the benefit that can be achieved with currently approved treatments for glucocorticoid-induced osteoporosis from exogenous steroids. With growing concern of long-term use of bisphosphonates, however, further investigation into the duration of use and use in certain populations, such as children and premenopausal women, is essential. Glucocorticoid-induced osteoporosis is a complex disease that is becoming better understood through advances in the study of exogenous and endogenous glucocorticoid exposure. Further advancement of proper treatment and prevention is on the horizon.

  9. Elevated glucocorticoid receptor binding in cultured human lymphoblasts following hydroxyurea treatment: lack of effect on steroid responsiveness

    International Nuclear Information System (INIS)

    Littlefield, B.A.; Hoagland, H.C.; Greipp, P.R.

    1986-01-01

    While studying the effects of chemotherapy on glucocorticoid receptor (GR) binding levels in hematological malignancies, we observed a sizable increase in nuclear GR binding of [ 3 H]dexamethasone in peripheral leukocytes from a chronic basophilic leukemia patient following treatment with hydroxyurea plus prednisone, but not after prednisone alone. This apparent clinical effect of hydroxyurea led to an examination of hydroxyurea effects on GR binding and sensitivity in the glucocorticoid-sensitive human lymphoblast cell line GM4672A. GR binding levels in GM4672A cells were measured following a 3-day exposure to 50 microM hydroxyurea, a concentration chosen to have a minimal but measurable effect on cellular growth rates with little or no effect on cellular viability. Under these conditions, nuclear [ 3 H]dexamethasone receptor binding measured by Scatchard analysis using a whole-cell assay was elevated 2.4-fold over control values (P less than 0.05), while cytosolic residual receptor binding (measured at 37 0 C) remained unchanged. Thus, the total cellular content of measurable GR was increased, and this increase was totally accounted for by GR capable of nuclear binding. Hydroxyurea treatment of GM4672A cells had no effect on the affinity of nuclear or cytosolic GR for [ 3 H]dexamethasone. The increase in measurable nuclear-bound receptors occurred in a time-dependent manner over a period of 3 days and was fully reversible within 3 days following removal of hydroxyurea. The increase in receptor binding could not be explained by the slight alterations in cell cycle kinetics which occur at this low level of hydroxyurea. Despite increased receptor binding, cellular glucocorticoid responsiveness was unaltered as assessed by dexamethasone inhibition of cell growth and dexamethasone inhibition of a urokinase-like plasminogen activator

  10. Neuropsychology of trauma-exposure: emotional learning, stress responsivity and the glucocorticoid receptor

    OpenAIRE

    Liebscher, Claudia

    2010-01-01

    In the present dissertation the aim was to identify correlates of trauma-exposure in persons who developed symptoms of a posttraumatic stress disorder and in those who were trauma-exposed but do not suffer from PTSD as well as in persons without trauma-exposure. In the first part of the dissertation, mechanisms of context conditioning and the release of glucocorticoids by the Hypothalamus-pituitary-adrenocortical axis were investigated in trauma-exposed and non-exposed persons. In the second ...

  11. Effects of short-term glucocorticoid deprivation on growth hormone (GH) response to GH-releasing peptide-6: Studies in normal men and in patients with adrenal insufficiency

    OpenAIRE

    Pinto, Ana Claudia de Assis Rocha [UNIFESP; Dias-da-Silva, Magnus Régios [UNIFESP; Martins, Manoel R. [UNIFESP; Brunner, Elisa [UNIFESP; Lengyel, Ana Maria Judith [UNIFESP

    2000-01-01

    There are no data in the literature about the effects of glucocorticoid deprivation on GH-releasing peptide-g (GHRP-6)-induced GH release. the aims of this study were to evaluate GH responsiveness to GHRP-6 1) after metyrapone administration in normal men, and 2) in patients with chronic hypocortisolism after glucocorticoid withdrawal for 72 h. in normal subjects, metyrapone ingestion did not alter significantly GH responsiveness to GHRP-6 [n = 8; peak, 39.3 +/- 7.1 mu g/L; area under the cur...

  12. Glucocorticoid Stress Responses of Reintroduced Tigers in Relation to Anthropogenic Disturbance in Sariska Tiger Reserve in India.

    Science.gov (United States)

    Bhattacharjee, Subhadeep; Kumar, Vinod; Chandrasekhar, Mithileshwari; Malviya, Manjari; Ganswindt, Andre; Ramesh, Krishnamurthy; Sankar, Kalyanasundaram; Umapathy, Govindhaswamy

    2015-01-01

    Tiger (Panthera tigris), an endangered species, is under severe threat from poaching, habitat loss, prey depletion and habitat disturbance. Such factors have been reported causing local extermination of tiger populations including in one of the most important reserves in India, namely Sariska Tiger Reserve (STR) in northwestern India. Consequently, tigers were reintroduced in STR between 2008 and 2010, but inadequate breeding success was observed over the years, thus invoking an investigation to ascertain physiological correlates. In the present study, we report glucocorticoid stress responses of the reintroduced tigers in relation to anthropogenic disturbance in the STR from 2011 to 2013. We found anthropogenic disturbance such as encounter rates of livestock and humans, distance to roads and efforts to kill domestic livestock associated with an elevation in fecal glucocorticoid metabolite (fGCM) concentrations in the monitored tigers. In this regard, female tigers seem more sensitive to such disturbance than males. It was possible to discern that tiger's fGCM levels were significantly positively related to the time spent in disturbed areas. Resulting management recommendations include relocation of villages from core areas and restriction of all anthropogenic activities in the entire STR.

  13. Glucocorticoid Stress Responses of Reintroduced Tigers in Relation to Anthropogenic Disturbance in Sariska Tiger Reserve in India.

    Directory of Open Access Journals (Sweden)

    Subhadeep Bhattacharjee

    Full Text Available Tiger (Panthera tigris, an endangered species, is under severe threat from poaching, habitat loss, prey depletion and habitat disturbance. Such factors have been reported causing local extermination of tiger populations including in one of the most important reserves in India, namely Sariska Tiger Reserve (STR in northwestern India. Consequently, tigers were reintroduced in STR between 2008 and 2010, but inadequate breeding success was observed over the years, thus invoking an investigation to ascertain physiological correlates. In the present study, we report glucocorticoid stress responses of the reintroduced tigers in relation to anthropogenic disturbance in the STR from 2011 to 2013. We found anthropogenic disturbance such as encounter rates of livestock and humans, distance to roads and efforts to kill domestic livestock associated with an elevation in fecal glucocorticoid metabolite (fGCM concentrations in the monitored tigers. In this regard, female tigers seem more sensitive to such disturbance than males. It was possible to discern that tiger's fGCM levels were significantly positively related to the time spent in disturbed areas. Resulting management recommendations include relocation of villages from core areas and restriction of all anthropogenic activities in the entire STR.

  14. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  15. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  16. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  17. Does early response to intravenous glucocorticoids predict the final outcome in patients with moderate-to-severe and active Graves' orbitopathy?

    NARCIS (Netherlands)

    Bartalena, L.; Veronesi, G.; Krassas, G. E.; Wiersinga, W. M.; Marcocci, C.; Marinò, M.; Salvi, M.; Daumerie, C.; Bournaud, C.; Stahl, M.; Sassi, L.; Azzolini, C.; Boboridis, K. G.; Mourits, M. P.; Soeters, M. R.; Baldeschi, L.; Nardi, M.; Currò, N.; Boschi, A.; Bernard, M.; von Arx, G.; Perros, P.; Kahaly, G. J.

    2017-01-01

    Intravenous glucocorticoids (ivGCs) given as 12-weekly infusions are the first-line treatment for moderate-to-severe and active Graves' orbitopathy (GO), but they are not always effective. In this study, we evaluated whether response at 6 weeks correlated with outcomes at 12 (end of intervention)

  18. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  19. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  20. Adrenal responses of large whales: Integrating fecal aldosterone as a complementary biomarker to glucocorticoids.

    Science.gov (United States)

    Burgess, Elizabeth A; Hunt, Kathleen E; Kraus, Scott D; Rolland, Rosalind M

    2017-10-01

    Until now, physiological stress assessment of large whales has predominantly focused on adrenal glucocorticoid (GC) measures. Elevated GC concentrations in feces (fGC) are known to reflect stressful disturbances, such as fishing gear entanglement and human-generated underwater noise, in North Atlantic right whales (Eubalaena glacialis). However, there can be considerable variation in GC production as a function of sex and life history stage, which may confound the interpretation of fGC levels. Additionally, GC antibodies used in immunoassays can cross-react with other fecal metabolites (i.e., non-target steroids), potentially influencing fGC data. Here, aldosterone concentrations (fALD; aldosterone and related metabolites) were measured in fecal samples from right whales (total n=315 samples), including samples from identified individuals of known life history (n=82 individual whales), to evaluate its utility as a complementary biomarker to fGC for identifying adrenal activation. Concentrations of fALD were positively correlated with fGCs in right whales (r=0.59, Pwhales, fALD concentrations showed similar patterns to those reported for fGC, with higher levels in pregnant females (35.9±7.6ng/g) followed by reproductively mature males (9.5±0.9ng/g) (Pwhales. The addition of fALD measurement as a biomarker of adrenal activation may help distinguish between intrinsic and external causes of stress hormone elevations in large whales, as well as other free-living wildlife species, providing a more comprehensive approach for associating adrenal activation with specific natural and anthropogenic stressors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Impact of glucocorticoid on neurogenesis

    Directory of Open Access Journals (Sweden)

    Haruki Odaka

    2017-01-01

    Full Text Available Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

  3. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    Science.gov (United States)

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  4. Surgical stress response and the potential role of preoperative glucocorticoids on post-anesthesia care unit recovery

    DEFF Research Database (Denmark)

    Steinthorsdottir, Kristin J; Kehlet, Henrik; Aasvang, Eske K

    2017-01-01

    The immediate postoperative course in the post-anesthesia care unit (PACU) remains a challenge across surgical procedures. Postoperative pain, sedation/cognitive dysfunction, nausea and vomiting (PONV), circulatory and respiratory problems and orthostatic intolerance constitute the bulk of the di......-anesthesia care unit (PACU), but with a scarcity of intervention studies using glucocorticoids to control inflammation. We, therefore, suggest a future research focus on the role of inflammation and effect of glucocorticoids in the PACU setting to improve patient recovery....

  5. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors.

    Science.gov (United States)

    Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2012-09-01

    A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The glucocorticoid stress response is attenuated but unrelated to reproductive investment during parental care in a teleost fish.

    Science.gov (United States)

    O'Connor, Constance M; Yick, Claire Y; Gilmour, Kathleen M; Van Der Kraak, Glen; Cooke, Steven J

    2011-01-15

    We investigated whether circulating glucocorticoids and androgens are correlated with reproductive investment in smallmouth bass (Micropterus dolomieu), a teleost fish with sole paternal care. Circulating cortisol and androgens prior to and 25 min following a standardized 3 min emersion stressor were quantified for non-reproductive and parental fish across the parental care period. To experimentally investigate the influence of reproductive investment on endocrine parameters, we manipulated brood size (reduced, enlarged, sham-treated, or unmanipulated) 24h prior to sampling parental fish. We predicted that fish guarding offspring would exhibit increased androgens and baseline cortisol levels, and an attenuated cortisol response to the stressor when compared with non-reproductive individuals. We further predicted that these effects would scale with reproductive investment. As predicted, parental care-providing fish exhibited lower post-stress plasma cortisol concentrations than non-reproductive fish. This difference was strongest early during parental care. However, no differences in baseline or post-stress cortisol concentrations were detected among parents guarding offspring with varying brood sizes. There was, however, a trend for parental fish to exhibit an increased cortisol response following brood manipulation, regardless of the direction of change in brood size, a response that likely reflected disturbance. No differences were found in baseline cortisol concentrations. Circulating androgens were found to be highest during early parental care, and no differences were found among parents guarding manipulated broods. Collectively, these findings demonstrate that the endocrine stress response is affected by reproductive status, but the response in this model species does not appear to be scaled according to reproductive investment as predicted by life-history theory. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina.

    Directory of Open Access Journals (Sweden)

    Edward J Narayan

    Full Text Available Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors. We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact

  8. Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina).

    Science.gov (United States)

    Narayan, Edward J; Hero, Jean-Marc

    2014-01-01

    Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at

  9. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  10. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  11. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  12. The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in rats

    NARCIS (Netherlands)

    Buwalda, Bauke; Scholte, Jan; de Boer, Sietse F.; Coppens, Caroline M.; Koolhaas, Jaap M.

    The mere presence of elevated plasma levels of corticosterone is generally regarded as evidence of compromised well-being. However, environmental stimuli do not necessarily need to be of a noxious or adverse nature to elicit activation of the stress response systems. In the present study, the

  13. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  14. Assessment of Flooring Renovations on African Elephant (Loxodonta africana) Behavior and Glucocorticoid Response

    Science.gov (United States)

    Boyle, Sarah A.; Roberts, Beth; Pope, Brittany M.; Blake, Margaret R.; Leavelle, Stephen E.; Marshall, Jennifer J.; Smith, Andrew; Hadicke, Amanda; Falcone, Josephine F.; Knott, Katrina; Kouba, Andrew J.

    2015-01-01

    Captive African (Loxodonta africana) and Asian (Elephas maximus) elephants can experience foot pathologies and arthritis. As a preventative measure against these pathologies and to alleviate the potential discomfort due to concrete substrates, some zoological institutions have renovated elephant housing to increase the amount of natural or shock-absorbent substrates. The objective of this study was to compare behavioral (diurnal and nocturnal) and glucorticoid (e.g., serum cortisol) responses of three female African elephants before, during, and after renovation to their indoor housing floor to assess whether renovations had short-term effects on the elephants’ behavior and stress physiology. Behavioral data were collected using scan-sampling methods, and activity budgets were constructed for each of the three elephants. In addition, the duration of all lying rest activities were recorded. Weekly serum cortisol concentrations were determined with enzyme immunoassay (EIA). Overall, eating was the most prevalent behavior exhibited outdoors during the day, while resting (either in a lying or standing position) were most common during the indoor, nocturnal periods. Although variation existed among the three elephants, all three females spent significantly more time walking and less time eating during the day after the completion of the renovations. The extent to which the three elephants exhibited nocturnal lying rest behavior varied among the elephants, with the oldest elephant exhibiting the least amount (an average of 13.2 ± 2.8% of the nightly behavioral scans) compared to the two younger elephants (an average of 34.5 ± 2.1% and 56.6 ± 2.8% of the nightly behavioral scans). There was a significant increase in lying rest behavior for one elephant and standing rest for a second elephant following renovations. Baseline cortisol concentrations prior to renovations were 3.0 ± 0.4 ng/ml, 4.5 ± 0.5 ng/ml, and 4.9 ± 0.5 ng/ml for the three elephants. Cortisol

  15. Assessment of Flooring Renovations on African Elephant (Loxodonta africana Behavior and Glucocorticoid Response.

    Directory of Open Access Journals (Sweden)

    Sarah A Boyle

    Full Text Available Captive African (Loxodonta africana and Asian (Elephas maximus elephants can experience foot pathologies and arthritis. As a preventative measure against these pathologies and to alleviate the potential discomfort due to concrete substrates, some zoological institutions have renovated elephant housing to increase the amount of natural or shock-absorbent substrates. The objective of this study was to compare behavioral (diurnal and nocturnal and glucorticoid (e.g., serum cortisol responses of three female African elephants before, during, and after renovation to their indoor housing floor to assess whether renovations had short-term effects on the elephants' behavior and stress physiology. Behavioral data were collected using scan-sampling methods, and activity budgets were constructed for each of the three elephants. In addition, the duration of all lying rest activities were recorded. Weekly serum cortisol concentrations were determined with enzyme immunoassay (EIA. Overall, eating was the most prevalent behavior exhibited outdoors during the day, while resting (either in a lying or standing position were most common during the indoor, nocturnal periods. Although variation existed among the three elephants, all three females spent significantly more time walking and less time eating during the day after the completion of the renovations. The extent to which the three elephants exhibited nocturnal lying rest behavior varied among the elephants, with the oldest elephant exhibiting the least amount (an average of 13.2 ± 2.8% of the nightly behavioral scans compared to the two younger elephants (an average of 34.5 ± 2.1% and 56.6 ± 2.8% of the nightly behavioral scans. There was a significant increase in lying rest behavior for one elephant and standing rest for a second elephant following renovations. Baseline cortisol concentrations prior to renovations were 3.0 ± 0.4 ng/ml, 4.5 ± 0.5 ng/ml, and 4.9 ± 0.5 ng/ml for the three elephants

  16. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  17. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study.

    Science.gov (United States)

    Rojas, Paulina Soledad; Fritsch, Rosemarie; Rojas, Romina Andrea; Jara, Pablo; Fiedler, Jenny Lucy

    2011-09-30

    Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  19. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse.

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T; Morales, Manuel B; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse (Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  20. Sex-specific effects of daily gavage with a mixed progesterone and glucocorticoid receptor antagonist on hypoxic ventilatory response in newborn rats.

    Science.gov (United States)

    Fournier, Stéphanie; Doan, Van Diep; Joseph, Vincent

    2012-01-01

    We tested the hypothesis that daily gavage with mifepristone, a mixed progesterone/glucocorticoid receptor antagonist would alter hypoxic ventilatory response (HVR) in newborn male and female rats. Rats were treated with mifepristone (40µg/g/day), or vehicle between postnatal days 3-12, and used at 10-12 days of age to record baseline ventilatory and metabolic values using whole body plethysmography. HVR was tested by exposing the animals to 14% and 12% O(2) for 20 minutes each. HVR was enhanced by mifepristone treatment, mainly due to an effect on tidal volume that remained higher in mifepristone treated rats during both levels of hypoxic exposure. This effect was sex-specific being apparent only in male rats. In Vehicle treated rats, HVR was higher in females than in males, which was also due to a higher tidal volume in hypoxia (at 14 and 12% O(2)). We conclude that the activity of the progesterone and/or glucocorticoid receptors modulates respiratory control in rat pups, and that these effects are different in males and females.

  1. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T.; Morales, Manuel B.; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse ( Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  2. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China.

    Science.gov (United States)

    Zhou, Lei; Liu, Weibin; Li, Wei; Li, Haifeng; Zhang, Xu; Shang, Huifang; Zhang, Xu; Bu, Bitao; Deng, Hui; Fang, Qi; Li, Jimei; Zhang, Hua; Song, Zhi; Ou, Changyi; Yan, Chuanzhu; Liu, Tao; Zhou, Hongyu; Bao, Jianhong; Lu, Jiahong; Shi, Huawei; Zhao, Chongbo

    2017-09-01

    To determine the efficacy of low-dose, immediate-release tacrolimus in patients with myasthenia gravis (MG) with inadequate response to glucocorticoid therapy in a randomized, double-blind, placebo-controlled study. Eligible patients had inadequate response to glucocorticoids (GCs) after ⩾6 weeks of treatment with prednisone ⩾0.75 mg/kg/day or 60-100 mg/day. Patients were randomized to receive 3 mg tacrolimus or placebo daily (orally) for 24 weeks. Concomitant glucocorticoids and pyridostigmine were allowed. Patients continued GC therapy from weeks 1-4; from week 5, the dose was decreased at the discretion of the investigator. The primary efficacy outcome measure was a reduction, relative to baseline, in quantitative myasthenia gravis (QMG) score assessed using a generalized linear model; supportive analyses used alternative models. Of 138 patients screened, 83 [tacrolimus ( n = 45); placebo ( n = 38)] were enrolled and treated. The change in adjusted mean QMG score from baseline to week 24 was -4.9 for tacrolimus and -3.3 for placebo (least squares mean difference: -1.7, 95% confidence interval: -3.5, -0.1; p = 0.067). A post-hoc analysis demonstrated a statistically significant difference for QMG score reduction of ⩾4 points in the tacrolimus group (68.2%) versus the placebo group (44.7%; p = 0.044). Adverse event profiles were similar between treatment groups. Tacrolimus 3 mg treatment for patients with MG and inadequate response to GCs did not demonstrate a statistically significant improvement in the primary endpoint versus placebo over 24 weeks; however, a post-hoc analysis demonstrated a statistically significant difference for QMG score reduction of ⩾4 points in the tacrolimus group versus the placebo group. This study was limited by the low number of patients, the absence of testing for acetylcholine receptor antibody and the absence of stratification by disease duration (which led to a disparity between the two groups). Clinical

  3. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  4. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Systematic review of the clinical effect of glucocorticoids on nonhematologic malignancy

    Directory of Open Access Journals (Sweden)

    Keith Bruce D

    2008-03-01

    Full Text Available Abstract Background Glucocorticoids are often used in the treatment of nonhematologic malignancy. This review summarizes the clinical evidence of the effect of glucocorticoid therapy on nonhematologic malignancy. Methods A systematic review of clinical studies of glucocorticoid therapy in patients with nonhematologic malignancy was undertaken. Only studies having endpoints of tumor response or tumor control or survival were included. PubMed, EMBASE, the Cochrane Register/Databases, conference proceedings (ASCO, AACR, ASTRO/ASTR, ESMO, ECCO and other resources were used. Data was extracted using a standard form. There was quality assessment of each study. There was a narrative synthesis of information, with presentation of results in tables. Where appropriate, meta-analyses were performed using data from published reports and a fixed effect model. Results Fifty four randomized controlled trials (RCTs, one meta-analysis, four phase l/ll trials and four case series met the eligibility criteria. Clinical trials of glucocorticoid monotherapy in breast and prostate cancer showed modest response rates. In advanced breast cancer meta-analyses, the addition of glucocorticoids to either chemotherapy or other endocrine therapy resulted in increased response rate, but not increased survival. In GI cancer, there was one RCT each of glucocorticoids vs. supportive care and chemotherapy +/- glucocorticoids; glucocorticoid effect was neutral. The only RCT found of chemotherapy +/- glucocorticoids, in which the glucocorticoid arm did worse, was in lung cancer. In glucocorticoid monotherapy, meta-analysis found that continuous high dose glucocorticoids had a detrimental effect on survival. The only other evidence, for a detrimental effect of glucocorticoid monotherapy, was in one of the two trials in lung cancer. Conclusion Glucocorticoid monotherapy has some benefit in breast and prostate cancer. In advanced breast cancer, the addition of glucocorticoids to other

  6. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  7. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  8. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  9. The Regulation of Muscle Mass by Endogenous Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Daniel L Marks

    2015-02-01

    Full Text Available Glucocorticoids are highly conserved fundamental regulators of energy homeostasis. In response to stress in the form of perceived danger or acute inflammation, glucocorticoids are released from the adrenal gland, rapidly mobilizing energy from carbohydrate, fat and protein stores. In the case of inflammation, mobilized protein is critical for the rapid synthesis of acute phase reactants and an efficient immune response to infection. While adaptive in response to infection, chronic mobilization can lead to a p rofound depletion of energy stores. Skeletal muscle represents the major body store of protein, and can become substantially atrophied under conditions of chronic inflammation. Glucocorticoids elicit the atrophy of muscle by increasing the rate of protein degradation by the ubiquitin-proteasome system and autophagy lysosome system. Protein synthesis is also suppressed at the level of translational initiation, preventing the production of new myofibrillar protein. Glucocorticoids also antagonize the action of anabolic regulators such as insulin further exacerbating the loss of protein and muscle mass. The loss of muscle mass in the context of chronic disease is a key feature of cachexia and contributes substantially to morbidity and mortality. A growing body of evidence demonstrates that glucocorticoid signaling is a common mediator of wasting, irrespective of the underlying initiator or disease state. This review will highlight fundamental mechanisms of glucocorticoid signaling and detail the mechanisms of glucocorticoid-induced muscle atrophy. Additionally, the evidence for glucocorticoids as a driver of muscle wasting in numerous disease states will be discussed. Given the burden of wasting diseases and the nodal nature of glucocorticoid signaling, effective anti-glucocorticoid therapy would be a valuable clinical tool. Therefore, the progress and potential pitfalls in the development of glucocorticoid antagonists for muscle wasting will

  10. Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation.

