WorldWideScience

Sample records for glucocorticoid levels impair

  1. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  2. Postreactivation glucocorticoids impair recall of established fear memory.

    Science.gov (United States)

    Cai, Wen-Hui; Blundell, Jacqueline; Han, Jie; Greene, Robert W; Powell, Craig M

    2006-09-13

    Pavlovian fear conditioning provides one of the best rodent models of acquired anxiety disorders, including posttraumatic stress disorder. Injection of a variety of drugs after training in fear-conditioning paradigms can impair consolidation of fear memories. Indeed, early clinical trials suggest that immediate administration of such drugs after a traumatic event may decrease the risk of developing posttraumatic stress disorder in humans (Pitman et al., 2002; Vaiva et al., 2003). The use of such a treatment is limited by the difficulty of treating every patient at risk and by the difficulty in predicting which patients will experience chronic adverse consequences. Recent clinical trials suggest that administration of glucocorticoids may have a beneficial effect on established posttraumatic stress disorder (Aerni et al., 2004) and specific phobia (Soravia et al., 2006). Conversely, glucocorticoid administration after training is known to enhance memory consolidation (McGaugh and Roozendaal, 2002; Roozendaal, 2002). From a clinical perspective, enhancement of a fear memory or a reactivated fear memory would not be desirable. We report here that when glucocorticoids are administered immediately after reactivation of a contextual fear memory, subsequent recall is significantly diminished. Additional experiments support the interpretation that glucocorticoids not only decrease fear memory retrieval but, in addition, augment consolidation of fear memory extinction rather than decreasing reconsolidation. These findings provide a rodent model for a potential treatment of established acquired anxiety disorders in humans, as suggested by others (Aerni et al., 2004; Schelling et al., 2004), based on a mechanism of enhanced extinction.

  3. Science review: Mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids

    OpenAIRE

    Prigent, Hélène; Maxime, Virginie; Annane, Djillali

    2004-01-01

    This review describes current knowledge on the mechanisms that underlie glucocorticoid insufficiency in sepsis and the molecular action of glucocorticoids. In patients with severe sepsis, numerous factors predispose to glucocorticoid insufficiency, including drugs, coagulation disorders and inflammatory mediators. These factors may compromise the hypothalamic–pituitary axis (i.e. secondary adrenal insufficiency) or the adrenal glands (i.e. primary adrenal failure), or may impair glucocorticoi...

  4. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  5. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats.

    Science.gov (United States)

    Boero, Giorgia; Pisu, Maria Giuseppina; Biggio, Francesca; Muredda, Laura; Carta, Gianfranca; Banni, Sebastiano; Paci, Elena; Follesa, Paolo; Concas, Alessandra; Porcu, Patrizia; Serra, Mariangela

    2018-05-01

    We previously demonstrated that socially isolated rats at weaning showed a significant decrease in corticosterone and adrenocorticotropic hormone (ACTH) levels, associated with an enhanced response to acute stressful stimuli. Here we shown that social isolation decreased levels of total corticosterone and of its carrier corticosteroid-binding globulin, but did not influence the availability of the free active fraction of corticosterone, both under basal conditions and after acute stress exposure. Under basal conditions, social isolation increased the abundance of glucocorticoid receptors, while it decreased that of mineralocorticoid receptors. After acute stress exposure, socially isolated rats showed long-lasting corticosterone, ACTH and corticotrophin releasing hormone responses. Moreover, while in the hippocampus and hypothalamus of group-housed rats glucocorticoid receptors expression increased with time and reached a peak when corticosterone levels returned to basal values, in socially isolated rats expression of glucocorticoid receptors did not change. Finally, social isolation also affected the hypothalamic endocannabinoid system: compared to group-housed rats, basal levels of anandamide and cannabinoid receptor type 1 were increased, while basal levels of 2-arachidonoylglycerol were decreased in socially isolated rats and did not change after acute stress exposure. The present results show that social isolation in male rats alters basal HPA axis activity and impairs glucocorticoid-mediated negative feedback after acute stress. Given that social isolation is considered an animal model of several neuropsychiatric disorders, such as generalized anxiety disorder, depression, post-traumatic stress disorder and schizophrenia, these data could contribute to better understand the alterations in HPA axis activity observed in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  7. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  8. BClI polymorphism of the glucocorticoid receptor gene is associated with increased obesity, impaired glucose metabolism and dyslipidaemia in patients with Addison's disease.

    Science.gov (United States)

    Giordano, Roberta; Marzotti, Stefania; Berardelli, Rita; Karamouzis, Ioannis; Brozzetti, Annalisa; D'Angelo, Valentina; Mengozzi, Giulio; Mandrile, Giorgia; Giachino, Daniela; Migliaretti, Giuseppe; Bini, Vittorio; Falorni, Alberto; Ghigo, Ezio; Arvat, Emanuela

    2012-12-01

    Although glucocorticoids are essential for health, several studies have shown that glucocorticoids replacement in Addison's disease might be involved in anthropometric and metabolic impairment, with increased cardiovascular risk, namely if conventional doses are used. As the effects of glucocorticoids are mediated by the glucocorticoid receptor, encoded by NR3C1 gene, different polymorphisms in the NR3C1 gene have been linked to altered glucocorticoid sensitivity in general population as well as in patients with obesity or metabolic syndrome. We investigated the impact of glucocorticoid receptor gene polymorphisms, including the BclI, N363S and ER22/23EK variants, on anthropometric parameters (BMI and waist circumference), metabolic profile (HOMA, OGTT and serum lipids) and ACTH levels in 50 patients with Addison's disease (34 women and 16 men, age 20-82 year) under glucocorticoids replacement. Neither N363S nor ER22/23EK variants were significantly associated with anthropometric, metabolic or hormonal parameters, while patients carrying the homozygous BclI polymorphism GG (n = 4) showed higher (P Addison's disease and may contribute, along with other factors, to the increase in central adiposity, impaired glucose metabolism and dyslipidaemia. © 2012 Blackwell Publishing Ltd.

  9. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  10. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    Science.gov (United States)

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  12. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  14. Impaired imprinting and social behaviors in chicks exposed to mifepristone, a glucocorticoid receptor antagonist, during the final week of embryogenesis.

    Science.gov (United States)

    Nishigori, Hideo; Kagami, Keisuke; Nishigori, Hidekazu

    2014-03-15

    The effects of glucocorticoid receptor dysfunction during embryogenesis on the imprinting abilities and social behaviors of hatchlings were examined using "fertile hen's egg-embryo-chick" system. Of embryos treated with mifepristone (0.4μmol/egg) on day 14, over 75% hatched a day later than the controls (day 22) without external anomalies. The mifepristone-treated hatchlings were assayed for imprinting ability on post-hatching day 2 and for social behaviors on day 3. The findings were as follows: imprinting ability (expressed as preference score) was significantly lower in mifepristone-treated hatchlings than in controls (0.65±0.06 vs. 0.92±0.02, P<0.005). Aggregation tests to evaluate the speed (seconds) required for four chicks, individually isolated with cardboard dividers in a box, to form a group after removal of the barriers showed that aggregation was significantly slower in mifepristone-treated hatchlings than in controls (8.7±1.1 vs. 2.6±0.3, P<0.001). In belongingness tests to evaluate the speed (seconds) for a chick isolated at a corner to join a group of three chicks placed at the opposite corner, mifepristone-treated hatchlings took significantly longer than controls (4.5±0.4/40 cm vs. 2.4±0.08/40 cm, P<0.001). In vocalization tests, using a decibel meter to measure average decibel level/30s (chick vocalization), mifepristone-treated hatchlings had significantly weaker vocalizations than controls (14.2±1.9/30s vs. 26.4±1.3/30s P<0.001). In conclusion, glucocorticoid receptor dysfunction during the last week embryogenesis altered the programming of brain development, resulting in impaired behavioral activities in late life. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary.

    Science.gov (United States)

    Whirledge, Shannon; Cidlowski, John A

    2013-12-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.

  16. Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala.

    Science.gov (United States)

    Lee, Eun Jeong; Son, Gi Hoon; Chung, Sooyoung; Lee, Sukwon; Kim, Jeongyeon; Choi, Sukwoo; Kim, Kyungjin

    2011-05-11

    The environment in early life elicits profound effects on fetal brain development that can extend into adulthood. However, the long-lasting impact of maternal stress on emotional learning remains largely unknown. Here, we focus on amygdala-related learning processes in maternally stressed mice. In these mice, fear memory consolidation and certain related signaling cascades were significantly impaired, though innate fear, fear memory acquisition, and synaptic NMDA receptor expression in the amygdala were unaltered. In accordance with these findings, maintenance of long-term potentiation (LTP) at amygdala synapses, but not its induction, was significantly impaired in the maternally stressed animals. Interestingly, amygdala glucocorticoid receptor expression was reduced in the maternally stressed mice, and administration of glucocorticoids (GCs) immediately after fear conditioning and LTP induction restored memory consolidation and LTP maintenance, respectively, suggesting that a weakening of GC signaling was responsible for the observed impairment. Furthermore, microinfusion of a membrane-impermeable form of GC (BSA-conjugated GC) into the amygdala mimicked the restorative effects of GC, indicating that a nongenomic activity of GC mediates the restorative effect. Together, these findings suggest that prenatal stress induces long-term dysregulation of nongenomic GC action in the amygdala of adult offspring, resulting in the impairment of fear memory consolidation. Since modulation of amygdala activity is known to alter the consolidation of emotionally influenced memories allocated in other brain regions, the nongenomic action of GC on the amygdala shown herein may also participate in the amygdala-dependent modulation of memory consolidation.

  17. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor.

    Science.gov (United States)

    Schmidt, Stefan; Irving, Julie A E; Minto, Lynne; Matheson, Elizabeth; Nicholson, Lindsay; Ploner, Andreas; Parson, Walther; Kofler, Anita; Amort, Melanie; Erdel, Martin; Hall, Andy; Kofler, Reinhard

    2006-12-01

    Glucocorticoids (GCs) specifically induce apoptosis in malignant lymphoblasts and are thus pivotal in the treatment of acute lymphoblastic leukemia (ALL). However, GC-resistance is a therapeutic problem with an unclear molecular mechanism. We generated approximately 70 GC-resistant sublines from a GC-sensitive B- and a T-ALL cell line and investigated their mechanisms of resistance. In response to GCs, all GC-resistant subclones analyzed by real-time polymerase chain reaction (PCR) showed a deficient up-regulation of the GC-receptor (GR) and its downstream target, GC-induced leucine zipper. This deficiency in GR up-regulation was confirmed by Western blotting and on retroviral overexpression of GR in resistant subclones GC-sensitivity was restored. All GC-resistant subclones were screened for GR mutations using denaturing high-pressure liquid chromatography (DHPLC), DNA-fingerprinting, and fluorescence in situ hybridization (FISH). Among the identified mutations were some previously not associated with GC resistance: A484D, P515H, L756N, Y663H, L680P, and R714W. This approach revealed three genotypes, complete loss of functional GR in the mismatch repair deficient T-ALL model, apparently normal GR genes in B-ALLs, and heterozygosity in both. In the first genotype, deficiency in GR up-regulation was fully explained by mutational events, in the second by a putative regulatory defect, and in the third by a combination thereof. In all instances, GC-resistance occurred at the level of the GR in both models.

  18. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  19. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  20. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  1. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary

    OpenAIRE

    Whirledge, Shannon; Cidlowski, John A.

    2013-01-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that oth...

  2. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala.

    Science.gov (United States)

    Wang, Xiao-Yi; Zhao, Mei; Ghitza, Udi E; Li, Yan-Qin; Lu, Lin

    2008-05-21

    Relapse to drug taking induced by exposure to cues associated with drugs of abuse is a major challenge to the treatment of drug addiction. Previous studies indicate that drug seeking can be inhibited by disrupting the reconsolidation of a drug-related memory. Stress plays an important role in modulating different stages of memory including reconsolidation, but its role in the reconsolidation of a drug-related memory has not been investigated. Here, we examined the effects of stress and corticosterone on reconsolidation of a drug-related memory using a conditioned place preference (CPP) procedure. We also determined the role of glucocorticoid receptors (GRs) in the basolateral amygdala (BLA) in modulating the effects of stress on reconsolidation of this memory. We found that rats acquired morphine CPP after conditioning, and that this CPP was inhibited by stress given immediately after re-exposure to a previously morphine-paired chamber (a reconsolidation procedure). The disruptive effect of stress on reconsolidation of morphine related memory was prevented by inhibition of corticosterone synthesis with metyrapone or BLA, but not central amygdala (CeA), injections of the glucocorticoid (GR) antagonist RU38486 [(11,17)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one]. Finally, the effect of stress on drug related memory reconsolidation was mimicked by systemic injections of corticosterone or injections of RU28362 [11,17-dihydroxy-6-methyl-17-(1-propynyl)androsta-1,4,6-triene-3-one] (a GR agonist) into BLA, but not the CeA. These results show that stress blocks reconsolidation of a drug-related memory, and this effect is mediated by activation of GRs in the BLA.

  3. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  4. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    Science.gov (United States)

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  6. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study.

    Science.gov (United States)

    Rojas, Paulina Soledad; Fritsch, Rosemarie; Rojas, Romina Andrea; Jara, Pablo; Fiedler, Jenny Lucy

    2011-09-30

    Depressive patients often have altered cortisol secretion, an effect that likely derives from impaired activity of the glucocorticoid receptor (GR), the main regulator of the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoids reduce the levels of brain-derived neurotrophic factor (BDNF), a downstream target of antidepressants. Antidepressants promote the transcriptional activity of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a regulator of BDNF expression. To identify potential biomarkers for the onset of antidepressant action in depressive patients, GR and phospho-CREB (pCREB) levels in lymphocytes and serum BDNF levels were repeatedly measured during the course of antidepressant treatment. Thirty-four depressed outpatients (10 male and 24 female) were treated with venlafaxine (75mg/day), and individuals exhibiting a 50% reduction in their baseline 17-Item Hamilton Depression Rating Scale score by the 6th week of treatment were considered responders. Responders showed an early improvement in parallel with a rise in BDNF levels during the first two weeks of treatment. Non-responders showed increased GR levels by the third week and reduced serum BDNF by the sixth week of treatment. In contrast, venlafaxine did not affect levels of pCREB. We conclude that levels of BDNF in serum and GR levels in lymphocytes may represent biomarkers that could be used to predict responses to venlafaxine treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Glucocorticoid treatment and impaired mood, memory and metabolism in people with diabetes: the Edinburgh Type 2 Diabetes Study

    Science.gov (United States)

    Reynolds, Rebecca M; Labad, Javier; Sears, Alison V; Williamson, Rachel M; Strachan, Mark W J; Deary, Ian J; Lowe, Gordon D O; Price, Jackie F; Walker, Brian R

    2012-01-01

    Objective Both type 2 diabetes and glucocorticoid therapy are highly prevalent. Although people with type 2 diabetes may be more susceptible to adverse effects of glucocorticoids, and it is recommended that glucocorticoid therapy is avoided for fear of worsening glycaemic control, the extent to which this advice is followed and the consequences when glucocorticoids are prescribed are poorly documented. The aim was to assess the characteristics of people with type 2 diabetes prescribed glucocorticoids in a real-world setting and to quantify resulting adverse effects. Design Cross-sectional cohort study. Methods Cardiometabolic variables, body fat distribution, cognitive function and mood were studied in the 1066 participants of the Edinburgh Type 2 Diabetes Study, of whom 162 (15%) were taking systemic, topical or inhaled glucocorticoids. Results Glucocorticoid therapy was more common in women and in smokers but was not avoided in patients with diabetic complications or cardiovascular risk factors. People taking glucocorticoids were more centrally obese with slightly higher HbA1c and total serum cholesterol but were no more likely to have hepatic steatosis or hypertension. Glucocorticoid treatment was associated with substantially lower mood and greater anxiety. Women taking glucocorticoid therapy were twice as likely to report depressive symptoms compared with those not taking treatment. Glucocorticoid therapy was also associated with poorer cognitive function among those with subclinical atherosclerosis, as indicated by low ankle–brachial pressure index. Conclusions Glucocorticoids are prescribed commonly for people with type 2 diabetes despite being associated with adverse indices of glycaemic control, cardiovascular risk factors, mood and cognitive function. PMID:22408122

  8. Local and systemic oxidative stress and glucocorticoid receptor levels in chronic obstructive pulmonary disease patients

    Science.gov (United States)

    Zeng, Mian; Li, Yue; Jiang, Yujie; Lu, Guifang; Huang, Xiaomei; Guan, Kaipan

    2013-01-01

    BACKGROUND: Previous studies have indicated that oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). OBJECTIVES: To study local and systemic oxidative stress status in COPD patients, and to clarify the relationship between local and systemic oxidative stress. METHODS: Lipid peroxide malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and GSH peroxidase (GSH-PX) levels in induced sputum and plasma, as well as glucocorticoid receptor (GR) levels in peripheral blood leukocytes were examined in 43 acute exacerbation of COPD patients (group A), 35 patients with stable COPD (group B) and 28 healthy controls (14 smokers [group C]; 14 nonsmokers [group D]). RESULTS: MDA levels in induced sputum and plasma decreased progressively in groups A to D, with significant differences between any two groups (P<0.001). GSH, SOD and GSH-PX levels in both induced sputum and plasma increased progressively in groups A to D, with significant differences between any two groups (P<0.001). GR levels in peripheral blood leukocytes decreased progressively in groups D to A (all comparisons P<0.001). Pearson analysis revealed strong correlations between MDA, GSH, SOD and GSH-PX levels in plasma and induced sputum. The activity of SOD in plasma and sputum were both positively correlated with GR levels (partial correlation coefficients 0.522 and 0.574, respectively [P<0.001]). CONCLUSIONS: Oxidative stress levels were elevated in COPD patients. There was a correlation between local and systemic oxidative status in COPD, and between decreased SOD activity and decreased GR levels in COPD patients. PMID:23457673

  9. Relation between the level of self-mutilation and theconcentration of fecal metabolites of glucocorticoids incaptive chimpanzees (Pan troglodytes

    Directory of Open Access Journals (Sweden)

    Cristiane S. Pizzutto

    2015-01-01

    Full Text Available The influence of stress in an environment, according with the behavioral and endocrine variables of primates, are increasingly being studied by a diversity of authors, and have shown that abnormal behaviors associated with increased glucocorticoids may be directly related with the impairment of their well-being. In this work were used 22 adult chimpanzees (Pan troglodytes, 11 males and 11 females, kept in captivity in three different institutions. All animals had their behavior registered by focal session using a 30 seconds sample interval, during six months, totaling 4,800 registries per each animal. During this period, fecal samples were collected 3 times a week for the extraction and measurement of the concentration of fecal metabolites of glucocorticoid by radioimmunoassay. Of the total observed, stereotypical behaviors represented 13,45±2.76%, and among them, self-mutilation represented 38.28±3.98 %. The animals were classified into three different scores, according with the percentage of body surface with alopecia due to self-mutilation. It was found a positive correlation of high intensity between the scores of alopecia due to the observed mutilation and the average concentrations of fecal metabolites of glucocorticoids. This result strongly suggests that this measurement of self-mutilation in a chimpanzee can be used as an important auxiliary tool to evaluate de conditions of adaptation of an animal in captivity, functioning as a direct indicator of the presence of chronic stress.

  10. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development

    DEFF Research Database (Denmark)

    Stubbe, Jane; Madsen, Kirsten; Nielsen, Finn Thomsen

    2006-01-01

    In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning (P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested...

  11. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice.

    Science.gov (United States)

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne

    2016-11-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.

  12. Factors affecting fecal glucocorticoid levels in semi-free-ranging female mandrills (Mandrillus sphinx).

    Science.gov (United States)

    Setchell, Joanna M; Smith, Tessa; Wickings, E Jean; Knapp, Leslie A

    2008-11-01

    Subordinate female cercopithecine primates often experience decreased reproductive success in comparison with high-ranking females, with a later age at sexual maturity and first reproduction and/or longer interbirth intervals. One explanation that has traditionally been advanced to explain this is high levels of chronic social stress in subordinates, resulting from agonistic and aggressive interactions and leading to higher basal levels of glucocorticoids. We assessed the relationships among fecal cortisol levels and reproductive condition, dominance rank, degree of social support, and fertility in female mandrills (Mandrillus sphinx) living in a semi-free-ranging colony in Franceville, Gabon. Lower-ranking females in this colony have a reproductive disadvantage relative to higher-ranking females, and we were interested in determining whether this relationship between dominance rank and reproductive success is mediated through stress hormones. We analyzed 340 fecal samples from 19 females, collected over a 14-month period. We found that pregnant females experienced higher fecal cortisol levels than cycling or lactating females. This is similar to results for other primate species and is likely owing to increased metabolic demands and interactions between the hypothalamus-pituitary-adrenal axis, estrogen, and placental production of corticotrophin releasing hormones during pregnancy. There was no influence of dominance rank on fecal cortisol levels, suggesting that subordinate females do not suffer chronic stress. This may be because female mandrills have a stable social hierarchy, with low levels of aggression and high social support. However, we found no relationship between matriline size, as a measure of social support, and fecal cortisol levels. Subordinates may be able to avoid aggression from dominants in the large enclosure or may react only transiently to specific aggressive events, rather than continuously expecting them. Finally, we found no relationship

  13. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  14. Impact of prenatal stress on offspring glucocorticoid levels: A phylogenetic meta-analysis across 14 vertebrate species.

    Science.gov (United States)

    Thayer, Zaneta M; Wilson, Meredith A; Kim, Andrew W; Jaeggi, Adrian V

    2018-03-21

    Prenatal exposure to maternal stress is commonly associated with variation in Hypothalamic Pituitary Adrenal (HPA)-axis functioning in offspring. However, the strength or consistency of this response has never been empirically evaluated across vertebrate species. Here we meta-analyzed 114 results from 39 studies across 14 vertebrate species using Bayesian phylogenetic mixed-effects models. We found a positive overall effect of prenatal stress on offspring glucocorticoids (d' = 0.43) though the 95% Highest Posterior Density Interval overlapped with 0 (-0.16-0.95). Meta-regressions of potential moderators highlighted that phylogeny and life history variables predicted relatively little variation in effect size. Experimental studies (d' = 0.64) produced stronger effects than observational ones (d' = -0.01), while prenatal stress affected glucocorticoid recovery following offspring stress exposure more strongly (d' = 0.75) than baseline levels (d' = 0.48) or glucocorticoid peak response (d' = 0.36). These findings are consistent with the argument that HPA-axis sensitivity to prenatal stress is evolutionarily ancient and occurs regardless of a species' overall life history strategy. These effects may therefore be especially important for mediating intra-specific life-history variation. In addition, these findings suggest that animal models of prenatal HPA-axis programming may be appropriate for studying similar effects in humans.

  15. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-10-01

    The possible involvement of glucocorticoid system in interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. In the first experiment, mice were treated intrathecally (i.t.) with IL-1β (100 pg). Corticotrophin releasing hormone (CRH) mRNA (hypothalamus) and c-Fos mRNA (pituitary gland, spinal cord, and the adrenal gland) levels were measured at 30, 60 and 120 min after IL-1β administration. We found that i.t. injection with IL-1β increased CRH mRNA level in the hypothalamus. The IL-1β administered i.t. elevated c-Fos mRNA levels in the spinal cord, pituitary and adrenal glands. Furthermore, i.t. administration of IL-1β significantly increased the plasma corticosterone level up to 60 min. In addition, the adrenalectomy caused the reductions of the blood glucose level and pain behavior induced by IL-1β injected i.t. in normal and D-glucose-fed groups. Furthermore, intraperitoneal (i.p.) pretreatment with RU486 (100mg/kg) attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. in normal and D-glucose-fed groups. Our results suggest that IL-1β administered i.t. increases the blood glucose level and pain behavior via an activation of the glucocorticoid system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Plasma-Glucocorticoids and ACTH Levels During Different Periods of Activity in the European Beaver (Castor fiber L.).