    Science.gov (United States)

    Choi, Gee Euhn; Lee, Sei-Jung; Lee, Hyun Jik; Ko, So Hee; Chae, Chang Woo; Han, Ho Jae

    2017-08-30

    Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation. SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid

  11. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail.

    Science.gov (United States)

    Zimmer, C; Spencer, K A

    2014-12-01

    Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions. © 2014 The Authors. Journal of Neuroendocrinology published by

  12. Glucocorticoid-Induced Osteoporosis

    Science.gov (United States)

    ... nervosa Cigarette smoking Alcohol abuse Low calcium and vitamin D, by low dietary intake or poor absorption in your gut Sedentary (inactive) lifestyle or immobility Certain medications besides glucocorticoids, including the following: excess thyroid hormone replacement the blood thinner heparin some ...

  13. Using fecal glucocorticoids for stress assessment in Mourning Doves

    Science.gov (United States)

    Washburn, Brian E.; Millspaugh, Joshua J.; Schulz, John H.; Jones, Susan B.; Mong, T.

    2003-01-01

    Fecal glucocorticoid assays provide a potentially useful, noninvasive means to study physiological responses of wildlife to various stressors. The objective of our study was to validate a method for measuring glucocorticoid metabolites in Mourning Dove (Zenaida macroura) feces. We validated the assay using standard procedures (e.g., parallelism, recovery of exogenous corticosterone) to demonstrate that the assay accurately and precisely measured glucocorticoid metabolites in Mourning Dove fecal extracts. We conducted adrenocorticotropin (ACTH) challenge experiments to validate the assay's ability to determine biologically important changes in fecal glucocorticoids. Fecal glucocorticoid levels increased significantly approximately 2-3 hr after administration of ACTH at 50 IU per kg body mass to wild Mourning Doves held in captivity. In contrast, fecal glucocorticoid metabolites did not increase in control birds, birds that received saline injections, or a lower dose of ACTH (1 IU per kg body mass). Variation in overall fecal glucocorticoid metabolite levels may have been influenced by season and the length of time birds were held in captivity. Non-invasive fecal glucocorticoid metabolite analyses, in combination with demographic information, may have considerable utility for monitoring the effects of natural and anthropogenic disturbances on Mourning Dove populations.

  14. Maternal buffering beyond glucocorticoids: impact of early life stress on corticolimbic circuits that control infant responses to novelty

    Science.gov (United States)

    Howell, Brittany R.; McMurray, Matthew S.; Guzman, Dora B.; Nair, Govind; Shi, Yundi; McCormack, Kai M.; Hu, Xiaoping; Styner, Martin A.; Sanchez, Mar M.

    2017-01-01

    Maternal presence has a potent buffering effect on infant fear and stress responses in primates. We previously reported that maternal presence is not effective in buffering the endocrine stress response in infant rhesus monkeys reared by maltreating mothers. We have also reported that maltreating mothers show low maternal responsiveness and permissiveness/secure-base behavior. Although still not understood, it is possible that this maternal buffering effect is mediated, at least partially, through deactivation of amygdala response circuits when mothers are present. Here we studied rhesus monkey infants that differed in the quality of early maternal care to investigate how this early experience modulated maternal buffering effects on behavioral responses to novelty during the weaning period. We also examined the relationship between these behavioral responses and structural connectivity in one of the underlying regulatory neural circuits: amygdala-prefrontal pathways. Our findings suggest that infant exploration in a novel situation is predicted by maternal responsiveness and structural integrity of amygdala-prefrontal white matter depending on maternal presence (positive relationships when mother is absent). These results provide evidence that maternal buffering of infant behavioral inhibition is dependent on the quality of maternal care and structural connectivity of neural pathways that are sensitive to early life stress. PMID:27295326

  15. Baseline Shoulder Ultrasonography Is Not a Predictive Marker of Response to Glucocorticoids in Patients with Polymyalgia Rheumatica: A 12-month Followup Study.

    Science.gov (United States)

    Miceli, Maria Concetta; Zoli, Angelo; Peluso, Giusy; Bosello, Silvia; Gremese, Elisa; Ferraccioli, Gianfranco

    2017-02-01

    In this study, we evaluated whether ultrasound (US) subdeltoid bursitis (SB) and/or biceps tenosynovitis (BT) presence at baseline could represent a predictive marker of response to standard therapy after 12 months of followup, and whether a positive US examination could highlight the need of higher maintenance dosage of glucocorticoids (GC) at 6 and 12 months in patients with polymyalgia rheumatica (PMR). Sixty-six consecutive patients with PMR underwent bilateral shoulder US evaluations before starting therapy and after 12 months of followup. Absence of girdle pain and morning stiffness (clinical remission) and laboratory variables were evaluated. After diagnosis, all patients were treated with prednisone. At baseline, SB and/or BT were present in 46 patients (70%), of whom 33 (72%) became negative while 13 (28%) remained positive at the 12-month US evaluation. All patients rapidly achieved a clinical remission, and at 6 months 26 (39%) also achieved a laboratory variable normalization. According to US positivity at baseline, no difference was found in remission or relapse rate after 12 months. Thirty patients (46%) at 6 months and 7 (11%) at 12 months were still taking more than 5 mg/day of prednisone. According to the US pattern at baseline, no difference was found in the mean GC dose at 6 and 12 months. In patients with PMR, the presence of SB and/or BT on US at diagnosis is not a predictive marker of GC response or of a higher GC dosage to maintain remission in a 12-month prospective followup study.

  16. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  17. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis....

  18. Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.

    Science.gov (United States)

    Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A

    2008-05-01

    Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.

  19. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  20. A gene-based analysis of variants in the serum/glucocorticoid regulated kinase (SGK genes with blood pressure responses to sodium intake: the GenSalt Study.

    Directory of Open Access Journals (Sweden)

    Changwei Li

    Full Text Available Serum and glucocorticoid regulated kinase (SGK plays a critical role in the regulation of renal sodium transport. We examined the association between SGK genes and salt sensitivity of blood pressure (BP using single-marker and gene-based association analysis.A 7-day low-sodium (51.3 mmol sodium/day followed by a 7-day high-sodium intervention (307.8 mmol sodium/day was conducted among 1,906 Chinese participants. BP measurements were obtained at baseline and each intervention using a random-zero sphygmomanometer. Additive associations between each SNP and salt-sensitivity phenotypes were assessed using a mixed linear regression model to account for family dependencies. Gene-based analyses were conducted using the truncated p-value method. The Bonferroni-method was used to adjust for multiple testing in all analyses.In single-marker association analyses, SGK1 marker rs2758151 was significantly associated with diastolic BP (DBP response to high-sodium intervention (P = 0.0010. DBP responses (95% confidence interval to high-sodium intervention for genotypes C/C, C/T, and T/T were 2.04 (1.57 to 2.52, 1.79 (1.42 to 2.16, and 0.85 (0.30 to 1.41 mmHg, respectively. Similar trends were observed for SBP and MAP responses although not significant (P = 0.15 and 0.0026, respectively. In addition, gene-based analyses demonstrated significant associations between SGK1 and SBP, DBP and MAP responses to high sodium intervention (P = 0.0002, 0.0076, and 0.00001, respectively. Neither SGK2 nor SGK3 were associated with the salt-sensitivity phenotypes in single-maker or gene-based analyses.The current study identified association of the SGK1 gene and BP salt-sensitivity in the Han Chinese population. Further studies are warranted to identify causal SGK1 gene variants.

  1. HDL cholesterol response to GH replacement is associated with common cholesteryl ester transfer protein gene variation (-629C>A) and modified by glucocorticoid treatment

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; van den Berg, Gerrit; van der Knaap, Aafke M.; Dijck-Brouwer, Janneke; Dallinga-Thie, Geesje M.; Zelissen, Peter M. J.; Sluiter, Wim J.; van Beek, André P.

    2010-01-01

    GH replacement lowers total cholesterol and low-density lipoprotein cholesterol (LDL-C) in GH-deficient adults, but effects on high-density lipoprotein (HDL) cholesterol (HDL-C) are variable. Both GH and glucocorticoids decrease cholesteryl ester transfer protein (CETP) activity, which is important

  2. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  4. On the retinal toxicity of intraocular glucocorticoids.

    Science.gov (United States)

    Torriglia, Alicia; Valamanesh, Fatemeh; Behar-Cohen, Francine

    2010-12-15

    Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  6. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  7. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  8. Adverse parenting is associated with blunted salivary cortisol awakening response and altered expression of glucocorticoid receptor β and β2-adrenergic receptor mRNAs in leukocytes in Japanese medical students.

    Science.gov (United States)

    Kawai, Tomoko; Kuwano, Yuki; Masuda, Kiyoshi; Fujita, Kinuyo; Tanaka, Hiroki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Nishida, Kensei

    2017-03-01

    Adverse parenting is associated with an increased risk for the development of mood and behavioral disorders. In this study, we assessed the perceived parental bonding of 232 medical students using the parental bonding instrument (PBI) and extracted 22 students who reported their parents' rearing attitudes as affectionless control (LOW; low care, high overprotection). Using the 28-item general health questionnaire, the Zung self-rating depression scale (Zung-SDS), the hospital anxiety and depression scale (HADS), and the Spielberger state-trait-anxiety-inventory (STAI), physical and mental state of the LOW students were compared with those of 30 students who reported their parental bonding as optimal (OPT; high care and low overprotection). These questionnaire measurements demonstrated significantly higher anxiety and depressive mood in the LOW students versus the OPT students. Compared with the OPT students, the LOW students also exhibited a significantly reduced salivary cortisol awakening response (CAR) without changes across the rest of the diurnal salivary cortisol profile. Among glucocorticoid-related genes examined (GR, ADRB2, IκBα, IL10, IL1R2, IL1RN, MR, MC2R, TGFB1, TGFB2 and FASLG), real-time reverse transcription-PCR showed that the LOW students significantly increased expression of a dominant negative glucocorticoid receptor β (GRβ) mRNA and decreased β2-adrenergic receptor (ADRB2) mRNA levels in circulating leukocytes. These results suggest that negative perception of parents' child-rearing attitudes may be associated with anxiety and depressive mood and altered glucocorticoid signaling even in healthy young adults.

  9. Assignment of the human gene for the glucocorticoid receptor to chromosome 5.

    OpenAIRE

    Gehring, U; Segnitz, B; Foellmer, B; Francke, U

    1985-01-01

    Human lymphoblastic leukemia cells of line CEM-C7 are glucocroticoid-sensitive and contain glucocorticoid receptors of wild-type characteristics. EL4 mouse lymphoma cells are resistant to lysis by glucocorticoids due to mutant receptors that exhibit abnormal DNA binding. Hybrids between the two cell lines were prepared and analyzed with respect to glucocorticoid responsiveness and to receptor types by DNA-cellulose chromatrography. Sensitive hybrid cell clones contained the CEM-C7-specific re...

  10. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  11. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    International Nuclear Information System (INIS)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki; Oritani, Kenji; Matsuda, Tadashi

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR

  12. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    Energy Technology Data Exchange (ETDEWEB)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan); Oritani, Kenji [Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Matsuda, Tadashi, E-mail: tmatsuda@pharm.hokudai.ac.jp [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan)

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  13. Biochemical endpoints of glucocorticoid hormone action

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Nicholson, M.L.; Guyette, W.A.; Giddings, S.J.; Mendelsohn, S.L.; Nordeen, S.K.; Lyons, R.T.

    1978-01-01

    Both the rapidly evolving metabolic effects of glucocorticoids and the more slowly developing lethal actions appear to be initiated via the synthesis of new mRNAs and proteins. The chronic suppression of cell growth may be the consequence of suppression of overall rates of protein synthesis (and probably RNA and DNA synthesis as well) that in turn may represent the cellular response to the small changes in ratios of adenine nucleotides that result from the suppression of oxidative ATP production. The inhibition of glucose transport may also play a role here to prevent a compensatory increase in glycolytic ATP production. Some other hormone actions, the decrease in the ability of cells to concentrate AIB and the increase in nuclear fragility are unrelated to, and evolve separately from, the hormonal inhibitions on energy production. Cell killing is not the result of suppression of protein synthesis, nor of hormone-induced increases in calcium uptake. While the mechanisms are unknown, the increase in nuclear fragility appears to be the earliest measure of their operation. In tumor cells resistance to lethal actions of glucocorticoids may emerge via the selection of cells with hardier membranes, that are better able to withstand the intracellular destructive events set in motion by high levels of glucocorticoids.

  14. Experimental Study on the Effect of Calcitonin in Osteoporosis Induced by the Immobilization and Long-Term Glucocorticoid

    International Nuclear Information System (INIS)

    Park, Dong Jin; Lee, Sang Rae

    1989-01-01

    It is well known that the glucocorticoid induces osteoporosis by suppression of the osteoblast, but its effect on the osteoclast has some controversy whether it activates or suppresses the osteoclast. If the calcitonin, which is known to suppress the osteoclast, prevents the osteoporosis by glucocorticoid, then the suppression of the osteoclast by the glucocorticoid is not so significant. And if the calcitonin increases the osteoblastic activity, Tc-99m MDP uptake will be increased in spite of the glucocorticoid effect on the osteoblast. The immobilization operation was performed to the right leg of male Wistar rats weighing about 200 gm each. For 16 weeks after operation, rats were injected glucocorticoid alone or glucocorticoid and calcitonin. The bone density was measured by means of photodensitometry under reference aluminum step wedge and Tc-99m MDP uptake was available to the index of the osteoblastic activity. 1. The bone density of femoral head was markedly reduced than that of femoral shaft following ratio of cancellous and cortical components in both site. 2. glucocorticoid caused decrease in bone density of spine and femur, and there is significantly increase of it when medication of glucocorticoid and calcitonin injection simultaneously than that of glucocorticoid. 3. Tc-99m MDP uptake was revealed significant reduction in medication of glucocorticoid but increase in glucocorticoid and calcitonin injection simultaneously in later experimental period. 4. There was a slight reduction in plasma osteocalcin in medication of glucocorticoid through experimental periods and an increase in its value in case of giving glucocorticoid and calcitonin simultaneously in later experimental period. From these results, we suggest that osteoporosis by immobilization is more pronounced by glucocorticoid hormone and osteoporosis induced by immobilization and glucocorticoid use is prevented by calcitonin administration with increasing osteoblastic activity.

  15. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos

    2010-02-01

    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  16. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  17. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  18. Optimal glucocorticoid therapy.

    Science.gov (United States)

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  19. Pulsatile thyrotropin secretion in patients with Addison's disease during variable glucocorticoid therapy

    DEFF Research Database (Denmark)

    Hangaard, J; Andersen, M; Grodum, E

    1996-01-01

    , increasing significantly (P glucocorticoids, when the pulse frequency was also significantly reduced (P ... of glucocorticoids on the TSH response to TRH, our data indicate that even physiological serum levels of cortisol have an influence on endogenous TSH secretion, probably caused by regulation of the pituitary sensitivity to TRH....

  20. Glucocorticoid-induced myopathy in the intensive care unit

    DEFF Research Database (Denmark)

    Eddelien, Heidi Shil; Hoffmeyer, Henrik Westy; Lund, Eva Charlotte Løbner

    2015-01-01

    Glucocorticoids (GC) are used for intensive care unit (ICU) patients on several indications. We present a patient who was admitted to the ICU due to severe respiratory failure caused by bronchospasm requiring mechanical ventilation and treated with methylprednisolone 240 mg/day in addition...... to antibiotics and bronchiolytics. When the sedation was lifted on day 10, the patient was awake but quadriplegic. Blood samples revealed elevated muscle enzymes, electromyography showed myopathy, and a muscle biopsy was performed. Glucocorticoid-induced myopathy was suspected, GC treatment was tapered...

  1. The study of lymphocytes glucocorticoid receptor in severe head injury

    International Nuclear Information System (INIS)

    Li Dapei; Wang Haodan; Zhao Qihuang

    1994-01-01

    Glucocorticoid receptors (GCR) of peripheral lymphocytes from 14 patients with severe head injury and 11 normal volunteers are studied by means of single point method of radioligand binding assay. All these patients receive surgical therapy and glucocorticoid of routine dosage. The results show that the GCR level of these patients is lower than that of the normal, while the plasma cortisol level is much higher. These changes correlate closely to the patients' clinical outcome. It is indicated that the GCR level can reflect the degree of stress of these patients and their response to glucocorticoid therapy. Using peripheral lymphocytes instead of the brain biopsy for the measurement of GCR can reflect the GCR changes of brain tissue, it's more convenient to get the sample and more acceptable to the patients

  2. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  3. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  4. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  5. Glucocorticoids in early rheumatoid arthritis

    NARCIS (Netherlands)

    Everdingen, Amalia A. van

    2002-01-01

    For 50 years, glucocorticoids (GC) are used for symptomatic treatment of rheumatoid arthritis (RA). In the last decade, results from clinical studies of treatment with GC as additional therapy to long-acting antirheumatic drugs in patients with early RA suggested also disease-modifying properties of

  6. Glucocorticoid programming of intrauterine development.

    Science.gov (United States)

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors.

    Science.gov (United States)

    Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel

    2014-02-01

    Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.

  8. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary.

    Science.gov (United States)

    Whirledge, Shannon; Cidlowski, John A

    2013-12-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.

  9. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis.

    Science.gov (United States)

    Hardy, Rowan; Juarez, Maria; Naylor, Amy; Tu, Jinwen; Rabbitt, Elizabeth H; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Raza, Karim; Cooper, Mark S

    2012-10-18

    Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis. We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array. DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1. These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.

  10. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  11. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  12. Influence of chronic x-ray exposure on adrenal glucocorticoid function and adrenocorticocyte membrane potential

    International Nuclear Information System (INIS)

    Gorban', Je.M.; Topol'nikova, N.V.

    1998-01-01

    The peculiarities of adrenal glucocorticoid function and membrane potential (MP) of zona fasciculata adrenocorticocyte (ACC) in rats after chronic x-ray exposure was studied. The changes of adrenal glucocorticoid function caused by chronic x-ray exposure within a relatively small period of irradiation (1.5 months) are obscure and manifest themselves only at physiological load. With the prolongation of the period (8 and 15 months), more considerable inhibition of the adrenal glucocorticoid function and disturbances in the membrane mechanisms of ACC MP level regulation are revealed

  13. Glucocorticoids and hemopoietic stem cells

    International Nuclear Information System (INIS)

    Romashko, O.O.; Berin, G.I.

    1978-01-01

    Analyzing the data of home and foreign investigators the problems of the glucocorticoid effect on blood and bone marrow of experimental (including irradiated ones) animals are discussed. Considered are a character and mechanism of the adrenal cortex hormones effect on blood formation, as well as the effect of pharmacological doses of corticosteroids on CFU, their erythropoietic effect in physiological doses on a morphological picture of bone marrow after irradiation and subsequent introduction of hormones and the hormone effect on intensity of erythropoiesis recovery in irradiated mice. Presented are the experimental data on studying the effect of endogenic hypercorticoidism and a reduced level of endogenic corticosteroids on blood-forming stem cells in the irradiated mice and the data on the ACTH injection effect on CFU migration after irradiation. Evaluated are already available data and further investigations to ground advisability and conditions of using corticosteroids as well as determining rational therapeutic effects on secretion of endogenic glucocorticoids when treating blood system diseases

  14. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  15. What boxing-related stimuli reveal about response behaviour.

    Science.gov (United States)

    Ottoboni, Giovanni; Russo, Gabriele; Tessari, Alessia

    2015-01-01

    When two athletes meet inside the ropes of the boxing ring to fight, their cognitive systems have to respond as quickly as possible to a manifold of stimuli to assure victory. In the present work, we studied the pre-attentive mechanisms, which form the basis of an athlete's ability in reacting to an opponent's punches. Expert boxers, beginner boxers and people with no experience of boxing performed a Simon-like task where they judged the colour of the boxing gloves worn by athletes in attack postures by pressing two lateralised keys. Although participants were not instructed to pay attention to the direction of the punches, beginner boxers' responses resembled a defence-related pattern, expert boxers' resembled counterattacks, whereas non-athletes' responses were not influenced by the unrelated task information. Results are discussed in the light of an expertise-related action simulation account.

  16. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP

    International Nuclear Information System (INIS)

    Osman, Waffa; Laine, Sanna; Zilliacus, Johanna

    2006-01-01

    Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation

  17. A case report: Familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ram Nanik

    2012-12-01

    Full Text Available Abstract Background Familial glucocorticoid deficiency (FGD is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency in the presence of normal plasma renin and aldosterone level. Focal segmental glomerulosclerosis (FSGS is a form of glomerular disease associated with proteinuria and nephritic syndrome. This is the first case of familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis. Case presentation An eight month old boy presented with increased genital pigmentation. Initial investigation revealed that he was glucocorticoid deficient and was started on hydrocortisone and fludrocortisone with a diagnosis of primary adrenal insufficiency. Later fludrocortisone was withdrawn and he was diagnosed to have isolated glucocorticoid deficiency. He later developed focal segmental glomerulosclerosis for which he underwent renal transplantation at the age of five years. Now at the age of twelve years, this boy is doing well on hydrocortisone treatment. His two siblings and a first degree cousin also had isolated glucocorticoid deficiency. One of the above two siblings died due to renal failure secondary to focal segmental glomerulosclerosis. Conclusion Patients with familial glucocorticoid deficiency should be carefully followed for development of features of nephrotic syndrome.

  18. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  19. The distorting effect of varying diets on fecal glucocorticoid measurements as indicators of stress

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Teilmann, A. Charlotte; Abelson, Klas S. P.

    2015-01-01

    The physiological stress response is frequently gauged in animals, non-invasively, through measuring glucocorticoids in excreta. A concern with this method is, however, the unknown effect of variations in diets on the measurements. With an energy dense diet, leading to reduced defecation, will low...... concentrations of glucocorticoids be artificially inflated? Can this effect be overcome by measuring the total output of glucocorticoids in excreta? In a controlled laboratory setting we explored the effect in mice. When standard mouse chow – high in dietary fiber – was replaced with a 17% more energy-dense diet...

  20. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, J K; Morin, D E

    2010-01-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5...... 0.05), with 86 DEG up-regulated and 201 DEG down-regulated. Canonical pathways most affected by NEB were IL-8 Signaling (10 genes), Glucocorticoid Receptor Signaling (13), and NRF2-mediated Oxidative Stress Response (10). Among genes differentially expressed by NEB, Cell Growth and Proliferation (48...

  1. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  2. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  3. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  4. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia

  5. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis

    OpenAIRE

    Hardy, Rowan; Juarez, Maria; Naylor, Amy; Tu, Jinwen; Rabbitt, Elizabeth H; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Raza, Karim; Cooper, Mark S

    2012-01-01

    Introduction: Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytok...

  6. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  7. Glucocorticoid receptors in anorexia nervosa and Cushing's disease.

    Science.gov (United States)

    Invitti, C; Redaelli, G; Baldi, G; Cavagnini, F

    1999-06-01

    Patients with anorexia nervosa do not display cushingoid features in spite of elevated cortisol plasma levels. Whether a cortisol resistance or a reduced availability of the metabolic substrates necessary to develop the effect of glucocorticoids is responsible for this has not been established. Twenty-two patients with severe restrictive anorexia nervosa, 10 patients with active Cushing's disease, and 24 healthy volunteers without psychiatric disorders or mood alterations were investigated. Glucocorticoid receptor characteristics were examined on mononuclear leukocytes by measuring [3H]dexamethasone binding and the effect of dexamethasone on [3H]thymidine incorporation, which represents an index of DNA synthesis. The number of glucocorticoid receptors on mononuclear leukocytes (MNL) was comparable in patients with anorexia nervosa, patients with active Cushing's disease, and normal subjects (binding capacity 3.3 +/- 0.23 vs. 3.7 +/- 0.30 and 3.5 +/- 0.20 fmol/10(6) cells). Conversely, glucocorticoid receptor affinity was significantly decreased in anorexia nervosa as well as in Cushing's patients compared to control subjects (dissociation constant 4.0 +/- 0.31 and 4.1 +/- 0.34 vs. 2.9 +/- 0.29 nmol/L, p Cushing's patients compared to control subjects (p Cushing's disease. In patients with anorexia nervosa, the incorporation of [3H]thymidine into the MNL was inversely correlated with urinary free cortisol levels. These data indicate that the lack of cushingoid features in patients with anorexia nervosa is not ascribable to a reduced sensitivity to glucocorticoids but is more likely due to the paucity of metabolic substrates.