    Science.gov (United States)

    Czerwińska, Joanna; Chojnowska, Katarzyna; Kamiński, Tadeusz; Bogacka, Iwona; Panasiewicz, Grzegorz; Smolińska, Nina; Kamińska, Barbara

    2015-01-01

    Glucocorticoids (GCs) and adrenocorticotropic hormone (ACTH) are major components of the classic endocrine stress response. Free-living vertebrates are characterized by circannual changes in the baseline and/or stress-induced secretion of GCs and ACTH. In mammalian species, GC and ACTH levels vary seasonally but there is no consensus to the season in which animals have elevated GC and ACTH levels. The aim of our study was to determine, for the first time, the type and amount of glucocorticoids produced in free-living beaver (Castor fiber L.)--the largest rodent in Eurasia, and to find out whether stress-induced plasma GC and ACTH levels show seasonal variations. Blood samples were obtained from animals under general anesthesia in April (pregnancy in females), July (offspring rearing) and November (preparing for the winter). The adrenals of beavers produce both cortisol and corticosterone, and plasma cortisol levels were higher than corticosterone. In the current experiment, plasma cortisol concentrations in beavers were affected by the season. The highest stress-associated cortisol levels were noted in males in July during offspring rearing. Corticosterone and ACTH concentrations in beavers remained generally constant, regardless of the season and sex. In conclusion, seasonal changes were observed only in relation to stress-induced plasma cortisol levels in the beaver.

  17. Levels of central oxytocin and glucocorticoid receptor and serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability.

    Science.gov (United States)

    Qiao, Xufeng; Yan, Yating; Tai, Fadao; Wu, Ruiyong; Hao, Ping; Fang, Qianqian; Zhang, Shuwei

    2014-11-01

    Sociability is the prerequisite to social living. Oxytocin and the hypothalamo-pituitary-adrenocortical axis mediate various social behaviors across different social contexts in different rodents. We hypothesized that they also mediate levels of non-reproductive social behavior. Here we explored naturally occurring variation in sociability through a social preference test and compared central oxytocin, glucocorticoid receptors, serum adrenocorticotropic hormone and corticosterone in mandarin voles with different levels of sociability. We found that low-social voles showed higher levels of anxiety-like behavior in open field tests, and had more serum adrenocorticotropic hormone and corticosterone than high-social voles. High-social individuals had more glucocorticoid receptor positive neurons in the hippocampus and more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than low-social individuals. Within the same level of sociability, females had more oxytocin positive neurons in the paraventricular nuclei and supraoptic nuclei of the hypothalamus than males. These results indicate that naturally occurring social preferences are associated with higher levels of central oxytocin and hippocampus glucocorticoid receptor and lower levels of anxiety and serum adrenocorticotropic hormone and corticosterone. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2017-11-18

    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  20. Suppressing the Morning Rise in Cortisol Impairs Free Recall

    Science.gov (United States)

    Rimmele, Ulrike; Meier, Flurina; Lange, Tanja; Born, Jan

    2010-01-01

    Elevated glucocorticoid levels impair memory retrieval. We investigated whether retrieval under naturally elevated glucocorticoid levels, i.e., during the morning rise in cortisol can be improved by suppressing cortisol. In a crossover study 16 men retrieved emotional and neutral texts and pictures (learned 3 d earlier) 30 min after morning…

  1. SPILANTHES ACMELLA AND PHYSICAL EXERCISE INCREASED TESTOSTERONE LEVELS AND OSTEOBLAST CELLS IN GLUCOCORTICOID-INDUCED OSTEOPOROSIS MALE MICE

    Directory of Open Access Journals (Sweden)

    Hening Laswati

    2015-08-01

    Full Text Available Background: Glucocorticoid-induced osteoporosis is leading cause of secondary osteoporosis by decreasing formation activity and increasing resorption activity. Spilanthes acmella, is one of Indonesia medicinal plants that contain of polyphenol and flavonoids. Previously in vitro study showed that buthanol and water fraction from this plant have increased alkaline phosphatase that known as marker of bone formation. The objective of this study to analyze the effect of Spilanthes acmella  and physical exercise in increasing testosterone and  osteoblast cells of femoral’s trabecular glucocorticoid-induced osteoporosis male mice. Method: This study using a posttest control group design, 36 male healthy mice (5 months old  were randomizely devided into 6 groups, there are : 1.Healthy control group (without induction dexamethaxone, 2.Osteoporosis groups (induction with dexamethaxone without treatment, 3.Positive control receive suspension alendronat, 4.70% Ethanol extract of Spilanthes acmella group, 5.Combination group of 70% extract ethanol of Spilanthes acmella and exercise, and 6.Exercise group  (walking using mice treadmill 10m/minute, 5-12 minutes 3 times a week. All of the intervention were given for 4 weeks. The serum levels of testosterone were determined using  immunoserology (ELISA and osteoblast cells were determined histomorphometry by light microscopy.  All statistical test were carried out using SPSS 23 and statistical significance was  set at p<0.05 for all analysis. The testosterone levels  between group were compared using Mann-Whitney test and osteoblast cells between group were compared with multiple comparison. Results: It showed that the alendronate group, combination group and the exercise group increasing testosterone level (p<0.05 from that osteoporotic group. There were also increasing osteoblast cells (p<0.05 in the alendronate group and combination group. There was no correlation between testosterone level and

  2. Non-invasive assessment of glucocorticoid and androgen metabolite levels in cooperatively breeding Damaraland mole-rats (Fukomys damarensis).

    Science.gov (United States)

    Medger, Katarina; Bennett, Nigel C; Lutermann, Heike; Ganswindt, Andre

    2018-05-18

    Dominant females of cooperative breeding species often use aggression to suppress reproduction of subordinate females, resulting in subordinates experiencing stress-related increases in glucocorticoid levels, which may cause reproductive down-regulation. This would suggest a general pattern with higher glucocorticoid levels in subordinate compared to dominant individuals; however, the opposite was found in a number of cooperatively breeding species. Furthermore, breeding females of the cooperatively breeding Damaraland mole-rats (Fukomys damarensis) exhibit very high androgen concentrations during the wet season, presumably to support their breeding monopoly. Hormone analysis in Damaraland mole-rats have typically been measured using plasma and urine, but faecal analysis offers additional advantages especially for field studies on this species. The present study examines the suitability of Damaraland mole-rat faecal samples for determining glucocorticoid metabolite (fGCM) and androgen metabolite (fAM) concentrations using enzyme immunoassays. Using these assays, we further evaluated the effects of breeding status on fGCM and fAM concentrations in wild-caught and captive Damaraland mole-rats. Wild-caught breeding and non-breeding males and females exhibited no differences in fAM concentrations. Immunoreactive fGCM concentrations were only high in male breeders and comparatively low in non-breeders and breeding females. Concentrations of fAMs and fGCMs were similar in captive males and females, but fAM concentrations were elevated in captive compared to wild-caught individuals, which may be related to a higher reproductive activity due to removal from the breeding female. The relatively uniform fAM and fGCM concentrations found in wild-caught mole-rats may be explained by a stable colony structure during the dry season during which this study was conducted. Limited dispersal opportunities result in lower aggression and stress levels within a colony and as a result

  3. Optimal glucocorticoid therapy.

    Science.gov (United States)

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  4. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  5. Effect of long-term inhalation of glucocorticoids on the level of leptin, IL-13 and IL-2 in bronchial asthmatic children

    International Nuclear Information System (INIS)

    Pan Jiongwei

    2011-01-01

    Objective: To determine the effect of long-term inhalation of glucocorticoids on the level of leptin, IL-13, and IL-2 in bronchial asthmatic patient. Methods: Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum IL-13 and IL-2 level in 60 healthy persons (normal control group) and 70 bronchial asthma patients untreated and 3, 6, 12 months post-treatment, meanwhile leptin was determined by radio immunoassay. Results: The serum levels of leptin, Il-13, and IL-2 in were significantly increased in patient with bronchial asthma compared with that in the normal control group. The serum levels of leptin, IL-13, and IL-2 in children with asthma were decreased gradually after inhaling glucocorticoids for 3 months (P<0.05). The treatment of inhaled glucocorticoids for 6 and 12 months can attenuate the elevation of leptin, IL-13, and IL-2 compared with that before the treatment. Conclusion: Long-term inhaled glucocorticoid is an important means for asthma, and the effects are related to the decrease of level of leptin, IL-13, and IL-2. (authors)

  6. Regulation of blood glucose level by kainic acid in mice: involvement of glucocorticoid system and non-NMDA receptors.

    Science.gov (United States)

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Jung, Jun-Sub; Sharma, Naveen; Suh, Hong-Won

    2017-02-28

    Kainic acid (KA) is a well-known excitatory neurotoxic substance. In the present study, effects of KA-injected intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level were investigated in ICR mice. We found that KA administered intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) increased the blood glucose and corticosterone levels, suggesting that KA-induced hyperglycemia appeared to be due to increased blood corticosterone level. In support of this finding, adrenalectomy causes a reduction of KA-induced hyperglycemia and neuronal cell death in CA3 regions of the hippocampus. In addition, pretreatment with i.c.v. or i.t. injection of CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione; a non-NMDA receptor blocker) attenuated the i.p. and i.c.v. administered KA-induced hyperglycemia. KA administered i.c.v. caused an elevation of the blood corticosterone level whereas the plasma insulin level was reduced. Moreover, i.c.v. pretreatment with CNQX inhibited the decrease of plasma insulin level induced by KA i.c.v. injection, whereas the KA-induced plasma corticosterone level was further enhanced by CNQX pretreatment. Our results suggest that KA administered systemically or centrally produces hyperglycemia. A glucocorticoid system appears to be involved in KA-induced hyperglycemia. Furthermore, central non-N-methyl-D-aspartate receptors may be responsible for KA-induced hyperglycemia.

  7. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Li, Meng; Fu, Qiang; Li, Ying; Li, Shanshan; Xue, Jinsong; Ma, Shiping

    2014-10-01

    Emodin, the major active component of Rhubarb, has shown neuroprotective activity. This study is attempted to investigate whether emodin possesses beneficial effects on chronic unpredictable mild stress (CUMS)-induced behavioral deficits (depression-like behaviors) and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, emodin and fluoxetine (positive control drug) were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests: open field test (OFT), sucrose preference test (SPT), tail suspension test (TST) and forced swimming test (FST) were applied to evaluate the antidepressant effects of emodin. Then plasma corticosterone concentration, hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) levels were tested to probe the mechanisms. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with high, plasma corticosterone concentration and low hippocampal GR and BDNF expression levels. Whereas, chronic emodin (20, 40 and 80 mg/kg) treatments reversed the behavioral deficiency induced by CUMS exposure. Treatment with emodin normalized the change of plasma corticosterone level, which demonstrated that emodin could partially restore CUMS-induced HPA axis impairments. Besides, hippocampal GR (mRNA and protein) and BDNF (mRNA) expressions were also up-regulated after emodin treatments. In conclusion, emodin remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the up-regulating GR and BDNF levels in hippocampus. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  9. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  10. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  11. Psychosocial stress impairs working memory at high loads: An association with cortisol levels and memory retrieval

    NARCIS (Netherlands)

    Oei, N.Y.L.; Everaerd, W.T.A.M.; Elzinga, B.M.; van Well, S.; Bermond, B.

    2006-01-01

    Stress and cortisol are known to impair memory retrieval of well-consolidated declarative material. The effects of cortisol on memory retrieval may in particular be due to glucocorticoid (GC) receptors in the hippocampus and prefrontal cortex (PFC). Therefore, effects of stress and cortisol should

  12. The impact of age-class and social context on fecal glucocorticoid metabolite levels in free-ranging male giraffes.

    Science.gov (United States)

    Wolf, T E; Bennett, N C; Burroughs, R; Ganswindt, A

    2018-01-01

    One of the primary sources of perceived stress is the social environment of an animal and the interactions with conspecifics. An essential component of the response to a stressor is the activation of the hypothalamic-pituitary-adrenocortical axis, which results amongst others in a temporal increase in circulating glucocorticoid (GC) levels. Giraffes occur in a highly flexible fission-fusion social system and group compositions can change on a daily basis, with bulls establishing an age-related dominance hierarchy and showing a roaming strategy in the search for fertile females. The aim of this study was to non-invasively monitor the influence of different group compositions (mixed sex groups vs. all-male groups) on GC concentrations in free ranging giraffe bulls of different age classes. We collected fecal samples from free-ranging giraffe bulls for 12months in a South African Private Game Reserve to examine age- and social context-related patterns of fecal GC metabolite (fGCM) concentrations. We found that fGCM levels in giraffe bulls are age-class dependent, as well asassociated with changes in the social environment. Independently of the social setting, bulls of the youngest age class exhibited the highest fGCM levels compared to bulls of the other two older age-classes, with differences most pronounced when the bulls are associated in all-male groups. In contrast, an almost reversed picture appears when looking at the fGCM levels of sexually active individuals in mixed sex groups, where highest levels were found for the bulls in the oldest age-class, and the lowest for the bulls in the youngest age-class. The study stresses the importance to taking factors such asage-related status and social settings into account, when interpreting fGCM levels in free ranging giraffes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  14. Glucocorticoid treatment earlier in childhood and adolescence show dose-response associations with diurnal cortisol levels

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Holm, Sara K; Uldall, Peter

    2017-01-01

    or diurnal cortisol output; however, sex-dependent group differences were observed. Specifically, female patients had a higher CAR relative to female controls, while male patients had higher daily cortisol levels compared to male controls. Notably, CAR in female patients and daily cortisol levels in male...... for males and females....

  15. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male.

    Science.gov (United States)

    Ajdžanović, Vladimir Z; Filipović, Branko R; Šošić Jurjević, Branka T; Milošević, Verica Lj

    2017-08-01

    Male ageing is entwined with a continuous fall in free testosterone levels, which contributes to the pathogenesis of bone loss. Glucocorticoid excess, either dependent on the ageing process or iatrogenically induced, was found to additionally impair the bone structure and metabolism. Cautious testosterone supplementation in this respect may positively affect the glucocorticoid milieu and bone homeostasis, while testosterone-induced changes in the glucocorticoid output could serve as a determinant of bone-related therapeutic outcome. Namely, bone mineral content/density, the parameters of trabecular bone structure as well as bone strength are enhanced, serum calcitonin levels tend to increase, while serum osteocalcin, serum parathyroid hormone and urinary calcium decrease, all upon testosterone administration to the ageing male. In parallel, testosterone application decreases glucocorticoid secretion in the animal models of male ageing, while clinical data in this field are still inconsistent. Importantly, a physiological link exists between testosterone-induced changes in glucocorticoid levels and the tendency of bone status improvement in the ageing male. We believe that the assessment of circulating adrenocorticotropic hormone concentrations together with glucocorticoid levels, reflecting the hypothalamic-pituitary-adrenal axis feedback loop operativeness during testosterone supplementation, represents a well-balanced bone-related therapeutic update. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  16. Emotional Intelligence Levels of Students with Sensory Impairment

    Science.gov (United States)

    Al-Tal, Suhair; AL-Jawaldeh, Fuad; AL-Taj, Heyam; Maharmeh, Lina

    2017-01-01

    This study aimed at revealing the emotional intelligence levels of students with sensory disability in Amman in Jordan. The participants of the study were 200 students; 140 hearing impaired students and 60 visual impaired students enrolled in the special education schools and centers for the academic year 2016-2017. The study adopted the…

  17. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    Directory of Open Access Journals (Sweden)

    Glenda E. Gillies

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester, we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA and substantia nigra pars compacta (SNc (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites that impact on the adult brain. The effects of antenatal GC treatment (AGT were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked

  18. Impairment of memory and plasma flunitrazepam levels

    NARCIS (Netherlands)

    Bareggi, [No Value; Ferini-Strambi, L; Pirola, R; Smirne, S

    Flunitrazepam was administered to volunteers in three different oral doses. The effects on psychomotor sedation, attention, working memory and explicit memory were then assessed at various intervals after dosing and compared with levels of the drug in the plasma. Three groups of 12 healthy males

  19. Impairment of memory and plasma flunitrazepam levels

    NARCIS (Netherlands)

    Bareggi, [No Value; Ferini-Strambi, L; Pirola, R; Smirne, S

    1998-01-01

    Flunitrazepam was administered to volunteers in three different oral doses. The effects on psychomotor sedation, attention, working memory and explicit memory were then assessed at various intervals after dosing and compared with levels of the drug in the plasma. Three groups of 12 healthy males

  20. Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation.

    Science.gov (United States)

    Choi, Gee Euhn; Lee, Sei-Jung; Lee, Hyun Jik; Ko, So Hee; Chae, Chang Woo; Han, Ho Jae

    2017-08-30

    Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation. SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid

  1. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  2. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  3. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  4. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  5. Serum levels of parathyroid hormone and markers of bone metabolism in patients with rheumatoid arthritis. Relationship to disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran; Hansen, M; Madsen, J C

    2001-01-01

    OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before and ....... The increased levels of markers of type I collagen metabolism (s-ICTP, Pyr) and s-AlbCorrCa2+ in patients with active disease and patients treated with GC may be a result of increased degradation in synovium, cartilage and bone due to the inflammatory process.......OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before...... groups. The levels of urine pyridinoline (Pyr) and s-albumin-corrected calcium (s-AlbCorrCa2+) were elevated in patients with active disease and patients treated with GC. S-PTH and s-phosphate were within normal ranges. S-TAP, s-ICTP, Pyr and s-AlbCorrCa2+ correlated positively with indices of disease...

  6. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse.

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T; Morales, Manuel B; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse (Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  7. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T.; Morales, Manuel B.; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse ( Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  8. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...... reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  9. Glucocorticoid programming of intrauterine development.

    Science.gov (United States)

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  11. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  12. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  13. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  15. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  16. The Effect of Gender and Level of Vision on the Physical Activity Level of Children and Adolescents with Visual Impairment

    Science.gov (United States)

    Aslan, Ummuhan Bas; Calik, Bilge Basakci; Kitis, Ali

    2012-01-01

    This study was planned in order to determine physical activity levels of visually impaired children and adolescents and to investigate the effect of gender and level of vision on physical activity level in visually impaired children and adolescents. A total of 30 visually impaired children and adolescents (16 low vision and 14 blind) aged between…

  17. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment.

    Science.gov (United States)

    Mangialasche, Francesca; Xu, Weili; Kivipelto, Miia; Costanzi, Emanuela; Ercolani, Sara; Pigliautile, Martina; Cecchetti, Roberta; Baglioni, Mauro; Simmons, Andrew; Soininen, Hilkka; Tsolaki, Magda; Kloszewska, Iwona; Vellas, Bruno; Lovestone, Simon; Mecocci, Patrizia

    2012-10-01

    Vitamin E includes 8 natural compounds (4 tocopherols, 4 tocotrienols) with potential neuroprotective activity. α-Tocopherol has mainly been investigated in relation to cognitive impairment. We examined the relation of all plasma vitamin E forms and markers of vitamin E damage (α-tocopherylquinone, 5-nitro-γ-tocopherol) to mild cognitive impairment (MCI) and Alzheimer's disease (AD). Within the AddNeuroMed-Project, plasma tocopherols, tocotrienols, α-tocopherylquinone, and 5-nitro-γ-tocopherol were assessed in 168 AD cases, 166 MCI, and 187 cognitively normal (CN) people. Compared with cognitively normal subjects, AD and MCI had lower levels of total tocopherols, total tocotrienols, and total vitamin E. In multivariable-polytomous-logistic regression analysis, both MCI and AD cases had 85% lower odds to be in the highest tertile of total tocopherols and total vitamin E, and they were, respectively, 92% and 94% less likely to be in the highest tertile of total tocotrienols than the lowest tertile. Further, both disorders were associated with increased vitamin E damage. Low plasma tocopherols and tocotrienols levels are associated with increased odds of MCI and AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations

    DEFF Research Database (Denmark)

    Strehl, Cindy; Bijlsma, Johannes W J; de Wit, Maarten

    2016-01-01

    literature search, breakout groups critically reviewed the evidence on the four most worrisome adverse effects of glucocorticoid therapy (osteoporosis, hyperglycaemia/diabetes mellitus, cardiovascular diseases and infections) and presented their results to the other group members following a structured...

  19. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Wu Sihai; Wei Zhenggan; Huang Ming'an; Yao Jianguo; Li Hongsheng

    2002-01-01

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  20. Glucocorticoids and hemopoietic stem cells

    International Nuclear Information System (INIS)

    Romashko, O.O.; Berin, G.I.

    1978-01-01

    Analyzing the data of home and foreign investigators the problems of the glucocorticoid effect on blood and bone marrow of experimental (including irradiated ones) animals are discussed. Considered are a character and mechanism of the adrenal cortex hormones effect on blood formation, as well as the effect of pharmacological doses of corticosteroids on CFU, their erythropoietic effect in physiological doses on a morphological picture of bone marrow after irradiation and subsequent introduction of hormones and the hormone effect on intensity of erythropoiesis recovery in irradiated mice. Presented are the experimental data on studying the effect of endogenic hypercorticoidism and a reduced level of endogenic corticosteroids on blood-forming stem cells in the irradiated mice and the data on the ACTH injection effect on CFU migration after irradiation. Evaluated are already available data and further investigations to ground advisability and conditions of using corticosteroids as well as determining rational therapeutic effects on secretion of endogenic glucocorticoids when treating blood system diseases

  1. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis....

  2. Behavioral neuroadaptation to alcohol : from glucocorticoids to histone acetylation

    Directory of Open Access Journals (Sweden)

    Daniel Beracochea

    2016-10-01

    Full Text Available A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal (HPA axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit including the prefrontal cortex, the hippocampus and the amygdala. These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally amygdala hyperactivity coupled with a hypofunction of the prefrontal cortex and the hippocampus. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately, leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as CREB (cAMP response element binding protein and chromatin remodeling due to post-translational modifications of histone proteins. We describe the role of prefrontal-hippocampus-amygdala circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes on how persistently increased glucocorticoid levels in prefrontal cortex may be involved in

  3. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  4. Glucocorticoids and Preterm Hypoxic-Ischemic Brain Injury: The Good and the Bad

    Directory of Open Access Journals (Sweden)

    Laura Bennet

    2012-01-01

    Full Text Available Fetuses at risk of premature delivery are now routinely exposed to maternal treatment with synthetic glucocorticoids. In randomized clinical trials, these substantially reduce acute neonatal systemic morbidity, and mortality, after premature birth and reduce intraventricular hemorrhage. However, the overall neurodevelopmental impact is surprisingly unclear; worryingly, postnatal glucocorticoids are consistently associated with impaired brain development. We review the clinical and experimental evidence on how glucocorticoids may affect the developing brain and highlight the need for systematic research.

  5. Using fecal glucocorticoids for stress assessment in Mourning Doves

    Science.gov (United States)

    Washburn, Brian E.; Millspaugh, Joshua J.; Schulz, John H.; Jones, Susan B.; Mong, T.

    2003-01-01

    Fecal glucocorticoid assays provide a potentially useful, noninvasive means to study physiological responses of wildlife to various stressors. The objective of our study was to validate a method for measuring glucocorticoid metabolites in Mourning Dove (Zenaida macroura) feces. We validated the assay using standard procedures (e.g., parallelism, recovery of exogenous corticosterone) to demonstrate that the assay accurately and precisely measured glucocorticoid metabolites in Mourning Dove fecal extracts. We conducted adrenocorticotropin (ACTH) challenge experiments to validate the assay's ability to determine biologically important changes in fecal glucocorticoids. Fecal glucocorticoid levels increased significantly approximately 2-3 hr after administration of ACTH at 50 IU per kg body mass to wild Mourning Doves held in captivity. In contrast, fecal glucocorticoid metabolites did not increase in control birds, birds that received saline injections, or a lower dose of ACTH (1 IU per kg body mass). Variation in overall fecal glucocorticoid metabolite levels may have been influenced by season and the length of time birds were held in captivity. Non-invasive fecal glucocorticoid metabolite analyses, in combination with demographic information, may have considerable utility for monitoring the effects of natural and anthropogenic disturbances on Mourning Dove populations.

  6. The Regulation of Muscle Mass by Endogenous Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Daniel L Marks

    2015-02-01

    Full Text Available Glucocorticoids are highly conserved fundamental regulators of energy homeostasis. In response to stress in the form of perceived danger or acute inflammation, glucocorticoids are released from the adrenal gland, rapidly mobilizing energy from carbohydrate, fat and protein stores. In the case of inflammation, mobilized protein is critical for the rapid synthesis of acute phase reactants and an efficient immune response to infection. While adaptive in response to infection, chronic mobilization can lead to a p rofound depletion of energy stores. Skeletal muscle represents the major body store of protein, and can become substantially atrophied under conditions of chronic inflammation. Glucocorticoids elicit the atrophy of muscle by increasing the rate of protein degradation by the ubiquitin-proteasome system and autophagy lysosome system. Protein synthesis is also suppressed at the level of translational initiation, preventing the production of new myofibrillar protein. Glucocorticoids also antagonize the action of anabolic regulators such as insulin further exacerbating the loss of protein and muscle mass. The loss of muscle mass in the context of chronic disease is a key feature of cachexia and contributes substantially to morbidity and mortality. A growing body of evidence demonstrates that glucocorticoid signaling is a common mediator of wasting, irrespective of the underlying initiator or disease state. This review will highlight fundamental mechanisms of glucocorticoid signaling and detail the mechanisms of glucocorticoid-induced muscle atrophy. Additionally, the evidence for glucocorticoids as a driver of muscle wasting in numerous disease states will be discussed. Given the burden of wasting diseases and the nodal nature of glucocorticoid signaling, effective anti-glucocorticoid therapy would be a valuable clinical tool. Therefore, the progress and potential pitfalls in the development of glucocorticoid antagonists for muscle wasting will

  7. High-level, but not low-level, motion perception is impaired in patients with schizophrenia.

    Science.gov (United States)

    Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia

    2013-01-01

    Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.

  8. Glucocorticoid-Induced Osteoporosis

    Science.gov (United States)

    ... nervosa Cigarette smoking Alcohol abuse Low calcium and vitamin D, by low dietary intake or poor absorption in your gut Sedentary (inactive) lifestyle or immobility Certain medications besides glucocorticoids, including the following: excess thyroid hormone replacement the blood thinner heparin some ...

  9. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    Science.gov (United States)

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  10. Relationship between perceived parenting style with anxiety levels and loneliness in visually impaired children and adolescents

    Directory of Open Access Journals (Sweden)

    Mualla Hamurcu

    Full Text Available Abstract Background Visual impairment is a risk factor for psychiatric disorders in the affected children and adolescents, but there are only a limited number of studies concerning the mental health characteristics of visually impaired children and adolescents. Objective The aim of this study was to determine levels of loneliness and anxiety in visually impaired children and adolescents, to analyze parenting style perceived by visually impaired children and adolescents, to compare those with typically controls. Methods The study included 40 children and adolescents with visually impairment and 34 control group without visual impairment. Sociodemographic data form, the UCLA loneliness scale, and the State-Trait Anxiety Inventory for Children were used in both groups. The parenting Style Scale was used to determine perceived parental attitudes. Results This study found more loneliness and trait anxiety levels in visually impaired children and adolescents compared to the control group. Authoritative parenting style was the most frequent type of parental attitude in the visually impaired group. In visual impairment group, loneliness level was higher in subgroups of authoritative and permissive-indulgent parenting style. However, level of trait anxiety was higher in authoritative parenting style subgroup compared to the control group. Discussion The results of this study showed higher loneliness and anxiety levels in visually impaired children and adolescents. Further studies are needed to determine psychopathological risks in this population.

  11. Bone and glucocorticoids.

    Science.gov (United States)

    Briot, Karine

    2018-06-01

    Corticosteroid-induced osteoporosis is the most common form of secondary osteoporosis and the most frequent cause of osteoporosis in young people. Bone loss and fracture risk increase rapidly after the initiation of corticosteroid therapy and are proportional to dose and treatment duration. The increase in fracture risk is not fully assessed by bone mineral density measurement, as it is also related to impaired bone quality and increased risk of falls. Prevention should be considered in all patients beginning corticosteroid therapy, especially as the underlying inflammation in itself impairs bone quality. Bisphosphonates and teriparatide have shown efficacy in the treatment of corticosteroid-induced osteoporosis. Several national and international guidelines are available to improve management of corticosteroid-induced osteoporosis, which remains inadequate. Duration of anti-osteoporotic treatment should be discussed at the individual level, depending on the subject's characteristics and on the progression of the underlying inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  12. Glucocorticoid-related bone changes from endogenous or exogenous glucocorticoids.

    Science.gov (United States)

    Warriner, Amy H; Saag, Kenneth G

    2013-12-01

    Glucocorticoids have a negative impact on bone through direct effects on bone cells and indirect effects on calcium absorption. Here, recent findings regarding glucocorticoid-induced osteoporosis, bone changes in patients with endogenous glucocorticoid derangements, and treatment of steroid-induced bone disease are reviewed. Although the majority of our understanding arises from the outcomes of patients treated with exogenous steroids, endogenous overproduction appears to be similarly destructive to bone, but these effects are reversible with cure of the underlying disease process. Additionally, there are bone changes that occur in diseases that interrupt adrenal glucocorticoid production, both in response to our inability to perfectly match glucocorticoid replacement and also related to the underlying disease process. More investigation is required to understand which patients with endogenous overproduction or underproduction of glucocorticoid would benefit from osteoporosis treatment. Better understood is the benefit that can be achieved with currently approved treatments for glucocorticoid-induced osteoporosis from exogenous steroids. With growing concern of long-term use of bisphosphonates, however, further investigation into the duration of use and use in certain populations, such as children and premenopausal women, is essential. Glucocorticoid-induced osteoporosis is a complex disease that is becoming better understood through advances in the study of exogenous and endogenous glucocorticoid exposure. Further advancement of proper treatment and prevention is on the horizon.

  13. Remembering under stress: different roles of autonomic arousal and glucocorticoids in memory retrieval.

    Science.gov (United States)

    Schönfeld, Pia; Ackermann, Karina; Schwabe, Lars

    2014-01-01

    It is commonly assumed that stress impairs memory retrieval. Glucocorticoids, released with a delay of several minutes in response to stressful experiences, are thought to play a key role in the stress-induced retrieval impairment. Accordingly, most studies on the impact of stress on retrieval tested memory a considerable time after stressor exposure, when glucocorticoid levels were elevated. Here, we asked how stress affects memory when retrieval takes place under stress, that is, when stress is part of the retrieval situation and glucocorticoids are not yet increased at the time of testing. To contrast stress effects on ongoing and delayed memory retrieval, 72 participants learned first neutral and emotional material. Twenty-four hours later, half of the learned material was tested either in a stressful, oral examination-like testing situation or in a standard, non-stressful free recall test. Memory for the other half of the learned material was assessed 25 min after the first, stressful or non-stressful retention test. Significant increases in blood pressure and salivary cortisol confirmed the stress induction by the first, examination-like testing situation. Retrieval performance under stress was positively correlated with the blood pressure response to the stressor but unaffected by cortisol. Conversely, retrieval performance 25 min post stress was negatively correlated with the cortisol response to the stressor, particularly for emotional items. These results suggest that the same stressor may have opposite effects on ongoing and delayed memory retrieval, depending on the presence of autonomic arousal and glucocorticoids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Psilocybin impairs high-level but not low-level motion perception.

    Science.gov (United States)

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  15. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  16. Chronic Glucocorticoid Hypersecretion in Cushing's Syndrome Exacerbates Cognitive Aging

    Science.gov (United States)

    Michaud, Kathy; Forget, Helene; Cohen, Henri

    2009-01-01

    Cumulative exposure to glucocorticoid hormones (GC) over the lifespan has been associated with cognitive impairment and may contribute to physical and cognitive degeneration in aging. The objective of the present study was to examine whether the pattern of cognitive deficits in patients with Cushing's syndrome (CS), a disorder characterized by…

  17. Are BDNF and glucocorticoid activities calibrated?

    Science.gov (United States)

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  18. Influence of a Parent Resource Manual on Physical Activity Levels of Children with Visual Impairments

    Science.gov (United States)

    Robinson, Barbara L.; Lieberman, Lauren J.

    2007-01-01

    The authors examined the effects of a parent resource manual on physical and sedentary activity levels of children with visual impairments. Children and youth with visual impairments, aged 9-23 years (7 girls, 11 boys), attended a 1-week summer sports camp in New York state. The authors found that 1 month after they provided the families of the…

  19. Dietary supplementation with essence of chicken enhances daily oscillations in plasma glucocorticoid levels and behavioral adaptation to the phase-shifted environmental light–dark cycle in mice

    Directory of Open Access Journals (Sweden)

    Adila Dilixiati

    2017-08-01

    Full Text Available Maintenance of circadian rhythms is essential to many aspects of human health, including metabolism and neurological and psychiatric well-being. Chronic disruption of circadian clock function is implicated in increasing the risk of metabolic syndrome, cardiovascular events and development of cancers. However, there are little approaches to reinforce the function of circadian clock for prevention of these diseases. Essence of Chicken (EC is a nutritional supplement that is traditionally made by extracting water soluble substances derived from cooking the whole chicken. In this study, we found that dietary supplementation with EC enhanced circadian oscillation of glucocorticoid secretion in mice, and this was accompanied by enhancement of circadian oscillation in the adrenal expression of steroidogenic acute regulatory (StAR protein that mediates the rate-limiting step of glucocorticoid synthesis. Furthermore, EC facilitated re-entrainment of behavioral rhythm in mice when phase of the light–dark cycle was suddenly advanced. These results suggest that intake of EC has enhancement effect on circadian clock function in mice, which may contribute to sustain health and also offer new preventive strategies against circadian-related diseases.

  20. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  1. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    Science.gov (United States)

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  2. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  3. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  4. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction

    International Nuclear Information System (INIS)

    Deng Jun; Liu Chunsheng; Yu Liqin; Zhou Bingsheng

    2010-01-01

    Tribromophenol (2,4,6-TBP) is ubiquitously found in aquatic environments and biota. In this study, we exposed zebrafish embryos (F 0 ; 2'''' days post-fertilization, dpf) to environmental concentration (0.3 μg/L) and a higher concentration (3.0 μg/L) of TBP and assessed the impact of chronic exposure (120 dpf) on reproduction. TBP exposure did not cause a significant increase in the malformation and reduction in the survival in the F 0 -generation fish. After TBP exposure, the plasma testosterone and estradiol levels significantly increased in males and decreased in females. The transcription of steroidogenic genes (3β-HSD, 17β-HSD, CYP17, CYP19A, CYP19B) was significantly upregulated in the brain and testes in males and downregulated in the brain and ovary in females. TBP exposure significantly downregulated and upregulated the expression of VTG in the liver of female and male fish, respectively. Meanwhile, TBP exposure altered the sex ratio toward a male-dominant state. The F 1 -generation larvae exhibited increased malformation, reduced survival, and retarded growth, suggesting that TBP in the aquatic environment has significant adverse effects on fish population.

  5. Impact of glucocorticoid on neurogenesis

    Directory of Open Access Journals (Sweden)

    Haruki Odaka

    2017-01-01

    Full Text Available Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

  6. Biochemical endpoints of glucocorticoid hormone action

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Nicholson, M.L.; Guyette, W.A.; Giddings, S.J.; Mendelsohn, S.L.; Nordeen, S.K.; Lyons, R.T.

    1978-01-01

    Both the rapidly evolving metabolic effects of glucocorticoids and the more slowly developing lethal actions appear to be initiated via the synthesis of new mRNAs and proteins. The chronic suppression of cell growth may be the consequence of suppression of overall rates of protein synthesis (and probably RNA and DNA synthesis as well) that in turn may represent the cellular response to the small changes in ratios of adenine nucleotides that result from the suppression of oxidative ATP production. The inhibition of glucose transport may also play a role here to prevent a compensatory increase in glycolytic ATP production. Some other hormone actions, the decrease in the ability of cells to concentrate AIB and the increase in nuclear fragility are unrelated to, and evolve separately from, the hormonal inhibitions on energy production. Cell killing is not the result of suppression of protein synthesis, nor of hormone-induced increases in calcium uptake. While the mechanisms are unknown, the increase in nuclear fragility appears to be the earliest measure of their operation. In tumor cells resistance to lethal actions of glucocorticoids may emerge via the selection of cells with hardier membranes, that are better able to withstand the intracellular destructive events set in motion by high levels of glucocorticoids.

  7. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis

    DEFF Research Database (Denmark)

    Melief, Jeroen; Koper, Jan W; Endert, Erik

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus-pituitary-adrenal (HPA...

  8. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11β-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    International Nuclear Information System (INIS)

    Hong, Dun; Li, Xing-Wang; Lian, Qing-Quan; Lamba, Pankaj; Bernard, Daniel J.; Hardy, Dianne O.; Chen, Hai-Xiao; Ge, Ren-Shan

    2009-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), not 11β-HSD1, is strongly expressed in murine gonadotrope LβT2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11β-HSD2 enzyme activity in LβT2 cells at as low as 10 -7 M. Corticosterone (CORT) at a concentration of 10 -6 M significantly inhibited LβT2 cell proliferation after 2-day culture, and 10 -6 M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10 -5 or 10 -4 M MEHP, the minimal concentration of CORT to inhibit the proliferation of LβT2 cells was lowered to 10 -7 M, and 10 -6 M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11β-HSD2 may have a key role in glucocorticoid metabolism in LβT2 cells. MEHP may participate in the glucocorticoid metabolism in LβT2 cells through inhibition of 11β-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.

  9. Early paternal deprivation alters levels of hippocampal brain-derived neurotrophic factor and glucocorticoid receptor and serum corticosterone and adrenocorticotropin in a sex-specific way in socially monogamous mandarin voles.

    Science.gov (United States)

    Wu, Ruiyong; Song, Zhenzhen; Wang, Siyang; Shui, Li; Tai, Fadao; Qiao, Xufeng; He, Fengqin

    2014-01-01

    In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels. © 2014 S. Karger AG, Basel.

  10. The study of lymphocytes glucocorticoid receptor in severe head injury

    International Nuclear Information System (INIS)

    Li Dapei; Wang Haodan; Zhao Qihuang

    1994-01-01

    Glucocorticoid receptors (GCR) of peripheral lymphocytes from 14 patients with severe head injury and 11 normal volunteers are studied by means of single point method of radioligand binding assay. All these patients receive surgical therapy and glucocorticoid of routine dosage. The results show that the GCR level of these patients is lower than that of the normal, while the plasma cortisol level is much higher. These changes correlate closely to the patients' clinical outcome. It is indicated that the GCR level can reflect the degree of stress of these patients and their response to glucocorticoid therapy. Using peripheral lymphocytes instead of the brain biopsy for the measurement of GCR can reflect the GCR changes of brain tissue, it's more convenient to get the sample and more acceptable to the patients

  11. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  12. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.

    Directory of Open Access Journals (Sweden)

    Haruka Tamura

    Full Text Available We are routinely exposed to low frequency noise (LFN; below 0.5 kHz at moderate levels of 60-70 dB sound pressure level (SPL generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz and high frequency noise (HFN; 16 kHz at 70 dB SPL at a distance of approximately 10-20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance.

  14. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  15. Investigation of radioprotective properties of synthetic antagonist of glucocorticoids RU 38 486

    International Nuclear Information System (INIS)

    Sejliev, A.A.; Zvonareva, N.B.; Zhivotovskij, B.D.; Khanson, K.P.; Akademiya Meditsinskikh Nauk SSSR, Leningrad

    1992-01-01

    Radioprotective properties of synthetic antiglucocorticoid RU 38 486 were investigated. It was demonstrated that this antigonist of glucocorticoids possesses radioprotective effect in vitro and in vivo systems. Radioprotective properties at molecular level exhibited in inhibition of postirradiation endonuclease activation and in prevention of internucleosome chromatin degradation. Involvement of cytosol glucocorticoid receptors in initiation of radiation-induced programmed cell death is discussed

  16. Pulsatile thyrotropin secretion in patients with Addison's disease during variable glucocorticoid therapy

    DEFF Research Database (Denmark)

    Hangaard, J; Andersen, M; Grodum, E

    1996-01-01

    , increasing significantly (P glucocorticoids, when the pulse frequency was also significantly reduced (P ... of glucocorticoids on the TSH response to TRH, our data indicate that even physiological serum levels of cortisol have an influence on endogenous TSH secretion, probably caused by regulation of the pituitary sensitivity to TRH....

  17. The impact of later trading hours for hotels on levels of impaired driver road crashes and driver breath alcohol levels.

    Science.gov (United States)

    Chikritzhs, Tanya; Stockwell, Tim

    2006-09-01

    To examine the impact of later trading hours for licensed hotels in Perth, Western Australia on levels of associated impaired driver road crashes and driver breath alcohol levels (BALs). Police data on the "last place of drinking" for impaired drivers involved in road crashes and their corresponding BALs were examined to identify those associated with Perth hotels between 1 July 1990 and 30 June 1997. During this period, 43 (23%) of the 186 hotels meeting study criteria were granted an Extended Trading Permit for 1 a.m. closing (ETP hotels), while the rest continued to close at midnight (non-ETP hotels). Time-series analyses employing multiple linear regressions were applied to determine whether an association existed between the introduction of extended trading and (i) monthly levels of impaired driver road crashes associated with ETP hotels and (ii) driver BALs associated with ETP hotels. Trends associated with non-ETP hotels were included as controls and possible confounders were considered. After controlling for the trend in crash rates associated with non-ETP hotels and the introduction of mobile police breath testing stations to Perth freeways, a significant increase in monthly crash rates for ETP hotels was found. This relationship was largely accounted for by higher volumes of high-alcohol content beer, wine and spirits purchased by ETP hotels. No relation was found between driver BALs and the introduction of ETPs. Late trading was associated with increased levels of impaired driver road crashes and alcohol consumption, particularly high-risk alcoholic beverages. Greater numbers of patrons and characteristics specific to clientele of hotels which applied for late trading hours (i.e. younger age, greater propensity to drunk-drive, preference for high-risk beverages) were suggested as having contributed to this increase.

  18. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  19. The Effects of Promoting Educational Level on the Development of Reading Comprehension Levels in Hearing-Impaired Students

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sarmadi

    2011-09-01

    Full Text Available Background and Aim: Hearing-impaired students have some delays in learning language skills such as reading because of hearing loss. To study the effect of promoting educational level on the development of reading comprehension, the students of the 4th grade of elementary and last year guidance school were compared based on international test of reading literacy.Methods: The project was cross-sectional and the tool used was the international standard booklet of PIRLS 2001. Thirty-six students selected with moderately severe and severe hearing loss from the 4th grade of elementary and last year guidance school from Shahriar, Robatkarim, Karaj and Hashtgerd, Iran, exceptional schools. Comparative statistical analysis was performed using t-test.Results: The first level (focus on and retrieve explicity information showed a meaningful difference between the last year guidance school and the 4th grade of elementary students (p<0.05, but there were no significant differences in other levels, make straightforward information-interpret and integrate ideas-examine and evaluate content, (p> 0.05.Conclusion: Hearing-impaired students have difficulties in understanding in deep levels of reading despite promoting educational level. Thus, in making policies for special trainings, continuing the rehabilitation in guidance and high school levels to promote the complex levels of comprehension should be taken more into consideration.

  20. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Science.gov (United States)

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  1. Glucocorticoids in early rheumatoid arthritis

    NARCIS (Netherlands)

    Everdingen, Amalia A. van

    2002-01-01

    For 50 years, glucocorticoids (GC) are used for symptomatic treatment of rheumatoid arthritis (RA). In the last decade, results from clinical studies of treatment with GC as additional therapy to long-acting antirheumatic drugs in patients with early RA suggested also disease-modifying properties of

  2. Stress, glucocorticoids and memory: implications for treating fear-related disorders.

    Science.gov (United States)

    de Quervain, Dominique; Schwabe, Lars; Roozendaal, Benno

    2017-01-01

    Glucocorticoid stress hormones are crucially involved in modulating mnemonic processing of emotionally arousing experiences. They enhance the consolidation of new memories, including those that extinguish older memories, but impair the retrieval of information stored in long-term memory. As strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias, the memory-modulating properties of glucocorticoids have recently become of considerable translational interest. Clinical trials have provided the first evidence that glucocorticoid-based pharmacotherapies aimed at attenuating aversive memories might be helpful in the treatment of fear-related disorders. Here, we review important advances in the understanding of how glucocorticoids mediate stress effects on memory processes, and discuss the translational potential of these new conceptual insights.

  3. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    Science.gov (United States)

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  4. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.

  5. Prevalence of visual impairment in El Salvador: inequalities in educational level and occupational status.

    Science.gov (United States)

    Rius, Anna; Guisasola, Laura; Sabidó, Meritxell; Leasher, Janet L; Moriña, David; Villalobos, Astrid; Lansingh, Van C; Mujica, Oscar J; Rivera-Handal, José Eduardo; Silva, Juan Casrlos

    2014-11-01

    To examine the prevalence of blindness, visual impairment, and related eye diseases and conditions among adults in El Salvador, and to explore socioeconomic inequalities in their prevalence by education level and occupational status, stratified by sex. Based upon the Rapid Assessment of Avoidable Blindness (RAAB) methodology, this nationwide sample comprised 3 800 participants (3 399 examined) ≥ 50 years old from 76 randomly selected clusters of 50 persons each. The prevalence of blindness, visual impairment and related eye diseases and conditions, including uncorrected refractive error (URE), was calculated for categories of education level and occupational status. Multiple logistic regression models were fitted to calculate odds ratios (ORs) and 95% confidence intervals (CIs) and stratified by sex. Age-adjusted prevalence was 2.4% (95% CI: 2.2-2.6) for blindness (men: 2.8% (95% CI: 2.5-3.1); women: 2.2% (95% CI: 1.9-2.5)) and 11.8% (95% CI: 11.6-12.0) for moderate visual impairment (men: 10.8% (95% CI: 10.5-11.1); women: 12.6% (95% CI: 12.4-12.8)). The proportion of visual impairment due to cataract was 43.8% in men and 33.5% in women. Inverse gradients of socioeconomic inequalities were observed in the prevalence of visual impairment. For example, the age-adjusted OR (AOR) was 3.4 (95% CI: 2.0-6.4) for visual impairment and 4.3 (95% CI: 2.1-10.4) for related URE in illiterate women compared to those with secondary education, and 1.9 (95% CI: 1.1-3.1) in cataract in unemployed men. Blindness and visual impairment prevalence is high in the El Salvador adult population. The main associated conditions are cataract and URE, two treatable conditions. As socioeconomic and gender inequalities in ocular health may herald discrimination and important barriers to accessing affordable, good-quality, and timely health care services, prioritization of public eye health care and disability policies should be put in place, particularly among women, the unemployed, and

  6. Prevalence of visual impairment in El Salvador: inequalities in educational level and occupational status

    Directory of Open Access Journals (Sweden)

    Anna Rius

    2014-11-01

    Full Text Available OBJECTIVE: To examine the prevalence of blindness, visual impairment, and related eye diseases and conditions among adults in El Salvador, and to explore socioeconomic inequalities in their prevalence by education level and occupational status, stratified by sex. METHODS: Based upon the Rapid Assessment of Avoidable Blindness (RAAB methodology, this nationwide sample comprised 3 800 participants (3 399 examined ≥ 50 years old from 76 randomly selected clusters of 50 persons each. The prevalence of blindness, visual impairment and related eye diseases and conditions, including uncorrected refractive error (URE, was calculated for categories of education level and occupational status. Multiple logistic regression models were fitted to calculate odds ratios (ORs and 95% confidence intervals (CIs and stratified by sex. RESULTS: Age-adjusted prevalence was 2.4% (95% CI: 2.2-2.6 for blindness (men: 2.8% (95% CI: 2.5-3.1; women: 2.2% (95% CI: 1.9-2.5 and 11.8% (95% CI: 11.6-12.0 for moderate visual impairment (men: 10.8% (95% CI: 10.5-11.1; women: 12.6% (95% CI: 12.4-12.8. The proportion of visual impairment due to cataract was 43.8% in men and 33.5% in women. Inverse gradients of socioeconomic inequalities were observed in the prevalence of visual impairment. For example, the age-adjusted OR (AOR was 3.4 (95% CI: 2.0-6.4 for visual impairment and 4.3 (95% CI: 2.1-10.4 for related URE in illiterate women compared to those with secondary education, and 1.9 (95% CI: 1.1-3.1 in cataract in unemployed men. CONCLUSIONS: Blindness and visual impairment prevalence is high in the El Salvador adult population. The main associated conditions are cataract and URE, two treatable conditions. As socioeconomic and gender inequalities in ocular health may herald discrimination and important barriers to accessing affordable, good-quality, and timely health care services, prioritization of public eye health care and disability policies should be put in place

  7. Glucocorticoids and Type 2 Diabetes: From Physiology to Pathology

    Directory of Open Access Journals (Sweden)

    Guido Di Dalmazi

    2012-01-01

    Full Text Available Type 2 diabetes mellitus is the result of interaction between genetic and environmental factors, leading to heterogeneous and progressive pancreatic β-cell dysfunction. Overweight and obesity are major contributors to the development of insulin resistance and impaired glucose tolerance. The inability of β cells to secrete enough insulin produces type 2 diabetes. Abnormalities in other hormones such as reduced secretion of the incretin glucagon-like peptide 1 (GLP-1, hyperglucagonemia, and raised concentrations of other counterregulatory hormones also contribute to insulin resistance, reduced insulin secretion, and hyperglycaemia in type 2 diabetes. Clinical-overt and experimental cortisol excess is associated with profound metabolic disturbances of intermediate metabolism resulting in abdominal obesity, insulin resistance, and low HDL-cholesterol levels, which can lead to diabetes. It was therefore suggested that subtle abnormalities in cortisol secretion and action are one of the missing links between insulin resistance and other features of the metabolic syndrome. The aim of this paper is to address the role of glucocorticoids on glucose homeostasis and to explain the relationship between hypercortisolism and type 2 diabetes.