  8. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.

    Science.gov (United States)

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-05-01

    Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

  9. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  10. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  11. Optimal glucocorticoid replacement in adrenal insufficiency.

    Science.gov (United States)

    Øksnes, Marianne; Ross, Richard; Løvås, Kristian

    2015-01-01

    Adrenal insufficiency (glucocorticoid deficiency) comprises a group of rare diseases, including primary adrenal insufficiency, secondary adrenal insufficiency and congenital adrenal hyperplasia. Lifesaving glucocorticoid therapy was introduced over 60 years ago, but since then a number of advances in treatment have taken place. Specifically, little is known about short- and long-term treatment effects, and morbidity and mortality. Over the past decade, systematic cohort and registry studies have described reduced health-related quality of life, an unfavourable metabolic profile and increased mortality in patients with adrenal insufficiency, which may relate to unphysiological glucocorticoid replacement. This has led to the development of new modes of replacement that aim to mimic normal glucocorticoid physiology. Here, evidence for the inadequacy of conventional glucocorticoid therapy and recent developments in treatment are reviewed, with an emphasis on primary adrenal insufficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  14. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  15. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  16. Cannabinoids and glucocorticoids modulate emotional memory after stress.

    Science.gov (United States)

    Akirav, Irit

    2013-12-01

    Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Circumvention of glucocorticoid resistance in childhood leukemia.

    Science.gov (United States)

    Haarman, E G; Kaspers, G J L; Pieters, R; Rottier, M M A; Veerman, A J P

    2008-09-01

    In this study, we determined if in vitro resistance to prednisolone and dexamethasone could be circumvented by cortivazol or methylprednisolone, or reversed by meta-iodobenzylguanidine in pediatric lymphoblastic and myeloid leukemia. As there were strong correlations between the LC50 values (drug concentration inducing 50% leukemic cell kill, LCK) of the different glucocorticoids and median prednisolone/methylprednisolone, prednisolone/dexamethasone and prednisolone/cortivazol LC50 ratios did not differ between the leukemia subtypes, we conclude that none of the glucocorticoids had preferential anti-leukemic activity. Meta-iodobenzylguanidine however, partially reversed glucocorticoid resistance in 19% of the lymphoblastic leukemia samples.

  18. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  19. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity

    Directory of Open Access Journals (Sweden)

    Burnsides C

    2012-08-01

    Full Text Available Christopher Burnsides,1,* Jacqueline Corry,1,* Jacob Alexander,1 Catherine Balint,1 David Cosmar,1 Gary Phillips,2 Jeanette I Webster Marketon1,31Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Center for Biostatistics, 3Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA*JC and CB have equally contributed to this workPurpose: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity.Patients and methods: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay.Results: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC50 and IC50 concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day.Conclusion: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.Keywords: glucocorticoid responsiveness, gene regulation, nuclear receptor, GILZ, FKBP51, cytokines

  20. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... logistic regression analysis was applied using the summarised descriptive data (for example, % with encephalopathy, mean bilirubin value) of the treatment and control groups of 12 controlled trials that gave this information. Despite evidence of publication bias favouring glucocorticoid treatment, its...... overall effect on mortality was not statistically significant (p = 0.20)--the relative risk (steroid/control) was 0.78 (95% confidence intervals 0.51, 1.18). There was indication of interaction between glucocorticoid therapy and gender, but not encephalopathy. Thus, the effect of glucocorticoid treatment...

  1. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness.

    Science.gov (United States)

    Beehner, Jacinta C; Bergman, Thore J

    2017-05-01

    Glucocorticoids are hormones that mediate the energetic demands that accompany environmental challenges. It is therefore not surprising that these metabolic hormones have come to dominate endocrine research on the health and fitness of wild populations. Yet, several problems have been identified in the vertebrate research that also apply to the non-human primate research. First, glucocorticoids should not be used as a proxy for fitness (unless a link has previously been established between glucocorticoids and fitness for a particular population). Second, stress research in behavioral ecology has been overly focused on "chronic stress" despite little evidence that chronic stress hampers fitness in wild animals. Third, research effort has been disproportionately focused on the causes of glucocorticoid variation rather than the fitness consequences. With these problems in mind, we have three objectives for this review. We describe the conceptual framework behind the "stress concept", emphasizing that high glucocorticoids do not necessarily indicate a stress response, and that a stress response does not necessarily indicate an animal is in poor health. Then, we conduct a comprehensive review of all studies on "stress" in wild primates, including any study that examined environmental factors, the stress response, and/or fitness (or proxies for fitness). Remarkably, not a single primate study establishes a connection between all three. Finally, we provide several recommendations for future research in the field of primate behavioral endocrinology, primarily the need to move beyond identifying the factors that cause glucocorticoid secretion to additionally focus on the relationship between glucocorticoids and fitness. We believe that this is an important next step for research on stress physiology in primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regulation of NAD(P)H:quininone oxidoreductase by glucocorticoids

    International Nuclear Information System (INIS)

    Pinaire, J.A.; Xiao, G.-H.; Falkner, K.C.; Prough, R.A.

    2004-01-01

    Previous studies in neonatal and adolescent rats as well as adrenalectomized rats have demonstrated that glucocorticoids regulate the expression of the rat NAD(P)H:quinone oxidoreductase gene (QOR). We used primary cultures of rat adult hepatocytes to document that added glucorticoids repress both the basal and 1,2-benzanthracene-induced expression of QOR mRNA by 65-70%. QOR enzyme activity and protein were concomitantly suppressed as well. The monotonic concentration response for repression of QOR gene products up to 100 μM DEX concentration demonstrated that the glucocorticoid receptor (GR) was most likely involved in this process. The lack of effect at higher concentration rules out a role for the Pregnane X receptor in this regulation by DEX. In addition, the anti-glucorticoid RU38486 blocked this negative regulation and the protein synthesis inhibitor cycloheximide had no effect on this repression process. Similar results of GR dependence were observed using a luciferase reporter construct containing the 5'-flanking region of the human QOR gene using HepG2 cells. Collectively, these results demonstrate that GR must directly participate in the negative regulation of QOR gene expression by dexamethasone and other glucocorticoids in vivo

  3. Effects of Social Isolation on Glucocorticoid Regulation in Social Mammals

    Science.gov (United States)

    Hawkley, Louise C.; Cole, Steve W.; Capitanio, John P.; Norman, Greg J.; Cacioppo, John T.

    2012-01-01

    The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans. PMID:22663934

  4. Competitive inhibition of [3H]dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    International Nuclear Information System (INIS)

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-01-01

    The inhibitory effect of leupeptin on [ 3 H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [ 3 H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [ 3 H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S)

  5. Association between allelic variants of the human glucocorticoid receptor gene and autoimmune diseases: A systematic review and meta-analysis.

    Science.gov (United States)

    Herrera, Cristian; Marcos, Miguel; Carbonell, Cristina; Mirón-Canelo, José Antonio; Espinosa, Gerard; Cervera, Ricard; Chamorro, Antonio-Javier

    2018-05-01

    The human glucocorticoid receptor gene (NR3C1) is considered to play a role in the differences and sensitivities of the glucocorticoid response in individuals with autoimmune diseases. The objective of this study was to examine by means of a systematic review previous findings regarding allelic variants of NR3C1 in relation to the risk of developing systemic autoimmune diseases. Studies that analysed the genotype distribution of NR3C1 allelic variants among patients with systemic autoimmune diseases were retrieved. A meta-analysis was conducted with a random effects model. Odds ratios (ORs) and their confidence intervals (CIs) were calculated. In addition, sub-analysis by ethnicity, sensitivity analysis and tests for heterogeneity of the results were performed. Eleven studies met the inclusion criteria for meta-analysis. We found no evidence that the analysed NR3C1 polymorphisms, rs6198, rs56149945, and rs6189/rs6190, modulate the risk of developing a systemic autoimmune disease. Nonetheless, a protective role for the minor allele of rs41423247 was found among Caucasians (OR=0.78; 95% CI: 0.65, 0.92; P=0.004). A subgroup analysis according to underlying diseases revealed no significant association either for Behçet's disease or rheumatoid arthritis, while correlations between NR3C1 polymorphisms and disease activity or response to glucocorticoids could not be evaluated due to insufficient data. There is no clear evidence that the analysed NR3C1 allelic variants confer a risk for developing systemic autoimmune diseases although the minor G allele of rs41423247 may be protective among Caucasians. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effects of chronic mild stress on behavioral and neurobiological parameters - Role of glucocorticoid.

    Science.gov (United States)

    Chen, Jiao; Wang, Zhen-zhen; Zuo, Wei; Zhang, Shuai; Chu, Shi-feng; Chen, Nai-hong

    2016-02-01

    Major depression is thought to originate from maladaptation to adverse events, particularly when impairments occur in mood-related brain regions. Hypothalamus-pituitary-adrenal (HPA) axis is one of the major systems involved in physiological stress response. HPA axis dysfunction and high glucocorticoid concentrations play an important role in the pathogenesis of depression. In addition, astrocytic disability and dysfunction of neurotrophin brain-derived neurotrophin factor (BDNF) greatly influence the development of depression and anxiety disorders. Therefore, we investigated whether depressive-like and anxiety-like behaviors manifest in the absence of glucocorticoid production and circulation in adrenalectomized (ADX) rats after chronic mild stress (CMS) exposure and its potential molecular mechanisms. The results demonstrate that glucocorticoid-controlled rats showed anxiety-like behaviors but not depression-like behaviors after CMS. Molecular and cellular changes included the decreased BDNF in the hippocampus, astrocytic dysfunction with connexin43 (cx43) decreasing and abnormality in gap junction in prefrontal cortex (PFC). Interestingly, we did not find any changes in glucocorticoid receptor (GR) or its chaperone protein FK506 binding protein 51 (FKBP5) expression in the hippocampus or PFC in ADX rats subjected to CMS. In conclusion, the production and circulation of glucocorticoids are one of the contributing factors in the development of depression-like behaviors in response to CMS. In contrast, the effects of CMS on anxiety-like behaviors are independent of the presence of circulating glucocorticoids. Meanwhile, stress decreased GR expression and enhanced FKBP5 expression via higher glucocorticoid exposure. Gap junction dysfunction and changes in BDNF may be associated with anxiety-like behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  8. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  9. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  10. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  11. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor.

    Science.gov (United States)

    Schmidt, Stefan; Irving, Julie A E; Minto, Lynne; Matheson, Elizabeth; Nicholson, Lindsay; Ploner, Andreas; Parson, Walther; Kofler, Anita; Amort, Melanie; Erdel, Martin; Hall, Andy; Kofler, Reinhard

    2006-12-01

    Glucocorticoids (GCs) specifically induce apoptosis in malignant lymphoblasts and are thus pivotal in the treatment of acute lymphoblastic leukemia (ALL). However, GC-resistance is a therapeutic problem with an unclear molecular mechanism. We generated approximately 70 GC-resistant sublines from a GC-sensitive B- and a T-ALL cell line and investigated their mechanisms of resistance. In response to GCs, all GC-resistant subclones analyzed by real-time polymerase chain reaction (PCR) showed a deficient up-regulation of the GC-receptor (GR) and its downstream target, GC-induced leucine zipper. This deficiency in GR up-regulation was confirmed by Western blotting and on retroviral overexpression of GR in resistant subclones GC-sensitivity was restored. All GC-resistant subclones were screened for GR mutations using denaturing high-pressure liquid chromatography (DHPLC), DNA-fingerprinting, and fluorescence in situ hybridization (FISH). Among the identified mutations were some previously not associated with GC resistance: A484D, P515H, L756N, Y663H, L680P, and R714W. This approach revealed three genotypes, complete loss of functional GR in the mismatch repair deficient T-ALL model, apparently normal GR genes in B-ALLs, and heterozygosity in both. In the first genotype, deficiency in GR up-regulation was fully explained by mutational events, in the second by a putative regulatory defect, and in the third by a combination thereof. In all instances, GC-resistance occurred at the level of the GR in both models.

  12. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring.

    Science.gov (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Lehrner, Amy; Desarnaud, Frank; Bader, Heather N; Makotkine, Iouri; Flory, Janine D; Bierer, Linda M; Meaney, Michael J

    2014-08-01

    Differential effects of maternal and paternal posttraumatic stress disorder (PTSD) have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The authors examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral blood mononuclear cells and its relationship to glucocorticoid receptor sensitivity in Holocaust offspring. Adult offspring with at least one Holocaust survivor parent (N=80) and demographically similar participants without parental Holocaust exposure or parental PTSD (N=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of GR-1F promoter methylation and of cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical clustering analysis was used to permit visualization of maternal compared with paternal PTSD effects on clinical variables and GR-1F promoter methylation. A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater postdexamethasone cortisol suppression. The clustering analysis revealed that maternal and paternal PTSD effects were differentially associated with clinical indicators and GR-1F promoter methylation. This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities.

  13. Perioperative glucocorticoids in hip and knee surgery - benefit vs. harm?

    DEFF Research Database (Denmark)

    Lunn, T H; Kehlet, H

    2013-01-01

    with systemic glucocorticoid. Pain was reduced with high-dose systemic and local glucocorticoid, but not with low-dose systemic glucocorticoid. Systemic inflammatory markers were reduced with low-dose and high-dose systemic glucocorticoid, and with local glucocorticoid. Functional recovery was improved...... with local glucocorticoid. All studies were small-sized and none sufficiently powered to meaningfully evaluate uncommon adverse events. Most of the local administration studies had poor scientific quality (high risk of bias). Due to clinical heterogeneity and poor scientific quality, no meta......-analysis was performed. In conclusion, in addition to PONV reduction with low-dose systemic glucocorticoid, this review supports high-dose systemic glucocorticoid to ameliorate post-operative pain after hip and knee surgery. However, large-scale safety and dose-finding studies are warranted before final recommendations....

  14. Glucocorticoids and the regulation of memory in health and disease

    NARCIS (Netherlands)

    de Quervain, Dominique J. -F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing

  15. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects

    NARCIS (Netherlands)

    Judd, L.L.; Schettler, P.J.; Brown, E.S.; Wolkowitz, O.M.; Sternberg, E.M.; Bender, B.G.; Bulloch, K.; Cidlowski, J.A.; Kloet, E.R. de; Fardet, L.; Joels, M.; Leung, D.Y.; McEwen, B.S.; Roozendaal, B.; Rossum, E.F. van; Ahn, J.; Brown, D.W.; Plitt, A.; Singh, G.

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  16. Adverse Consequences of Glucocorticoid Medication : Psychological, Cognitive, and Behavioral Effects

    NARCIS (Netherlands)

    Judd, Lewis L.; Schettler, Pamela J.; Brown, E. Sherwood; Wolkowitz, Owen M.; Sternberg, Esther M.; Bender, Bruce G.; Bulloch, Karen; Cidlowski, John A.; de Kloet, E. Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y. M.; McEwen, Bruce S.; Roozendaal, Benno; Van Rossum, Elisabeth F. C.; Ahn, Junyoung; Brown, David W.; Plitt, Aaron; Singh, Gagandeep

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  17. Glucocorticoid effects on hippocampal protein synthesis

    International Nuclear Information System (INIS)

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased [ 35 S]-methionine labeling of a cytosolic protein with an apparent molecular weight (M r ) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M r protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M r . A second hippocampal protein with an M r of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M r of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration

  18. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  19. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  20. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  1. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  2. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  3. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  4. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  5. Behavioral neuroadaptation to alcohol : from glucocorticoids to histone acetylation

    Directory of Open Access Journals (Sweden)

    Daniel Beracochea

    2016-10-01

    Full Text Available A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal (HPA axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit including the prefrontal cortex, the hippocampus and the amygdala. These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally amygdala hyperactivity coupled with a hypofunction of the prefrontal cortex and the hippocampus. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately, leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as CREB (cAMP response element binding protein and chromatin remodeling due to post-translational modifications of histone proteins. We describe the role of prefrontal-hippocampus-amygdala circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes on how persistently increased glucocorticoid levels in prefrontal cortex may be involved in

  6. Environmental Enrichment Effect on Fecal Glucocorticoid Metabolites and Captive Maned Wolf (Chrysocyon brachyurus) Behavior.

    Science.gov (United States)

    Coelho, Carlyle Mendes; de Azevedo, Cristiano Schetini; Guimarães, Marcelo Alcino de Barros Vaz; Young, Robert John

    2016-01-01

    Environmental enrichment is a technique that may reduce the stress of nonhuman animals in captivity. Stress may interfere with normal behavioral expression and affect cognitive decision making. Noninvasive hormonal studies can provide important information about the stress statuses of animals. This study evaluated the effectiveness of different environmental enrichment treatments in the diminution of fecal glucocorticoid metabolites (stress indicators) of three captive maned wolves (Chrysocyon brachyurus). Correlations of the fecal glucocorticoid metabolite levels with expressed behaviors were also determined. Results showed that environmental enrichment reduced fecal glucocorticoid metabolite levels. Furthermore, interspecific and foraging enrichment items were most effective in reducing stress in two of the three wolves. No definite pattern was found between behavioral and physiological responses to stress. In conclusion, these behavioral and physiological data showed that maned wolves responded positively from an animal well being perspective to the enrichment items presented.

  7. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  8. DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression

    International Nuclear Information System (INIS)

    Straehle, U.; Klock, G.; Schuetz, G.

    1987-01-01

    To define the recognition sequence of the glucocorticoid receptor and its relationship with that of the progesterone receptor, oligonucleotides derived from the glucocorticoid response element of the tyrosine aminotransferase gene were tested upstream of a heterologous promoter for their capacity to mediate effects of these two steroids. The authors show that a 15-base-pair sequence with partial symmetry is sufficient to confer glucocorticoid inducibility on the promoter of the herpes simplex virus thymidine kinase gene. The same 15-base-pair sequence mediates induction by progesterone. Point mutations in the recognition sequence affect inducibility by glucocorticoids and progesterone similarly. Together with the strong conservation of the sequence of the DNA-binding domain of the two receptors, these data suggest that both proteins recognize a sequence that is similar, if not the same

  9. Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment

    Directory of Open Access Journals (Sweden)

    Sihlbom Carina

    2011-09-01

    Full Text Available Abstract Background Proteomic studies of respiratory disorders have the potential to identify protein biomarkers for diagnosis and disease monitoring. Utilisation of sensitive quantitative proteomic methods creates opportunities to determine individual patient proteomes. The aim of the current study was to determine if quantitative proteomics of bronchial biopsies from asthmatics can distinguish relevant biological functions and whether inhaled glucocorticoid treatment affects these functions. Methods Endobronchial biopsies were taken from untreated asthmatic patients (n = 12 and healthy controls (n = 3. Asthmatic patients were randomised to double blind treatment with either placebo or budesonide (800 μg daily for 3 months and new biopsies were obtained. Proteins extracted from the biopsies were digested and analysed using isobaric tags for relative and absolute quantitation combined with a nanoLC-LTQ Orbitrap mass spectrometer. Spectra obtained were used to identify and quantify proteins. Pathways analysis was performed using Ingenuity Pathway Analysis to identify significant biological pathways in asthma and determine how the expression of these pathways was changed by treatment. Results More than 1800 proteins were identified and quantified in the bronchial biopsies of subjects. The pathway analysis revealed acute phase response signalling, cell-to-cell signalling and tissue development associations with proteins expressed in asthmatics compared to controls. The functions and pathways associated with placebo and budesonide treatment showed distinct differences, including the decreased association with acute phase proteins as a result of budesonide treatment compared to placebo. Conclusions Proteomic analysis of bronchial biopsy material can be used to identify and quantify proteins using highly sensitive technologies, without the need for pooling of samples from several patients. Distinct pathophysiological features of asthma can be

  10. Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception.

    Directory of Open Access Journals (Sweden)

    Ma'ayan Semo

    Full Text Available Melanopsin photoreception plays a vital role in irradiance detection for non-image forming responses to light. However, little is known about the involvement of melanopsin in emotional processing of luminance. When confronted with a gradient in light, organisms exhibit spatial movements relative to this stimulus. In rodents, behavioural light aversion (BLA is a well-documented but poorly understood phenomenon during which animals attribute salience to light and remove themselves from it. Here, using genetically modified mice and an open field behavioural paradigm, we investigate the role of melanopsin in BLA. While wildtype (WT, melanopsin knockout (Opn4(-/- and rd/rd cl (melanopsin only (MO mice all exhibit BLA, our novel methodology reveals that isolated melanopsin photoreception produces a slow, potentiating response to light. In order to control for the involvement of pupillary constriction in BLA we eliminated this variable with topical atropine application. This manipulation enhanced BLA in WT and MO mice, but most remarkably, revealed light aversion in triple knockout (TKO mice, lacking three elements deemed essential for conventional photoreception (Opn4(-/- Gnat1(-/- Cnga3(-/-. Using a number of complementary strategies, we determined this response to be generated at the level of the retina. Our findings have significant implications for the understanding of how melanopsin signalling may modulate aversive responses to light in mice and humans. In addition, we also reveal a clear potential for light perception in TKO mice.

  11. Identifying a Mechanism for Crosstalk Between the Estrogen and Glucocorticoid Receptors | Center for Cancer Research

    Science.gov (United States)

    Estrogen has long been known to play important roles in the development and progression of breast cancer. Its receptor (ER), a member of the steroid receptor family, binds to estrogen response elements (EREs) in DNA and regulates gene transcription. More recently, another steroid receptor family member, the glucocorticoid receptor (GR), has been implicated in breast cancer

  12. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  13. Are BDNF and glucocorticoid activities calibrated?

    Science.gov (United States)

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  14. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination

    OpenAIRE

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J.; Wu, Hulin; Zand, Martin S.; Mosmann, Tim R.

    2012-01-01

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4–6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vacc...

  15. Autoimmune hyperthyroidism due to secondary adrenal insufficiency: resolution with glucocorticoids.

    Science.gov (United States)

    Skamagas, Maria; Geer, Eliza B

    2011-01-01

    To describe the course of autoimmune hyperthyroid disease in a patient with corticotropin (ACTH) deficiency treated with glucocorticoids. We report the clinical presentation, laboratory data, imaging studies, and management of a patient with weight loss, fatigue, apathy, hallucinations, and arthritis. Autoimmune hyperthyroidism (positive thyroperoxidase and thyroglobulin antibodies and borderline positive thyrotropin receptor antibody) was diagnosed in a 71-year-old woman. New psychotic symptoms prompted brain magnetic resonance imaging, which revealed a partially empty sella. Undetectable morning cortisol, undetectable ACTH, and failure to stimulate cortisol with synthetic ACTH (cosyntropin 250 mcg) secured the diagnosis of long-standing secondary adrenal insufficiency. Hydrocortisone replacement improved the patient's symptoms, resolved the thyroid disease, and decreased thyroid antibody titers. In retrospect, the patient recalled severe postpartum hemorrhage requiring blood transfusion at age 38 years. A Sheehan event probably occurred 33 years before the patient presented with corticotropin deficiency. Hyperthyroidism accelerated cortisol metabolism and provoked symptoms of adrenal insufficiency. The hypocortisolemic state may precipitate hyperimmunity and autoimmune thyroid disease. Rapid resolution of hyperthyroidism and decreased thyroid antibody titers with glucocorticoid treatment support this hypothesis.