  8. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment

    NARCIS (Netherlands)

    Allen, P.M.; Latham, K.; Mann, D.L.; Ravensbergen, H.J.C.; Myint, J.

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle,

  9. Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis.

    Science.gov (United States)

    Montalvo, Itziar; Gutiérrez-Zotes, Alfonso; Creus, Marta; Monseny, Rosa; Ortega, Laura; Franch, Joan; Lawrie, Stephen M; Reynolds, Rebecca M; Vilella, Elisabet; Labad, Javier

    2014-01-01

    Hyperprolactinaemia, a common side effect of some antipsychotic drugs, is also present in drug-naïve psychotic patients and subjects at risk for psychosis. Recent studies in non-psychiatric populations suggest that increased prolactin may have negative effects on cognition. The aim of our study was to explore whether high plasma prolactin levels are associated with poorer cognitive functioning in subjects with early psychoses. We studied 107 participants: 29 healthy subjects and 78 subjects with an early psychosis (55 psychotic disorders with levels were determined as well as total cortisol levels in plasma. Psychopathological status was assessed and the use of psychopharmacological treatments (antipsychotics, antidepressants, benzodiazepines) recorded. Prolactin levels were negatively associated with cognitive performance in processing speed, in patients with a psychotic disorder and high-risk subjects. In the latter group, increased prolactin levels were also associated with impaired reasoning and problem solving and poorer general cognition. In a multiple linear regression analysis conducted in both high-risk and psychotic patients, controlling for potential confounders, prolactin and benzodiazepines were independently related to poorer cognitive performance in the speed of processing domain. A mediation analysis showed that both prolactin and benzodiazepine treatment act as mediators of the relationship between risperidone/paliperidone treatment and speed of processing. These results suggest that increased prolactin levels are associated with impaired processing speed in early psychosis. If these results are confirmed in future studies, strategies targeting reduction of prolactin levels may improve cognition in this population.

  10. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  11. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  12. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2010-01-01

    that glucocorticoids deeply modify this resorptive behavior. First, glucocorticoids gradually induce excavations with a trenchlike morphology while reducing the time-dependent increase in excavation numbers. This indicates that glucocorticoids make osteoclasts elongate the excavations they initiated rather than...... migrating to a new resorption site, as in control conditions. Second, the round excavations in control conditions contain undegraded demineralized collagen as repeatedly reported earlier, whereas the excavations with a trenchlike morphology generated under glucocorticoid exposure appear devoid of leftovers...... of demineralized collagen. This indicates that collagenolysis proceeds generally at a lower rate than demineralization under control conditions, whereas collagenolysis rates are increased up to the level of demineralization rates in the presence of glucocorticoids. Taking these observations together leads...

  13. Instructions for producing a mouse model of glucocorticoid-induced osteoporosis

    DEFF Research Database (Denmark)

    Thiele, S.; Baschant, U.; Rauch, A.

    2014-01-01

    Glucocorticoids are effective drugs used for the treatment of inflammatory diseases such as rheumatoid arthritis or asthma. Furthermore, they regulate various physiological processes, including bone remodeling. However, long-term high- and even low-dose glucocorticoid use is associated...... with a compromised bone quality and an increased fracture risk. At the cellular level, glucocorticoids suppress bone formation and stimulate bone resorption, which leads to loss of bone mass. To investigate the underlying mechanisms and new therapeutic strategies, the in vivo model for glucocorticoid-induced bone...... loss is widely used. This protocol outlines the common procedure that is currently used for the induction of bone loss in mice using glucocorticoids. It further provides useful hints and highlights possible pitfalls to take into account before starting an experiment....

  14. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  15. High mobility group box 1 levels are not associated with subclinical carotid atherosclerosis in patients with granulomatosis with polyangiitis but are reduced by glucocorticoids and statins

    NARCIS (Netherlands)

    Silva de Souza, Alexandre; De Leeuw, Karina; Westra, Johanna; Smit, Andries J.; Van Der Graaf, Anne Marijn; Nienhuis, Hans L.A.; Bijzet, Johan; Limburg, Pieter C.; Stegeman, Coen A.; Bijl, Marc; Kallenberg, Cees G.M.

    2012-01-01

    Background/Purpose: High mobility group box 1 (HMGB1) is a non-histone DNA binding protein that is passively released by dying cells or actively secreted by immunocompetent cells and the receptor for advanced glycation end-products (RAGE) is one of its receptors. Higher levels of HMGB1 have been

  16. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  17. Adrenocorticotropic Hormone Secreting Pheochromocytoma Underlying Glucocorticoid Induced Pheochromocytoma Crisis

    Directory of Open Access Journals (Sweden)

    Gil A. Geva

    2018-01-01

    Full Text Available Context. Pheochromocytomas are hormone secreting tumors of the medulla of the adrenal glands found in 0.1–0.5% of patients with hypertension. The vast majority of pheochromocytomas secrete catecholamines, but they have been occasionally shown to also secrete interleukins, calcitonin, testosterone, and in rare cases adrenocorticotropic hormone. Pheochromocytoma crisis is a life threatening event in which high levels of catecholamines cause a systemic reaction leading to organ failure. Case Description. A 70-year-old man was admitted with acute myocardial ischemia following glucocorticoid administration as part of an endocrine workup for an adrenal mass. Cardiac catheterization disclosed patent coronary arteries and he was discharged. A year later he returned with similar angina-like chest pain. During hospitalization, he suffered additional events of chest pain, shortness of breath, and palpitations following administration of glucocorticoids as preparation for intravenous contrast administration. Throughout his admission, the patient demonstrated both signs of Cushing’s syndrome and high catecholamine levels. Following stabilization of vital parameters and serum electrolytes, the adrenal mass was resected surgically and was found to harbor an adrenocorticotropic hormone secreting pheochromocytoma. This is the first documented case of adrenocorticotropic hormone secreting pheochromocytoma complicated by glucocorticoid induced pheochromocytoma crisis. Conclusion. Care should be taken when administering high doses of glucocorticoids to patients with suspected pheochromocytoma, even in a patient with concomitant Cushing’s syndrome.

  18. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  19. Increased prolactin levels are associated with impaired processing speed in subjects with early psychosis.

    Directory of Open Access Journals (Sweden)

    Itziar Montalvo

    Full Text Available Hyperprolactinaemia, a common side effect of some antipsychotic drugs, is also present in drug-naïve psychotic patients and subjects at risk for psychosis. Recent studies in non-psychiatric populations suggest that increased prolactin may have negative effects on cognition. The aim of our study was to explore whether high plasma prolactin levels are associated with poorer cognitive functioning in subjects with early psychoses. We studied 107 participants: 29 healthy subjects and 78 subjects with an early psychosis (55 psychotic disorders with <3 years of illness, 23 high-risk subjects. Cognitive assessment was performed with the MATRICS Cognitive Consensus Cognitive Battery, and prolactin levels were determined as well as total cortisol levels in plasma. Psychopathological status was assessed and the use of psychopharmacological treatments (antipsychotics, antidepressants, benzodiazepines recorded. Prolactin levels were negatively associated with cognitive performance in processing speed, in patients with a psychotic disorder and high-risk subjects. In the latter group, increased prolactin levels were also associated with impaired reasoning and problem solving and poorer general cognition. In a multiple linear regression analysis conducted in both high-risk and psychotic patients, controlling for potential confounders, prolactin and benzodiazepines were independently related to poorer cognitive performance in the speed of processing domain. A mediation analysis showed that both prolactin and benzodiazepine treatment act as mediators of the relationship between risperidone/paliperidone treatment and speed of processing. These results suggest that increased prolactin levels are associated with impaired processing speed in early psychosis. If these results are confirmed in future studies, strategies targeting reduction of prolactin levels may improve cognition in this population.

  20. The impaired change in plasma long-chain acylcarnitine level as a marker of insulin resistence

    OpenAIRE

    Šišmová, Petra

    2018-01-01

    Charles University Faculty of Pharmacy in Hradec Kralove Department of Biophysics and Physical Chemistry Rīga Stradiņš University Latvian Institute of Organic Synthesis Laboratory of Pharmaceutical Pharmacology Candidate: Petra Šišmová Supervisor: Dr. Pharm. Elina Makarova, assoc. prof. Veronika Nováková, Ph.D. Title of the diploma thesis: The impaired change in plasma long-chain acylcarnitine level as a marker of insulin resistance Insulin resistance presents one of the factors that could le...

  1. Abeta(1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels

    DEFF Research Database (Denmark)

    Christensen, R; Marcussen, Anders Bue; Wörtwein, Gitta

    2008-01-01

    was used to monitor Abeta(1-42) induced memory impairment. Memory impairment was seen 22 days after injection of Abeta(1-42) in the experimental group and until termination of the experiments. In the Abeta(1-42) injected animals we saw an abolished increase in serum BDNF levels that was accompanied...... by significant lower BDNF levels in frontal cortex and by an 8.5% reduction in hippocampal 5-HT(2A) receptor levels. A tendency towards lowered cortical 5-HT(2A) was also observed. These results indicate that the Abeta(1-42) associated memory deficit is associated with an impaired BDNF regulation, which...

  2. Radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man

    International Nuclear Information System (INIS)

    Ballard, P.L.; Carter, J.P.; Graham, B.S.; Baxter, J.D.

    1975-01-01

    An assay for plasma glucocorticoid activity has been developed using specific glucocorticoid receptors. Unlike other assays for cortisol and certain synthetic corticosteroids, this radioreceptor assay measures the glucocorticoid activity of all natural and synthetic steroids. Steroids extracted from as little as 0.05 ml of plasma are incubated with 3 H-dexamethasone and cytosol receptors from cultured rat hepatoma cells. From 0.5 to 50 ng of cortisol are accurately detected. Glucocorticoid activities of adult plasmas determined by the assay correlate closely with corticoid levels obtained in the CBG-isotope and fluorometric assays. Other steroids are measured in proportion to both concentration and potency as glucocorticoids. Relative activities include: cortisol 100, dexamethasone 940, prednisolone 230, prednisone 3, estradiol 1 and androstenedione 1. A similar ranking of steroids was found using receptors from a human source (fetal lung). The assay has been useful in detecting glucocorticoid activity in unidentified medications and in measuring plasma glucocorticoid levels after administration of synthetic corticosteroids. (auth)

  3. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  4. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation.

    Science.gov (United States)

    Malyukova, A; Brown, S; Papa, R; O'Brien, R; Giles, J; Trahair, T N; Dalla Pozza, L; Sutton, R; Liu, T; Haber, M; Norris, M D; Lock, R B; Sangfelt, O; Marshall, G M

    2013-04-01

    Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

  5. Despite higher glucocorticoid levels and stress responses in female rats, both sexes exhibit similar stress-induced changes in hippocampal neurogenesis.

    Science.gov (United States)

    Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2012-10-01

    Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  7. Glucocorticoid-induced effects on the growth plate and the IGF system

    NARCIS (Netherlands)

    Smink, Jeske Johanna

    2003-01-01

    Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive drugs. The use of these potent drugs, however, often results in side-effects, such as growth retardation in children. For already many years, this GC-induced growth retardation is suggested to involve impaired action of

  8. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  9. Fasting plasma glucose levels and coronary artery calcification in subjects with impaired fasting glucose.

    Science.gov (United States)

    Eun, Young-Mi; Kang, Sung-Goo; Song, Sang-Wook

    2016-01-01

    Prediabetes is associated with an increased risk of cardiovascular disease (CVD). While the association of impaired glucose tolerance with CVD has been shown in many studies, the relationship between impaired fasting glucose (IFG) and CVD remains unclear. The purpose of this study was to compare the coronary artery calcium (CAC) scores of participants with normal fasting glucose versus those with IFG, according to fasting plasma glucose (FPG) levels, and to assess whether differences in CAC scores were independent of important confounders. Retrospective study. Health Promotion Center of the University Hospital (Gyeonggi-do, South Korea), during the period 2010-2014. Participants were enrolled from the general population who visited for a medical check-up. CAC was assessed in asymptomatic individuals by multidetector computed tomography. Anthropometric parameters and metabolic profiles were also recorded. Subjects were divided into four fasting glucose groups. Participants with a history of CVD or diabetes mellitus were excluded. Correlation between FPG and CAC scores, CAC score categories, and association between CAC score and FPG categories. Of 1112 participants, 346 (34.2%) had a CAC score > 0. FPG values in the IFG patients were positively but weakly correlated with CAC scores (r=0.099, P=.001). The incidence of CAC differed according to FPG level (P =110 mg/dL had a significantly higher risk of CAC than did subjects with normal fasting glucose (110.

  10. Influence of chronic x-ray exposure on adrenal glucocorticoid function and adrenocorticocyte membrane potential

    International Nuclear Information System (INIS)

    Gorban', Je.M.; Topol'nikova, N.V.

    1998-01-01

    The peculiarities of adrenal glucocorticoid function and membrane potential (MP) of zona fasciculata adrenocorticocyte (ACC) in rats after chronic x-ray exposure was studied. The changes of adrenal glucocorticoid function caused by chronic x-ray exposure within a relatively small period of irradiation (1.5 months) are obscure and manifest themselves only at physiological load. With the prolongation of the period (8 and 15 months), more considerable inhibition of the adrenal glucocorticoid function and disturbances in the membrane mechanisms of ACC MP level regulation are revealed

  11. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia

  12. Glucocorticoid receptors in anorexia nervosa and Cushing's disease.

    Science.gov (United States)

    Invitti, C; Redaelli, G; Baldi, G; Cavagnini, F

    1999-06-01

    Patients with anorexia nervosa do not display cushingoid features in spite of elevated cortisol plasma levels. Whether a cortisol resistance or a reduced availability of the metabolic substrates necessary to develop the effect of glucocorticoids is responsible for this has not been established. Twenty-two patients with severe restrictive anorexia nervosa, 10 patients with active Cushing's disease, and 24 healthy volunteers without psychiatric disorders or mood alterations were investigated. Glucocorticoid receptor characteristics were examined on mononuclear leukocytes by measuring [3H]dexamethasone binding and the effect of dexamethasone on [3H]thymidine incorporation, which represents an index of DNA synthesis. The number of glucocorticoid receptors on mononuclear leukocytes (MNL) was comparable in patients with anorexia nervosa, patients with active Cushing's disease, and normal subjects (binding capacity 3.3 +/- 0.23 vs. 3.7 +/- 0.30 and 3.5 +/- 0.20 fmol/10(6) cells). Conversely, glucocorticoid receptor affinity was significantly decreased in anorexia nervosa as well as in Cushing's patients compared to control subjects (dissociation constant 4.0 +/- 0.31 and 4.1 +/- 0.34 vs. 2.9 +/- 0.29 nmol/L, p Cushing's patients compared to control subjects (p Cushing's disease. In patients with anorexia nervosa, the incorporation of [3H]thymidine into the MNL was inversely correlated with urinary free cortisol levels. These data indicate that the lack of cushingoid features in patients with anorexia nervosa is not ascribable to a reduced sensitivity to glucocorticoids but is more likely due to the paucity of metabolic substrates.

  13. A case report: Familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ram Nanik

    2012-12-01

    Full Text Available Abstract Background Familial glucocorticoid deficiency (FGD is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency in the presence of normal plasma renin and aldosterone level. Focal segmental glomerulosclerosis (FSGS is a form of glomerular disease associated with proteinuria and nephritic syndrome. This is the first case of familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis. Case presentation An eight month old boy presented with increased genital pigmentation. Initial investigation revealed that he was glucocorticoid deficient and was started on hydrocortisone and fludrocortisone with a diagnosis of primary adrenal insufficiency. Later fludrocortisone was withdrawn and he was diagnosed to have isolated glucocorticoid deficiency. He later developed focal segmental glomerulosclerosis for which he underwent renal transplantation at the age of five years. Now at the age of twelve years, this boy is doing well on hydrocortisone treatment. His two siblings and a first degree cousin also had isolated glucocorticoid deficiency. One of the above two siblings died due to renal failure secondary to focal segmental glomerulosclerosis. Conclusion Patients with familial glucocorticoid deficiency should be carefully followed for development of features of nephrotic syndrome.

  14. Sex differences in the relationship between prolactin levels and impaired processing speed in early psychosis.

    Science.gov (United States)

    Montalvo, Itziar; Nadal, Roser; Armario, Antonio; Gutiérrez-Zotes, Alfonso; Creus, Marta; Cabezas, Ángel; Solé, Montse; Algora, Maria José; Sánchez-Gistau, Vanessa; Vilella, Elisabet; Labad, Javier

    2018-06-01

    Hyperprolactinaemia is commonly observed in people with psychotic disorders due to D2 receptor blockade by antipsychotic drugs, although it may also exist in drug-naïve patients with first-episode psychosis. Recent studies suggest that hyperprolactinaemia may have a negative impact on cognitive function in people with early psychosis. We aimed to explore whether there are sex differences in the association between prolactin levels and cognitive performance in early psychosis patients. We studied 60 young patients with early psychosis (aged 18-35 years, 35% females) and a sex- and age-matched control group of 50 healthy subjects. Cognitive assessment was performed with the MATRICS Consensus Cognitive Battery. Prolactin, total cortisol, follicular-stimulating hormone, luteal hormone and sex steroids (testosterone in men, oestradiol and progesterone in women) were measured in plasma. Salivary cortisol was measured at different sampling times (awakening response, 10:00 and 23:00). Psychopathological status was assessed, and antipsychotic treatment was registered. Multiple linear regression analyses were used to explore the relationship between prolactin and cognitive tasks while adjusting for covariates. Prolactin levels were associated with impaired processing speed in men, and this association was independent of cortisol and testosterone. In women, prolactin levels were not associated with processing speed tasks, although we observed a negative effect of prolactin on verbal learning and spatial working memory in female healthy subjects. The male-dependent effect maintained its significance after adjusting for education status, antipsychotic treatment and negative symptoms. Our study demonstrates that the previously reported association between high prolactin levels and impaired cognitive processes in early psychosis is restricted to men.

  15. Hearing impairment among workers exposed to excessive levels of noise in ginning industries

    Directory of Open Access Journals (Sweden)

    Kamalesh J Dube

    2011-01-01

    Full Text Available Cotton ginning workers have a risk of hearing loss due to excessive noise levels at the workplace environment. In this study, estimates of typical sound levels prevailing at the workplace environment and its effects on hearing ability of the exposed workers were made among cotton ginning workers. Data on self-reported health status was collected by a questionnaire survey at 10 cotton ginning industries located at Jalgaon district of Maharashtra state, India. The cotton ginning workers were exposed to continuous noise levels between 89 and 106 dBA. The hearing ability of the subjects was accessed by pure tone audiometry. The results of audiometry show mild, moderate and moderately severe degree of hearing impairment among the cotton ginning workers. The data generated during the study show that hearing loss was significantly associated with period of exposure to the workplace noise (P <0.0001. The prevalence of audiometric hearing impairment defined as a threshold average greater than 25 dB hearing level was 96% for binaural low-frequency average, 97% for binaural mid frequency average and 94% for binaural high-frequency average in the cotton ginning workers. We recommend the compulsory use of personal protective equipment like ear plug by the cotton ginning workers at the workplace environment. A regular maintenance of ginning and pressing machineries will avoid the emission of excessive noise at the workplace environment of cotton gins. A regular periodic medical examination is necessary to measure the impact of workplace noise on the health of cotton ginning workers.

  16. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting With Vision Impairment

    Directory of Open Access Journals (Sweden)

    Peter M Allen

    2016-11-01

    Full Text Available The aim of this study was to investigate the level of vision impairment that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI shooting. Nineteen international-level shooters without vision impairment took part in the study. Participants shot an air rifle, while standing, towards a regulation target placed at the end of a 10m shooting range. Cambridge simulation glasses were used to simulate six different levels of vision impairment. Visual acuity (VA and contrast sensitivity (CS were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual’s average score in every level of simulated vision impairment and normalising this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic (ROC curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving ‘expected’ or ‘below expected’ shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR is conservative, maximising the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not

  17. Optimal glucocorticoid replacement in adrenal insufficiency.

    Science.gov (United States)

    Øksnes, Marianne; Ross, Richard; Løvås, Kristian

    2015-01-01

    Adrenal insufficiency (glucocorticoid deficiency) comprises a group of rare diseases, including primary adrenal insufficiency, secondary adrenal insufficiency and congenital adrenal hyperplasia. Lifesaving glucocorticoid therapy was introduced over 60 years ago, but since then a number of advances in treatment have taken place. Specifically, little is known about short- and long-term treatment effects, and morbidity and mortality. Over the past decade, systematic cohort and registry studies have described reduced health-related quality of life, an unfavourable metabolic profile and increased mortality in patients with adrenal insufficiency, which may relate to unphysiological glucocorticoid replacement. This has led to the development of new modes of replacement that aim to mimic normal glucocorticoid physiology. Here, evidence for the inadequacy of conventional glucocorticoid therapy and recent developments in treatment are reviewed, with an emphasis on primary adrenal insufficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Glucocorticoid effects on object recognition memory require training-associated emotional arousal

    OpenAIRE

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2004-01-01

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague–Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two condition...

  20. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010

    Science.gov (United States)

    Blencowe, Hannah; Lawn, Joy E.; Vazquez, Thomas; Fielder, Alistair; Gilbert, Clare

    2013-01-01

    Background: Retinopathy of prematurity (ROP) is a leading cause of potentially avoidable childhood blindness worldwide. We estimated ROP burden at the global and regional levels to inform screening and treatment programs, research, and data priorities. Methods: Systematic reviews and meta-analyses were undertaken to estimate the risk of ROP and subsequent visual impairment for surviving preterm babies by level of neonatal care, access to ROP screening, and treatment. A compartmental model was used to estimate ROP cases and numbers of visually impaired survivors. Results: In 2010, an estimated 184,700 (uncertainty range: 169,600–214,500) preterm babies developed any stage of ROP, 20,000 (15,500–27,200) of whom became blind or severely visually impaired from ROP, and a further 12,300 (8,300–18,400) developed mild/moderate visual impairment. Sixty-five percent of those visually impaired from ROP were born in middle-income regions; 6.2% (4.3–8.9%) of all ROP visually impaired infants were born at >32-wk gestation. Visual impairment from other conditions associated with preterm birth will affect larger numbers of survivors. Conclusion: Improved care, including oxygen delivery and monitoring, for preterm babies in all facility settings would reduce the number of babies affected with ROP. Improved data tracking and coverage of locally adapted screening/treatment programs are urgently required. PMID:24366462

  1. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients

    OpenAIRE

    Huang, Rong; Han, Jing; Tian, Sai; Cai, Rongrong; Sun, Jie; Shen, Yanjue; Wang, Shaohua

    2017-01-01

    Background and aims People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. Results In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghre...

  2. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  3. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Sheela Vyas

    2016-01-01

    Full Text Available Stress and stress hormones, glucocorticoids (GCs, exert widespread actions in central nervous system, ranging from the regulation of gene transcription, cellular signaling, modulation of synaptic structure, and transmission and glial function to behavior. Their actions are mediated by glucocorticoid and mineralocorticoid receptors which are nuclear receptors/transcription factors. While GCs primarily act to maintain homeostasis by inducing physiological and behavioral adaptation, prolonged exposure to stress and elevated GC levels may result in neuro- and psychopathology. There is now ample evidence for cause-effect relationships between prolonged stress, elevated GC levels, and cognitive and mood disorders while the evidence for a link between chronic stress/GC and neurodegenerative disorders such as Alzheimer’s (AD and Parkinson’s (PD diseases is growing. This brief review considers some of the cellular mechanisms through which stress and GC may contribute to the pathogenesis of AD and PD.

  4. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits.

    Science.gov (United States)

    van Boxtel, Jeroen J A; Lu, Hongjing

    2013-01-01

    People with Autism Spectrum Disorder (ASD) are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  5. Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits

    Directory of Open Access Journals (Sweden)

    Jeroen J A Van Boxtel

    2013-04-01

    Full Text Available People with Autism Spectrum Disorder (ASD are hypothesized to have poor high-level processing but superior low-level processing, causing impaired social recognition, and a focus on non-social stimulus contingencies. Biological motion perception provides an ideal domain to investigate exactly how ASD modulates the interaction between low and high-level processing, because it involves multiple processing stages, and carries many important social cues. We investigated individual differences among typically developing observers in biological motion processing, and whether such individual differences associate with the number of autistic traits. In Experiment 1, we found that individuals with fewer autistic traits were automatically and involuntarily attracted to global biological motion information, whereas individuals with more autistic traits did not show this pre-attentional distraction. We employed an action adaptation paradigm in the second study to show that individuals with more autistic traits were able to compensate for deficits in global processing with an increased involvement in local processing. Our findings can be interpreted within a predictive coding framework, which characterizes the functional relationship between local and global processing stages, and explains how these stages contribute to the perceptual difficulties associated with ASD.

  6. Effects of chronic mild stress on behavioral and neurobiological parameters - Role of glucocorticoid.

    Science.gov (United States)

    Chen, Jiao; Wang, Zhen-zhen; Zuo, Wei; Zhang, Shuai; Chu, Shi-feng; Chen, Nai-hong

    2016-02-01

    Major depression is thought to originate from maladaptation to adverse events, particularly when impairments occur in mood-related brain regions. Hypothalamus-pituitary-adrenal (HPA) axis is one of the major systems involved in physiological stress response. HPA axis dysfunction and high glucocorticoid concentrations play an important role in the pathogenesis of depression. In addition, astrocytic disability and dysfunction of neurotrophin brain-derived neurotrophin factor (BDNF) greatly influence the development of depression and anxiety disorders. Therefore, we investigated whether depressive-like and anxiety-like behaviors manifest in the absence of glucocorticoid production and circulation in adrenalectomized (ADX) rats after chronic mild stress (CMS) exposure and its potential molecular mechanisms. The results demonstrate that glucocorticoid-controlled rats showed anxiety-like behaviors but not depression-like behaviors after CMS. Molecular and cellular changes included the decreased BDNF in the hippocampus, astrocytic dysfunction with connexin43 (cx43) decreasing and abnormality in gap junction in prefrontal cortex (PFC). Interestingly, we did not find any changes in glucocorticoid receptor (GR) or its chaperone protein FK506 binding protein 51 (FKBP5) expression in the hippocampus or PFC in ADX rats subjected to CMS. In conclusion, the production and circulation of glucocorticoids are one of the contributing factors in the development of depression-like behaviors in response to CMS. In contrast, the effects of CMS on anxiety-like behaviors are independent of the presence of circulating glucocorticoids. Meanwhile, stress decreased GR expression and enhanced FKBP5 expression via higher glucocorticoid exposure. Gap junction dysfunction and changes in BDNF may be associated with anxiety-like behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluating the relationship between education level and cognitive impairment with the Montreal Cognitive Assessment Test.

    Science.gov (United States)

    Yancar Demir, Esra; Özcan, Tuba

    2015-09-01

    Mild cognitive impairment (MCI) is defined as 'a cognitive decline greater than that expected for an individual's age and education level but that does not interfere notably with activities of daily life'. The Montreal Cognitive Assessment (MoCA) is a screening test for MCI. We investigated the performance of the Turkish version of the MoCA in detecting MCI among elderly persons in a rural area, the majority of whom have a low level of education. We evaluated 50 consecutive men referred from an outpatient clinic. Educational level was divided into three categories: group 1, less than primary (5 years). We evaluated the effect of education on MoCA scores and compared subjects' test performance among the different categories of education level. A total of 50 male patients with MCI (mean age: 70.74 ± 7.87) met the inclusion criteria. There were no differences in the total scores based on education or in the subscores for visuospatial/executive function, naming, attention, abstraction and delayed recall. Language was the only domain that showed significant differences between the groups. In post-hoc analysis, differences were found between groups 1 and 3 and between groups 1 and 2. Group 1 had significantly lower scores for language. The repeat subscore for language was significantly lower in group 1 than in group 2. In fluency, there were significant differences between groups 2 and 3 and between group 1 and 3. To our knowledge, this is the first study to analyze the applicability of the Turkish version of MoCA in populations with little education. Our results emphasize the need to adapt the language sections of this test, so it can be easily used in populations with low education levels. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.

  8. Circumvention of glucocorticoid resistance in childhood leukemia.

    Science.gov (United States)

    Haarman, E G; Kaspers, G J L; Pieters, R; Rottier, M M A; Veerman, A J P

    2008-09-01

    In this study, we determined if in vitro resistance to prednisolone and dexamethasone could be circumvented by cortivazol or methylprednisolone, or reversed by meta-iodobenzylguanidine in pediatric lymphoblastic and myeloid leukemia. As there were strong correlations between the LC50 values (drug concentration inducing 50% leukemic cell kill, LCK) of the different glucocorticoids and median prednisolone/methylprednisolone, prednisolone/dexamethasone and prednisolone/cortivazol LC50 ratios did not differ between the leukemia subtypes, we conclude that none of the glucocorticoids had preferential anti-leukemic activity. Meta-iodobenzylguanidine however, partially reversed glucocorticoid resistance in 19% of the lymphoblastic leukemia samples.

  9. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  10. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin [Shandong University, Shandong Medical Imaging Research Institute, Jinan (China); Edden, Richard A.E. [The Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Kennedy Krieger Institute, FM Kirby Center for Functional Brain Imaging, Baltimore, MD (United States); Li, Hao [Air Force General Hospital PLA, Beijing (China); Chen, Weibo [Philips Healthcare, Shanghai (China); Liu, Xiaohui [Shandong Provincial Hospital Affiliated to Shandong University, Department of Neurology, Jinan (China)

    2018-03-15

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  11. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Cao, Guanmei; Gao, Fei; Gong, Tao; Wang, Guangbin; Zhao, Bin; Edden, Richard A.E.; Li, Hao; Chen, Weibo; Liu, Xiaohui

    2018-01-01

    To investigate if brain gamma-aminobutyric acid (GABA) levels in patients with relapsing-remitting multiple sclerosis (RRMS) are abnormal compared with healthy controls, and their relationship to cognitive function in RRMS. Twenty-eight RRMS patients and twenty-six healthy controls underwent magnetic resonance spectroscopy (MRS) at 3-T to detect GABA signals from posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC) and left hippocampus using the 'MEGAPoint Resolved Spectroscopy Sequence' (MEGA-PRESS) technique. All subjects also underwent a cognitive assessment. In RRMS patients, GABA+ were lower in the PCC (p = 0.036) and left hippocampus (p = 0.039) compared with controls, decreased GABA+ in the PCC and left hippocampus were associated with specific cognitive functions (r = -0.452, p = 0.016 and r = 0.451, p = 0.016 respectively); GABA+ in the mPFC were not significantly decreased or related to any cognitive scores (p > 0.05). This study demonstrates that abnormalities of the GABAergic system may be present in the pathogenesis of RRMS and suggests a potential link between regional GABA levels and cognitive impairment in patients with RRMS. (orig.)

  12. Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.

    Science.gov (United States)

    Takeda, Atsushi; Suzuki, Miki; Tamano, Haruna; Takada, Shunsuke; Ide, Kazuki; Oku, Naoto

    2012-03-01

    Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. [Primary glucocorticoid resistance syndrome presenting as pseudo-precocious puberty and galactorrhea].

    Science.gov (United States)

    Xiang, Shu-lin; He, Li-ping; Ran, Xing-wu; Tian, Hao-ming; Li, Xiu-jun; Liang, Jin-zhong

    2008-09-01

    Primary glucocorticoid resistance syndrome (PGRS) is a rare condition characterized by hypercortisolism without Cushing's syndrome. This report describes a 7-year-old boy of PGRS with pseudo-precocious puberty and galactorrhea as the main manifestation. His height was 135 cm and body weight was 31 kg. Pigmentation could be seen in the skin, mammary areola and penis. He had hirsutism, low hair line, coarse voice, Tanner stage 3 pubic hair, penis in adult form, accelerated linear growth, and advanced bone age (13 yr.), but normal (for age) testes. Furthermore, he had mammoplasia and galactorrhea. There were no features of glucocorticoid (GC) excess. Hepatic function was impaired (ALT 1426 IU/L, AST 611 IU/L) with no definite causes. Serum cortisol concentration was 1294 nmol/L, 777 nmol/L, 199.3 nmol/L at 8:00, 16:00 and 24:00 respectively. Plasma adrenocorticotropic hormone (ACTH) was normal or a little higher (43.9-80 ng/L). Urinary-free cortisol (UFC) was normal (55.5-62.4 microg/24 h). Serum estradiol (E2), progesterone (P), testosterone (T), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were normal. Serum dehydroepiandrosterone sulfate (DHEAS, 60 microg/dL) and serum prolactin (PRL, 58.7-183.9 ng/mL) level were high, urinary dehydroepiandrosterone (DHEA) level was also elevated (0.96-3.2 mg/mL). Gonadotrophin hormone-releasing hormone (GnRH) stimulation test was negative. Serum cortisol responded normally to insulin-induced hypoglycemia. However, serum cortisol and plasma ACTH concentration was suppressed to more than 50% by 0.5 mg dexamethasone (DEX). The diagnosis of PGRS was made. TREATMENT AND FOLLOW-UP: The patient received a treatment of 0.75-1.0 mg/d DEX. Because of galactorrhea, bromocriptine was given by 1.25-3.75 mg/d. After 24 months follow-up, the pigmentation was relieved and galactorrhea disappeared. No advanced development of the external genitalia and breast was found. The acceleration of the bone age was also slowed down. But

  14. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment.

    Science.gov (United States)

    Allen, Peter M; Latham, Keziah; Mann, David L; Ravensbergen, Rianne H J C; Myint, Joy

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle, while standing, toward a regulation target placed at the end of a 10 m shooting range. Cambridge simulation glasses were used to simulate six different levels of VI. Visual acuity (VA) and contrast sensitivity (CS) were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual's average score in every level of simulated VI and normalizing this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving 'expected' or 'below expected' shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR) is conservative, maximizing the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not actually have an impairment that impacts performance in the sport. An

  15. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  16. Early life stress determines the effects of glucocorticoids and stress on hippocampal function: Electrophysiological and behavioral evidence respectively.

    Science.gov (United States)

    Pillai, Anup G; Arp, Marit; Velzing, Els; Lesuis, Sylvie L; Schmidt, Mathias V; Holsboer, Florian; Joëls, Marian; Krugers, Harm J

    2018-05-01

    Exposure to early-life adversity may program brain function to prepare individuals for adaptation to matching environmental contexts. In this study we tested this hypothesis in more detail by examining the effects of early-life stress - induced by raising offspring with limited nesting and bedding material from postnatal days 2-9 - in various behavioral tasks and on synaptic function in adult mice. Early-life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context recognition memory task. This effect was absent when animals were exposed to a single stressor before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are counteracted by acute stress or elevated glucocorticoid levels. Copyright © 2018. Published by Elsevier Ltd.

  17. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  18. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... logistic regression analysis was applied using the summarised descriptive data (for example, % with encephalopathy, mean bilirubin value) of the treatment and control groups of 12 controlled trials that gave this information. Despite evidence of publication bias favouring glucocorticoid treatment, its...... overall effect on mortality was not statistically significant (p = 0.20)--the relative risk (steroid/control) was 0.78 (95% confidence intervals 0.51, 1.18). There was indication of interaction between glucocorticoid therapy and gender, but not encephalopathy. Thus, the effect of glucocorticoid treatment...

  19. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  20. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  1. Dysphagia and cerebrovascular accident: relationship between severity degree and level of neurological impairment.

    Science.gov (United States)

    Itaquy, Roberta Baldino; Favero, Samara Regina; Ribeiro, Marlise de Castro; Barea, Liselotte Menke; Almeida, Sheila Tamanini de; Mancopes, Renata

    2011-12-01

    The aim of this case study was to verify the occurrence of dysphagia in acute ischemic stroke within 48 hours after the onset of the first symptoms, in order to establish a possible relationship between the level of neurologic impairment and the severity degree of dysphagia. After emergency hospital admission, three patients underwent neurological clinical evaluation (general physical examination, neurological examination, and application of the National Institute of Health Stroke Scale - NIHSS), and clinical assessment of swallowing using the Protocolo Fonoaudiológico de Avaliação do Risco para Disfagia (PARD--Speech-Language Pathology Protocol for Risk Evaluation for Dysphagia). One of the patients presented functional swallowing (NIHSS score 11), while the other two had mild and moderate oropharyngeal dysphagia (NIHSS scores 15 and 19, respectively). The service flow and the delay on the patients' search for medical care determined the small sample. The findings corroborate literature data regarding the severity of the neurological condition and the manifestation of dysphagia.

  2. Impact of vitamin D3 on cardiovascular responses to glucocorticoid excess.

    Science.gov (United States)

    Ahmed, Mona A

    2013-06-01

    Although the cardiovascular system is not a classical target for 1,25-dihydroxyvitamin D3, both cardiac myocytes and vascular smooth muscle cells respond to this hormone. The present study aimed to elucidate the effect of active vitamin D3 on cardiovascular functions in rats exposed to glucocorticoid excess. Adult male Wistar rats were allocated into three groups: control group, dexamethasone (Dex)-treated group receiving Dex (200 μg/kg) subcutaneously for 12 days, and vitamin D3-Dex-treated group receiving 1,25-(OH)2D3 (100 ng/kg) and Dex (200 μg/kg) subcutaneously for 12 days. Rats were subjected to measurement of systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressures and heart rate. Rate pressure product (RPP) was calculated. Rats' isolated hearts were perfused in Langendorff preparation and studied for basal activities (heart rate, peaked developed tension, time to peak tension, half relaxation time, and myocardial flow rate) and their responses to isoproterenol infusion. Blood samples were collected for determination of plasma level of nitrite, nitric oxide surrogate. Dex-treated group showed significant increase in SBP, DBP, MAP, and RPP, as well as cardiac hypertrophy and enhancement of basal cardiac performance evidenced by increased heart rate, rapid and increased contractility, and accelerated lusitropy, together with impaired contractile and myocardial flow rate responsiveness to beta-adrenergic activation and depressed inotropic and coronary vascular reserves. Such alterations were accompanied by low plasma nitrite. These changes were markedly improved by vitamin D3 treatment. In conclusion, vitamin D3 is an efficacious modulator of the deleterious cardiovascular responses induced by glucocorticoid excess, probably via accentuation of nitric oxide.

  3. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  4. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  5. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  6. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  7. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment.

    Science.gov (United States)

    Cooper, Yonatan A; Nachun, Daniel; Dokuru, Deepika; Yang, Zhongan; Karydas, Anna M; Serrero, Ginette; Yue, Binbin; Boxer, Adam L; Miller, Bruce L; Coppola, Giovanni

    2018-05-01

    Changes in progranulin ( GRN ) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's ( n = 186), MCI ( n = 118), and control ( n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males ( P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort ( F 2,505 = 10.41, P = 3.72*10 -5 ). This finding was replicated in the AddNeuroMed ( F 2,271 = 17.9, P = 4.83*10 -8 ) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression ( P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis ( P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.

  8. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  9. Social Regulation of Leukocyte Homeostasis: The Role of Glucocorticoid Sensitivity

    Science.gov (United States)

    Cole, Steve W.

    2010-01-01

    Recent small-scale genomics analyses suggest that physiologic regulation of pro-inflammatory gene expression by endogenous glucocorticoids may be compromised in individuals who experience chronic social isolation. This could potentially contribute to the elevated prevalence of inflammation-related disease previously observed in social isolates. The present study assessed the relationship between leukocyte distributional sensitivity to glucocorticoid regulation and subjective social isolation in a large population-based sample of older adults. Initial analyses confirmed that circulating neutrophil percentages were elevated, and circulating lymphocyte and monocyte percentages were suppressed, in direct proportion to circulating cortisol levels. However, leukocyte distributional sensitivity to endogenous glucocorticoids was abrogated in individuals reporting either occasional or frequent experiences of subjective social isolation. This finding held in both nonparametric univariate analyses and in multivariate linear models controlling for a variety of biological, social, behavioral, and psychological confounders. The present results suggest that social factors may alter immune cell sensitivity to physiologic regulation by the hypothalamic-pituitary-adrenal axis in ways that could ultimately contribute to the increased physical health risks associated with social isolation. PMID:18394861

  10. A Comparative Study of Emotional Stability of Visually Impaired Students Studying at Secondary Level in Inclusive Setup and Special Schools

    Science.gov (United States)

    Pant, Pankaj; Joshi, P. K.

    2016-01-01

    Visual impairment as an umbrella term includes all levels of vision loss. Researches in the field of visual disability are far from satisfactory in India. Some attempts have been made to study different aspects of the lives of visually disabled children. Such attempts help, revealing the facts of their life, characteristics, activities,…

  11. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  12. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2012-01-01

    Background Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses may cause suppression of the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress

  13. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2015-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  14. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2017-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  15. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts.

    Science.gov (United States)

    Zhang, Haining; He, Yanhua; Zhang, Guiping; Li, Xiaobin; Yan, Suikai; Hou, Ning; Xiao, Qing; Huang, Yue; Luo, Miaoshan; Zhang, Genshui; Yi, Quan; Chen, Minsheng; Luo, Jiandong

    2017-09-01

    We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.

  16. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone

    Science.gov (United States)

    Michailidou, Zoi; Coll, Anthony P; Kenyon, Christopher J; Morton, Nicholas M; O'Rahilly, Stephen; Seckl, Jonathan R; Chapman, Karen E

    2007-01-01

    Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc−/− mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc−/− mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11β-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc−/− mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc−/− mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc−/− mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc−/− mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc−/− mice, independently of adipose or liver renin–angiotensin system activation. These data suggest that CORT-inducible 11β-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver. PMID:17592030

  17. Perioperative glucocorticoids in hip and knee surgery - benefit vs. harm?

    DEFF Research Database (Denmark)

    Lunn, T H; Kehlet, H

    2013-01-01

    with systemic glucocorticoid. Pain was reduced with high-dose systemic and local glucocorticoid, but not with low-dose systemic glucocorticoid. Systemic inflammatory markers were reduced with low-dose and high-dose systemic glucocorticoid, and with local glucocorticoid. Functional recovery was improved...... with local glucocorticoid. All studies were small-sized and none sufficiently powered to meaningfully evaluate uncommon adverse events. Most of the local administration studies had poor scientific quality (high risk of bias). Due to clinical heterogeneity and poor scientific quality, no meta......-analysis was performed. In conclusion, in addition to PONV reduction with low-dose systemic glucocorticoid, this review supports high-dose systemic glucocorticoid to ameliorate post-operative pain after hip and knee surgery. However, large-scale safety and dose-finding studies are warranted before final recommendations....

  18. Glucocorticoids and the regulation of memory in health and disease

    NARCIS (Netherlands)

    de Quervain, Dominique J. -F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing

  19. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects

    NARCIS (Netherlands)

    Judd, L.L.; Schettler, P.J.; Brown, E.S.; Wolkowitz, O.M.; Sternberg, E.M.; Bender, B.G.; Bulloch, K.; Cidlowski, J.A.; Kloet, E.R. de; Fardet, L.; Joels, M.; Leung, D.Y.; McEwen, B.S.; Roozendaal, B.; Rossum, E.F. van; Ahn, J.; Brown, D.W.; Plitt, A.; Singh, G.

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  20. Adverse Consequences of Glucocorticoid Medication : Psychological, Cognitive, and Behavioral Effects

    NARCIS (Netherlands)

    Judd, Lewis L.; Schettler, Pamela J.; Brown, E. Sherwood; Wolkowitz, Owen M.; Sternberg, Esther M.; Bender, Bruce G.; Bulloch, Karen; Cidlowski, John A.; de Kloet, E. Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y. M.; McEwen, Bruce S.; Roozendaal, Benno; Van Rossum, Elisabeth F. C.; Ahn, Junyoung; Brown, David W.; Plitt, Aaron; Singh, Gagandeep

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  1. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  2. Environmental Enrichment Effect on Fecal Glucocorticoid Metabolites and Captive Maned Wolf (Chrysocyon brachyurus) Behavior.

    Science.gov (United States)

    Coelho, Carlyle Mendes; de Azevedo, Cristiano Schetini; Guimarães, Marcelo Alcino de Barros Vaz; Young, Robert John

    2016-01-01

    Environmental enrichment is a technique that may reduce the stress of nonhuman animals in captivity. Stress may interfere with normal behavioral expression and affect cognitive decision making. Noninvasive hormonal studies can provide important information about the stress statuses of animals. This study evaluated the effectiveness of different environmental enrichment treatments in the diminution of fecal glucocorticoid metabolites (stress indicators) of three captive maned wolves (Chrysocyon brachyurus). Correlations of the fecal glucocorticoid metabolite levels with expressed behaviors were also determined. Results showed that environmental enrichment reduced fecal glucocorticoid metabolite levels. Furthermore, interspecific and foraging enrichment items were most effective in reducing stress in two of the three wolves. No definite pattern was found between behavioral and physiological responses to stress. In conclusion, these behavioral and physiological data showed that maned wolves responded positively from an animal well being perspective to the enrichment items presented.

  3. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  4. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  5. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    Science.gov (United States)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10

  6. Comparison of Different Levels of Reading Comprehension between Hearing-Impaired Loss and Normal-Hearing Students

    Directory of Open Access Journals (Sweden)

    Azam Sharifi

    2011-12-01

    Full Text Available Background and Aim: Reading skill is one of the most important necessities of students' learning in everyday life. This skill is referred to the ability of comprehension, comment and conclusion from texts and receiving the meaning of the massage which is composed. Educational development in any student has a direct relation with the ability of the comprehension. This study is designed to investigate the effects of hearing loss on reading comprehension in hearing-impaired students compared to normal-hearing ones.Methods: Seventeen hearing-impaired students in 4th year of primary exceptional schools in Karaj, Robatkarim and Shahriyar, Iran, were enrolled in this cross-sectional study. Seventeen normal-hearing students were randomly selected from ordinary schools next to exceptional ones as control group. They were compared for different levels of reading comprehension using the international standard booklet (PIRLS 2001. Results: There was a significant difference in performance between hearing-impaired and normal- hearing students in different levels of reading comprehension (p<0.05.Conclusion: Hearing loss has negative effects on different levels of reading comprehension, so in exceptional centers, reconsideration in educational planning in order to direct education from memorizing to comprehension and deeper layers of learning seems necessary.

  7. Assessment of faecal glucocorticoid metabolite excretion in captive female fishing cats (Prionailurus viverinus) in Thailand.

    Science.gov (United States)

    Khonmee, Jaruwan; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Thitaram, Chatchote; Somgird, Chaleamchat; Punyapornwithaya, Veerasak; Brown, Janine L

    2016-01-01

    There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (∼60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1-2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P fishing cats, and we found that glucocorticoid metabolite production was influenced by seasonal factors, but not by age. We conclude that weather patterns should be taken into consideration in future studies of glucocorticoid activity in this endangered species, especially those studies aimed at improving captive management to create self-sustaining and healthy populations.

  8. Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods.

    Science.gov (United States)

    Claflin, Dragana I; Schmidt, Kevin D; Vallandingham, Zachary D; Kraszpulski, Michal; Hennessy, Michael B

    2017-09-01

    Recent interest in the lasting effects of early-life stress has expanded to include effects on cognitive performance. An increase in circulating glucocorticoids is induced by stress exposure and glucocorticoid effects on the hippocampus likely underlie many of the cognitive consequences. Here we review studies showing that corticosterone administered to young rats at the conclusion of the stress-hyporesponsiveness period affects later performance in hippocampally-mediated trace eyeblink conditioning. The nature and even direction of these effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by different administration methods. We present new time course data indicating that constant glucocorticoid elevations generally corresponded with hippocampus-mediated learning deficits, whereas acute, cyclical elevations corresponded with improved initial acquisition. Sensitivity was greater for males than for females. Further, changes in hippocampal neurogenesis paralleled some but not all effects. The findings demonstrate that specific patterns of glucocorticoid elevation produced by different drug administration procedures can have markedly different, sex-specific consequences on basic cognitive performance and underlying hippocampal physiology. Implications of these findings for glucocorticoid medications prescribed in childhood are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  10. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  11. Association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment in type 2 diabetic patients.