  16. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  17. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone

    Science.gov (United States)

    Michailidou, Zoi; Coll, Anthony P; Kenyon, Christopher J; Morton, Nicholas M; O'Rahilly, Stephen; Seckl, Jonathan R; Chapman, Karen E

    2007-01-01

    Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc−/− mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc−/− mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11β-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc−/− mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc−/− mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc−/− mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc−/− mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc−/− mice, independently of adipose or liver renin–angiotensin system activation. These data suggest that CORT-inducible 11β-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver. PMID:17592030

  18. Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells.

    Science.gov (United States)

    Breuer, Rebecca J; Bandyopadhyay, Arpan; O'Brien, Sofie A; Barnes, Aaron M T; Hunter, Ryan C; Hu, Wei-Shou; Dunny, Gary M

    2017-07-01

    In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.

  19. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  20. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  1. Fecal Glucocorticoid Analysis: Non-invasive Adrenal Monitoring in Equids.

    Science.gov (United States)

    Yarnell, Kelly; Purcell, Rebecca S; Walker, Susan L

    2016-04-25

    Adrenal activity can be assessed in the equine species by analysis of feces for corticosterone metabolites. During a potentially aversive situation, corticotrophin releasing hormone (CRH) is released from the hypothalamus in the brain. This stimulates the release of adrenocorticotrophic hormone (ACTH) from the pituitary gland, which in turn stimulates release of glucocorticoids from the adrenal gland. In horses the glucocorticoid corticosterone is responsible for several adaptations needed to support equine flight behaviour and subsequent removal from the aversive situation. Corticosterone metabolites can be detected in the feces of horses and assessment offers a non-invasive option to evaluate long term patterns of adrenal activity. Fecal assessment offers advantages over other techniques that monitor adrenal activity including blood plasma and saliva analysis. The non-invasive nature of the method avoids sampling stress which can confound results. It also allows the opportunity for repeated sampling over time and is ideal for studies in free ranging horses. This protocol describes the enzyme linked immunoassay (EIA) used to assess feces for corticosterone, in addition to the associated biochemical validation.

  2. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  3. Independent association of glucocorticoids with damage accrual in SLE.

    Science.gov (United States)

    Apostolopoulos, Diane; Kandane-Rathnayake, Rangi; Raghunath, Sudha; Hoi, Alberta; Nikpour, Mandana; Morand, Eric F

    2016-01-01

    To determine factors associated with damage accrual in a prospective cohort of patients with SLE. Patients with SLE who attended the Lupus Clinic at Monash Health, Australia, between 2007 and 2013 were studied. Clinical variables included disease activity (Systemic Lupus Erythematosus Disease Activity Index-2K, SLEDAI-2K), time-adjusted mean SLEDAI, cumulative glucocorticoid dose and organ damage (Systemic Lupus International Collaborating Clinics Damage Index (SDI)). Multivariate logistic regression analyses were performed to identify factors associated with damage accrual. A total of 162 patients were observed over a median (IQR) 3.6 (2.0-4.7) years. Seventy-five per cent (n=121) of patients received glucocorticoids. Damage accrual was significantly more frequent in glucocorticoid-exposed patients (42% vs 15%, p<0.01). Higher glucocorticoid exposure was independently associated with overall damage accrual after controlling for factors including ethnicity and disease activity and was significant at time-adjusted mean doses above 4.42 mg prednisolone/day; the OR of damage accrual in patients in the highest quartile of cumulative glucocorticoid exposure was over 10. Glucocorticoid exposure was independently associated with damage accrual in glucocorticoid-related and non-glucocorticoid related domains of the SDI. Glucocorticoid use is independently associated with the accrual of damage in SLE, including in non-glucocorticoid related domains.

  4. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  5. Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis1[w

    Science.gov (United States)

    Liu, Fenglong; VanToai, Tara; Moy, Linda P.; Bock, Geoffrey; Linford, Lara D.; Quackenbush, John

    2005-01-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic PSAG12:ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants. PMID:15734912

  6. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    Science.gov (United States)

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  7. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  8. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  9. Concanavalin a increases beta-adrenergic and glucocorticoid receptors in porcine splenocytes

    International Nuclear Information System (INIS)

    Kelley, K.N.; Westly, H.J.

    1986-01-01

    We identified specific glucocorticoid and beta-adrenergic receptors on porcine splenocytes. There are 2000 to 4000 glucocorticoid receptors per cell with a K /SUB D/ of 2 to 4 nM and 1000 beta-adrenergic receptors with a K /SUB D/ of 0.3 to 0.6 nM. When splenocytes were incubated with concanavalin A (Con A), there was an approximate 2-fold increase in both gluococorticoid and beta-adrenergic receptors with no change in binding affinity. Incubation of splenocytes with cortisol as low as 40 nM (13 ng/ml) inhibited proliferation in response to Con A. This inhibitory effect of cortisol was not due to cytotoxic effects of glucocorticoids. At maximal physiologic concentrations (400 nM; 135 ng/ml), cortisol caused reductions in Con A activation of thymocytes and peripheral blood mononuclear cells. When eight wk old pigs were restrained, there was an increase in plasma cortisol, atrophy of thymus and reduction in skin test responses to phytohemagglutinin. On the basis of the data, we suggest that physiologic concentrations of stress asociated hormones affect functional activities of porcine lymphoid cells. Since activated splenocytes display increased numbers of receptors for these hormones, perhaps glucocorticoids or catecholamines normally function in vivo to suppress clonal expansion of antigen activated and autoreactive T lymphocytes

  10. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    Science.gov (United States)

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  11. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  12. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies.

    Science.gov (United States)

    Brattsand, R; Linden, M

    1996-01-01

    Glucocorticoids inhibit the expression and action of most cytokines. This is part of the in vivo feed-back system between inflammation-derived cytokines and CNS-adrenal produced corticosteroids with the probable physiological relevance to balance parts of the host defence and anti-inflammatory systems of the body. Glucocorticoids modulate cytokine expression by a combination of genomic mechanisms. The activated glucocorticoid-receptor complex can (i) bind to and inactivate key proinflammatory transcription factors (e.g. AP-1, NF kappa B). This takes place at the promotor responsive elements of these factors, but has also been reported without the presence of DNA; (ii) via glucocorticoid responsive elements (GRE), upregulate the expression of cytokine inhibitory proteins, e.g. I kappa B, which inactivates the transcription factor NF kappa B and thereby the secondary expression of a series of cytokines; (iii) reduce the half-life time and utility of cytokine mRNAs. In studies with triggered human blood mononuclear cells in culture, glucocorticoids strongly diminish the production of the 'initial phase' cytokines IL-1 beta and TNF-alpha and the 'immunomodulatory' cytokines IL-2, IL-3, IL-4, IL-5, IL-10, IL-12 and IFN-gamma, as well as of IL-6, IL-8 and the growth factor GM-CSF. While steroid treatment broadly attenuates cytokine production, it cannot modulate it selectively, e.g. just the TH0, the TH1 or the TH2 pathways. The production of the 'anti-inflammatory' IL-10 is also inhibited. The exceptions of steroid down-regulatory activity on cytokine expression seem to affect 'repair phase' cytokines like TGF-beta and PDGF. These are even reported to be upregulated, which may explain the rather weak steroid dampening action on healing and fibrotic processes. Some growth factors, e.g. G-CSF and M-CSF, are only weakly affected. In addition to diminishing the production of a cytokine, steroids can also often inhibit its subsequent actions. Because cytokines work in

  13. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  14. Localized demodicosis due to Demodex cati on the muzzle of two cats treated with inhalant glucocorticoids.

    Science.gov (United States)

    Bizikova, Petra

    2014-06-01

    Feline demodicosis due to Demodex cati is a rare skin disease often associated with concurrent disease and generalized immunosuppression. Local immunosuppression due to the application of topical immunomodulatory drugs, such as glucocorticoids and tacrolimus, or by tumour cells has been suggested as a potential trigger for development of localized demodicosis in humans and animals. The goal was to describe two cats with asthma that developed localized demodicosis on the muzzle as a result of chronic therapy with a glucocorticoid administered via dispensing inhaler mask. In both cats, the muzzle area exposed to the fluticasone-dispensing chamber exhibited patchy alopecia, mild erythema, crusting and scaling. Deep skin scraping revealed D. cati. Discontinuation or reduction of fluticasone and administration of milbemycin resulted in resolution of clinical signs within 2 months in both cats. A negative skin scrape was obtained after 7 months of milbemycin in one of the cats. Demodicosis should be considered as a possible differential diagnosis in cats with primary alopecia or other skin lesions on the face exposed to inhalant glucocorticoids. Minimization of contact between the inhalant glucocorticoid and the skin can be achieved by wiping residual powder from the face and by keeping the mask tightly pressed to the skin to avoid contact with the surrounding area. © 2014 ESVD and ACVD.

  15. Glucocorticoid Availability in Colonic Inflammation of Rat

    Czech Academy of Sciences Publication Activity Database

    Ergang, Peter; Leden, Pavel; Bryndová, Jana; Žbánková, Šárka; Mikšík, Ivan; Kment, M.; Pácha, Jiří

    2008-01-01

    Roč. 53, č. 8 (2008), s. 2160-2167 ISSN 0163-2116 R&D Projects: GA MZd(CZ) NR8576; GA ČR GA305/07/0328 Grant - others:Univerzita Karlova(CZ) 77/2006C Institutional research plan: CEZ:AV0Z50110509 Keywords : glucocorticoids * 11beta hydroxisteroid dehydrogenase 1 Subject RIV: ED - Physiology Impact factor: 1.583, year: 2008

  16. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    Science.gov (United States)

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination.

    Science.gov (United States)

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J; Wu, Hulin; Zand, Martin S; Mosmann, Tim R

    2012-06-29

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4-6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vaccine or peptide. Ki-67(+) cell numbers then decline rapidly, and 10 days after vaccination, both Ki-67(+) and overall influenza-specific cell numbers are similar to pre-vaccination levels. These results provide a tool for assessing the quality and quantity of CD4 T cell responses to different influenza vaccines, and raise the possibility that the anti-influenza T cell memory response may be qualitatively altered by vaccination, even if the overall memory cell numbers do not change significantly. Copyright © 2012. Published by Elsevier Ltd.

  18. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Science.gov (United States)

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  19. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2018-02-01

    Full Text Available Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis.

  20. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

    KAUST Repository

    Kuo, Dwight; Tan, Kai; Zinman, Guy; Ravasi, Timothy; Bar-Joseph, Ziv; Ideker, Trey

    2010-01-01

    Background: Fungal infections are an emerging health risk, especially those involving yeast that are resistant to antifungal agents. To understand the range of mechanisms by which yeasts can respond to anti-fungals, we compared gene expression patterns across three evolutionarily distant species - Saccharomyces cerevisiae, Candida glabrata and Kluyveromyces lactis - over time following fluconazole exposure. Results: Conserved and diverged expression patterns were identified using a novel soft clustering algorithm that concurrently clusters data from all species while incorporating sequence orthology. The analysis suggests complementary strategies for coping with ergosterol depletion by azoles - Saccharomyces imports exogenous ergosterol, Candida exports fluconazole, while Kluyveromyces does neither, leading to extreme sensitivity. In support of this hypothesis we find that only Saccharomyces becomes more azole resistant in ergosterol-supplemented media; that this depends on sterol importers Aus1 and Pdr11; and that transgenic expression of sterol importers in Kluyveromyces alleviates its drug sensitivity. Conclusions: We have compared the dynamic transcriptional responses of three diverse yeast species to fluconazole treatment using a novel clustering algorithm. This approach revealed significant divergence among regulatory programs associated with fluconazole sensitivity. In future, such approaches might be used to survey a wider range of species, drug concentrations and stimuli to reveal conserved and divergent molecular response pathways.

  1. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering

    KAUST Repository

    Kuo, Dwight

    2010-07-23

    Background: Fungal infections are an emerging health risk, especially those involving yeast that are resistant to antifungal agents. To understand the range of mechanisms by which yeasts can respond to anti-fungals, we compared gene expression patterns across three evolutionarily distant species - Saccharomyces cerevisiae, Candida glabrata and Kluyveromyces lactis - over time following fluconazole exposure. Results: Conserved and diverged expression patterns were identified using a novel soft clustering algorithm that concurrently clusters data from all species while incorporating sequence orthology. The analysis suggests complementary strategies for coping with ergosterol depletion by azoles - Saccharomyces imports exogenous ergosterol, Candida exports fluconazole, while Kluyveromyces does neither, leading to extreme sensitivity. In support of this hypothesis we find that only Saccharomyces becomes more azole resistant in ergosterol-supplemented media; that this depends on sterol importers Aus1 and Pdr11; and that transgenic expression of sterol importers in Kluyveromyces alleviates its drug sensitivity. Conclusions: We have compared the dynamic transcriptional responses of three diverse yeast species to fluconazole treatment using a novel clustering algorithm. This approach revealed significant divergence among regulatory programs associated with fluconazole sensitivity. In future, such approaches might be used to survey a wider range of species, drug concentrations and stimuli to reveal conserved and divergent molecular response pathways.

  2. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  3. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary

    OpenAIRE

    Whirledge, Shannon; Cidlowski, John A.

    2013-01-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that oth...

  4. Early Life Stress Effects on the Glucocorticoid - BDNF interplay in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Nikolaos P Daskalakis

    2015-11-01

    Full Text Available Early life stress (ELS is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid and/or neurotrophin signaling pathways. Glucocorticoid (GC signaling mediates the regulation of the stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and glucocorticoid signaling pathways co-exist throughout the central nervous system (CNS, particularly in the hippocampus, which has high expression of glucocorticoid and mineralocorticoid receptors (GR and MR as well as brain-derived neurotrophic factor (BDNF and its receptor, tropomyosin-related kinase receptor B (TrkB. This review addresses the effects of ELS paradigms on GC- and BDNF- dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.

  5. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    Science.gov (United States)

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  6. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Yanjun Dong

    Full Text Available Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  7. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  8. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Taiga Miyazaki

    2013-01-01

    Full Text Available Proper protein folding in the endoplasmic reticulum (ER is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR, is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.

  9. Glucocorticoid actions on L6 muscle cells in culture

    International Nuclear Information System (INIS)

    Max, S.R.; Konagaya, M.; Konagaya, Y.

    1986-01-01

    Glucocorticoids exert striking catabolic effects on skeletal muscle. The mechanism of these effects remains poorly understood. They employed L6 muscle cells in culture to ascertain whether intracellular glucocorticoid receptors are involved. Studies in vitro permit exploration of glucocorticoid effects in the absence of other hormonal influences. L6 myoblasts were induced to form differentiated myotubes by growth in 1% serum. L6 myotubes were found to possess a high-affinity, limited capacity intracellular glucocorticoid receptor (apparent K/sub D/ = 5 x 10 -10 M; B/sub max/ = 711 pmols/g protein) with ligand specificity similar to that of glucocorticoid receptors from classical glucocorticoid target tissues. Further, [ 3 H] triamcinolone acetonide specific binding to L6 cell homogenates was blocked by a glucocorticoid antagonist, RU38486 (11β-(4-dimethyl-aminophenyl)-17β-hydroxy-17α-(prop-l-ynyl)-estra-4,9-dien-3-one). Dexamethasone (10 -5 M) caused a 10-fold increase in the activity of gluatmine synthetase in L6 myotubes; this increase was prevented by RU38486. Similarly, dexamethasone (10 -5 M) caused a 20% decrease in [ 12 C] leucine incorporation into protein. This effect also was blocked by RU38486. Thus, induction of glutamine synthetase and diminution of protein synthesis by dexamethasone require intracellular glucocorticoid receptors. L6 cells should prove particularly valuable for further studies of glucocorticoid actions on skeletal muscle

  10. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2015-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  11. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2017-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  12. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response.

    Directory of Open Access Journals (Sweden)

    Sonya T Dyhrman

    Full Text Available Phosphorus (P is a critical driver of phytoplankton growth and ecosystem function in the ocean. Diatoms are an abundant class of marine phytoplankton that are responsible for significant amounts of primary production. With the control they exert on the oceanic carbon cycle, there have been a number of studies focused on how diatoms respond to limiting macro and micronutrients such as iron and nitrogen. However, diatom physiological responses to P deficiency are poorly understood. Here, we couple deep sequencing of transcript tags and quantitative proteomics to analyze the diatom Thalassiosira pseudonana grown under P-replete and P-deficient conditions. A total of 318 transcripts were differentially regulated with a false discovery rate of <0.05, and a total of 136 proteins were differentially abundant (p<0.05. Significant changes in the abundance of transcripts and proteins were observed and coordinated for multiple biochemical pathways, including glycolysis and translation. Patterns in transcript and protein abundance were also linked to physiological changes in cellular P distributions, and enzyme activities. These data demonstrate that diatom P deficiency results in changes in cellular P allocation through polyphosphate production, increased P transport, a switch to utilization of dissolved organic P through increased production of metalloenzymes, and a remodeling of the cell surface through production of sulfolipids. Together, these findings reveal that T. pseudonana has evolved a sophisticated response to P deficiency involving multiple biochemical strategies that are likely critical to its ability to respond to variations in environmental P availability.

  13. Familial glucocorticoid deficiency presenting with generalized hyperpigmentation in an Egyptian child: a case report

    Directory of Open Access Journals (Sweden)

    Metwalley Kotb A

    2012-04-01

    Full Text Available Abstract Introduction Familial glucocorticoid deficiency, or hereditary unresponsiveness to adrenocorticotropic hormone, is a rare autosomal recessive disease characterized by glucocorticoid deficiency in the absence of mineralocorticoid deficiency. It may present in infancy or early childhood with hyperpigmentation, failure to thrive, recurrent infections, hypoglycemic attacks and convulsions that may result in coma or death. Here, we report the case of an 18-month-old Egyptian boy with familial glucocorticoid deficiency. Case presentation An 18-month-old Egyptian boy was referred to our institution for evaluation of generalized hyperpigmentation of the body associated with recurrent convulsions; one of his siblings, who had died at the age of nine months, also had generalized hyperpigmentation of the body. The initial clinical examination revealed generalized symmetrical deep hyperpigmentation of the body as well as hypotonia, normal blood pressure and normal male genitalia. He had low blood glucose and cortisol levels, normal aldosterone and high adrenocorticotropic hormone levels. Based on the above mentioned data, a provisional diagnosis of familial glucocorticoid deficiency was made, which was confirmed by a molecular genetics study. Oral hydrocortisone treatment at a dose of 10 mg/m2/day was started. The child was followed up after two months of treatment; the hyperpigmentation has lessened in comparison with his initial presentation and his blood sugar and cortisol levels were normalized. Conclusion Familial glucocorticoid deficiency is a rare, treatable disease that can be easily missed due to nonspecific presentations. The consequences of delayed diagnosis and treatment are associated with high rates of morbidity and mortality.

  14. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  15. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

    Science.gov (United States)

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E.; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape

  16. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    Science.gov (United States)

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  17. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  18. A glucocorticoid education group meeting: an effective strategy for improving self-management to prevent adrenal crisis.

    Science.gov (United States)

    Repping-Wuts, Han J W J; Stikkelbroeck, Nike M M L; Noordzij, Alida; Kerstens, Mies; Hermus, Ad R M M

    2013-07-01

    To assess self-management in patients receiving glucocorticoid replacement therapy for primary or secondary adrenal failure before and 6 months after a glucocorticoid education group meeting. All patients with primary or secondary adrenal insufficiency, treated at the Department of Medicine, Division of Endocrinology, were invited by their endocrinologist to participate in a 3-h glucocorticoid education group meeting, consisting of a lecture about the disease and glucocorticoid doses adjustments in case of stress, followed by an instruction on how to inject hydrocortisone i.m. Finally, all participants could practise the i.m. injection and discuss their experience with (imminent) adrenal crises with other patients and the health care providers. Two weeks before the meeting and 6 months after the meeting, patients were asked to fill out a questionnaire about how they would act in six different conditions (e.g. febrile illness or vomiting). Of the 405 patients who were invited, 246 patients (61%) participated. At baseline the response by the participants on the questionnaire was 100% (n=246) and at follow-up 74% (n=183). At follow-up, significantly more participants (P≤0.005) gave the correct answers to how to act in different situations (e.g. self-administration of a glucocorticoid injection and phone contact in case of vomiting/diarrhoea without fever). Moreover, the use of self-management tools, such as having a 'medicine passport (travel document with information about disease and medication) (P=0.007) or SOS medallion (P=0.0007)', increased. A glucocorticoid education group meeting for patients with adrenal failure seems helpful to improve self-management and proper use of stress-related glucocorticoid dose adjustment.

  19. Inflammation in Parkinson’s disease: Role of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Maria Trinidad eHerrero

    2015-04-01

    Full Text Available Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD. Studies in PDpatients show evidence of augmented levels of potent pro-inflammatory molecules e.g. TNF-α, iNOS,IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergicneurons are particularly vulnerable to activated glia releasing these toxic factors. Recent geneticstudies point to the role of immune system in the etiology of PD, thus in combination withenvironmental factors, both peripheral and CNS-mediated immune responses could play importantroles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are knownto mediate chronic inflammation, the roles of other immune-competent cells are less well understood.Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis.Glucocorticoids released from adrenal glands upon stimulation of HPA axis, in response to either cellinjury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both throughdirect transcriptional action on target genes and by indirectly inhibiting transcriptional activities oftranscriptional factors such as NF-kB, AP-1 or interferon regulatory factors. In PD patients, the HPAaxis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GRfunction in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucialeffect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover,glucocorticoids are also known to regulate human brain vasculature as well as blood brain barrierpermeability, any dysfunction in their actions may influence infiltration of cytotoxic moleculesresulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation ofGR actions is likely important in dopamine neuron degeneration throughestablishment of chronic inflammation.

  20. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  1. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  2. Eosinophil Resistance to Glucocorticoid-Induced Apoptosis is Mediated by the Transcription Factor NFIL3

    Science.gov (United States)

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-01-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired prop-aptoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that 1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and 2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils. PMID:26880402

  3. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques

    Science.gov (United States)

    Kohn, Jordan N.; Snyder-Mackler, Noah; Barreiro, Luis B.; Johnson, Zachary P.; Tung, Jenny; Wilson, Mark E.

    2017-01-01

    Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed ‘social approachability’ and ‘boldness,’ which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. PMID:27639059

  4. Ribosome•RelA structures reveal the mechanism of stringent response activation

    Science.gov (United States)

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  5. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    Science.gov (United States)

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.

    Science.gov (United States)

    Subba, Pratigya; Barua, Pragya; Kumar, Rajiv; Datta, Asis; Soni, Kamlesh Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-11-01

    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.

  7. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  8. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  9. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Kroon, Jan; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.; Grimm, S.; Storm, Gerrit; Metselaar, Josbert Maarten; Meijer, O.C.; Culig, Z.; van der Pluijm, M.

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  10. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T.; Van Der Horst, Geertje; Lemhemmer, Daniël; Marijt, Koen A.; Hwang, Ming S.; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Meijer, Onno C.; Culig, Zoran; Van Der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCA). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  11. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  12. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...... reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  13. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  14. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  15. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L.

    Science.gov (United States)

    Melnikova, Nataliya V; Dmitriev, Alexey A; Belenikin, Maxim S; Speranskaya, Anna S; Krinitsina, Anastasia A; Rachinskaia, Olga A; Lakunina, Valentina A; Krasnov, George S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Uroshlev, Leonid A; Koroban, Nadezda V; Samatadze, Tatiana E; Amosova, Alexandra V; Zelenin, Alexander V; Muravenko, Olga V; Bolsheva, Nadezhda L; Kudryavtseva, Anna V

    2015-02-01

    Effective fertilizer application is necessary to increase crop yields and reduce risk of plant overdosing. It is known that expression level of microRNAs (miRNAs) alters in plants under different nutrient concentrations in soil. The aim of our study was to identify and characterize miRNAs with expression alterations under excessive fertilizer in agriculturally important crop - flax (Linum usitatissimum L.). We have sequenced small RNAs in flax grown under normal and excessive fertilizer using Illumina GAIIx. Over 14 million raw reads was obtained for two small RNA libraries. 84 conserved miRNAs from 20 families were identified. Differential expression was revealed for several flax miRNAs under excessive fertilizer according to high-throughput sequencing data. For 6 miRNA families (miR395, miR169, miR408, miR399, miR398 and miR168) expression level alterations were evaluated on the extended sampling using qPCR. Statistically significant up-regulation was revealed for miR395 under excessive fertilizer. It is known that target genes of miR395 are involved in sulfate uptake and assimilation. However, according to our data alterations of the expression level of miR395 could be associated not only with excess sulfur application, but also with redundancy of other macro- and micronutrients. Furthermore expression level was evaluated for miRNAs and their predicted targets. The negative correlation between miR399 expression and expression of its predicted target ubiquitin-conjugating enzyme E2 gene was shown in flax for the first time. So we suggested miR399 involvement in phosphate regulation in L. usitatissimum. Revealed in our study expression alterations contribute to miRNA role in flax response to excessive fertilizer. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  16. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  17. Effect of a topical glucocorticoid, budesonide, on nasal mucosal blood flow as measured with 133Xe wash-out technique

    International Nuclear Information System (INIS)

    Bende, M.; Lindqvist, N.; Pipkorn, U.

    1983-01-01

    The ''vasoconstrictor'' effect of dermally applicated steroids is a widely used parameter when determining the potency of glucocorticoids. A similar effect on the nasal mucosa has been suggested as providing an explanation for the clinical effect of topically administered glucocorticoids in the treatment of nasal disorders such as allergic and vasomotor rhinitis. The recently described 133 Xe wash-out method was used for the purpose of blood flow determination in 11 healthy subjects. In a randomized double-blind cross-over study, the effect of topically administered budesonide, a non-halogenated glucocorticoid, for 1 week was compared with that of placebo. No difference was found to occur in the mucosal blood flow after the administration of budesonide, as compared with placebo. It seems likely that a more complex activity than vasoconstriction is responsible for the clinical effect in the treatment of nasal disorders, and further research is required in order to clarify this issue. (author)

  18. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Directory of Open Access Journals (Sweden)

    Davey Jennifer C

    2007-12-01

    Full Text Available Abstract Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT. The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for

  19. Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought.

    Science.gov (United States)

    Granda, Elena; Rossatto, Davi Rodrigo; Camarero, J Julio; Voltas, Jordi; Valladares, Fernando

    2014-01-01

    Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C(a)) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21%) between the 1970s and the 2000s. This increase was positively related to C(a) for J. thurifera and to higher C(a) and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C(a) even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions.

  20. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    2008-03-01

    Full Text Available Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone.We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal.The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  1. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    Science.gov (United States)

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  2. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans.

    Directory of Open Access Journals (Sweden)

    Lauren M G Davis

    Full Text Available Prebiotics are selectively fermented ingredients that allow specific changes in the gastrointestinal microbiota that confer health benefits to the host. However, the effects of prebiotics on the human gut microbiota are incomplete as most studies have relied on methods that fail to cover the breadth of the bacterial community. The goal of this research was to use high throughput multiplex community sequencing of 16S rDNA tags to gain a community wide perspective of the impact of prebiotic galactooligosaccharide (GOS on the fecal microbiota of healthy human subjects. Fecal samples from eighteen healthy adults were previously obtained during a feeding trial in which each subject consumed a GOS-containing product for twelve weeks, with four increasing dosages (0, 2.5, 5, and 10 gram of GOS. Multiplex sequencing of the 16S rDNA tags revealed that GOS induced significant compositional alterations in the fecal microbiota, principally by increasing the abundance of organisms within the Actinobacteria. Specifically, several distinct lineages of Bifidobacterium were enriched. Consumption of GOS led to five- to ten-fold increases in bifidobacteria in half of the subjects. Increases in Firmicutes were also observed, however, these changes were detectable in only a few individuals. The enrichment of bifidobacteria was generally at the expense of one group of bacteria, the Bacteroides. The responses to GOS and the magnitude of the response varied between individuals, were reversible, and were in accordance with dosage. The bifidobacteria were the only bacteria that were consistently and significantly enriched by GOS, although this substrate supported the growth of diverse colonic bacteria in mono-culture experiments. These results suggest that GOS can be used to enrich bifidobacteria in the human gastrointestinal tract with remarkable specificity, and that the bifidogenic properties of GOS that occur in vivo are caused by selective fermentation as well as by

  3. Allosteric analysis of glucocorticoid receptor-DNA interface induced by cyclic Py-Im polyamide: a molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Yaru Wang

    Full Text Available BACKGROUND: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. CONCLUSIONS/SIGNIFICANCE: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a >4 Å widening of the DNA minor groove and a compression of the major groove by more than 4 Å as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression of DNA major groove surface causes GRDBD to move away from the DNA major groove with the initial average distance of ∼4 Å to the final average distance of ∼10 Å during 40 ns simulation course. Therefore, this study straightforward explores how small molecule targeting specific sites in the DNA minor groove disrupts the transcription factor-DNA interface in DNA major groove, and consequently modulates gene expression.

  4. Infectious diseases of marine molluscs and host responses as revealed by genomic tools

    Science.gov (United States)

    Ford, Susan E.

    2016-01-01

    More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance. PMID:26880838

  5. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  6. Transcriptomics Reveal Several Gene Expression Patterns in the Piezophile Desulfovibrio hydrothermalis in Response to Hydrostatic Pressure

    Science.gov (United States)

    Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie

    2014-01-01

    RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865

  7. Remembering under stress: different roles of autonomic arousal and glucocorticoids in memory retrieval.

    Science.gov (United States)

    Schönfeld, Pia; Ackermann, Karina; Schwabe, Lars

    2014-01-01

    It is commonly assumed that stress impairs memory retrieval. Glucocorticoids, released with a delay of several minutes in response to stressful experiences, are thought to play a key role in the stress-induced retrieval impairment. Accordingly, most studies on the impact of stress on retrieval tested memory a considerable time after stressor exposure, when glucocorticoid levels were elevated. Here, we asked how stress affects memory when retrieval takes place under stress, that is, when stress is part of the retrieval situation and glucocorticoids are not yet increased at the time of testing. To contrast stress effects on ongoing and delayed memory retrieval, 72 participants learned first neutral and emotional material. Twenty-four hours later, half of the learned material was tested either in a stressful, oral examination-like testing situation or in a standard, non-stressful free recall test. Memory for the other half of the learned material was assessed 25 min after the first, stressful or non-stressful retention test. Significant increases in blood pressure and salivary cortisol confirmed the stress induction by the first, examination-like testing situation. Retrieval performance under stress was positively correlated with the blood pressure response to the stressor but unaffected by cortisol. Conversely, retrieval performance 25 min post stress was negatively correlated with the cortisol response to the stressor, particularly for emotional items. These results suggest that the same stressor may have opposite effects on ongoing and delayed memory retrieval, depending on the presence of autonomic arousal and glucocorticoids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2012-01-01

    Background Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses may cause suppression of the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress

  9. Effects of environmental conditions, human activity, reproduction, antler cycle and grouping on fecal glucocorticoids of free-ranging Pampas deer stags (Ozotoceros bezoarticus bezoarticus).

    Science.gov (United States)

    Garcia Pereira, Ricardo José; Barbanti Duarte, José Maurício; Negrão, João Alberto

    2006-01-01

    In this study, a commercial enzyme immunoassay (EIA) was validated in detecting glucocorticoids in Pampas deer feces, in order to investigate the influence of several factors on the adrenocortical function. Fecal samples, behavioral data and information concerning male grouping and antlers status were collected at a monthly basis during a 1 year period from free-ranging stags living at Emas National Park, Brazil (18 degrees S/52 degrees W). The results revealed that concentrations of fecal glucocorticoids in winter were significantly higher than those corresponding to spring and summer. In addition, dry season data presented higher levels than during the wet season. Significant difference was found between fecal levels of breeding stags in summer and nonbreeding stags, whereas no difference was observed between breeding stags in winter and nonbreeding stags. On the other hand, males from areas with frequent human disturbance exhibited higher glucocorticoid concentrations and flight distances than individuals from areas of lower human activity. Males with antlers in velvet had elevated levels compared with animals in hard antler or antler casting. Also, we found that glucocorticoid levels were higher in groups with three or more males than in groups with only one male. The flight distances showed positive correlation with fecal glucocorticoid. These data indicate that fecal glucocorticoid provides a useful approach in the evaluation of physiological effects of environment, inter-individuals relationship and human-induced stressors on free-ranging Pampas deer stags.

  10. Glucocorticoid receptor action in metabolic and neuronal function [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Michael J. Garabedian

    2017-07-01

    Full Text Available Glucocorticoids via the glucocorticoid receptor (GR have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.

  11. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.

    Science.gov (United States)

    Barik, Jacques; Marti, Fabio; Morel, Carole; Fernandez, Sebastian P; Lanteri, Christophe; Godeheu, Gérard; Tassin, Jean-Pol; Mombereau, Cédric; Faure, Philippe; Tronche, François

    2013-01-18

    Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.

  12. Significance of glucocorticoids and their receptors in patients with nephritic syndrome

    International Nuclear Information System (INIS)

    Yang Liusong; Li Dapei; Liu Deyi; Wang Weiyue; Wang Haodan

    1996-01-01

    The glucocorticoid receptor (GCR) in 34 patients with nephritic syndrome (NS) and 40 normal controls is investigated by radioligand binding assay. The results show that the GCR levels of NS patients are correlated well with the treatment results by glucocorticoids (GC). These patients who are sensitive to GC treatment have much higher levels of GCR than those who are not responsive to GC treatment (P<0.01) and the normal controls. The plasma ACTH and cortisol in the same subjects are also measured and the results show that NS patients have much lower levels of these two hormones than the normal controls', but no significant correlation is noted between the levels and the GC treatment effects

  13. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (N(ase)) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and N(ase) activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by N(ase) activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with N(ase) inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψ(s)). At the nodule level, drought had an inhibitory effect on N(ase) activity. This decrease in N(ase) activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation

  14. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  15. Adrenal gland hypofunction in active polymyalgia rheumatica. effect of glucocorticoid treatment on adrenal hormones and interleukin 6.

    Science.gov (United States)

    Cutolo, Maurizio; Straub, Rainer H; Foppiani, Luca; Prete, Camilla; Pulsatelli, Lia; Sulli, Alberto; Boiardi, Luigi; Macchioni, Pierluigi; Giusti, Massimo; Pizzorni, Carmen; Seriolo, Bruno; Salvarani, Carlo

    2002-04-01

    To evaluate hypothalamic-pituitary-adrenal (HPA) axis function in patients with recent onset polymyalgia rheumatica (PMR) not previously treated with glucocorticoids; and to detect possible correlations between adrenal hormone levels, interleukin 6 (IL-6), and other acute phase reactants at baseline and during 12 months of glucocorticoid treatment. Forty-one PMR patients of both sexes with recent onset disease and healthy sex and age matched controls were enrolled into a longitudinal study. Patients were monitored for serum cortisol, dehydroepiandrosterone sulfate (DHEAS), androstenedione (ASD), and clinical and laboratory measures of disease activity such as C-reactive protein and IL-6 concentrations at baseline and after 1, 3, 6, 9 and 12 months of glucocorticoid treatment. To assess dynamic HPA axis function, serum cortisol and plasma adrenocorticotropic hormone (ACTH) levels were evaluated in another 8 patients with recent onset PMR not treated with glucocorticoid in comparison to controls after challenge with ovine corticotropin releasing hormone (oCRH) test. In addition, serum cortisol and 17-hydroxyprogesterone (17-OHP) levels were evaluated after stimulation with low dose (1 microg) intravenous ACTH. Serum cortisol and ASD levels of all PMR patients at baseline did not differ from controls. During followup, cortisol levels dipped at one and 3 months. Serum DHEAS levels in all patients were significantly lower than in controls at baseline. In female PMR patients a significant correlation was found at baseline between cortisol levels and duration of disease. Serum concentrations of IL-6 at baseline were significantly higher in PMR patients than in controls. During 12 months of glucocorticoid treatment IL-6 levels dropped significantly at one month; thereafter they remained stable and did not increase again despite tapering of the glucocorticoid dose. After oCRH stimulation, a similar cortisol response was found in patients and controls. After ACTH

  16. Addison disease in patients treated with glucocorticoid therapy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Acute adrenal crisis in patients with unrecognized chronic adrenocortical failure is difficult to diagnose and potentially fatal. We describe 2 patients with acute adrenal crisis whose diagnoses were hindered because of concomitant glucocorticoid treatment. Acute adrenal insufficiency is primarily a state of mineralocorticoid deficiency. Prednisolone and prednisone, the most frequently prescribed anti-inflammatory corticosteroid agents, have minimal mineralocorticoid activity. Several conditions that may be treated with pharmacological glucocorticoids are associated with an increased risk of Addison disease. An acute adrenal crisis, against which concurrent glucocorticoid therapy does not confer adequate protection, may develop in such patients.

  17. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration.

    Science.gov (United States)

    Starkman, Monica N

    2013-09-01

    This article reviews the neuropsychiatric presentations elicited by spontaneous hypercortisolism and exogenous supraphysiologic glucocorticoids. Patients with Cushing disease and syndrome develop a depressive syndrome: irritable and depressed mood, decreased libido, disrupted sleep and cognitive decrements. Exogenous short-term glucocorticoid administration may elicit a hypomanic syndrome with mood, sleep and cognitive disruptions. Treatment options are discussed. Brain imaging and neuropsychological studies indicate elevated cortisol and other glucocorticoids are especially deleterious to hippocampus and frontal lobe. The research findings also shed light on neuropsychiatric abnormalities in conditions that have substantial subgroups exhibiting elevated and dysregulated cortisol: aging, major depressive disorder and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    Science.gov (United States)

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system. Copyright © 2015

  19. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats.

    Science.gov (United States)

    Boero, Giorgia; Pisu, Maria Giuseppina; Biggio, Francesca; Muredda, Laura; Carta, Gianfranca; Banni, Sebastiano; Paci, Elena; Follesa, Paolo; Concas, Alessandra; Porcu, Patrizia; Serra, Mariangela

    2018-05-01

    We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Deposition of intranasal glucocorticoids--preliminary study.

    Science.gov (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz

    2015-01-01

    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  1. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  2. Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line.

    Science.gov (United States)

    Klopčič, Ivana; Kolšek, Katra; Dolenc, Marija Sollner

    2015-01-22

    Endocrine-disrupting compounds can interfere with the endocrine organs or hormone system and cause tumors, birth defects and developmental disorders in humans. The estrogen-like activity of compounds has been widely studied but little is known concerning their possible modulation of the glucocorticoid receptor. Steroidal (synthetic and natural) and non-steroidal endocrine-active compounds commonly occur as complex mixtures in human environments. Identification of such molecular species, which are responsible for modulating the glucocorticoid receptor are necessary to fully assess their risk. We have used the MDA-kb2 cell line, which expresses endogenous glucocorticoid receptor and a stably transfected luciferase reporter gene construct, to quantify the glucocorticoid-like activity of four compounds present in products in everyday use - propylparaben (PP), butylparaben (BP), diethylhexyl phthalate (DEHP) and tetramethrin (TM). We tested all possible combinations of these compounds at two concentrations (1 μM and 10 nM) and compared their glucocorticoid-like activity. At the concentration of 1 μM seven mixtures were identified to have glucocorticoid-like activity except: DEHP+TM, BP+TM, DEHP+PP+TM, BP+PP+TM. At the concentration of 10 nM only three mixtures have glucocorticoid modulatory activity: DEHP+PP, BP+PP, DEHP+BP+PP+TM. Identified glucocorticoid-like activities were between 1.25 and 1.51 fold at the concentration of 1 μM and between 1.23 and 1.44 fold at the concentration of 10 nM in comparison with the solvent control. Individually BP, PP, and DEHP had glucocorticoid-like activity of 1.60, 1.57 and 1.50 fold over the solvent control at the concentration of 1 μM. On the other hand PP and DEHP, at the concentration of 10nM, showed no glucocorticoid-like activity, while BP showed 1.44 fold. The assertion that individual glucocorticoid-like compounds do not produce harm because they are present at low, ineffective levels in humans may be irrelevant when we

  3. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Thomas R. Aunins

    2018-03-01

    Full Text Available Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under

  4. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

    Science.gov (United States)

    Aunins, Thomas R; Erickson, Keesha E; Prasad, Nripesh; Levy, Shawn E; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  5. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    Science.gov (United States)

    Aunins, Thomas R.; Erickson, Keesha E.; Prasad, Nripesh; Levy, Shawn E.; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  6. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk.

    Science.gov (United States)

    Gutzwiller, Jean-Pierre; Aschwanden, Josef; Iff, Samuel; Leuenberger, Michèle; Perrig, Martin; Stanga, Zeno

    2011-12-01

    The hypothesis of this clinical study was to determine whether glucocorticoid use and immobility were associated with in-hospital nutritional risk. One hundred and one patients consecutively admitted to the medical wards were enrolled. Current medical conditions, symptoms, medical history, eating and drinking habits, diagnosis, laboratory findings, medications, and anthropometrics were recorded. The Nutrition Risk Score 2002 (NRS-2002) was used as a screening instrument to identify nutritional risk. The results confirmed that glucocorticoid use and immobility are independently associated with nutritional risk determined by the NRS-2002. Constipation could be determined as an additional cofactor independently associated with nutritional risk. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk in a mixed hospitalized population. The presence of long-time glucocorticoid use, immobility, or constipation should alert the clinician to check for nutritional status, which is an important factor in mortality and morbidity.

  7. Hypersensitivity Reactions from Excipients in Systemic Glucocorticoid Formulations

    DEFF Research Database (Denmark)

    Calogiuri, Gianfranco; Garvey, Lene H; Romita, Paolo

    2016-01-01

    Glucocorticoids are the most widely used drugs for the treatment of hypersensitivity, however these drugs themselves and the excipients contained in commercial corticosteroid formulations are able to induce severe immediate-type hypersensitivity reactions. Reactions involving excipients have been...

  8. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice

    NARCIS (Netherlands)

    Zhou, M.; Bakker, E.H.M.; Velzing, E.; Berger, S.; Oitzl, M.; Joëls, M.; Krugers, H.J.

    2010-01-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory

  9. The emerging importance of ultradian glucocorticoid rhythms within metabolic pathology.

    Science.gov (United States)

    Flynn, Benjamin P; Conway-Campbell, Becky L; Lightman, Stafford L

    2018-06-01

    Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  10. The role of glucocorticoids in sodium retention in cirrhotic patients

    DEFF Research Database (Denmark)

    Hansen, Martin Højmark; Kristensen, Steffen Skott; Schaffalitzky de Muckadell, Ove B

    2012-01-01

    sodium retention evident in cirrhosis. The aim was to elucidate the role of glucocorticoids in sodium retention in decompensated cirrhotic patients. Methods. A randomized, double-blind, placebo-controlled, crossover study was performed in nine patients with alcoholic cirrhosis of the liver. A washout....... Conclusion. These results indicate that endogenous glucocorticoids contribute to the sodium retention in patients with alcoholic cirrhosis of the liver....

  11. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  12. A putative role for hypothalamic glucocorticoid receptors in hypertension induced by prenatal undernutrition in the rat.

    Science.gov (United States)

    Pérez, Hernán; Soto-Moyano, Rubén; Ruiz, Samuel; Hernández, Alejandro; Sierralta, Walter; Olivares, Ricardo; Núñez, Héctor; Flores, Osvaldo; Morgan, Carlos; Valladares, Luis; Gatica, Arnaldo; Flores, Francisco J

    2010-10-08

    Prenatal undernutrition induces hypertension later in life, possibly by disturbing the hypothalamo-pituitary-adrenal axis through programming decreased expression of hypothalamic glucocorticoid receptors. We examined the systolic blood pressure, heart rate and plasma corticosterone response to intra-paraventricular dexamethasone, mifepristone and corticosterone in eutrophic and prenatally undernourished young rats. Undernutrition was induced during fetal life by restricting the diet of pregnant mothers to 10 g daily (40% of diet consumed by well-nourished controls). At day 40 of postnatal life (i) intra-paraventricular administration of dexamethasone significantly reduced at least for 24h both the systolic pressure (-11.6%), the heart rate (-20.8%) and the plasma corticosterone (-40.0%) in normal animals, while producing lower effects (-5.5, -8.7, and -22.3%, respectively) on undernourished rats; (ii) intra-paraventricular administration of the antiglucocorticoid receptor ligand mifepristone to normal rats produced opposite effects (8.2, 20.3, and 48.0% increase, respectively) to those induced by dexamethasone, being these not significant in undernourished animals; (iii) intra-paraventricular corticosterone did not exert any significant effect. Results suggest that the low sensitivity of paraventricular neurons to glucocorticoid receptor ligands observed in prenatally undernourished rats could be due to the already reported glucocorticoid receptor expression, found in the hypothalamus of undernourished animals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    Science.gov (United States)

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  14. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    International Nuclear Information System (INIS)

    Carter-Su, C.; Okamoto, K.

    1987-01-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1- 3 H(N)]glucose and D-[ 14 C-U]glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in 125 I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [ 3 H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [ 3 H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions

  15. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Baila S. Hall

    2015-01-01

    Full Text Available Stress—especially chronic, uncontrollable stress—is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  16. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    Science.gov (United States)

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  17. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  18. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    Science.gov (United States)

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  19. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.

    Directory of Open Access Journals (Sweden)

    Emilio A Herrera

    2010-02-01

    Full Text Available Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects.Male rat pups received a course of dexamethasone (Dex, or Dex with vitamins C and E (DexCE, on postnatal days 1-6 (P1-6. Controls received vehicle (Ctrl or vehicle with vitamins (CtrlCE. At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05. Constrictor responses to phenylephrine (PE and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05; effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05. Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05; however, this effect was not restored in DexCE (68.3+/-8.3, AUC. Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05.Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function.

  20. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  1. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  2. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  3. Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management

    Science.gov (United States)

    Chan, KL; Mok, CC

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty. PMID:23115605

  4. Glucocorticoid-induced avascular bone necrosis: diagnosis and management.

    Science.gov (United States)

    Chan, K L; Mok, C C

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty.

  5. Immunoprecipitation assay of alpha-fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and glucocorticoids.

    Science.gov (United States)

    Rosebrock, J A; Parker, C L; Kute, T E

    1981-01-01

    This investigation was to study the biosynthesis of 3H-labeled alpha-fetoprotein (AFP) by cultured mouse hepatoma (HEPA-2) cells. Both the function and regulation of this oncodevelopmental gene are unknown. However, evidence indicates that mechanisms controlling the expression of AFP involve aspects of both normal embryonic development and neoplastic transformation. the secretion of AFP was analyzed during different phases of the growth cycle to provide information on AFP production using standard culture conditions. The highest rate of secretion occurred during the stationary phase, followed by the late logarithmic and early logarithmic phases of growth, respectively. The production of AFP was then determined following the addition of glucocorticoids and estrogens in an attempt to understand hormonal factors that may be involved. Studies utilizing estradiol-17 beta indicated that the secretion of AFP did not appear to be sensitive to this steroid even though sucrose density gradient analysis of HEPA-2 cytosol, for estrogenic receptors, revealed competitive binding moieties on the 8S and 4S regions of the gradient. In contrast, the secretion of the total complement of proteins, including AFP, was significantly stimulated by the glucocorticoids, dexamethasone and corticosterone. Analysis of HEPA-2 cytosol for glucocorticoid receptors revealed binding components in the 7S and 3-4S regions of the gradient. The 3H-dexamethasone binding appeared to be stereospecific since nonlabeled dexamethasone, but not nonlabeled estradiol-17 beta, effectively displaced the bound radioactivity. The glucocorticoid-binding component in HEPA-2 therefore displayed characteristics reported for glucocorticoid receptors in normal liver and other hepatomas.