    Science.gov (United States)

    Huang, Rong; Han, Jing; Tian, Sai; Cai, Rongrong; Sun, Jie; Shen, Yanjue; Wang, Shaohua

    2017-02-28

    People with insulin resistance and type 2 diabetes mellitus (T2DM) are at increased risks of cognitive impairment. We aimed to investigate the association of plasma ghrelin levels and ghrelin rs4684677 polymorphism with mild cognitive impairment (MCI) in T2DM patients. In addition to elevated glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG) and homeostasis model assessment of insulin resistance (HOMA-IR), T2DM patients with MCI had decreased plasma ghrelin levels compared with their healthy-cognition subjects (all p ghrelin level was one of independent factors for MCI in T2DM patients (p ghrelin levels were positively associated with the scores of Montreal Cognitive Assessment (r = 0.196, p = 0.041) and Auditory Verbal Learning Test-delayed recall (r = 0.197, p = 0.040) after adjustment for HbA1c, FBG and HOMA-IR, wherein the latter represented episodic memory functions. No significant differences were found for the distributions of genotype and allele of ghrelin rs4684677 polymorphism between MCI and control group. A total of 218 T2DM patients, with 112 patients who satisfied the MCI diagnostic criteria and 106 who exhibited healthy cognition, were enrolled in this study. Demographic characteristics, clinical variables and cognitive performances were extensively assessed. Plasma ghrelin levels and ghrelin rs4684677 polymorphism were also determined. Our results suggest that decreased ghrelin levels are associated with MCI, especially with episodic memory dysfunction in T2DM populations.

  12. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  13. On the retinal toxicity of intraocular glucocorticoids.

    Science.gov (United States)

    Torriglia, Alicia; Valamanesh, Fatemeh; Behar-Cohen, Francine

    2010-12-15

    Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  15. Glucocorticoid effects on hippocampal protein synthesis

    International Nuclear Information System (INIS)

    Schlatter, L.K.

    1988-01-01

    Following subcutaneous injection of rats with 5 mg corticosterone, hippocampal slices in vitro show increased [ 35 S]-methionine labeling of a cytosolic protein with an apparent molecular weight (M r ) of 35,000 and an isoelectric point (IEP) of 6.6. This labeling is temporally consistent with a transcriptional event, and is steroid- and tissue-specific. The pear serum concentration of steroid occurs one hour or less following the injection. Maximal labeling of this protein is reached whenever serum corticosterone values are approximately 100 ng/ml. When endogenous corticosterone levels are elevated to 100 ng/ml through stressors or exogenous ACTH injections the same maximal increase in synthesis of the 35,000 M r protein is observed. Adrenalectomy prevents the observed response from occurring following stressor application or ACTH injections. Comparison of the increases observed after administration of the type 2 receptor agonist RU 28362 and aldosterone, which has a higher affinity for the type 1 receptor, shows a 50-fold greater sensitivity of the response to the type 2 receptor agonist. Synthesis of this protein following serum increases of steroid possibly correlates to the theorized function of the type 2 receptor feedback regulation. The similar protein in the liver has an IEP of 6.8 and a slightly higher M r . A second hippocampal protein with an M r of 46,000 and an IEP of 6.2 is also increased in labeling. Two additional liver proteins, one of Mr 53,000 (IEP of 6.2) and the other with an M r of 45,000 (IEP of 8.7-7.8) are increased in the liver following glucocorticoid administration

  16. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice.

    Science.gov (United States)

    van der Geest, Rick; Ouweneel, Amber B; van der Sluis, Ronald J; Groen, Albert K; Van Eck, Miranda; Hoekstra, Menno

    2016-09-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18±5ng/ml vs 472±58ng/ml; Phypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  18. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice.

    Science.gov (United States)

    Salehpour, Farzad; Ahmadian, Nahid; Rasta, Seyed Hossein; Farhoudi, Mehdi; Karimi, Pouran; Sadigh-Eteghad, Saeed

    2017-10-01

    Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm 2 ) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm 2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm 2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm 2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of lighting illuminance levels on stair negotiation performance in individuals with visual impairment.

    Science.gov (United States)

    Shaheen, Aliah F; Sourlas, Alexandros; Horton, Khim; McLean, Christopher; Ewins, David; Gould, David; Ghoussayni, Salim

    2018-04-01

    Stair-related falls of older people cause a substantial financial and social burden. Deterioration of the visual system amongst other factors put older people at a high risk of falling. Improved lighting is often recommended. The aim of this study was to investigate the effect of lighting illuminance on stair negotiation performance in older individuals with visual impairment. Eleven participants aged 60 or over with a vision of 6/18 or worse ascended and descended a staircase under: 50 lx, 100 lx, 200 lx, 300 lx and distributed 200 lx lighting. A motion capture system was used to measure movements of the lower limb. Clearance, clearance variability, temporal and spatial parameters and joint/segment kinematics were computed. There was no effect on clearance or clearance variability. Participants had lower speed, cadence, increased cycle time and stance time in the 50 lx compared to 300 lx and distributed 200 lx lighting in descent. The minimum hip angle in ascent was increased in the 200 lx lighting. Clearance was found to be moderately correlated with balance scores. Individuals with visual impairment adopt precautionary gait in dim lighting conditions. This does not always result in improvements in the parameters associated with risk of falling (e.g. clearance). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Memory impairment due to fipronil pesticide exposure occurs at the GABAA receptor level, in rats.

    Science.gov (United States)

    Godinho, Antonio Francisco; de Oliveira Souza, Ana Carolina; Carvalho, Caio Cristóvão; Horta, Daniel França; De Fraia, Daniel; Anselmo, Fabio; Chaguri, João Leandro; Faria, Caique Aparecido

    2016-10-15

    Fipronil (F) a pesticide considered of second generation cause various toxic effects in target and non-target organisms including humans in which provoke neurotoxicity, having the antagonism of gamma-amino butyric acid (GABA) as their main mechanism for toxic action. GABAergic system has been involved in processes related to the memory formation and consolidation. The present work studied the importance of GABA to the mechanisms involved in the very early development of fipronil-induced memory impairment in rats. Memory behavior was assessed using new object recognition task (ORT) and eight radial arm maze task (8-RAM) to study effects on cognitive and spatial memory. Locomotor behavior was assessed using open field task (OF). The dose of fipronil utilized was studied through a pilot experiment. The GABA antagonist picrotoxin (P) was used to enhance fipronil effects on GABAergic system. Fipronil or picrotoxin decrease memory studied in ORT and 8-RAM tasks. Additionally, F and P co-exposure enhanced effects on memory compared to controls, F, and P, suggesting strongly a GABAergic effect. Weight gain modulation and fipronil in blood were utilized as animal's intoxication indicators. In conclusion, here we report that second-generation pesticides, such as fipronil, can have toxic interactions with the CNS of mammals and lead to memory impairment by modulating the GABAergic system. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study

    DEFF Research Database (Denmark)

    Laakso, M; Zilinskaite, J; Hansen, T

    2008-01-01

    AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic...

  2. Getting in and Getting On? The Experiences of Young People with Visual Impairments and Hearing Impairments in Third-Level Education

    Science.gov (United States)

    Byrne, Bronagh

    2014-01-01

    Young disabled people continue to be under-represented throughout further and higher education settings. Drawing on Pierre Bourdieu's social theory of habitus, capital and field, this paper explores the practices of domination and oppression that have made it difficult for young people with visual impairments and hearing impairments to participate…

  3. Glucocorticoid receptor gene polymorphism and juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Scheplyagina Larisa A

    2011-01-01

    Full Text Available Abstract Background The glucocorticoid receptor gene (NR3C1 has been suggested as a candidate gene affecting juvenile idiopathic arthritis (JIA course and prognosis. The purpose of this study is to investigate the glucocorticoid receptor gene BclI polymorphism (rs41423247 in JIA patients, the gene's role in susceptibility to juvenile idiopathic arthritis, and its associations with JIA activity, course and bone mineralization. Methods One hundred twenty-two Caucasian children with JIA and 143 healthy ethnically matched controls were studied. We checked markers of clinical and laboratory activity: morning stiffness, Ritchie Articular Index (RAI, swollen joint count (SJC, tender joint count (TJC, physician's visual analog scale (VAS, hemoglobin level (Hb, leukocyte count (L, platelet count (Pl, Westergren erythrocyte sedimentation rate (ESR, C-reactive protein (CRP, albumin, DAS and DAS28. Bone mineralization was measured by dual-energy X-ray absorptiometry (DXA of lumbar spine L1-L4. Assessments of bone metabolism included osteocalcin, C-terminal telopeptide (CTT, parathyroid hormone (PTH, total and ionized calcium, inorganic phosphate and total alkaline phosphatase (TAP. BclI polymorphism was genotyped by polymerase chain reaction restriction fragment length polymorphism. Results No association was observed between glucocorticoid receptor gene polymorphism and the presence or absence of JIA. In girls with JIA, the presence of the G allele was associated with an unfavorable arthritis course, a younger age of onset of arthritis (p = 0.0017, and higher inflammatory activity. The higher inflammatory activity was demonstrated by the following: increased time of morning stiffness (p = 0.02, VAS (p = 0.014, RAI (p = 0.048, DAS (p = 0.035, DAS28 (p = 0.05, Pl (p = 0.003, L (p = 0.046, CRP (p = 0.01. In addition, these patients had bone metabolism disturbances as follows: decreased BA (p = 0.0001, BMC (p = 0.00007, BMD (0.005 and Z score (p = 0.002; and

  4. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community.

    Science.gov (United States)

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Lowry, Christopher A; Francis, Clinton D

    2018-01-23

    Anthropogenic noise is a pervasive pollutant that decreases environmental quality by disrupting a suite of behaviors vital to perception and communication. However, even within populations of noise-sensitive species, individuals still select breeding sites located within areas exposed to high noise levels, with largely unknown physiological and fitness consequences. We use a study system in the natural gas fields of northern New Mexico to test the prediction that exposure to noise causes glucocorticoid-signaling dysfunction and decreases fitness in a community of secondary cavity-nesting birds. In accordance with these predictions, and across all species, we find strong support for noise exposure decreasing baseline corticosterone in adults and nestlings and, conversely, increasing acute stressor-induced corticosterone in nestlings. We also document fitness consequences with increased noise in the form of reduced hatching success in the western bluebird ( Sialia mexicana ), the species most likely to nest in noisiest environments. Nestlings of all three species exhibited accelerated growth of both feathers and body size at intermediate noise amplitudes compared with lower or higher amplitudes. Our results are consistent with recent experimental laboratory studies and show that noise functions as a chronic, inescapable stressor. Anthropogenic noise likely impairs environmental risk perception by species relying on acoustic cues and ultimately leads to impacts on fitness. Our work, when taken together with recent efforts to document noise across the landscape, implies potential widespread, noise-induced chronic stress coupled with reduced fitness for many species reliant on acoustic cues.

  5. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  6. Combined prevalence of impaired glucose level or diabetes and its correlates in Lusaka urban district, Zambia: a population based survey

    Directory of Open Access Journals (Sweden)

    Nsakashalo-Senkwe Mutale

    2011-01-01

    Full Text Available Abstract Background Developing countries are undergoing an epidemiological transition, from Communicable or Infectious to 'Non-Communicable' diseases (NCDs, such that cardiovascular disease, chronic respiratory diseases, cancer, and diabetes were responsible for 60% of all deaths globally in 2005, with more than 75% of these deaths occurring in developing countries. A survey was conducted to determine among other objectives the prevalence of diabetes and its association with physical fitness and biological factors. Methods A cross sectional study utilizing a modified World Health Organization's STEPwise approach to surveillance of NCDs was conducted in Lusaka district, Zambia. A multi-stage cluster sampling technique was used to select study participants of age 25 years or older. All eligible members of a household that was selected were invited to participate in the study. Unadjusted odds ratios (OR, and adjusted odds ratios (AOR together with their 95% Confidence Intervals (CI were obtained using Complex samples logistic regression Results A total of 1928 individuals participated in the survey, of which 33.0% were males. About half of the participants were of age 25-34 years (53.2%, and about a third of the respondents had attained secondary level of education (35.8%. The combined prevalence for impaired glucose level or diabetes was 4.0%. Age and mild hypertension were significantly associated with impaired levels of glucose or diabetes. Compared to participants in the age group 25-34 years, older participants were more likely to have impaired glucose level or diabetes (AOR = 2.49 (95%CI [1.35, 2.92] for 35-44 years age group, and AOR = 3.80 (95%CI [2.00, 7.23] for 45 + years age group. Mild hypertension was associated with impaired glucose level or diabetes (AOR = 2.57 (95%CI [1.44, 4.57]. Conclusions The prevalence of diabetes in Lusaka district has not reached an alarming level and it is now that interventions targeting the younger age

  7. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  8. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  9. The impact of later trading hours for hotels (public houses) on breath alcohol levels of apprehended impaired drivers.

    Science.gov (United States)

    Chikritzhs, Tanya; Stockwell, Tim

    2007-10-01

    To examine the impact of extended trading permits (ETPs) for licensed hotels in Perth, Western Australia on impaired driver breath alcohol levels (BALs) between July 1993 and June 1997. Forty-three hotels obtained ETPs allowing later closing hours and 130 maintained standard closing time (controls). Impaired driver BALs were linked to 'last place of drinking' hotels. Before and after period BALs of drivers who last drank at ETP or non-ETP hotels were compared by time of day of apprehension and sex, controlling for age. Impaired female drivers apprehended between 10.01 p.m. and 12 midnight (before closing time) had significantly lower BALs after drinking at ETP hotels. Male drivers aged 18-25 years and apprehended between 12.01 and 2.00 a.m. after drinking at ETP hotels had significantly higher BALs than drivers who drank at non-ETP hotels. At peak times for alcohol-related offences, late trading is associated with higher BALs among those drinkers most at risk of alcohol-related harm.

  10. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  11. Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator

    NARCIS (Netherlands)

    Zalachoras, I.; Houtman, R.; Atucha, E.; Devos, R.; Tijssen, A.M.I.; Hu, P.; Lockey, P.M.; Datson, N.A.; Belanoff, J.K.; Lucassen, P.J.; Joëls, M.; de Kloet, E.R.; Roozendaal, B.; Hunt, H.; Meijer, O.C.

    2013-01-01

    Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels.

  12. Hormones, stress, and cognition: The effects of glucocorticoids and oxytocin on memory

    Science.gov (United States)

    Wirth, Michelle M.

    2014-01-01

    Hormones have nuanced effects on learning and memory processes. The degree and direction of the effect (e.g., is memory impaired or enhanced?) depends on the dose, type and stage of memory, and type of material being learned, among other factors. This review will focus on two specific topics within the realm of effects of hormones on memory: (1) How glucocorticoids (the output hormones of the hypothalamic-pituitary-adrenal axis) affect long-term memory consolidation, retrieval, and working memory, with a focus on neural mechanisms and effects of emotion; and (2) How oxytocin affects memory, with emphasis on a speculative hypothesis that oxytocin might exert its myriad effects on human social cognition and behavior via impacts on more general cognitive processes. Oxytocin-glucocorticoid interactions will be briefly addressed. These effects of hormones on memory will also be considered from an evolutionary perspective. PMID:25893159

  13. The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids

    Science.gov (United States)

    Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.

    2015-01-01

    The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907

  14. Assessment of faecal glucocorticoid metabolite excretion in captive female fishing cats (Prionailurus viverinus) in Thailand

    Science.gov (United States)

    Khonmee, Jaruwan; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Thitaram, Chatchote; Somgird, Chaleamchat; Punyapornwithaya, Veerasak; Brown, Janine L.

    2016-01-01

    There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (∼60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1–2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P < 0.05) during the winter (1.54 ± 0.04 µg/g) and rainy season (1.43 ± 0.04 µg/g) compared with the summer (1.22 ± 0.05 µg/g). Significant relationships were found between faecal glucocorticoids and rainfall (positive) and day length (negative), but not a temperature–humidity index. This is the first study to assess adrenal steroidogenic activity in female fishing cats, and we found that glucocorticoid metabolite production was influenced by seasonal factors, but not by age. We conclude that weather patterns should be taken into consideration in future studies of glucocorticoid activity in this endangered species, especially those studies aimed at improving captive management to create self-sustaining and healthy populations. PMID:27293767

  15. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling.

    Science.gov (United States)

    Qi, Weiwei; Yang, Chuan; Dai, Zhiyu; Che, Di; Feng, Juan; Mao, Yuling; Cheng, Rui; Wang, Zhongxiao; He, Xuemin; Zhou, Ti; Gu, Xiaoqiong; Yan, Li; Yang, Xia; Ma, Jian-Xing; Gao, Guoquan

    2015-04-01

    Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/β-catenin signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  17. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease.

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  18. Independent association of glucocorticoids with damage accrual in SLE.

    Science.gov (United States)

    Apostolopoulos, Diane; Kandane-Rathnayake, Rangi; Raghunath, Sudha; Hoi, Alberta; Nikpour, Mandana; Morand, Eric F

    2016-01-01

    To determine factors associated with damage accrual in a prospective cohort of patients with SLE. Patients with SLE who attended the Lupus Clinic at Monash Health, Australia, between 2007 and 2013 were studied. Clinical variables included disease activity (Systemic Lupus Erythematosus Disease Activity Index-2K, SLEDAI-2K), time-adjusted mean SLEDAI, cumulative glucocorticoid dose and organ damage (Systemic Lupus International Collaborating Clinics Damage Index (SDI)). Multivariate logistic regression analyses were performed to identify factors associated with damage accrual. A total of 162 patients were observed over a median (IQR) 3.6 (2.0-4.7) years. Seventy-five per cent (n=121) of patients received glucocorticoids. Damage accrual was significantly more frequent in glucocorticoid-exposed patients (42% vs 15%, p<0.01). Higher glucocorticoid exposure was independently associated with overall damage accrual after controlling for factors including ethnicity and disease activity and was significant at time-adjusted mean doses above 4.42 mg prednisolone/day; the OR of damage accrual in patients in the highest quartile of cumulative glucocorticoid exposure was over 10. Glucocorticoid exposure was independently associated with damage accrual in glucocorticoid-related and non-glucocorticoid related domains of the SDI. Glucocorticoid use is independently associated with the accrual of damage in SLE, including in non-glucocorticoid related domains.

  19. A meal replacement regimen improves blood glucose levels in prediabetic healthy individuals with impaired fasting glucose.

    Science.gov (United States)

    König, Daniel; Kookhan, Sadaf; Schaffner, Denise; Deibert, Peter; Berg, Aloys

    2014-01-01

    The aim of this study was to investigate the effect of a 6-wk intervention with either lifestyle intervention (increased physical activity and a low-calorie diet) or a meal replacement regimen on glycemic control in patients who are prediabetic and have impaired fasting glucose. Forty-two overweight or obese men and women (age 54 ± 8 y; weight 95.1 ± 11.9 kg; body mass index [BMI] 32.8 ± 2.89 kg/m(2)) were included in this randomized controlled clinical trial. Patients in the lifestyle group (LS; n = 14) received dietary counseling sessions (fat-restricted low-calorie diet) and instructions on how to increase physical activity. Patients in the meal replacement group (MR; n = 28) were instructed to replace two daily meals with a low-calorie, high soy-protein drink with a low glycemic index. Both interventions resulted in a significant decrease in body weight and BMI, although the reduction was more pronounced (P meal replacement is an effective intervention for rapid improvement of elevated fasting glucose and increased insulin concentrations, these being important biomarkers of the prediabetic state. The 6-wk intervention has shown that the effect of meal replacement on fasting blood glucose was comparable to the effect of lifestyle intervention. The alterations in BMI, insulin, and HOMA-IR were significantly more pronounced following the meal replacement regimen. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Efficacy of Vitamin K2 for Glucocorticoid-induced Osteoporosis in Patients with Systemic Autoimmune Diseases.

    Science.gov (United States)

    Shikano, Kotaro; Kaneko, Kaichi; Kawazoe, Mai; Kaburaki, Makoto; Hasunuma, Tomoko; Kawai, Shinichi

    2016-01-01

    Objective Vitamin K2 (menatetrenone) is an effective treatment for patients with postmenopausal osteoporosis. We herein performed a subanalysis of patients with systemic autoimmune diseases undergoing glucocorticoid therapy in our previous prospective study. Methods Sixty patients were categorized into a group with vitamin K2 treatment (n=20, Group A) and a group without vitamin K2 treatment (n=40, Group B). All patients were treated with bisphosphonates. Results Serum levels of osteocalcin and undercarboxylated osteocalcin decreased significantly after the start of glucocorticoid therapy in both groups, while the serum osteocalcin level was significantly higher in Group A than Group B during the third (p=0.0250) and fourth weeks (p=0.0155). The serum level of the N-terminal peptide of type I procollagen, a bone formation marker, decreased during glucocorticoid therapy, but was significantly higher in Group A than Group B during the fourth week (p=0.0400). The bone mineral density and fracture rate showed no significant differences between the two groups. Conclusion Although vitamin K2 improves bone turnover markers in patients with osteoporosis on glucocorticoid therapy, it has no significant effect on the bone mineral density and fracture rate after 1.5 years of treatment.

  1. Chewing ameliorates stress-induced suppression of spatial memory by increasing glucocorticoid receptor expression in the hippocampus.

    Science.gov (United States)

    Miyake, Shinjiro; Yoshikawa, Gota; Yamada, Kentaro; Sasaguri, Ken-Ichi; Yamamoto, Toshiharu; Onozuka, Minoru; Sato, Sadao

    2012-03-29

    Chewing alters hypothalamic-pituitary-adrenal axis function and improves the ability to cope with stress in rodents. Given that stress negatively influences hippocampus-dependent learning and memory, we aimed to elucidate whether masticatory movements, namely chewing, improve the stress-induced impairment of spatial memory in conjunction with increased hippocampal glucocorticoid receptor expression. Male Sprague-Dawley rats were subjected to restraint stress by immobilization for 2h: the stress with chewing (SC) group were allowed to chew on a wooden stick during the latter half of the immobilization period, whereas the stress without chewing (ST) group were not allowed to do so. Performance in the Morris water maze test was significantly impaired in the ST group compared with the SC group. Further, the numbers of glucocorticoid receptor immunopositive neurons in the hippocampal cornu ammonis 1 region were significantly lower in the ST group than in the control and SC groups. The control and SC rats showed no significant differences in both the water maze performance and the numbers of glucocorticoid receptor-immunopositive neurons. The immunohistochemical finding correlated with the performance in the water maze test. These results suggest that chewing is a behavioral mechanism to cope with stress by increasing hippocampal glucocorticoid receptor expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids.

    Science.gov (United States)

    Wheelan, Nicola; Kenyon, Christopher J; Harris, Anjanette P; Cairns, Carolynn; Al Dujaili, Emad; Seckl, Jonathan R; Yau, Joyce L W

    2018-03-01

    Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  4. Plasma lipoprotein(a levels are associated with mild renal impairment in type 2 diabetics independent of albuminuria.

    Directory of Open Access Journals (Sweden)

    Jennie Lin

    Full Text Available CKD, an independent risk factor for CV disease, increases mortality in T2DM. Treating modifiable CV risk factors decreases mortality in diabetics with microalbuminuria, but the role of early CV prevention in diabetics with mild CKD by GFR criteria alone remains unclear. The purpose of this study was to probe whether T2DM patients with mild GFR impairment have atherogenic lipid profiles compared to diabetic counterparts with normal renal function.In the Penn Diabetes Heart Study (PDHS, a single-center observational cohort of T2DM patients without clinical CVD, cross-sectional analyses were performed for directly measured lipid fractions in 1852 subjects with eGFR>60 mL/min/1.73 m² determined by the CKD-EPI equation (n = 1852. Unadjusted and multivariable analyses of eGFR association with log-transformed lipid parameters in incremental linear and logistic regression models (with eGFR 90 mL/min/1.73 m² as a cut-point were performed.Mild GFR impairment (eGFR 60-90 mL/min/1.73 m², median urinary ACR 5.25 mg/g was associated with higher log-transformed Lp(a values (OR 1.17, p = 0.005 and with clinically atherogenic Lp(a levels above 30 mg/dL (OR 1.35, p = 0.013 even after full adjustment for demographics, medications, metabolic parameters, and albuminuria. Logistic regression demonstrated a trend towards significance between worse kidney function and apoB (p = 0.17 as well as apoC-III (p = 0.067 in the fully adjusted model.Elevated Lp(a levels have a robust association with mild GFR impairment in type 2 diabetics independent of race, insulin resistance, and albuminuria.

  5. Safety and tolerability of high doses of glucocorticoides

    Directory of Open Access Journals (Sweden)

    Rakić Branislava D.