  6. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  7. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Johannesen, Helle H; Geertsen, Poul

    2017-01-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospect......An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later....... In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point...

  8. Altered placental development in undernourished rats: role of maternal glucocorticoids

    Directory of Open Access Journals (Sweden)

    Chen Chun-Hung

    2011-08-01

    Full Text Available Abstract Maternal undernutrition (MUN during pregnancy may lead to fetal intrauterine growth restriction (IUGR, which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1, 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1 predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC to corticosterone, although can sometimes drive the opposing (inactivating reaction, and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents in control and MUN rats at embryonic day 20 (E20. Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3 and amino acids (SLC38A1, 2, and 4. Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC

  9. The Military and Domestic Disaster Response: Lead Role Revealed Through the Eye of Hurricane Katrina?

    National Research Council Canada - National Science Library

    Walker, Juliana M

    2006-01-01

    .... During and in the aftermath of Hurricane Katrina however the slow and perceived inept response to the massive disaster prompted a national debate on the appropriate role of the military in major domestic disasters...

  10. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    Science.gov (United States)

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  11. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    Science.gov (United States)

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  12. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  13. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model.

    Science.gov (United States)

    Zhang, Yuelei; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, You-Shui

    2016-01-01

    Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.

  14. Differential reproductive responses to stress reveal the role of life-history strategies within a species.

    Science.gov (United States)

    Schultner, J; Kitaysky, A S; Gabrielsen, G W; Hatch, S A; Bech, C

    2013-11-22

    Life-history strategies describe that 'slow'- in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events.

  15. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming.

    Science.gov (United States)

    Kavousi, Javid; Reimer, James Davis; Tanaka, Yasuaki; Nakamura, Takashi

    2015-08-01

    As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 μatm-28 °C, 400 μatm-31 °C, 1000 μatm-28 °C and 1000 μatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes.

    Science.gov (United States)

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-08-15

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hypothesis is that the frequency response class of any given neuron in the IC is predominantly inherited from one of three major afferent pathways projecting to the IC, giving rise to three distinct receptive field classes. Here, we applied subjective classification, principal component analysis, cluster analysis, and other objective statistical measures, to a large population (2826) of frequency response areas from single neurons recorded in the IC of the anaesthetised guinea pig. Subjectively, we recognised seven frequency response classes (V-shaped, non-monotonic Vs, narrow, closed, tilt down, tilt up and double-peaked), that were represented at all frequencies. We could identify similar classes using our objective classification tools. Importantly, however, many neurons exhibited properties intermediate between these classes, and none of the objective methods used here showed evidence of discrete response classes. Thus receptive field shapes in the IC form continua rather than discrete classes, a finding consistent with the integration of afferent inputs in the generation of frequency response areas. The frequency disposition of inhibition in the response areas of some neurons suggests that across-frequency inputs originating at or below the level of the IC are involved in their generation.

  17. The development of the glucocorticoid receptor system in the rat limbic brain. 2

    International Nuclear Information System (INIS)

    Meaney, M.J.; Sapolsky, R.M.; McEwen, B.S.

    1985-01-01

    The authors report the results of an autoradiographic analysis of the postnatal development of the hippocampal glucocorticoid receptor system in the rat brain. Quantitative analysis of the autoradiograms revealed a varied pattern of gradual development towards adult receptor concentrations during the second week of life. Receptor concentrations in the dentate gyrus increased dramatically between Days 9 and 15, while the changes during this period in the pyramidal layers of Ammon's horn seemed to reflect both structural changes in these regions as well as increases in receptor concentrations. (orig.)

  18. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  19. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  20. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  1. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien

    2016-01-01

    to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies......Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out innatural field conditions. We examined the evolutionary response...... associated to changes in soil temperature and soil moisture. This shows an evolutionaryresponse to realistic climate change happening over short-time scale, and calls for incorporating evolution into modelspredicting future response of species to climate change. It also shows that designed climate change...

  2. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  3. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species

    DEFF Research Database (Denmark)

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy

    2016-01-01

    across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth.......The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response...

  4. Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities.

    Science.gov (United States)

    Zoladz, Phillip R; Fleshner, Monika; Diamond, David M

    2012-09-01

    Post-traumatic stress disorder (PTSD) is characterized by a pathologically intense memory for a traumatic experience, persistent anxiety and physiological abnormalities, such as low baseline glucocorticoid levels and increased sensitivity to dexamethasone. We have addressed the hypothesis that rats subjected to chronic psychosocial stress would exhibit PTSD-like sequelae, including traumatic memory expression, increased anxiety and abnormal glucocorticoid responses. Adult male Sprague-Dawley rats were exposed to a cat on two occasions separated by 10 days, in conjunction with chronic social instability. Three weeks after the second cat exposure, the rats were tested for glucocorticoid abnormalities, general anxiety and their fear-conditioned memory of the two cat exposures. Stressed rats exhibited reduced basal glucocorticoid levels, increased glucocorticoid suppression following dexamethasone administration, heightened anxiety and a robust fear memory in response to cues that were paired with the two cat exposures. The commonalities in endocrine and behavioral measures between psychosocially stressed rats and traumatized people with PTSD provide the opportunity to explore mechanisms underlying psychological trauma-induced changes in neuroendocrine systems and cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Vocal responses to noise reveal the presence of the Lombard effect in a frog

    NARCIS (Netherlands)

    Halfwerk, W.H.; Lea, A.M.; Guerra, M.A.; Page, R.A.; Ryan, M.J.

    2016-01-01

    Many animal communication systems have evolved signal flexibility depending on environmental conditions. A common strategy of vocal communication is to increase amplitude in response to increasing noise levels. This phenomenon, known as the Lombard effect, is a widespread trait among mammals and

  6. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  7. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    NARCIS (Netherlands)

    Jiang, J.; Zhang, Q.; van Gaal, S.

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue,

  8. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    Science.gov (United States)

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  9. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light.

    Directory of Open Access Journals (Sweden)

    Fernando Otálora-Luna

    Full Text Available Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB, Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms.

  10. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  11. RNA-Seq reveals complex genetic response to deepwater horizon oil release in Fundulus grandis

    Directory of Open Access Journals (Sweden)

    Garcia Tzintzuni I

    2012-09-01

    Full Text Available Abstract Background The release of oil resulting from the blowout of the Deepwater Horizon (DH drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. Results Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. Conclusion RNA-Seq may be successfully applied to feral and

  12. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  13. Analysis of morphine responses in mice reveals a QTL on Chromosome 7 [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Wim E. Crusio

    2016-09-01

    Full Text Available In this study we identified a quantitative trait locus (QTL on mouse Chromosome 7 associated with locomotor activity and rearing post morphine treatment. This QTL was revealed after correcting for the effects of another QTL peak on Chromosome 10 using composite interval mapping. The positional candidate genes are Syt9 and Ppfibp2. Several other genes within the interval are linked to neural processes, locomotor activity, and the defensive response to harmful stimuli.

  14. Analysis of morphine responses in mice reveals a QTL on Chromosome 7 [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Wim E. Crusio

    2016-10-01

    Full Text Available In this study we identified a quantitative trait locus (QTL on mouse Chromosome 7 associated with locomotor activity and rearing post morphine treatment. This QTL was revealed after correcting for the effects of another QTL peak on Chromosome 10 using composite interval mapping. The positional candidate genes are Syt9 and Ppfibp2. Several other genes within the interval are linked to neural processes, locomotor activity, and the defensive response to harmful stimuli.

  15. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  16. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Science.gov (United States)

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  17. The role of glucocorticoids in emotional memory reconsolidation.

    Science.gov (United States)

    Meir Drexler, Shira; Wolf, Oliver T

    2017-07-01

    Glucocorticoids are secreted following exposure to stressful events. Their modulating role on memory reconsolidation, a post-retrieval process of re-stabilization, has been investigated only recently, at times with conflicting results. The goal of this review is twofold. First, to establish the modulating role of glucocorticoids on memory reconsolidation. Second, to point the potential factors and confounds that might explain the seemingly paradoxical findings. Here we review recent pharmacological studies, conducted in rodents and humans, which suggest a critical role of glucocorticoids in this post-retrieval process. In particular, the activation of glucocorticoid receptors in the amygdala and hippocampus is suggested to be involved in emotional memories reconsolidation, pointing to a similarity between post-retrieval reconsolidation and initial memory consolidation. In addition, based on the general reconsolidation literature, we suggest several factors that might play a role in determining the direction and strength of the reconsolidation effect following glucocorticoids treatment: memory-related factors, manipulation-related factors, and individual differences. We conclude that only when taking these additional factors into account can the paradox be resolved. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth".

    Science.gov (United States)

    Li, Yue; Zeng, Zhenzhong; Huang, Ling; Lian, Xu; Piao, Shilong

    2018-06-15

    Forzieri et al (Reports, 16 June 2017, p. 1180) used satellite data to show that boreal greening caused regional warming. We show that this positive sensitivity of temperature to the greening can be derived from the positive response of vegetation to boreal warming, which indicates that results from a statistical regression with satellite data should be carefully interpreted. Copyright © 2018, American Association for the Advancement of Science.

  19. Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates.

    Directory of Open Access Journals (Sweden)

    David Haase

    Full Text Available Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus. By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes.

  20. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    OpenAIRE

    Jun Jiang; Qinglin Zhang; Simon Van Gaal

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict a...

  1. Consistency Over Flattery: Self-Verification Processes Revealed in Implicit and Behavioral Responses to Feedback

    OpenAIRE

    Ayduk, O; Gyurak, A; Akinola, M; Mendes, WB

    2013-01-01

    Negative social feedback is often a source of distress. However, self-verification theory provides the counterintuitive explanation that negative feedback leads to less distress when it is consistent with chronic self-views. Drawing from this work, the present study examined the impact of receiving self-verifying feedback on outcomes largely neglected in prior research: implicit responses (i.e., physiological reactivity, facial expressions) that are difficult to consciously regulate and downs...

  2. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets

    OpenAIRE

    Angela M. Kerr; Susan N. Gershman; Scott K. Sakaluk

    2010-01-01

    The energetic demands of the immune system and reproduction are often high and can lead to trade-offs between these 2 life-history traits. In decorated crickets, Gryllodes sigillatus, much of a male's reproductive effort is devoted to calling, and to the synthesis of a spermatophylax, a large, gelatinous, non--sperm-containing mass forming part of the spermatophore and consumed by the female after mating. We employed a reciprocal design in which we experimentally induced an immune response in...

  3. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes

    OpenAIRE

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-01-01

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hy...

  4. The influence of response competition on cerebral asymmetries for processing hierarchical stimuli revealed by ERP recordings

    OpenAIRE

    Malinowski, Peter; Hübner, Ronald; Keil, Andreas; Gruber, Thomas

    2002-01-01

    It is widely accepted that the left and right hemispheres differ with respect to the processing of global and local aspects of visual stimuli. Recently, behavioural experiments have shown that this processing asymmetry strongly depends on the response competition between the global and local levels of a stimulus. Here we report electrophysiological data that underline this observation. Hemispheric differences for global/local processing were mainly observed for responseincompatible stimuli an...

  5. Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance

    Science.gov (United States)

    Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.

    2018-05-01

    Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

  6. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    Science.gov (United States)

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  7. Pupillary responses reveal infants' discrimination of facial emotions independent of conscious perception.

    Science.gov (United States)

    Jessen, Sarah; Altvater-Mackensen, Nicole; Grossmann, Tobias

    2016-05-01

    Sensitive responding to others' emotions is essential during social interactions among humans. There is evidence for the existence of subcortically mediated emotion discrimination processes that occur independent of conscious perception in adults. However, only recently work has begun to examine the development of automatic emotion processing systems during infancy. In particular, it is unclear whether emotional expressions impact infants' autonomic nervous system regardless of conscious perception. We examined this question by measuring pupillary responses while subliminally and supraliminally presenting 7-month-old infants with happy and fearful faces. Our results show greater pupil dilation, indexing enhanced autonomic arousal, in response to happy compared to fearful faces regardless of conscious perception. Our findings suggest that, early in ontogeny, emotion discrimination occurs independent of conscious perception and is associated with differential autonomic responses. This provides evidence for the view that automatic emotion processing systems are an early-developing building block of human social functioning. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge.

    Directory of Open Access Journals (Sweden)

    Flavia Badoud

    Full Text Available To determine if metabolically healthy obese (MHO individuals have a different metabolic response to a standardized diet compared to lean healthy (LH and metabolically unhealthy obese (MUO individuals.Thirty adults (35-70 yrs were classified as LH, MHO, and MUO according to anthropometric and clinical measurements. Participants consumed a standardized high calorie meal (~1330 kcal. Blood glucose and insulin were measured at fasting, and 15, 30, 60, 90 and 120 min postprandially. Additional blood samples were collected for the targeted analysis of amino acids (AAs and derivatives, and fatty acids (FAs.The postprandial response (i.e., area under the curve, AUC for serum glucose and insulin were similar between MHO and LH individuals, and significantly lower than MUO individuals (p < 0.05. Minor differences were found in postprandial responses for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic acid, γ-linolenic acid, arachidonic acid showed smaller changes in serum after the meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably branched-chain AA and FAs (e.g., saturated myristic and palmitic acids were found to correlate with glucose and insulin AUC.MHO individuals show preserved insulin sensitivity and a greater ability to adapt to a caloric challenge compared to MUO individuals.

  9. Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response.

    Directory of Open Access Journals (Sweden)

    Rinath M Jeselsohn

    Full Text Available Advancements in molecular biology have unveiled multiple breast cancer promoting pathways and potential therapeutic targets. Large randomized clinical trials remain the ultimate means of validating therapeutic efficacy, but they require large cohorts of patients and are lengthy and costly. A useful approach is to conduct a window of opportunity study in which patients are exposed to a drug pre-surgically during the interval between the core needle biopsy and the definitive surgery. These are non-therapeutic studies and the end point is not clinical or pathological response but rather evaluation of molecular changes in the tumor specimens that can predict response. However, since the end points of the non-therapeutic studies are biologic, it is critical to first define the biologic changes that occur in the absence of treatment. In this study, we compared the molecular profiles of breast cancer tumors at the time of the diagnostic biopsy versus the definitive surgery in the absence of any intervention using the Nanostring nCounter platform. We found that while the majority of the transcripts did not vary between the two biopsies, there was evidence of activation of immune related genes in response to the first biopsy and further investigations of the immune changes after a biopsy in early breast cancer seem warranted.

  10. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  12. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress

    Energy Technology Data Exchange (ETDEWEB)

    Poynton, Helen C., E-mail: helen.poynton@umb.edu; Robinson, William E.; Blalock, Bonnie J.; Hannigan, Robyn E.

    2014-10-15

    Highlights: • Gene expression and metal tissue concentrations were compared in Mytilus edulis. • Expression levels of several transcripts correlated with metal concentrations. • Transcripts involved in the unfolded protein response (UPR) were induced. • Integration of transcriptomics and tissue levels provides insight to toxicity. - Abstract: Marine biomonitoring programs in the U.S. and Europe have historically relied on monitoring tissue concentrations of bivalves to monitor contaminant levels and ecosystem health. By integrating ‘omic methods with these tissue residue approaches we can uncover mechanistic insight to link tissue concentrations to potential toxic effects. In an effort to identify novel biomarkers and better understand the molecular toxicology of metal bioaccumulation in bivalves, we exposed the blue mussel, Mytilus edulis L., to sub-lethal concentrations (0.54 μM) of cadmium, lead, and a Cd + Pb mixture. Metal concentrations were measured in gill tissues at 1, 2, and 4 weeks, and increased linearly over the 4 week duration. In addition, there was evidence that Pb interfered with Cd uptake in the mixture treatment. Using a 3025 sequence microarray for M. edulis, we performed transcriptomic analysis, identifying 57 differentially expressed sequences. Hierarchical clustering of these sequences successfully distinguished the different treatment groups demonstrating that the expression profiles were reproducible among the treatments. Enrichment analysis of gene ontology terms identified several biological processes that were perturbed by the treatments, including nucleoside phosphate biosynthetic processes, mRNA metabolic processes, and response to stress. To identify transcripts whose expression level correlated with metal bioaccumulation, we performed Pearson correlation analysis. Several transcripts correlated with gill metal concentrations including mt10, mt20, and contig 48, an unknown transcript containing a wsc domain. In addition

  13. Circulating cortisol-associated signature of glucocorticoid-related gene expression in subcutaneous fat of obese subjects.

    Science.gov (United States)

    Pavlatou, Maria G; Vickers, Kasey C; Varma, Sudhir; Malek, Rana; Sampson, Maureen; Remaley, Alan T; Gold, Philip W; Skarulis, Monica C; Kino, Tomoshige

    2013-05-01

    Serum cortisol concentrations fluctuate in a circadian fashion, and glucocorticoids exert strong effects on adipose tissue and induce obesity through the glucocorticoid receptor. To examine the impact of physiologic levels of circulating cortisol on subcutaneous adipose tissue, 25 overweight and obese subjects were employed, and their serum levels of morning (AM) and evening (PM) cortisol, AM/PM cortisol ratios, and 24-h urinary-free cortisol (UFC) were compared with their clinical parameters, serum cytokine levels, and mRNA expression of 93 receptor action-regulating and 93 glucocorticoid-responsive genes in abdominal subcutaneous fat. AM cortisol levels did not correlate with mRNA expression of the all genes examined, whereas PM cortisol levels, AM/PM cortisol ratios, and 24-h UFC were associated with distinct sets of these genes. Body mass index did not significantly correlate with the four cortisol parameters employed. These results suggest that physiologic levels of AM serum cortisol do not solely represent biological effects of circulating cortisol on the expression of glucocorticoid-related genes in subcutaneous adipose tissue, whereas PM levels, amplitude, and net amounts of the diurnally fluctuating serum cortisol have distinct effects. Through the genes identified in this study, glucocorticoids appear to influence intermediary metabolism, energy balance, inflammation, and local circadian rythmicity in subcutaneous fat. Our results may also explain in part the development of metabolic abnormality and obesity in subjects under stress or patients with melancholic/atypical depression who demonstrate elevated levels of PM serum cortisol. Copyright © 2013 The Obesity Society.

  14. The Association of Prenatal Exposure to Perfluorinated Chemicals with Glucocorticoid and Androgenic Hormones in Cord Blood Samples: The Hokkaido Study.

    Science.gov (United States)

    Goudarzi, Houman; Araki, Atsuko; Itoh, Sachiko; Sasaki, Seiko; Miyashita, Chihiro; Mitsui, Takahiko; Nakazawa, Hiroyuki; Nonomura, Katsuya; Kishi, Reiko

    2017-01-01

    Perfluorinated chemicals (PFCs) disrupt cholesterol homeostasis. All steroid hormones are derived from cholesterol, and steroid hormones such as glucocorticoids and androgenic hormones mediate several vital physiologic functions. However, the in utero effects of PFCs exposure on the homeostasis of these steroid hormones are not well understood in humans. We examined the relationship between prenatal exposure to perfluorooctane sulfonate (PFOS)/perfluorooctanoate (PFOA) and cord blood levels of glucocorticoid and androgenic hormones. We conducted a hospital-based birth cohort study between July 2002 and October 2005 in Sapporo, Japan (n = 514). In total, 185 mother-infant pairs were included in the present study. Prenatal PFOS and PFOA levels in maternal serum samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Cord blood levels of glucocorticoid (cortisol and cortisone) and androgenic hormones [dehydroepiandrosterone (DHEA) and androstenedione] were also measured in the same way. We found a dose-response relationship of prenatal PFOS, but not PFOA, exposure with glucocorticoid levels after adjusting for potential confounders. Cortisol and cortisone concentrations were -23.98-ng/mL (95% CI: -0.47.12, -11.99; p for trend = 0.006) and -63.21-ng/mL (95% CI: -132.56, -26.72; p for trend blood. Citation: Goudarzi H, Araki A, Itoh S, Sasaki S, Miyashita C, Mitsui T, Nakazawa H, Nonomura K, Kishi R. 2017. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: the Hokkaido Study. Environ Health Perspect 125:111-118; http://dx.doi.org/10.1289/EHP142.

  15. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison's disease

    NARCIS (Netherlands)

    Smans, L.; Lentjes, E.G.W.M.; Hermus, A.R.; Zelissen, P.M.J.

    2013-01-01

    OBJECTIVE: Patients with Addison's disease require lifelong treatment with glucocorticoids. At present, no glucocorticoid replacement therapy (GRT) can exactly mimic normal physiology. As a consequence, under- and especially overtreatment can occur. Suboptimal GRT may lead to various side effects.

  16. Adrenal Insufficiency Caused by Locally Applied Glucocorticoids-Myth or Fact?

    DEFF Research Database (Denmark)

    Dinsen, Stina; Klose, Marianne; Rasmussen, Åse Krogh

    2015-01-01

    Case-reports have made it evident that both inhaled, percutaneous, intranasal, intraarticular and ophthalmic administered glucocorticoids have the potential to cause life threatening adrenal insufficiency. With few and sometimes conflicting data and study methodology the prevalence of adrenal...... insufficiency secondary to locally applied glucocorticoids is not clear. Adrenal insufficiency can only be correctly evaluated by a stimulation test, and has by this procedure been reported in up to 40-50% of patients treated with high-dose inhaled glucocorticoids. Medium- to low-dose inhaled glucocorticoids...... have been shown to cause adrenal suppression in 0-16% of patients. Glucocorticoid creams and nasal glucocorticoids can cause adrenal insufficiency, also when used within prescribed doses, but the frequency seems to be less than with inhaled glucocorticoids. Intraarticularly administered glucocorticoids...

  17. Treatment of frozen shoulder with subcutaneous TNF-alpha blockade compared with local glucocorticoid injection

    DEFF Research Database (Denmark)

    Schydlowsky, Pierre; Szkudlarek, Marcin; Madsen, Ole Rintek

    2012-01-01

    We compared the effect of subcutaneous adalimumab injections with intraarticular glucocorticoid injections on frozen shoulder of 18 patients with unilateral joint involvement. Ten patients were randomised to subcutaneous injections with adalimumab and eight to intraarticular glucocorticoid inject...

  18. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation

    Science.gov (United States)

    Li, Xiaoping; Schilkey, Faye; Smith, Geoffrey B.

    2018-01-01

    Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth. PMID:29768440

  19. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  20. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  1. Meta-analysis reveals profound responses of plant traits to glacial CO2 levels

    OpenAIRE

    Temme, A A; Cornwell, W K; Cornelissen, J H C; Aerts, R

    2013-01-01

    A general understanding of the links between atmospheric CO2 concentration and the functioning of the terrestrial biosphere requires not only an understanding of plant trait responses to the ongoing transition to higher CO2 but also the legacy effects of past low CO2. An interesting question is whether the transition from current to higher CO2 can be thought of as a continuation of the past trajectory of low to current CO2 levels. Determining this trajectory requires quantifying the effect si...

  2. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    Science.gov (United States)

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  3. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    Science.gov (United States)

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  4. Analysis of Natural Variation in Bermudagrass (Cynodon dactylon) Reveals Physiological Responses Underlying Drought Tolerance

    Science.gov (United States)

    Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system. PMID:23285294

  5. Time-Resolved Fast Mammalian Behavior Reveals the Complexity of Protective Pain Responses

    Directory of Open Access Journals (Sweden)

    Liam E. Browne

    2017-07-01

    Full Text Available Potentially harmful stimuli are detected at the skin by nociceptor sensory neurons that drive rapid protective withdrawal reflexes and pain. We set out to define, at a millisecond timescale, the relationship between the activity of these sensory neurons and the resultant behavioral output. Brief optogenetic activation of cutaneous nociceptors was found to activate only a single action potential in each fiber. This minimal input was used to determine high-speed behavioral responses in freely behaving mice. The localized stimulus generated widespread dynamic repositioning and alerting sub-second behaviors whose nature and timing depended on the context of the animal and its position, activity, and alertness. Our findings show that the primary response to injurious stimuli is not limited, fixed, or localized, but is dynamic, and that it involves recruitment and gating of multiple circuits distributed throughout the central nervous system at a sub-second timescale to effectively both alert to the presence of danger and minimize risk of harm.

  6. Meta-Analysis of High-Throughput Datasets Reveals Cellular Responses Following Hemorrhagic Fever Virus Infection

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2011-05-01

    Full Text Available The continuing use of high-throughput assays to investigate cellular responses to infection is providing a large repository of information. Due to the large number of differentially expressed transcripts, often running into the thousands, the majority of these data have not been thoroughly investigated. Advances in techniques for the downstream analysis of high-throughput datasets are providing additional methods for the generation of additional hypotheses for further investigation. The large number of experimental observations, combined with databases that correlate particular genes and proteins with canonical pathways, functions and diseases, allows for the bioinformatic exploration of functional networks that may be implicated in replication or pathogenesis. Herein, we provide an example of how analysis of published high-throughput datasets of cellular responses to hemorrhagic fever virus infection can generate additional functional data. We describe enrichment of genes involved in metabolism, post-translational modification and cardiac damage; potential roles for specific transcription factors and a conserved involvement of a pathway based around cyclooxygenase-2. We believe that these types of analyses can provide virologists with additional hypotheses for continued investigation.

  7. Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.

    Science.gov (United States)

    Gao, Yanpan; Chen, Yanyu; Zhan, Shaohua; Zhang, Wenhao; Xiong, Feng; Ge, Wei

    2017-01-31

    Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.

  8. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance.

    Science.gov (United States)

    Shi, Haitao; Wang, Yanping; Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H₂O₂ content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.

  9. Integrated approach reveals diet, APOE genotype and sex affect immune response in APP mice.

    Science.gov (United States)

    Nam, Kyong Nyon; Wolfe, Cody M; Fitz, Nicholas F; Letronne, Florent; Castranio, Emilie L; Mounier, Anais; Schug, Jonathan; Lefterov, Iliya; Koldamova, Radosveta

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that is influenced by genetic and environmental risk factors, such as inheritance of ε4 allele of APOE (APOE4), sex and diet. Here, we examined the effect of high fat diet (HFD) on amyloid pathology and expression profile in brains of AD model mice expressing human APOE isoforms (APP/E3 and APP/E4 mice). APP/E3 and APP/E4 mice were fed HFD or Normal diet for 3months. We found that HFD significantly increased amyloid plaques in male and female APP/E4, but not in APP/E3 mice. To identify differentially expressed genes and gene-networks correlated to diet, APOE isoform and sex, we performed RNA sequencing and applied Weighted Gene Co-expression Network Analysis. We determined that the immune response network with major hubs Tyrobp/DAP12, Csf1r, Tlr2, C1qc and Laptm5 correlated significantly and positively to the phenotype of female APP/E4-HFD mice. Correspondingly, we found that in female APP/E4-HFD mice, microglia coverage around plaques, particularly of larger size, was significantly reduced. This suggests altered containment of the plaque growth and sex-dependent vulnerability in response to diet. The results of our study show concurrent impact of diet, APOE isoform and sex on the brain transcriptome and AD-like phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Osteoporosis secundaria y Osteoporosis inducida por glucocorticoides (OIG

    Directory of Open Access Journals (Sweden)

    Elías Forero Illera

    2006-01-01

    Full Text Available La osteoporosis es un problema de salud pública importante a nivel mundial, y su prevalencia está aumentando. La osteoporosis secundaria se puede producir por varias patologías y el uso de ciertos medicamentos. Los glucocorticoides son un grupo de fármacos usados extensamente en la práctica médica debido a su indiscutible utilidad. La osteoporosis inducida por glucocorticoides es un problema de salud pública. Aunque la patogénesis de la pérdida producida por los glucocorticoides en el hueso no se conoce totalmente, investigaciones recientes han proporcionado nuevas conocimientos en los mecanismos de estos fármacos a nivel celular y molecular. Diversas guías han sido propuestas por diversos grupos para el tratamiento de la OIG; desafortunadamente, las guías del tratamiento no se utilizan adecuadamente en los pacientes.

  11. Glucocorticoid receptors in monocytes in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P; Binder, C

    1989-01-01

    Glucocorticoid receptor binding characteristics were investigated in 8 males with poorly controlled Type 1 diabetes mellitus and 14 healthy males. The cell type studied was monocytes, and a method for correction for heterogeneity in glucocorticoid binding in a mononuclear leucocyte population...... or with HbA1c. In conclusion, no major abnormalities in glucocorticoid receptor binding characteristics could be demonstrated in Type 1 diabetes mellitus....... was introduced. The number of receptors and the dissociation constant KD were, respectively, 13,699 and 2.93 X 10(-8) mol/l for the control group and 15,788 and 2.75 X 10(-8) mol/l for diabetics (p greater than 0.05). In diabetics, KD correlated negatively with blood glucose (r = 0.762, p less than 0...

  12. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  13. Variant allele frequency enrichment analysis in vitro reveals sonic hedgehog pathway to impede sustained temozolomide response in GBM.

    Science.gov (United States)

    Biswas, Nidhan K; Chandra, Vikas; Sarkar-Roy, Neeta; Das, Tapojyoti; Bhattacharya, Rabindra N; Tripathy, Laxmi N; Basu, Sunandan K; Kumar, Shantanu; Das, Subrata; Chatterjee, Ankita; Mukherjee, Ankur; Basu, Pryiadarshi; Maitra, Arindam; Chattopadhyay, Ansuman; Basu, Analabha; Dhara, Surajit

    2015-01-21

    Neoplastic cells of Glioblastoma multiforme (GBM) may or may not show sustained response to temozolomide (TMZ) chemotherapy. We hypothesize that TMZ chemotherapy response in GBM is predetermined in its neoplastic clones via a specific set of mutations that alter relevant pathways. We describe exome-wide enrichment of variant allele frequencies (VAFs) in neurospheres displaying contrasting phenotypes of sustained versus reversible TMZ-responses in vitro. Enrichment of VAFs was found on genes ST5, RP6KA1 and PRKDC in cells showing sustained TMZ-effect whereas on genes FREM2, AASDH and STK36, in cells showing reversible TMZ-effect. Ingenuity pathway analysis (IPA) revealed that these genes alter cell-cycle, G2/M-checkpoint-regulation and NHEJ pathways in sustained TMZ-effect cells whereas the lysine-II&V/phenylalanine degradation and sonic hedgehog (Hh) pathways in reversible TMZ-effect cells. Next, we validated the likely involvement of the Hh-pathway in TMZ-response on additional GBM neurospheres as well as on GBM patients, by extracting RNA-sequencing-based gene expression data from the TCGA-GBM database. Finally, we demonstrated TMZ-sensitization of a TMZ non-responder neurosphere in vitro by treating them with the FDA-approved pharmacological Hh-pathway inhibitor vismodegib. Altogether, our results indicate that the Hh-pathway impedes sustained TMZ-response in GBM and could be a potential therapeutic target to enhance TMZ-response in this malignancy.

  14. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus

    Science.gov (United States)

    2011-01-01

    Background In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. Results Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. Conclusions For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance

  15. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  16. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making.

    Science.gov (United States)

    Deppe, Michael; Schwindt, Wolfram; Kugel, Harald; Plassmann, Hilke; Kenning, Peter

    2005-04-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate how individual economic decisions are influenced by implicit memory contributions. Twenty-two participants were asked to make binary decisions between different brands of sensorily nearly undistinguishable consumer goods. Changes of brain activity comparing decisions in the presence or absence of a specific target brand were detected by fMRI. Only when the tar get brand was the participant's favorite one did the authors find reduced activation in the dorsolateral prefrontal, posterior parietal, and occipital cortices and the left premotor area (Brodmann areas [BA] 9, 46, 7/19, and 6). Simultaneously, activity was increased in the inferior precuneus and posterior cingulate (BA 7), right superior frontal gyrus (BA 10), right supramarginal gyrus (BA 40), and, most pronounced, in the ventromedial prefrontal cortex (BA 10). For products mainly distinguishable by brand information, the authors revealed a nonlinear winner-take-all effect for a participant's favorite brand characterized, on one hand, by reduced activation in brain areas associated with working memory and reasoning and, on the other hand, increased activation in areas involved in processing of emotions and self-reflections during decision making.

  17. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.

    Science.gov (United States)

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D; Bodrossy, Levente; Hobday, Alistair J

    2017-02-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO 2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. © 2017 The Author(s).

  18. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  19. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  20. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    Science.gov (United States)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    Science.gov (United States)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  2. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  3. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  4. Suppressive responses by visual food cues in postprandial activities of insular cortex as revealed by magnetoencephalography.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-06-03

    'Hara-Hachibu' in Japanese means a subjective sense by which we stop eating just before the motivation to eat is completely lost, a similar concept to caloric restriction (CR). Insular cortex is a critical platform which integrates sensory information into decision-making processes in eating behavior. We compared the responses of insular cortex, as assessed by magnetoencephalography (MEG), immediately after presentation of food images in the Fasting condition with those in the 'Hara-Hachibu' condition. Eleven healthy, right-handed males [age, 27.2±9.6 years; body mass index, 22.6±2.1kg/m(2) (mean±SD)] were enrolled in a randomized, two-crossover experiment (Fasting and 'Hara-Hachibu' conditions). Before the MEG recordings in the 'Hara-Hachibu' condition, the participants consumed rice balls as much as they judged themselves to have consumed shortly before reaching satiety. During the MEG recordings, they viewed food pictures projected on a screen. The intensities of MEG responses to viewing food pictures were significantly lower in the 'Hara-Hachibu' condition than those in the Fasting condition (Pvisual food stimuli in the 'Hara-Hachibu' condition was positively associated with the factor-3 (food tasted) (r=0.693, P=0.018) and aggregated scores (r=0.659, P=0.027) of the Power of Food Scale, a self-report measure of hedonic hunger. These findings may help to elucidate the neural basis of variability of appetite phenotypes under the condition of CR among individuals, and to develop possible strategies for the maintenance of adequate CR in daily life. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection.

    Science.gov (United States)

    Florez, Juan Carlos; Mofatto, Luciana Souto; do Livramento Freitas-Lopes, Rejane; Ferreira, Sávio Siqueira; Zambolim, Eunize Maciel; Carazzolle, Marcelo Falsarella; Zambolim, Laércio; Caixeta, Eveline Teixeira

    2017-12-01

    We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.

  6. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  7. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    Science.gov (United States)

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.

  8. Low-dose glucocorticoids in hyperandrogenism Efecto de bajas dosis de glucocorticoides en el hiperandrogenismo

    Directory of Open Access Journals (Sweden)

    Leonardo Rizzo

    2007-06-01

    Full Text Available To investigate the effect of low-doses of glucocorticoids on androgen and cortisol secretion during the course of the day, we evaluated clinical signs of hyperandrogenism and total, free and bioavailable testosterone, SHBG, and cortisol following two different protocols: A fourteen patients received betamethasone 0.6 mg/day (n=8 or methylprednisolone 4 mg/day (n=6, as single daily oral dose at 11.00 PM, during 30 days, B fourteen patients were evaluated under betamethasone 0.3 mg in a single daily dose at 11.00 PM during six months, 11 out of whom were re-evaluated six months later. Twenty eight women with hyperandrogenism were included and seven normal females were used as control. Blood samples were taken in follicular phase at 8 AM and 7 PM to determine SHBG, cortisol, total, free and bioavailable testosterone. In both protocols, a significant morning and evening decrease in cortisol and testosterone (pCon el objetivo de investigar el efecto de bajas dosis de glucocorticoides sobre la secreción de andrógenos y cortisol en el curso del día, evaluamos signos de hiperandrogenismo, testosterona total, libre y biodisponible y cortisol según dos protocolos diferentes: A catorce pacientes recibieron betametasona 0.6 mg/día (n= 8 o metilprednisolona 4 mg/día (n= 6 en dosis única cotidiana, a las 23 h, durante 30 días, B catorce pacientes fueron evaluadas bajo betametasona 0.3 mg en dosis única cotidiana a la 23 h, administrada durante 6 meses; de ellas, 11 pacientes fueron re-evaluadas 6 meses más tarde. Se incluyeron 28 mujeres con hiperandrogenismo y 7 controles normales. Se obtuvieron muestras de sangre en fase folicular a las 08:00 y 9:00 h para determinar SHBG, cortisol, testosterona total, libre y biodisponible. En ambos protocolos se observó una disminución significativa de cortisol y testosterona (p<0.05 a <0.01, más importante con betametasona (p<0.05. En el protocolo B, los niveles matutinos de SHBG aumentaron

  9. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.

  10. Quintupling Inhaled Glucocorticoids to Prevent Childhood Asthma Exacerbations.

    Science.gov (United States)

    Jackson, Daniel J; Bacharier, Leonard B; Mauger, David T; Boehmer, Susan; Beigelman, Avraham; Chmiel, James F; Fitzpatrick, Anne M; Gaffin, Jonathan M; Morgan, Wayne J; Peters, Stephen P; Phipatanakul, Wanda; Sheehan, William J; Cabana, Michael D; Holguin, Fernando; Martinez, Fernando D; Pongracic, Jacqueline A; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Covar, Ronina; Gentile, Deborah A; Israel, Elliot; Krishnan, Jerry A; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Long, Dayna; Ly, Ngoc; Marbin, Jyothi; Moy, James N; Myers, Ross E; Olin, J Tod; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Lemanske, Robert F

    2018-03-08

    Asthma exacerbations occur frequently despite the regular use of asthma-controller therapies, such as inhaled glucocorticoids. Clinicians commonly increase the doses of inhaled glucocorticoids at early signs of loss of asthma control. However, data on the safety and efficacy of this strategy in children are limited. We studied 254 children, 5 to 11 years of age, who had mild-to-moderate persistent asthma and had had at least one asthma exacerbation treated with systemic glucocorticoids in the previous year. Children were treated for 48 weeks with maintenance low-dose inhaled glucocorticoids (fluticasone propionate at a dose of 44 μg per inhalation, two inhalations twice daily) and were randomly assigned to either continue the same dose (low-dose group) or use a quintupled dose (high-dose group; fluticasone at a dose of 220 μg per inhalation, two inhalations twice daily) for 7 days at the early signs of loss of asthma control ("yellow zone"). Treatment was provided in a double-blind fashion. The primary outcome was the rate of severe asthma exacerbations treated with systemic glucocorticoids. The rate of severe asthma exacerbations treated with systemic glucocorticoids did not differ significantly between groups (0.48 exacerbations per year in the high-dose group and 0.37 exacerbations per year in the low-dose group; relative rate, 1.3; 95% confidence interval, 0.8 to 2.1; P=0.30). The time to the first exacerbation, the rate of treatment failure, symptom scores, and albuterol use during yellow-zone episodes did not differ significantly between groups. The total glucocorticoid exposure was 16% higher in the high-dose group than in the low-dose group. The difference in linear growth between the high-dose group and the low-dose group was -0.23 cm per year (P=0.06). In children with mild-to-moderate persistent asthma treated with daily inhaled glucocorticoids, quintupling the dose at the early signs of loss of asthma control did not reduce the rate of severe asthma

  11. Biochemical characterization of nuclear receptors for vitamin D3 and glucocorticoids in prostate stroma cell microenvironment

    International Nuclear Information System (INIS)

    Hidalgo, Alejandro A.; Montecinos, Viviana P.; Paredes, Roberto; Godoy, Alejandro S.; McNerney, Eileen M.; Tovar, Heribelt; Pantoja, Diego; Johnson, Candace; Trump, Donald; Onate, Sergio A.

    2011-01-01

    Highlights: → Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. → Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D 3 in stromal cell microenvironment prostate cancer. → 1a,25-Dyhidroxyvitamin D 3 (1,25D 3 ) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1α,25-Dihydroxyvitamin D 3 (1,25D 3 ) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D 3 is mediated by the 1,25D 3 nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D 3 in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D 3 action. Conversely, VDR-mediated transcriptional activity was more efficient in 4 out of 13 CAS (30

  12. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  13. Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jungki; Perera, Lalith; Krahn, Juno M.; Jewell, Christine M.; Moon, Andrea F.; Cidlowski, John A.; Pedersen, Lars C.

    2018-02-05

    ABSTRACT

    Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.

  14. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  15. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses.

    Science.gov (United States)

    Dai, Mingqiu; Hu, Yongfeng; Ma, Qian; Zhao, Yu; Zhou, Dao-Xiu

    2008-02-01

    The homeodomain-leucine zipper (HD-Zip) putative transcription factor genes are divided into 4 families. In this work, we studied the function of a rice HD-Zip I gene, H OME O BO X4 (Oshox4). Oshox4 transcripts were detected in leaf and floral organ primordia but excluded from the shoot apical meristem and the protein was nuclear localized. Over-expression of Oshox4 in rice induced a semi-dwarf phenotype that could not be complemented by applied GA3. The over-expression plants accumulated elevated levels of bioactive GA, while the GA catabolic gene GA2ox3 was upregulated in the transgenic plants. In addition, over-expression of Oshox4 blocked GA-dependent alpha-amylase production. However, down-regulation of Oshox4 in RNAi transgenic plants induced no phenotypic alteration. Interestingly, the expression of YAB1 that is involved in the negative feedback regulation of the GA biosynthesis was upregulated in the Oshox4 over-expressing plants. One-hybrid assays showed that Oshox4 could interact with YAB1 promoter in yeast. In addition, Oshox4 expression was upregulated by GA. These data together suggest that Oshox4 may be involved in the negative regulation of GA signalling and may play a role to fine tune GA responses in rice.

  16. Robust dynamic classes revealed by measuring the response function of a social system.

    Science.gov (United States)

    Crane, Riley; Sornette, Didier

    2008-10-14

    We study the relaxation response of a social system after endogenous and exogenous bursts of activity using the time series of daily views for nearly 5 million videos on YouTube. We find that most activity can be described accurately as a Poisson process. However, we also find hundreds of thousands of examples in which a burst of activity is followed by an ubiquitous power-law relaxation governing the timing of views. We find that these relaxation exponents cluster into three distinct classes and allow for the classification of collective human dynamics. This is consistent with an epidemic model on a social network containing two ingredients: a power-law distribution of waiting times between cause and action and an epidemic cascade of actions becoming the cause of future actions. This model is a conceptual extension of the fluctuation-dissipation theorem to social systems [Ruelle, D (2004) Phys Today 57:48-53] and [Roehner BM, et al., (2004) Int J Mod Phys C 15:809-834], and provides a unique framework for the investigation of timing in complex systems.

  17. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Ouf, Amged; Siam, Rania

    2016-07-01

    The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Network Analysis Reveals a Common Host–Pathogen Interaction Pattern in Arabidopsis Immune Responses

    Directory of Open Access Journals (Sweden)

    Hong Li

    2017-05-01

    Full Text Available Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein–protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs. We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant–pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  19. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  20. Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel.

    Science.gov (United States)

    Kharaziha, Pedram; Chioureas, Dimitris; Rutishauser, Dorothea; Baltatzis, George; Lennartsson, Lena; Fonseca, Pedro; Azimi, Alireza; Hultenby, Kjell; Zubarev, Roman; Ullén, Anders; Yachnin, Jeffrey; Nilsson, Sten; Panaretakis, Theocharis

    2015-08-28

    Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are currently no clinical biomarkers available that predict whether a CRPC patient will respond or acquire resistance to this therapy. Comparative proteomics analysis of exosomes secreted from DU145 prostate cancer cells that are sensitive (DU145 Tax-Sen) or have acquired resistance (DU145 Tax-Res) to docetaxel, demonstrated significant differences in the amount of exosomes secreted and in their molecular composition. A panel of proteins was identified by proteomics to be differentially enriched in DU145 Tax-Res compared to DU145 Tax-Sen exosomes and was validated by western blotting. Importantly, we identified MDR-1, MDR-3, Endophilin-A2 and PABP4 that were enriched only in DU145 Tax-Res exosomes. We validated the presence of these proteins in the serum of a small cohort of patients. DU145 cells that have uptaken DU145 Tax-Res exosomes show properties of increased matrix degradation. In summary, exosomes derived from DU145 Tax-Res cells may be a valuable source of biomarkers for response to therapy.

  1. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  2. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria.

    Science.gov (United States)

    Fahlgren, Noah; Feldman, Maximilian; Gehan, Malia A; Wilson, Melinda S; Shyu, Christine; Bryant, Douglas W; Hill, Steven T; McEntee, Colton J; Warnasooriya, Sankalpi N; Kumar, Indrajit; Ficor, Tracy; Turnipseed, Stephanie; Gilbert, Kerrigan B; Brutnell, Thomas P; Carrington, James C; Mockler, Todd C; Baxter, Ivan

    2015-10-05

    Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. Glucocorticoid Receptor Interacting Co-regulators: Putative Candidates for Future Drug Targeting Therapy.

    Science.gov (United States)

    Di Silvestre, Alessia; Lucafo, Marianna; De Iudicibus, Sara; Ventura, Alessandro; Martelossi, Stefano; Stocco, Gabriele; Decorti, Giuliana

    2017-01-01

    Glucocorticoids (GCs) are largely used in different inflammatory, autoimmune and proliferative diseases. To date their mechanism of action is not completely clear and more studies are necessary, in particular to explain the great interindividual variability in clinical response. In this panorama the glucocorticoid receptor (GR) has an important role: in fact it regulates the pharmacological response thanks to the capability to interact with different molecules (DNA, RNA, ncRNA and proteins) that are known to influence its activity. In this review our aim is to highlight the knowledge about the role of protein-protein, RNAprotein interactions and epigenetic modifications on the GR and the consequent response to GCs. The characteristics of these interactions with the GR and their effects on the pharmacological activity of GCs will be examined. This information could contribute to the prediction of individual sensitivity to steroids through the identification of new markers of GC resistance. In addition this knowledge may be used in developing new strategies for targeted therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  5. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response.

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-03-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP-chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response.

  6. A ChIP–chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response

    Science.gov (United States)

    Frontini, Mattia; Vijayakumar, Meeraa; Garvin, Alexander; Clarke, Nicole

    2009-01-01

    IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP–chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response. PMID:19129219

  7. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Luo, Qijun; Zhu, Zhenggang; Zhu, Zhujun; Yang, Rui; Qian, Feijian; Chen, Haimin; Yan, Xiaojun

    2014-01-01

    Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  8. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Qijun Luo

    Full Text Available Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1 At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2 After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3 Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  9. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  10. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  11. Application of xCELLigence RTCA Biosensor Technology for Revealing the Profile and Window of Drug Responsiveness in Real Time

    Directory of Open Access Journals (Sweden)

    Dan Kho

    2015-04-01

    Full Text Available The xCELLigence technology is a real-time cellular biosensor, which measures the net adhesion of cells to high-density gold electrode arrays printed on custom-designed E-plates. The strength of cellular adhesion is influenced by a myriad of factors that include cell type, cell viability, growth, migration, spreading and proliferation. We therefore hypothesised that xCELLigence biosensor technology would provide a valuable platform for the measurement of drug responses in a multitude of different experimental, clinical or pharmacological contexts. In this manuscript, we demonstrate how xCELLigence technology has been invaluable in the identification of (1 not only if cells respond to a particular drug, but (2 the window of drug responsiveness. The latter aspect is often left to educated guess work in classical end-point assays, whereas biosensor technology reveals the temporal profile of the response in real time, which enables both acute responses and longer term responses to be profiled within the same assay. In our experience, the xCELLigence biosensor technology is suitable for highly targeted drug assessment and also low to medium throughput drug screening, which produces high content temporal data in real time.