    2016-01-01

    Full Text Available Introduction: Treatment of acute lymphoblastic leukemia includes the use of high doses of glucocorticoides (prednisone and dexamethasone, which significantly increase the success of therapy due to lymphocytolitic effect. The aim: The aim of the study was to determine tolerability of high doses of prednisone and dexamethasone in children with acute lymphoblastic leukemia and the structure and the intensity of adverse effects, occurred after application of these medicines. Subjects and methods: In a prospective study, we analyzed adverse effects of high doses of glucocorticoides in children suffering acute lymphoblastic leukemia treated in the Institute for Child and Youth Health Care of Vojvodina, since December 2010. until October 2014, were analyzed. This study included 18 patients, aged from 2 to 15 years. Results: Hyperglycemia appeared in 89% of patients treated with prednisone and in 61% of patients treated with dexamethasone. In order to control the high blood glucose level (above 10 mmol /L, in 11% of patients insulin was used. Hypertension appeared in 28% patients treated with prednisone and dexamethasone. Antihypertensives were needed for regulation in 17% patients. Hypopotassemia and hypocalcaemia were significantly more expressed after the use of prednisone in comparison to dexamethasone. In 11% of patients, the treatment with dexamethasone caused depressive behavior, followed by agitation. Conclusion: Adverse effects of dexamethasone and prednisone, administered in high doses in children with ALL were known, expected and reversible. Adverse reactions usually disappeared spontaneously or after short-term symptomatic therapy.

  6. Simultaneous reflection masking: dependency on direct sound level and hearing-impairment

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Mihai, Paul Glad

    2008-01-01

    B-SL direct sound level, NH-listeners showed a binaural suppression effect for delays smaller than 7-10 ms and a binaural enhancement effect for larger delays. When decreasing the direct sound level to 15 dB-SL, the only significant change observed was that the dichotic RMT increased for delays larger than...... expected from changed auditory filter bandwidth and audi-bility. However, the stimulus level-dependency of the auditory filters’ bandwidth was not reflected in the SRMT data....

  7. Glucocorticoid Availability in Colonic Inflammation of Rat

    Czech Academy of Sciences Publication Activity Database

    Ergang, Peter; Leden, Pavel; Bryndová, Jana; Žbánková, Šárka; Mikšík, Ivan; Kment, M.; Pácha, Jiří

    2008-01-01

    Roč. 53, č. 8 (2008), s. 2160-2167 ISSN 0163-2116 R&D Projects: GA MZd(CZ) NR8576; GA ČR GA305/07/0328 Grant - others:Univerzita Karlova(CZ) 77/2006C Institutional research plan: CEZ:AV0Z50110509 Keywords : glucocorticoids * 11beta hydroxisteroid dehydrogenase 1 Subject RIV: ED - Physiology Impact factor: 1.583, year: 2008

  8. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    International Nuclear Information System (INIS)

    Geest, Rick van der; Ouweneel, Amber B.; Sluis, Ronald J. van der; Groen, Albert K.; Van Eck, Miranda; Hoekstra, Menno

    2016-01-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  9. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Geest, Rick van der, E-mail: r.van.der.geest@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Ouweneel, Amber B., E-mail: a.b.ouweneel@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Sluis, Ronald J. van der, E-mail: r.vandersluis@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Groen, Albert K., E-mail: a.k.groen@umcg.nl [University Medical Center Groningen (Netherlands); Van Eck, Miranda, E-mail: m.eck@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Hoekstra, Menno, E-mail: hoekstra@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands)

    2016-09-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  10. THE RELATIONSHIP BETWEEN COGNITIVE IMPAIRMENT AND THE LEVEL OF BDNF IN YOUNG PEOPLE

    Directory of Open Access Journals (Sweden)

    Надежда Павловна Белоусова

    2017-10-01

    As a result of the study, the average BDNF level was exceeded by more than 20 % in young people compared with representatives of the middle-aged group. In young people, the decline in cognitive functions correlates with an increase in the level of BDNF, which, on the one hand, can be explained both by higher regenerative abilities of the young organism and as a prerequisite for explaining the pathogenetic aspects of the initial manifestations of cognitive deficits.

  11. Exogenous galanin attenuates spatial memory impairment and decreases hippocampal β-amyloid levels in rat model of Alzheimer's disease.

    Science.gov (United States)

    Li, Lei; Yu, Liling; Kong, Qingxia

    2013-11-01

    One of the major pathological characteristics of Alzheimer's disease (AD) is the presence of enhanced deposits of beta-amyloid peptide (Aβ). The neuropeptide galanin (GAL) and its receptors are overexpressed in degenerating brain regions in AD. The functional consequences of galaninergic systems plasticity in AD are unclear. The objective of the present study was to investigate whether exogenous galanin could attenuate spatial memory impairment and hippocampal Aβ aggregation in rat model of AD. The effects of Aβ, galanin, galanin receptor 1 agonist M617 and galanin receptor 2 agonist AR-M1896 on spatial memory were tested by Morris water maze. The effects of Aβ, galanin, M617 and AR-M1896 on hippocampal Aβ protein expression were evaluated by western blot assay. The expression of galanin, galanin receptors 1 and 2 in rats' hippocampus were detected by real time PCR and western blot assay. The results showed that (1) Galanin administration was effective in improving the spatial memory and decreasing hippocampal Aβ levels after intracerebroventricular injection of Aβ; (2) AR-M1896 rather than M617 could imitate these effects of galanin; (3) GAL and GALR2 mRNA and protein levels increased significantly in hippocampus after Aβ administration, while GALR1 mRNA and protein levels did not change; (4) GAL, AR-M1896 and M617 administration did not show significant effect on GAL, GalR1 and GalR2 mRNA and protein levels in hippocampus after Aβ administration. These results implied that galanin receptor 2, but not receptor 1 was involved in the protective effects against spatial memory impairment and hippocampal Aβ aggregation.

  12. Brain-Derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study

    Science.gov (United States)

    Diniz, Breno Satler; Reynolds, Charles F.; Begley, Amy; Dew, Mary Amanda; Anderson, Stewart J.; Lotrich, Francis; Erickson, Kirk I.; Lopez, Oscar; Aizenstein, Howard; Sibille, Etienne L.; Butters, Meryl A.

    2014-01-01

    Changes in brain-derived neurotrophic factor (BDNF) level are implicated in the pathophysiology of cognitive decline in depression and neurodegenerative disorders in older adults. We aimed to evaluate the longitudinal association over two years between BDNF and persistent cognitive decline in individuals with remitted late-life depression and Mild Cognitive Impairment (LLD+MCI) compared to either individuals with remitted LLD and no cognitive decline (LLD+NCD) or never-depressed, cognitively normal, elderly control participants. We additionally evaluated the effect of double-blind, placebo-controlled donepezil treatment on BDNF levels in all of the remitted LLD participants (across the levels of cognitive function). We included 160 elderly participants in this study (72 LLD+NCD, 55 LLD+MCI and 33 never-depressed cognitively normal elderly participants). At the same visits, cognitive assessments were conducted and blood sampling to determine serum BDNF levels were collected at baseline assessment and after one and two years of follow-up. We utilized repeated measure, mixed effect models to assess: (1) the effects of diagnosis (LLD+MCI, LLD+NCD, and controls), time, and their interaction on BDNF levels; and (2) the effects of donepezil treatment (donepezil vs. placebo), time, baseline diagnosis (LLD+MCI vs. LLD+NCD), and interactions between these contrasts on BDNF levels. We found a significant effect of time on BDNF level (p=0.02) and a significant decline in BDNF levels over 2 years of follow-up in participants with LLD+MCI (p=0.004) and controls (p=0.04). We found no effect of donepezil treatment on BDNF level. The present results suggest that aging is an important factor related to decline in BDNF level. PMID:24290367

  13. Glucocorticoid actions on L6 muscle cells in culture

    International Nuclear Information System (INIS)

    Max, S.R.; Konagaya, M.; Konagaya, Y.

    1986-01-01

    Glucocorticoids exert striking catabolic effects on skeletal muscle. The mechanism of these effects remains poorly understood. They employed L6 muscle cells in culture to ascertain whether intracellular glucocorticoid receptors are involved. Studies in vitro permit exploration of glucocorticoid effects in the absence of other hormonal influences. L6 myoblasts were induced to form differentiated myotubes by growth in 1% serum. L6 myotubes were found to possess a high-affinity, limited capacity intracellular glucocorticoid receptor (apparent K/sub D/ = 5 x 10 -10 M; B/sub max/ = 711 pmols/g protein) with ligand specificity similar to that of glucocorticoid receptors from classical glucocorticoid target tissues. Further, [ 3 H] triamcinolone acetonide specific binding to L6 cell homogenates was blocked by a glucocorticoid antagonist, RU38486 (11β-(4-dimethyl-aminophenyl)-17β-hydroxy-17α-(prop-l-ynyl)-estra-4,9-dien-3-one). Dexamethasone (10 -5 M) caused a 10-fold increase in the activity of gluatmine synthetase in L6 myotubes; this increase was prevented by RU38486. Similarly, dexamethasone (10 -5 M) caused a 20% decrease in [ 12 C] leucine incorporation into protein. This effect also was blocked by RU38486. Thus, induction of glutamine synthetase and diminution of protein synthesis by dexamethasone require intracellular glucocorticoid receptors. L6 cells should prove particularly valuable for further studies of glucocorticoid actions on skeletal muscle

  14. Familial glucocorticoid deficiency presenting with generalized hyperpigmentation in an Egyptian child: a case report

    Directory of Open Access Journals (Sweden)

    Metwalley Kotb A

    2012-04-01

    Full Text Available Abstract Introduction Familial glucocorticoid deficiency, or hereditary unresponsiveness to adrenocorticotropic hormone, is a rare autosomal recessive disease characterized by glucocorticoid deficiency in the absence of mineralocorticoid deficiency. It may present in infancy or early childhood with hyperpigmentation, failure to thrive, recurrent infections, hypoglycemic attacks and convulsions that may result in coma or death. Here, we report the case of an 18-month-old Egyptian boy with familial glucocorticoid deficiency. Case presentation An 18-month-old Egyptian boy was referred to our institution for evaluation of generalized hyperpigmentation of the body associated with recurrent convulsions; one of his siblings, who had died at the age of nine months, also had generalized hyperpigmentation of the body. The initial clinical examination revealed generalized symmetrical deep hyperpigmentation of the body as well as hypotonia, normal blood pressure and normal male genitalia. He had low blood glucose and cortisol levels, normal aldosterone and high adrenocorticotropic hormone levels. Based on the above mentioned data, a provisional diagnosis of familial glucocorticoid deficiency was made, which was confirmed by a molecular genetics study. Oral hydrocortisone treatment at a dose of 10 mg/m2/day was started. The child was followed up after two months of treatment; the hyperpigmentation has lessened in comparison with his initial presentation and his blood sugar and cortisol levels were normalized. Conclusion Familial glucocorticoid deficiency is a rare, treatable disease that can be easily missed due to nonspecific presentations. The consequences of delayed diagnosis and treatment are associated with high rates of morbidity and mortality.

  15. Associations between Depressive State and Impaired Higher-Level Functional Capacity in the Elderly with Long-Term Care Requirements.

    Science.gov (United States)

    Ogata, Soshiro; Hayashi, Chisato; Sugiura, Keiko; Hayakawa, Kazuo

    2015-01-01

    Depressive state has been reported to be significantly associated with higher-level functional capacity among community-dwelling elderly. However, few studies have investigated the associations among people with long-term care requirements. We aimed to investigate the associations between depressive state and higher-level functional capacity and obtain marginal odds ratios using propensity score analyses in people with long-term care requirements. We conducted a cross-sectional study based on participants aged ≥ 65 years (n = 545) who were community dwelling and used outpatient care services for long-term preventive care. We measured higher-level functional capacity, depressive state, and possible confounders. Then, we estimated the marginal odds ratios (i.e., the change in odds of impaired higher-level functional capacity if all versus no participants were exposed to depressive state) by logistic models using generalized linear models with the inverse probability of treatment weighting (IPTW) for propensity score and design-based standard errors. Depressive state was used as the exposure variable and higher-level functional capacity as the outcome variable. The all absolute standardized differences after the IPTW using the propensity scores were functional capacity.

  16. Assessment of the Prevalence and Risk Factors Associated With Glucocorticoid-Induced Diabetes Mellitus in Pemphigus Vulgaris Patients.

    Science.gov (United States)

    Darjani, Abbas; Nickhah, Nahid; Hedayati Emami, Mohammad Hassan; Alizadeh, Narges; Rafiei, Rana; Eftekhari, Hojat; Gharaei Nejad, Kaveh

    2017-06-01

    Pemphigus vulgaris is a chronic autoimmune disease and glucocorticoids are one of the main treatments. Our study investigates the prevalence and associated factors of glucocorticoid-induced diabetes mellitus in these patients under different glucocorticoid regimens. 36 patients with first diagnosed Pemphigus vulgaris based on pathological and direct immunofluorescence findings who had received different glucocorticoid regimens (1-2 mg/kg oral or 1-2 mg/kg oral with 1g methylprednisolone pulse daily for 3 consecutive days with or without azathioprine) were evaluated during 2014-2016. Our study found that 22.2% of patients had impaired fasting glucose and incidence of corticosteroid-induced diabetes mellitus was 22.2% with no difference between oral and pulse therapy of corticosteroid. The first day after pulse therapy 19 patients of 21 had post bolus hyperglycemia that 36% of them became diabetic after 8 weeks. None of the variables, including age, BMI, HbA1c, LDL, HDL, TG, cholesterol, family history and blood pressure were associated with diabetes. Pretreatment FBS was the factor that would increase the likelihood of glucocorticoid-induced diabetes mellitus, 42.2% of patients with pretreatment FBS 100-126 developed diabetes in comparison with 17.2% in normal pretreatment FBS. Although the group who received azathioprine was associated with increased incidence of diabetes, the overall corticosteroid dose in this group was significantly higher than the other group (P=0.012), and controversy with other studies could be because of difference in corticosteroid dosage and small number of patients. The incidence of diabetes was not different between the group with glucocorticoid pulses and oral prednisolone without pulse therapy. Higher pretreatment FBS can be related to increased incidence of diabetes, but results from this study due to small number of patients are preliminary and multicenter studies are needed.

  17. Varicocele Is Associated with Impaired Semen Quality and Reproductive Hormone Levels

    DEFF Research Database (Denmark)

    Damsgaard, Jakob; Joensen, Ulla N; Carlsen, Elisabeth

    2016-01-01

    BACKGROUND: Present knowledge on the impact of varicoceles on testicular function is largely based on studies of subfertile and infertile men, making it difficult to extrapolate the impact of varicocele on the general population. OBJECTIVE: To describe associations between varicocele and testicular......-3 varicocele. Increasing varicocele grade was associated with poorer semen quality, even in grade 1 varicocele. In grade 3 varicocele, sperm concentration was less than half of that in men with no varicocele. Presence of varicocele was also associated with higher serum levels of follicle-stimulating hormone...... an adverse effect of increasing grade of varicocele on testicular function in men not selected due to fertility status. PATIENT SUMMARY: The presence and increasing grade of varicocele is adversely associated with semen quality and reproductive hormone levels in young men from the general population....

  18. Increased Prolactin Levels Are Associated with Impaired Processing Speed in Subjects with Early Psychosis

    OpenAIRE

    Montalvo, Itziar; Gutiérrez-Zotes, Alfonso; Creus, Marta; Monseny, Rosa; Ortega, Laura; Franch, Joan; Lawrie, Stephen M.; Reynolds, Rebecca M.; Vilella, Elisabet; Labad, Javier

    2014-01-01

    Hyperprolactinaemia, a common side effect of some antipsychotic drugs, is also present in drug-naïve psychotic patients and subjects at risk for psychosis. Recent studies in non-psychiatric populations suggest that increased prolactin may have negative effects on cognition. The aim of our study was to explore whether high plasma prolactin levels are associated with poorer cognitive functioning in subjects with early psychoses. We studied 107 participants: 29 healthy subjects and 78 subjects w...

  19. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    Science.gov (United States)

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  2. Puff and bite: the relationship between the glucocorticoid stress response and anti-predator performance in checkered puffer (Sphoeroides testudineus).

    Science.gov (United States)

    Cull, Felicia; O'Connor, Constance M; Suski, Cory D; Shultz, Aaron D; Danylchuk, Andy J; Cooke, Steven J

    2015-04-01

    Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  4. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage.

    Science.gov (United States)

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (Pmyostatin. DEX increased (P0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (Pmyostatin (P 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.

  5. Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.

    Science.gov (United States)

    Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A

    2008-05-01

    Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.

  6. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    International Nuclear Information System (INIS)

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-01-01

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARγ) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARγ-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARγ activation in an AD mouse model.

  7. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Madsen, Andreas Nygaard; Kristensen, Line Vildbrad

    2015-01-01

    In order to characterize mechanisms responsible for fat accumulation we used a selectively bred obesity-prone (OP) and obesity-resistant (OR) rat model, where the rats were fed a Western diet for 76 days. Body composition was assessed by MRI scans and as expected the OP rats developed a higher...... likewise had higher RER values indicating that this trait may be a primary and contributing factor to their obese phenotype. When the adult obese rats were exposed to the orexigenic and adipogenic hormone ghrelin, we observed increased RER values in both OP and OR rats, while OR rats were more sensitive...... to ghrelin's orexigenic effects as well as ghrelin-induced attenuation of activity and energy expenditure. Thus, increased fat accumulation characterizing obesity may be caused by impaired oxidative capacity due to decreased carnitine palmitoyltransferase 1b levels in the white adipose tissue, while ghrelin...

  8. Association between iron level, glucose impairment and increased DNA damage during pregnancy.

    Science.gov (United States)

    Zein, Salam; Rachidi, Samar; Shami, Nadine; Sharara, Iman; Cheikh-Ali, Khawla; Gauchez, Anne-Sophie; Moulis, Jean-Marc; Ayoubi, Jean-Marc; Salameh, Pascale; Hininger-Favier, Isabelle

    2017-09-01

    Elevated circulating ferritin has been reported to increase the risk of gestational diabetes mellitus (GDM). When high ferritin translates into high iron stores, iron excess is also a condition leading to free radical damage. We aimed to evaluate the relationship between oxidative stress (OS) induced by iron status and GDM risk in non iron-supplemented pregnant women. This was a pilot observational study conducted on 93 non-anemic pregnant women. Iron status was assessed at the first trimester of gestation. Blood sampling was done at 24-28 weeks' gestation for oral glucose tolerance test (OGTT), insulin and biological markers of oxidative damage tests. A significant increase in DNA damage was found in patients who developed GDM. Women with elevated DNA damage had a six-fold increased risk of developing GDM (Exp (B)=6.851, P=0.038; 95% CI [1.108-42.375]). The serum ferritin levels at first trimester were significantly correlated to lipid peroxidation (rho=0.24, p=0.012). The stratified analysis suggests that ferritin is a modifying factor for the correlation of oxidative stress (OS) and glucose intolerance. Moderate ferritin levels due to iron intake without iron-supplement, at early pregnancy is a modifying factor for the correlation of oxidative damage and glucose intolerance in pregnant women. Larger studies to evaluate the risk of food iron intake induced increased oxidative damage in offspring are warranted to propose nutrition advice regarding iron intake in women with a high risk of GDM. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Significance of glucocorticoids and their receptors in patients with nephritic syndrome

    International Nuclear Information System (INIS)

    Yang Liusong; Li Dapei; Liu Deyi; Wang Weiyue; Wang Haodan

    1996-01-01

    The glucocorticoid receptor (GCR) in 34 patients with nephritic syndrome (NS) and 40 normal controls is investigated by radioligand binding assay. The results show that the GCR levels of NS patients are correlated well with the treatment results by glucocorticoids (GC). These patients who are sensitive to GC treatment have much higher levels of GCR than those who are not responsive to GC treatment (P<0.01) and the normal controls. The plasma ACTH and cortisol in the same subjects are also measured and the results show that NS patients have much lower levels of these two hormones than the normal controls', but no significant correlation is noted between the levels and the GC treatment effects

  10. The influence of partial renal function impairment on thyroid hormones level in acute renal failure-ARF patients

    International Nuclear Information System (INIS)

    Ilic, S.; Vlajkovic, M.; Rajic, M.; Bogicevic, M.

    2002-01-01

    The aim of this study was to assess the relationship of thyroid hormone levels with glomerular and tubular renal function in ARF. In thirty one patients with different underlying diseases, glomerular filtration (GFR) was estimated by measuring 99mTc-DTPA clearance and tubular function by 131I-OIH clearance. The thyroid status was evaluated by radioimmunoassays of T4, FT4, T3, FT3, rT3 and TSH, while the cortisol level was used to indicate the stress role. All the measurements were performed within 7 days as well after 1,3,6 and 12 months from the ARF onset. The results obtained were compared with those of 30 healthy subjects. At the ARF beginning, the impairment of renal function was manifested by the fall of 99mTc-DTPA clearance to 21∫7ml/min and 131I-OIH clearance to 172±34ml/min, while end values were 77±19ml/min and 395±70ml/min, respectively. The hormone analysis within 7 days, showed T3 decrease to 1.21±0.16nmol/l and the increase rT3 to 38±7ng/1ooml, as well as cortisol to 350±71ng/ml, but at the end of the study these hormone levels were normalized. Other hormone levels didn't differ significantly from control values. Regression analysis established significant correlation of 99mTc-DTPA clearance with T3 (r=0.693, p 100, OIH>500), partial recovery (DTPA 51-100, OIH 250-500) and without any recovery (DTPA<50,OIH<250), showed hormone disturbances proportional to the degree of renal function damage. The most severe disorders were found in the third group, where both total and free T4 and T3 were lowered, while rT3 and cortisol elevated at 7th day from ARF onset. After 12 months all these values associated with that of TSH were observed as declined.This study suggests thyroid hormone levels to be dependent on the renal function in ARF. Greater impairment of glomerular related to tubular function appears to be more responsible for thyroid dysfunction, due to uremic toxins retention as well as stress induced by the extreme function failure

  11. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  12. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors.

    Science.gov (United States)

    Walker, Sophie E; Zanoletti, Olivia; Guillot de Suduiraut, Isabelle; Sandi, Carmen

    2017-10-01

    Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models. To address this, we generated three lines of Wistar rats selectively bred for the magnitude of their glucocorticoid responses following exposure to a variety of stressors over three consecutive days at juvenility. Here, we present findings following observations of a high level of variation in glucocorticoid responsiveness to stress in outbred Wistar rats, and the strong response to selection for this trait over a few generations. When challenged with different stressful challenges, rats from the three lines differed in their coping behaviors. Strikingly, the line with high glucocorticoid responsiveness to stress displayed enhanced aggression and anxiety-like behaviors. In addition, these rats also showed alterations in the expression of genes within both central and peripheral nodes of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced reactivity to acute stress exposure. Together, these findings strongly link differences in glucocorticoid responsiveness to stress with marked differences in coping styles. The developed rat lines are thus a promising model with which to examine the relationship between variation in reactivity of the HPA axis and stress-related pathophysiology and could be employed to assess the therapeutic potential of treatments modulating stress habituation to ameliorate psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Science.gov (United States)

    Ma, Gang; Yu, Jiang; Xiao, Yue; Chan, Danny; Gao, Bo; Hu, Jianxin; He, Yongxing; Guo, Shengzhen; Zhou, Jian; Zhang, Lingling; Gao, Linghan; Zhang, Wenjuan; Kang, Yan; Cheah, Kathryn SE; Feng, Guoyin; Guo, Xizhi; Wang, Yujiong; Zhou, Cong-zhao; He, Lin

    2011-01-01

    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. PMID:21537345

  14. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Occlusal Disharmony Transiently Impairs Learning and Memory in the Mouse by Increasing Dynorphin A Levels in the Amygdala.

    Science.gov (United States)

    Yamada, Kentaro; Ono, Yumie; Kubo, Kin-Ya; Yamamoto, Toshiharu; Onozuka, Minoru

    2013-05-01

    Occlusal disharmony sometimes causes not only stiffness of neck but also psychiatric depression, suggesting that the condition of oral cavity may affect the central nervous system. Dynorphin A is an endogenous opioid peptide that specifically binds the κ-opioid receptor and has a protective role against stress. Dynorphinergic nervous system is intensely distributed in the amygdala and hippocampus that are coping areas with stress. As a model of malocclusion, we placed dental resin on the molars to increase the occlusal vertical dimension (bite-raise). After various survival times, we analyzed the amygdala and hippocampus by immunohistochemistry and immunosorbent assay (ELISA). Furthermore, the effects on learning and memory were assessed by Morris water maze test. In the amygdala, the levels of dynorphin A were increased on the 1st day after increasing the vertical dimension as indicated by immunohistochemical and ELISA assessments. The levels of dynorphin A returned to control levels on the 5th day. In the hippocampus, there were no noticeable changes in dynorphin A levels. The water maze test indicated that increasing the vertical dimension caused longer escape latency times on the 3rd day compared to those of sham-operated group. However, the bite-raised mice treated with a dynorphin antagonist, nor-binaltorphimine, showed similar escape latency times to the times of sham-operated group, even on the 3rd day. These results suggest that occlusal disharmony causes stress resulting in a transient increase of dynorphin A levels at least in the amygdala and that the increased dynorphin A levels transiently impair learning and memory.