  12. Glucocorticoid programming of the fetal male hippocampal epigenome.

    Science.gov (United States)

    Crudo, Ariann; Suderman, Matthew; Moisiadis, Vasilis G; Petropoulos, Sophie; Kostaki, Alisa; Hallett, Michael; Szyf, Moshe; Matthews, Stephen G

    2013-03-01

    The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.

  13. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.

    Science.gov (United States)

    Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga

    2018-03-01

    This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.

  14. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  15. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  16. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1

    NARCIS (Netherlands)

    Lemke, U.; Krones-Herzig, A.; Berriel Diaz, M.; Narvekar, P.; Ziegler, A.; Vegiopoulos, A.; Cato, A.C.B.; Bohl, S.; Klingmüller, U.; Screaton, R.A.; Müller-Decker, K.; Kersten, A.H.; Herzig, S.

    2008-01-01

    Aberrant accumulation of lipids in the liver (¿fatty liver¿ or hepatic steatosis) represents a hallmark of the metabolic syndrome and is tightly associated with obesity, type II diabetes, starvation, or glucocorticoid (GC) therapy. While fatty liver has been connected with numerous abnormalities of

  17. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid

  18. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    International Nuclear Information System (INIS)

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. 3 H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse

  19. Uso de glucocorticoides en enfermedades alérgicas

    Directory of Open Access Journals (Sweden)

    M Rodríguez-González

    2017-01-01

    Full Text Available Los glucocorticoides son análogos sintéticos de las hormonas adrenocorticales, de uso común, de gran utilidad en la práctica clínica del pediatra y se consideran la piedra angular del tratamiento farmacológico de enfermedades alérgicas.

  20. Adrenocorticotropic Hormone Secreting Pheochromocytoma Underlying Glucocorticoid Induced Pheochromocytoma Crisis

    Directory of Open Access Journals (Sweden)

    Gil A. Geva

    2018-01-01

    Full Text Available Context. Pheochromocytomas are hormone secreting tumors of the medulla of the adrenal glands found in 0.1–0.5% of patients with hypertension. The vast majority of pheochromocytomas secrete catecholamines, but they have been occasionally shown to also secrete interleukins, calcitonin, testosterone, and in rare cases adrenocorticotropic hormone. Pheochromocytoma crisis is a life threatening event in which high levels of catecholamines cause a systemic reaction leading to organ failure. Case Description. A 70-year-old man was admitted with acute myocardial ischemia following glucocorticoid administration as part of an endocrine workup for an adrenal mass. Cardiac catheterization disclosed patent coronary arteries and he was discharged. A year later he returned with similar angina-like chest pain. During hospitalization, he suffered additional events of chest pain, shortness of breath, and palpitations following administration of glucocorticoids as preparation for intravenous contrast administration. Throughout his admission, the patient demonstrated both signs of Cushing’s syndrome and high catecholamine levels. Following stabilization of vital parameters and serum electrolytes, the adrenal mass was resected surgically and was found to harbor an adrenocorticotropic hormone secreting pheochromocytoma. This is the first documented case of adrenocorticotropic hormone secreting pheochromocytoma complicated by glucocorticoid induced pheochromocytoma crisis. Conclusion. Care should be taken when administering high doses of glucocorticoids to patients with suspected pheochromocytoma, even in a patient with concomitant Cushing’s syndrome.

  1. Glucocorticoid management in rheumatoid arthritis: morning or night low dose?

    Directory of Open Access Journals (Sweden)

    Sabrina Paolino

    2017-08-01

    Full Text Available Morning symptoms of rheumatoid arthritis (RA are linked to circadian increase of night inflammation, supported by inadequate cortisol secretion in active disease. Therefore, exogenous glucocorticoid administration in RA is recommended by EULAR and ACR from the beginning of the diagnosis, since may partially act like a “replacement therapy”. In addition, the prevention/treatment of the night up-regulation of the immune/inflammatory reaction has been shown more effective when exogenous glucocorticoid administration is managed with a night-time-release formulation. Despite a considerably higher cost than conventional prednisone (immediate release, chronotherapy with night-time-release prednisone has been recognized a cost-effective option for RA patients not on glucocorticoids who are eligible for therapy with biologic disease-modifying antirheumatic drugs (DMARDs. Interestingly, since different cell populations involved in the inflammatory process are particularly activated during the night (i.e. monocytes, macrophages, other therapeutical approaches used in RA, such as conventional DMARDs and non-steroidal anti-inflammatory drugs (NSAIDs should follow the same concepts of glucocorticoid chronotherapy. Therefore, bedtime methotrexate chronotherapy was found to better manage RA symptoms, and several available NSAIDs (i.e. indomethacin, aceclofenac, ketoprofen, flurbiprofen, lornoxicam have been recently modified in their formulation, in order to obtain more focused night action.

  2. The effect of early administration of glucocorticoids on learning and ...

    African Journals Online (AJOL)

    It has been observed that steroids administered postnatally may have transient retarding effect on learning and memory functions, and that animal age and sex may modify such effects. This study aims to illustrate the effect of early administration of glucocorticoids on learning and spatial memory. Wistar rat pups were ...

  3. Chronic Glucocorticoid Hypersecretion in Cushing's Syndrome Exacerbates Cognitive Aging

    Science.gov (United States)

    Michaud, Kathy; Forget, Helene; Cohen, Henri

    2009-01-01

    Cumulative exposure to glucocorticoid hormones (GC) over the lifespan has been associated with cognitive impairment and may contribute to physical and cognitive degeneration in aging. The objective of the present study was to examine whether the pattern of cognitive deficits in patients with Cushing's syndrome (CS), a disorder characterized by…

  4. Glucocorticoid receptor effects on the immune system and infl ammation

    NARCIS (Netherlands)

    E.L.T. van den Akker (Erica)

    2008-01-01

    textabstractThomas Addison’s discovery in the mid-1800s that the adrenal cortex was essential for survival preceded by nearly a century the demonstration that this gland produced at least two distinct hormones, each essential for normal life. How glucocorticoids sustained life remained a mystery for

  5. Postreactivation glucocorticoids impair recall of established fear memory.

    Science.gov (United States)

    Cai, Wen-Hui; Blundell, Jacqueline; Han, Jie; Greene, Robert W; Powell, Craig M

    2006-09-13

    Pavlovian fear conditioning provides one of the best rodent models of acquired anxiety disorders, including posttraumatic stress disorder. Injection of a variety of drugs after training in fear-conditioning paradigms can impair consolidation of fear memories. Indeed, early clinical trials suggest that immediate administration of such drugs after a traumatic event may decrease the risk of developing posttraumatic stress disorder in humans (Pitman et al., 2002; Vaiva et al., 2003). The use of such a treatment is limited by the difficulty of treating every patient at risk and by the difficulty in predicting which patients will experience chronic adverse consequences. Recent clinical trials suggest that administration of glucocorticoids may have a beneficial effect on established posttraumatic stress disorder (Aerni et al., 2004) and specific phobia (Soravia et al., 2006). Conversely, glucocorticoid administration after training is known to enhance memory consolidation (McGaugh and Roozendaal, 2002; Roozendaal, 2002). From a clinical perspective, enhancement of a fear memory or a reactivated fear memory would not be desirable. We report here that when glucocorticoids are administered immediately after reactivation of a contextual fear memory, subsequent recall is significantly diminished. Additional experiments support the interpretation that glucocorticoids not only decrease fear memory retrieval but, in addition, augment consolidation of fear memory extinction rather than decreasing reconsolidation. These findings provide a rodent model for a potential treatment of established acquired anxiety disorders in humans, as suggested by others (Aerni et al., 2004; Schelling et al., 2004), based on a mechanism of enhanced extinction.

  6. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    water intake and revealed that the glucocorticoids can act centrally, as well as peripherally, to assist in the normalization of extracellular fluid volume.

  8. Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes.

    Directory of Open Access Journals (Sweden)

    Xiwen Cheng

    Full Text Available Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor and vitamin D3 (ligand for vitamin D receptor protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex or vitamin D3 (VD3 treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.

  9. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  11. Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling.

    Science.gov (United States)

    Carboni, Lucia; Nguyen, Thanh-Phuong; Caberlotto, Laura

    2016-12-01

    The pathophysiological basis of major depression is incompletely understood. Recently, numerous proteomic studies have been performed in rodent models of depression to investigate the molecular underpinnings of depressive-like behaviours with an unbiased approach. The objective of the study is to integrate the results of these proteomic studies in depression models to shed light on the most relevant molecular pathways involved in the disease. Network analysis is performed integrating preexisting proteomic data from rodent models of depression. The IntAct mouse and the HRPD are used as reference protein-protein interaction databases. The functionality analyses of the networks are then performed by testing overrepresented GO biological process terms and pathways. Functional enrichment analyses of the networks revealed an association with molecular processes related to depression in humans, such as those involved in the immune response. Pathways impacted by clinically effective antidepressants are modulated, including glutamatergic signaling and neurotrophic responses. Moreover, dysregulations of proteins regulating energy metabolism and circadian rhythms are implicated. The comparison with protein pathways modulated in depressive patients revealed significant overlapping. This systems biology study supports the notion that animal models can contribute to the research into the biology and therapeutics of depression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself

    DEFF Research Database (Denmark)

    Dinsen, Stina; Baslund, Bo; Klose, Marianne

    2013-01-01

    Glucocorticoid therapy is widely used, but withdrawal from glucocorticoids comes with a potential life-threatening risk of adrenal insufficiency. Recent case reports document that adrenal crisis after glucocorticoid withdrawal remains a serious problem in clinical practice. Partly due...... to difficulties in inter-study comparison the true prevalence of glucocorticoid-induced adrenal insufficiency is unknown, but it might be somewhere between 46 and 100% 24h after glucocorticoid withdrawal, 26-49% after approximately one week, and some patients show prolonged suppression lasting months to years....... Adrenal insufficiency might therefore be underdiagnosed in clinical practice. Clinical data do not permit accurate estimates of a lower limit of glucocorticoid dose and duration of treatment, where adrenal insufficiency will not occur. Due to individual variation, neither the glucocorticoid dose nor...

  13. Preadmission Use of Glucocorticoids and 30-Day Mortality After Stroke.

    Science.gov (United States)

    Sundbøll, Jens; Horváth-Puhó, Erzsébet; Schmidt, Morten; Dekkers, Olaf M; Christiansen, Christian F; Pedersen, Lars; Bøtker, Hans Erik; Sørensen, Henrik T

    2016-03-01

    The prognostic impact of glucocorticoids on stroke mortality remains uncertain. We, therefore, examined whether preadmission use of glucocorticoids is associated with short-term mortality after ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). We conducted a nationwide population-based cohort study using medical registries in Denmark. We identified all patients with a first-time inpatient diagnosis of stroke between 2004 and 2012. We categorized glucocorticoid use as current use (last prescription redemption ≤90 days before admission), former use, and nonuse. Current use was further classified as new or long-term use. We used Cox regression to compute 30-day mortality rate ratios with 95% confidence intervals (CIs), controlling for confounders. We identified 100 042 patients with a first-time stroke. Of these, 83 735 patients had ischemic stroke, 11 779 had ICH, and 4528 had SAH. Absolute mortality risk was higher for current users compared with nonusers for ischemic stroke (19.5% versus 10.2%), ICH (46.5% versus 34.4%), and SAH (35.0% versus 23.2%). For ischemic stroke, the adjusted 30-day mortality rate ratio was increased among current users compared with nonusers (1.58, 95% CI: 1.46-1.71), driven by the effect of glucocorticoids among new users (1.80, 95% CI: 1.62-1.99). Current users had a more modest increase in the adjusted 30-day mortality rate ratio for hemorrhagic stroke (1.26, 95% CI: 1.09-1.45 for ICH and 1.40, 95% CI: 1.01-1.93 for SAH) compared with nonusers. Former use was not substantially associated with mortality. Preadmission use of glucocorticoids was associated with increased 30-day mortality among patients with ischemic stroke, ICH, and SAH. © 2016 American Heart Association, Inc.

  14. Impact of prenatal stress on offspring glucocorticoid levels: A phylogenetic meta-analysis across 14 vertebrate species.

    Science.gov (United States)

    Thayer, Zaneta M; Wilson, Meredith A; Kim, Andrew W; Jaeggi, Adrian V

    2018-03-21

    Prenatal exposure to maternal stress is commonly associated with variation in Hypothalamic Pituitary Adrenal (HPA)-axis functioning in offspring. However, the strength or consistency of this response has never been empirically evaluated across vertebrate species. Here we meta-analyzed 114 results from 39 studies across 14 vertebrate species using Bayesian phylogenetic mixed-effects models. We found a positive overall effect of prenatal stress on offspring glucocorticoids (d' = 0.43) though the 95% Highest Posterior Density Interval overlapped with 0 (-0.16-0.95). Meta-regressions of potential moderators highlighted that phylogeny and life history variables predicted relatively little variation in effect size. Experimental studies (d' = 0.64) produced stronger effects than observational ones (d' = -0.01), while prenatal stress affected glucocorticoid recovery following offspring stress exposure more strongly (d' = 0.75) than baseline levels (d' = 0.48) or glucocorticoid peak response (d' = 0.36). These findings are consistent with the argument that HPA-axis sensitivity to prenatal stress is evolutionarily ancient and occurs regardless of a species' overall life history strategy. These effects may therefore be especially important for mediating intra-specific life-history variation. In addition, these findings suggest that animal models of prenatal HPA-axis programming may be appropriate for studying similar effects in humans.

  15. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis.

    Science.gov (United States)

    Talabér, Gergely; Jondal, Mikael; Okret, Sam

    2013-11-05

    Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling

    Science.gov (United States)

    Potempa, Krzysztof; Graham, Christine M.; Moreira-Teixeira, Lucia; McNab, Finlay W.; Howes, Ashleigh; Stavropoulos, Evangelos; Pascual, Virginia; Banchereau, Jacques; Chaussabel, Damien; O’Garra, Anne

    2016-01-01

    Analysis of the mouse transcriptional response to Listeria monocytogenes infection reveals that a large set of genes are perturbed in both blood and tissue and that these transcriptional responses are enriched for pathways of the immune response. Further we identified enrichment for both type I and type II interferon (IFN) signaling molecules in the blood and tissues upon infection. Since type I IFN signaling has been reported widely to impair bacterial clearance we examined gene expression from blood and tissues of wild type (WT) and type I IFNαβ receptor-deficient (Ifnar1-/-) mice at the basal level and upon infection with L. monocytogenes. Measurement of the fold change response upon infection in the absence of type I IFN signaling demonstrated an upregulation of specific genes at day 1 post infection. A less marked reduction of the global gene expression signature in blood or tissues from infected Ifnar1-/- as compared to WT mice was observed at days 2 and 3 after infection, with marked reduction in key genes such as Oasg1 and Stat2. Moreover, on in depth analysis, changes in gene expression in uninfected mice of key IFN regulatory genes including Irf9, Irf7, Stat1 and others were identified, and although induced by an equivalent degree upon infection this resulted in significantly lower final gene expression levels upon infection of Ifnar1-/- mice. These data highlight how dysregulation of this network in the steady state and temporally upon infection may determine the outcome of this bacterial infection and how basal levels of type I IFN-inducible genes may perturb an optimal host immune response to control intracellular bacterial infections such as L. monocytogenes. PMID:26918359

  18. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.

    Science.gov (United States)

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Stobart, Michael J; Looser, Zoe J; Saab, Aiman S; Weber, Bruno

    2018-01-01

    Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    Science.gov (United States)

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  1. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  2. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  3. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response

    Directory of Open Access Journals (Sweden)

    Ryan James C

    2010-08-01

    Full Text Available Abstract Background Ciguatoxins (CTXs are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO and molecular pathway enrichment of the gene expression data. Results A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p Conclusions Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against

  4. Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response.

    Science.gov (United States)

    Ryan, James C; Morey, Jeanine S; Bottein, Marie-Yasmine Dechraoui; Ramsdell, John S; Van Dolah, Frances M

    2010-08-26

    Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against neuroinflammation. Pathologic

  5. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-05-01

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  6. Association of N-terminal domain polymorphisms of the porcine glucocorticoid receptor with carcass composition and meat quality traits.

    Science.gov (United States)

    Reyer, Henry; Ponsuksili, Siriluck; Wimmers, Klaus; Murani, Eduard

    2014-02-01

    The glucocorticoid receptor (GR) is a ubiquitously acting transcription factor that is responsible for mediating the physiological response to stress and adaptation to environmental conditions. Genetic variation of a GR gene (NR3C1) may therefore contribute to multiple phenotypic alterations and influence relevant traits of animal production. Here, we examined effects of two non-synonymous mutations of the porcine NR3C1, leading to amino acid exchanges p.Glu13Asp (c.39A>C) and p.Val19Leu (c.55G>C) in the N-terminal domain of the GR, on meat quality and carcass composition. In addition, we explored their influence on transcriptional activity of GR in vitro. A commercial crossbreed Pietrain × (German Large White × German Landrace) herd (n = 545) in which genotypes and relevant traits had been collected was used to perform the association analysis. The single nucleotide polymorphism (SNP) c.55G>C was significantly associated with conductivity and meat color scores. These effects were highly consistent considering the physiological relationship between these traits. Association analysis of SNP c.39A>C also revealed significant effects on closely connected meat quality traits. In addition, SNP c.55G>C showed association with carcass traits, mainly those related to muscle deposition. The molecular mechanism of action of both amino acid substitutions remains obscure because neither showed significant influence on transcriptional activity of GR. Our study emphasizes NR3C1 as an important candidate gene for muscle-related traits in pigs, but further work is necessary to clarify the molecular background of the identified associations. © 2013 Stichting International Foundation for Animal Genetics.

  7. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  8. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  9. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma Exacerbations.

    Science.gov (United States)

    McKeever, Tricia; Mortimer, Kevin; Wilson, Andrew; Walker, Samantha; Brightling, Christopher; Skeggs, Andrew; Pavord, Ian; Price, David; Duley, Lelia; Thomas, Mike; Bradshaw, Lucy; Higgins, Bernard; Haydock, Rebecca; Mitchell, Eleanor; Devereux, Graham; Harrison, Timothy

    2018-03-08

    Asthma exacerbations are frightening for patients and are occasionally fatal. We tested the concept that a plan for patients to manage their asthma (self-management plan), which included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate, would reduce the incidence of severe asthma exacerbations among adults and adolescents with asthma. We conducted a pragmatic, unblinded, randomized trial involving adults and adolescents with asthma who were receiving inhaled glucocorticoids, with or without add-on therapy, and who had had at least one exacerbation in the previous 12 months. We compared a self-management plan that included an increase in the dose of inhaled glucocorticoids by a factor of 4 (quadrupling group) with the same plan without such an increase (non-quadrupling group), over a period of 12 months. The primary outcome was the time to a first severe asthma exacerbation, defined as treatment with systemic glucocorticoids or an unscheduled health care consultation for asthma. A total of 1922 participants underwent randomization, of whom 1871 were included in the primary analysis. The number of participants who had a severe asthma exacerbation in the year after randomization was 420 (45%) in the quadrupling group as compared with 484 (52%) in the non-quadrupling group, with an adjusted hazard ratio for the time to a first severe exacerbation of 0.81 (95% confidence interval, 0.71 to 0.92; P=0.002). The rate of adverse effects, which were related primarily to local effects of inhaled glucocorticoids, was higher in the quadrupling group than in the non-quadrupling group. In this trial involving adults and adolescents with asthma, a personalized self-management plan that included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate resulted in fewer severe asthma exacerbations than a plan in which the dose was not increased. (Funded by the Health Technology

  10. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

    Science.gov (United States)

    Yoder, Keith J; Porges, Eric C; Decety, Jean

    2015-04-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.

  11. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment.

    Science.gov (United States)

    Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria

    2018-01-01

    Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Aquino-Ferreira Roseli

    2010-02-01

    Full Text Available Abstract Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

  13. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  14. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  15. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  16. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  17. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death.

    Directory of Open Access Journals (Sweden)

    Amalia Trousson

    Full Text Available BACKGROUND: Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA, which has a protective effect. METHODOLOGY/PRINCIPAL FINDINGS: As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH. This inhibition is mediated by the glucocorticoid receptor (GR, which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1alpha. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.

  18. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    Science.gov (United States)

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  20. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo

    KAUST Repository

    Fujii, Hiroaki

    2011-01-10

    Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.

  1. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells

    KAUST Repository

    Kwok, Hoi-Hin

    2017-05-18

    MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.

  2. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes.

    Directory of Open Access Journals (Sweden)

    Sandra M Mathioni

    Full Text Available Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.

  3. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  4. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  5. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Sheela Vyas

    2016-01-01

    Full Text Available Stress and stress hormones, glucocorticoids (GCs, exert widespread actions in central nervous system, ranging from the regulation of gene transcription, cellular signaling, modulation of synaptic structure, and transmission and glial function to behavior. Their actions are mediated by glucocorticoid and mineralocorticoid receptors which are nuclear receptors/transcription factors. While GCs primarily act to maintain homeostasis by inducing physiological and behavioral adaptation, prolonged exposure to stress and elevated GC levels may result in neuro- and psychopathology. There is now ample evidence for cause-effect relationships between prolonged stress, elevated GC levels, and cognitive and mood disorders while the evidence for a link between chronic stress/GC and neurodegenerative disorders such as Alzheimer’s (AD and Parkinson’s (PD diseases is growing. This brief review considers some of the cellular mechanisms through which stress and GC may contribute to the pathogenesis of AD and PD.

  6. Effect of glucocorticoids and gamma radiation on epidermal Langerhans cells

    International Nuclear Information System (INIS)

    Belsito, D.V.; Baer, R.L.; Thorbecke, G.J.; Gigli, I.

    1984-01-01

    The effect of 750 rads of gamma radiation on the rate of return of epidermal Langerhans cells (LC) following suppressive doses of topical glucorticoids was studied in guinea pigs. Gamma radiation alone had no effect on the LC as assessed by staining for cell membrane ATPase activity and Ia antigen. It did, however, delay the expected return of Ia but not ATPase surface markers on the LC after perturbation with glucocorticoids. The delayed return of surface Ia antigen is possibly related to a radiation-induced defect in the production of a required lymphokine and/or in intracellular Ia transport. Although our data do not rule out a cytolytic effect of steroids on the LC, they do strongly suggest that, at least in part, glucocorticoids act on the LC by altering cell surface characteristics

  7. Gastroprotective role of glucocorticoids during NSAID-induced gastropathy.

    Science.gov (United States)

    Filaretova, Ludmila

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) make significant contributions to gastric ulcer disease which remains widespread. Although several factors have been postulated as pathogenic elements of the gastric injury induced by NSAIDs, it is, however believed that prostaglandin deficiency plays a critical role in the pathogenesis of this injury. During prostaglandin deficiency, other defensive mechanisms might operate to attenuate NSAID-induced gastropathy. According to our results, NSAIDs, similar to stress, induce an increase in glucocorticoid production that in turn helps the gastric mucosa to resist the harmful actions of these drugs. In this article, we review our experimental data suggesting that glucocorticoids may play a role as natural defensive factors in maintaining the integrity of the gastric mucosa during NSAID therapy and might operate to attenuate NSAID-induced gastropathy.

  8. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid

    Science.gov (United States)

    Asai, Shuta; Caillaud, Marie-Cécile; Furzer, Oliver J.; Ishaque, Naveed; Wirthmueller, Lennart; Fabro, Georgina; Shirasu, Ken; Jones, Jonathan D. G.

    2014-01-01

    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome. PMID:25329884

  9. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  10. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  11. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  12. Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid.

    Directory of Open Access Journals (Sweden)

    Shuta Asai

    2014-10-01

    Full Text Available Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should h