  16. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  17. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  18. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Kroon, Jan; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.; Grimm, S.; Storm, Gerrit; Metselaar, Josbert Maarten; Meijer, O.C.; Culig, Z.; van der Pluijm, M.

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  19. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T.; Van Der Horst, Geertje; Lemhemmer, Daniël; Marijt, Koen A.; Hwang, Ming S.; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Meijer, Onno C.; Culig, Zoran; Van Der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCA). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  20. Inflammation in Parkinson’s disease: Role of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Maria Trinidad eHerrero

    2015-04-01

    Full Text Available Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD. Studies in PDpatients show evidence of augmented levels of potent pro-inflammatory molecules e.g. TNF-α, iNOS,IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergicneurons are particularly vulnerable to activated glia releasing these toxic factors. Recent geneticstudies point to the role of immune system in the etiology of PD, thus in combination withenvironmental factors, both peripheral and CNS-mediated immune responses could play importantroles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are knownto mediate chronic inflammation, the roles of other immune-competent cells are less well understood.Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis.Glucocorticoids released from adrenal glands upon stimulation of HPA axis, in response to either cellinjury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both throughdirect transcriptional action on target genes and by indirectly inhibiting transcriptional activities oftranscriptional factors such as NF-kB, AP-1 or interferon regulatory factors. In PD patients, the HPAaxis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GRfunction in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucialeffect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover,glucocorticoids are also known to regulate human brain vasculature as well as blood brain barrierpermeability, any dysfunction in their actions may influence infiltration of cytotoxic moleculesresulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation ofGR actions is likely important in dopamine neuron degeneration throughestablishment of chronic inflammation.

  1. Adrenal gland hypofunction in active polymyalgia rheumatica. effect of glucocorticoid treatment on adrenal hormones and interleukin 6.

    Science.gov (United States)

    Cutolo, Maurizio; Straub, Rainer H; Foppiani, Luca; Prete, Camilla; Pulsatelli, Lia; Sulli, Alberto; Boiardi, Luigi; Macchioni, Pierluigi; Giusti, Massimo; Pizzorni, Carmen; Seriolo, Bruno; Salvarani, Carlo

    2002-04-01

    To evaluate hypothalamic-pituitary-adrenal (HPA) axis function in patients with recent onset polymyalgia rheumatica (PMR) not previously treated with glucocorticoids; and to detect possible correlations between adrenal hormone levels, interleukin 6 (IL-6), and other acute phase reactants at baseline and during 12 months of glucocorticoid treatment. Forty-one PMR patients of both sexes with recent onset disease and healthy sex and age matched controls were enrolled into a longitudinal study. Patients were monitored for serum cortisol, dehydroepiandrosterone sulfate (DHEAS), androstenedione (ASD), and clinical and laboratory measures of disease activity such as C-reactive protein and IL-6 concentrations at baseline and after 1, 3, 6, 9 and 12 months of glucocorticoid treatment. To assess dynamic HPA axis function, serum cortisol and plasma adrenocorticotropic hormone (ACTH) levels were evaluated in another 8 patients with recent onset PMR not treated with glucocorticoid in comparison to controls after challenge with ovine corticotropin releasing hormone (oCRH) test. In addition, serum cortisol and 17-hydroxyprogesterone (17-OHP) levels were evaluated after stimulation with low dose (1 microg) intravenous ACTH. Serum cortisol and ASD levels of all PMR patients at baseline did not differ from controls. During followup, cortisol levels dipped at one and 3 months. Serum DHEAS levels in all patients were significantly lower than in controls at baseline. In female PMR patients a significant correlation was found at baseline between cortisol levels and duration of disease. Serum concentrations of IL-6 at baseline were significantly higher in PMR patients than in controls. During 12 months of glucocorticoid treatment IL-6 levels dropped significantly at one month; thereafter they remained stable and did not increase again despite tapering of the glucocorticoid dose. After oCRH stimulation, a similar cortisol response was found in patients and controls. After ACTH

  2. Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: a novel therapeutic approach.

    Science.gov (United States)

    de Quervain, Dominique J-F; Margraf, Jürgen

    2008-04-07

    Post-traumatic stress disorder (PTSD) and phobias belong to the most common anxiety disorders and to the most common psychiatric illnesses in general. In both disorders, aversive memories are thought to play an important role in the pathogenesis and symptomatology. Previously, we have reported that elevated glucocorticoid levels inhibit memory retrieval in animals and healthy humans. We therefore hypothesized that the administration of glucocorticoids might also inhibit the retrieval of aversive memory, thereby reducing symptoms in patients with PTSD and phobias. In recent clinical studies, we found first evidence to support this hypothesis. In patients with PTSD, low-dose cortisol treatment for one month reduced symptoms of traumatic memories without causing adverse side effects. Furthermore, we found evidence for a prolonged effect of the cortisol treatment. Persistent retrieval and reconsolidation of traumatic memories is a process that keeps these memories vivid and thereby the disorder alive. By inhibiting memory retrieval, cortisol may weaken the traumatic memory trace, and thus reduce symptoms even beyond the treatment period. In patients with social phobia, we found that a single oral administration of cortisone 1 h before a socio-evaluative stressor significantly reduced self-reported fear during the anticipation-, exposure-, and recovery phase of the stressor. In subjects with spider phobia, repeated oral administration of cortisol 1 h before exposure to a spider photograph induced a progressive reduction of stimulus-induced fear. This effect was maintained when subjects were exposed to the stimulus again two days after the last cortisol administration, indicating that cortisol facilitated the extinction of phobic fear. In conclusion, by a common mechanism of reducing the retrieval of aversive memories, glucocorticoids may be suited for the treatment of PTSD as well as phobias. More studies are needed to further evaluate the therapeutic efficacy of

  3. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques

    Science.gov (United States)

    Kohn, Jordan N.; Snyder-Mackler, Noah; Barreiro, Luis B.; Johnson, Zachary P.; Tung, Jenny; Wilson, Mark E.

    2017-01-01

    Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed ‘social approachability’ and ‘boldness,’ which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. PMID:27639059

  4. Nelson`s syndrome associated with a somatic frame shift mutation in the glucocorticoid recepter gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Stratakis, C.A.; Chrousos, G.P.; Katz, D.A.; Ali, I.U.; Oldfield, E.H. [National Inst. of Neurological Disorders and Stroke, Bethesda, MD (United States)] [and others

    1996-01-01

    Nelson`s syndrome is the appearance and/or progression of ACTH-secreting pituitary macroadenomas in patients who had previously undergone bilateral adrenalectomy for Cushing`s disease. Extremely high plasma ACTH levels and aggressive neoplastic growth might be explained by the lack of appropriate glucocorticoid negative feedback due to defective glucocorticoid signal transduction. To study the glucocorticoid receptor (GR) gene in Nelson`s syndrome, DNA was extracted from pituitary adenomas and leukocytes of four patients with this condition and amplified by PCR for direct sequence analysis. In one of the tumors, a heterozygous mutation, consisting of an insertion of a thymine between complementary DNA nucleotides 1188 and 1189, was found in exon 2. This frame-shift mutation led to premature termination at amino acid residue 366 of the world-type coding sequence, excluding the expression of a functioning receptor protein from the defective allele. The mutation was not detected in the sequence of the GR gene in the patient`s leukocyte DNA, indicating a somatic origin. By lowering the receptor number in tumorous cells, this defect might have caused local resistance to negative glucocorticoid feedback similar to that caused by the presence of a null allele in a kindred with the generalized glucocorticoid resistance syndrome. P53 protein accumulation, previously reported in 60% of corticotropinomas, could not be detected in any of the four pituitary tumors examined by immunohistochemistry. We suggest that a somatic GR defect might have played a pathophysiological role in the tumorigenesis of the corticotropinoma bearing this mutation. 35 refs., 3 figs., 1 tab.

  5. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    International Nuclear Information System (INIS)

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  6. Composite Measures of Individual and Area-Level Socio-Economic Status Are Associated with Visual Impairment in Singapore

    Science.gov (United States)

    Wah, Win; Earnest, Arul; Sabanayagam, Charumathi; Cheng, Ching-Yu; Ong, Marcus Eng Hock; Wong, Tien Y.; Lamoureux, Ecosse L.

    2015-01-01

    Purpose To investigate the independent relationship of individual- and area-level socio-economic status (SES) with the presence and severity of visual impairment (VI) in an Asian population. Methods Cross-sectional data from 9993 Chinese, Malay and Indian adults aged 40–80 years who participated in the Singapore Epidemiology of eye Diseases (2004–2011) in Singapore. Based on the presenting visual acuity (PVA) in the better-seeing eye, VI was categorized into normal vision (logMAR≤0.30), low vision (logMAR>0.30Singapore census. A high SEDI score indicates a relatively poor SES. Associations between SES measures and presence and severity of VI were examined using multi-level, mixed-effects logistic and multinomial regression models. Results The age-adjusted prevalence of any VI was 19.62% (low vision = 19%, blindness = 0.62%). Both individual- and area-level SES were positively associated with any VI and low vision after adjusting for confounders. The odds ratio (95% confidence interval) of any VI was 2.11(1.88–2.37) for low-SES and 1.07(1.02–1.13) per 1 standard deviation increase in SEDI. When stratified by unilateral/bilateral categories, while low SES showed significant associations with all categories, SEDI showed a significant association with bilateral low vision only. The association between low SES and any VI remained significant among all age, gender and ethnic sub-groups. Although a consistent positive association was observed between area-level SEDI and any VI, the associations were significant among participants aged 40–65 years and male. Conclusion In this community-based sample of Asian adults, both individual- and area-level SES were independently associated with the presence and severity of VI. PMID:26555141

  7. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and woman. The Hoorn Study.

    NARCIS (Netherlands)

    Snijder, M.B.; Heine, R.J.; Seidell, J.C.; Bouter, L.M.; Stehouwer, C.D.A.; Nijpels, M.G.A.A.M.; Funahashi, T.; Matsuzawa, Y.; Shimonura, I.; Dekker, J.M.

    2006-01-01

    OBJECTIVE - Adiponectin is an adipose tissue- derived protein. Low levels are associated with obesity, insulin resistance, and type 2 diabetes. Our objective was to investigate the prospective association between adiponectin levels and the 6.4-year risk of type 2 diabetes and of impaired glucose

  8. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women : the hoorn study

    NARCIS (Netherlands)

    Snijder, Marieke B; Heine, Robert J; Seidell, Jacob C; Bouter, Lex M; Stehouwer, Coen D A; Nijpels, Giel; Funahashi, Tohru; Matsuzawa, Yuji; Shimomura, Iichiro; Dekker, Jacqueline M

    2006-01-01

    OBJECTIVE: Adiponectin is an adipose tissue-derived protein. Low levels are associated with obesity, insulin resistance, and type 2 diabetes. Our objective was to investigate the prospective association between adiponectin levels and the 6.4-year risk of type 2 diabetes and of impaired glucose

  9. Predictors of premenstrual impairment among women undergoing prospective assessment for premenstrual dysphoric disorder: a cycle-level analysis.

    Science.gov (United States)

    Schmalenberger, K M; Eisenlohr-Moul, T A; Surana, P; Rubinow, D R; Girdler, S S

    2017-07-01

    Women who experience significant premenstrual symptoms differ in the extent to which these symptoms cause cyclical impairment. This study clarifies the type and number of symptoms that best predict premenstrual impairment in a sample of women undergoing prospective assessment for premenstrual dysphoric disorder (PMDD) in a research setting. Central research goals were to determine (1) which emotional, psychological, and physical symptoms of PMDD are uniquely associated with premenstrual impairment, and (2) how many cyclical symptoms optimally predict the presence of a clinically significant premenstrual elevation of impairment. A total of 267 naturally cycling women recruited for retrospective report of premenstrual emotional symptoms completed daily symptom reports using the Daily Record of Severity of Problems (DRSP) and occupational, recreational, and relational impairment for 1-4 menstrual cycles (N = 563 cycles). Multilevel regression revealed that emotional, psychological, and physical symptoms differ in their associations with impairment. The core emotional symptoms of PMDD were predictors of impairment, but not after accounting for secondary psychological symptoms, which were the most robust predictors. The optimal number of premenstrual symptoms for predicting clinically significant premenstrual impairment was four. Results enhance our understanding of the type and number of premenstrual symptoms associated with premenstrual impairment among women being evaluated for PMDD in research contexts. Additional work is needed to determine whether cognitive symptoms should receive greater attention in the study of PMDD, and to revisit the usefulness of the five-symptom diagnostic threshold.

  10. Effects of environmental conditions, human activity, reproduction, antler cycle and grouping on fecal glucocorticoids of free-ranging Pampas deer stags (Ozotoceros bezoarticus bezoarticus).

    Science.gov (United States)

    Garcia Pereira, Ricardo José; Barbanti Duarte, José Maurício; Negrão, João Alberto

    2006-01-01

    In this study, a commercial enzyme immunoassay (EIA) was validated in detecting glucocorticoids in Pampas deer feces, in order to investigate the influence of several factors on the adrenocortical function. Fecal samples, behavioral data and information concerning male grouping and antlers status were collected at a monthly basis during a 1 year period from free-ranging stags living at Emas National Park, Brazil (18 degrees S/52 degrees W). The results revealed that concentrations of fecal glucocorticoids in winter were significantly higher than those corresponding to spring and summer. In addition, dry season data presented higher levels than during the wet season. Significant difference was found between fecal levels of breeding stags in summer and nonbreeding stags, whereas no difference was observed between breeding stags in winter and nonbreeding stags. On the other hand, males from areas with frequent human disturbance exhibited higher glucocorticoid concentrations and flight distances than individuals from areas of lower human activity. Males with antlers in velvet had elevated levels compared with animals in hard antler or antler casting. Also, we found that glucocorticoid levels were higher in groups with three or more males than in groups with only one male. The flight distances showed positive correlation with fecal glucocorticoid. These data indicate that fecal glucocorticoid provides a useful approach in the evaluation of physiological effects of environment, inter-individuals relationship and human-induced stressors on free-ranging Pampas deer stags.

  11. Composite Measures of Individual and Area-Level Socio-Economic Status Are Associated with Visual Impairment in Singapore.

    Directory of Open Access Journals (Sweden)

    Win Wah

    Full Text Available To investigate the independent relationship of individual- and area-level socio-economic status (SES with the presence and severity of visual impairment (VI in an Asian population.Cross-sectional data from 9993 Chinese, Malay and Indian adults aged 40-80 years who participated in the Singapore Epidemiology of eye Diseases (2004-2011 in Singapore. Based on the presenting visual acuity (PVA in the better-seeing eye, VI was categorized into normal vision (logMAR≤0.30, low vision (logMAR>0.30<1.00, and blindness (logMAR≥1.00. Any VI was defined as low vision/blindness in the PVA of better-seeing eye. Individual-level low-SES was defined as a composite of primary-level education, monthly income<2000 SGD and residing in 1 or 2-room public apartment. An area-level SES was assessed using a socio-economic disadvantage index (SEDI, created using 12 variables from the 2010 Singapore census. A high SEDI score indicates a relatively poor SES. Associations between SES measures and presence and severity of VI were examined using multi-level, mixed-effects logistic and multinomial regression models.The age-adjusted prevalence of any VI was 19.62% (low vision = 19%, blindness = 0.62%. Both individual- and area-level SES were positively associated with any VI and low vision after adjusting for confounders. The odds ratio (95% confidence interval of any VI was 2.11(1.88-2.37 for low-SES and 1.07(1.02-1.13 per 1 standard deviation increase in SEDI. When stratified by unilateral/bilateral categories, while low SES showed significant associations with all categories, SEDI showed a significant association with bilateral low vision only. The association between low SES and any VI remained significant among all age, gender and ethnic sub-groups. Although a consistent positive association was observed between area-level SEDI and any VI, the associations were significant among participants aged 40-65 years and male.In this community-based sample of Asian adults, both

  12. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  13. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  14. Methodological considerations for measuring glucocorticoid metabolites in feathers

    Science.gov (United States)

    Berk, Sara A.; McGettrick, Julie R.; Hansen, Warren K.; Breuner, Creagh W.

    2016-01-01

    In recent years, researchers have begun to use corticosteroid metabolites in feathers (fCORT) as a metric of stress physiology in birds. However, there remain substantial questions about how to measure fCORT most accurately. Notably, small samples contain artificially high amounts of fCORT per millimetre of feather (the small sample artefact). Furthermore, it appears that fCORT is correlated with circulating plasma corticosterone only when levels are artificially elevated by the use of corticosterone implants. Here, we used several approaches to address current methodological issues with the measurement of fCORT. First, we verified that the small sample artefact exists across species and feather types. Second, we attempted to correct for this effect by increasing the amount of methanol relative to the amount of feather during extraction. We consistently detected more fCORT per millimetre or per milligram of feather in small samples than in large samples even when we adjusted methanol:feather concentrations. We also used high-performance liquid chromatography to identify hormone metabolites present in feathers and measured the reactivity of these metabolites against the most commonly used antibody for measuring fCORT. We verified that our antibody is mainly identifying corticosterone (CORT) in feathers, but other metabolites have significant cross-reactivity. Lastly, we measured faecal glucocorticoid metabolites in house sparrows and correlated these measurements with corticosteroid metabolites deposited in concurrently grown feathers; we found no correlation between faecal glucocorticoid metabolites and fCORT. We suggest that researchers should be cautious in their interpretation of fCORT in wild birds and should seek alternative validation methods to examine species-specific relationships between environmental challenges and fCORT. PMID:27335650

  15. Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2009-04-01

    Full Text Available Silvia Migliaccio1, Marina Brama1, Nazzarena Malavolta21Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy; 2Dipartimento di Medicina Interna, Policlinico S Orsola Malpighi, Bologna, ItalyAbstract: Glucocorticoids (GC-induced osteoporosis (GIOP is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34 parathyroid hormone (PTH molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34 stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34 modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.Keywords: glucocorticoids, osteoblasts, osteoclasts, osteoporosis, teriparatide

  16. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females?

    Directory of Open Access Journals (Sweden)

    Jill M Stapleton

    Full Text Available Studies have reported that older females have impaired heat loss responses during work in the heat compared to young females. However, it remains unclear at what level of heat stress these differences occur. Therefore, we examined whole-body heat loss [evaporative (HE and dry heat loss, via direct calorimetry] and changes in body heat storage (∆Hb, via direct and indirect calorimetry in 10 young (23±4 years and 10 older (58±5 years females matched for body surface area and aerobic fitness (VO2peak during three 30-min exercise bouts performed at incremental rates of metabolic heat production of 250 (Ex1, 325 (Ex2 and 400 (Ex3 W in the heat (40°C, 15% relative humidity. Exercise bouts were separated by 15 min of recovery. Since dry heat gain was similar between young and older females during exercise (p=0.52 and recovery (p=0.42, differences in whole-body heat loss were solely due to HE. Our results show that older females had a significantly lower HE at the end of Ex2 (young: 383±34 W; older: 343±39 W, p=0.04 and Ex3 (young: 437±36 W; older: 389±29 W, p=0.008, however no difference was measured at the end of Ex1 (p=0.24. Also, the magnitude of difference in the maximal level of HE achieved between the young and older females became greater with increasing heat loads (Ex1=10.2%, Ex2=11.6% and Ex3=12.4%. Furthermore, a significantly greater ∆Hb was measured for all heat loads for the older females (Ex1: 178±44 kJ; Ex2: 151±38 kJ; Ex3: 216±25 kJ, p=0.002 relative to the younger females (Ex1: 127±35 kJ; Ex2: 96±45 kJ; Ex3: 146±46 kJ. In contrast, no differences in HE or ∆Hb were observed during recovery (p>0.05. We show that older habitually active females have an impaired capacity to dissipate heat compared to young females during exercise-induced heat loads of ≥325 W when performed in the heat.

  17. Hyperuricemia Is a Risk Factor for the Onset of Impaired Fasting Glucose in Men with a High Plasma Glucose Level: A Community-Based Study

    Science.gov (United States)

    Miyake, Teruki; Kumagi, Teru; Furukawa, Shinya; Hirooka, Masashi; Kawasaki, Keitarou; Koizumi, Mitsuhito; Todo, Yasuhiko; Yamamoto, Shin; Abe, Masanori; Kitai, Kohichiro; Matsuura, Bunzo; Hiasa, Yoichi

    2014-01-01

    Background It is not clear whether elevated uric acid is a risk factor for the onset of impaired fasting glucose after stratifying by baseline fasting plasma glucose levels. We conducted a community-based retrospective longitudinal cohort study to clarify the relationship between uric acid levels and the onset of impaired fasting glucose, according to baseline fasting plasma glucose levels. Methods We enrolled 6,403 persons (3,194 men and 3,209 women), each of whom was 18–80 years old and had >2 annual check-ups during 2003–2010. After excluding persons who had fasting plasma glucose levels ≥6.11 mM and/or were currently taking anti-diabetic agents, the remaining 5,924 subjects were classified into quartiles according to baseline fasting plasma glucose levels. The onset of impaired fasting glucose was defined as fasting plasma glucose ≥6.11 mM during the observation period. Results In the quartile groups, 0.9%, 2.1%, 3.4%, and 20.2% of the men developed impaired fasting glucose, respectively, and 0.1%, 0.3%, 0.5%, and 5.6% of the women developed impaired fasting glucose, respectively (P trend fasting glucose in men with highest-quartile fasting plasma glucose levels (adjusted hazard ratio, 1.003; 95% confidence interval, 1.0001–1.005, P = 0.041). Conclusions Among men with high fasting plasma glucose, hyperuricemia may be independently associated with an elevated risk of developing impaired fasting glucose. PMID:25237894

  18. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  19. Electromyographic and biomechanical analysis of step negotiation in Charcot Marie Tooth subjects whose level walk is not impaired.

    Science.gov (United States)

    Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Sipio, Enrica Di; Diverio, Manuela; Moroni, Isabella; Padua, Luca; Pagliano, Emanuela; Schenone, Angelo; Pareyson, Davide; Ferrarin, Maurizio

    2018-05-01

    Charcot-Marie-Tooth (CMT) is a slowly progressive disease characterized by muscular weakness and wasting with a length-dependent pattern. Mildly affected CMT subjects showed slight alteration of walking compared to healthy subjects (HS). To investigate the biomechanics of step negotiation, a task that requires greater muscle strength and balance control compared to level walking, in CMT subjects without primary locomotor deficits (foot drop and push off deficit) during walking. We collected data (kinematic, kinetic, and surface electromyographic) during walking on level ground and step negotiation, from 98 CMT subjects with mild-to-moderate impairment. Twenty-one CMT subjects (CMT-NLW, normal-like-walkers) were selected for analysis, as they showed values of normalized ROM during swing and produced work at push-off at ankle joint comparable to those of 31 HS. Step negotiation tasks consisted in climbing and descending a two-step stair. Only the first step provided the ground reaction force data. To assess muscle activity, each EMG profile was integrated over 100% of task duration and the activation percentage was computed in four phases that constitute the step negotiation tasks. In both tasks, CMT-NLW showed distal muscle hypoactivation. In addition, during step-ascending CMT-NLW subjects had relevant lower activities of vastus medialis and rectus femoris than HS in weight-acceptance, and, on the opposite, a greater activation as compared to HS in forward-continuance. During step-descending, CMT-NLW showed a reduced activity of tibialis anterior during controlled-lowering phase. Step negotiation revealed adaptive motor strategies related to muscle weakness due to disease in CMT subjects without any clinically apparent locomotor deficit during level walking. In addition, this study provided results useful for tailored rehabilitation of CMT patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  1. Environmental impact on faecal glucocorticoid metabolite concentrations in Grevy's Zebra (Equus grevyi)

    OpenAIRE

    Yarnell, K; Walker, SL

    2017-01-01

    The non-invasive nature of faecal glucocorticoid metabolite (FGM) assessment means that sample collection is on an opportunistic basis and samples cannot always be collected immediately upon defection during field studies. Faeces that have been exposed to heat and moisturemay not accurately reflect levels of FGM. Our study exposed male (n=3) and female (n=3) Grevy's zebra (Equus grevyi) faeces to six environmental conditions to simulate a range of weather and seasonal patterns (temperate clim...

  2. Thyroid Storm Masked by Hemodialysis and Glucocorticoid Therapy in a Patient with Rheumatoid Arthritis

    OpenAIRE

    Sasaki, Yohei; Shimizu, Yoshio; Nakata, Junichiro; Kameda, Toshiaki; Muto, Masahiro; Ohsawa, Isao; Io, Hiroaki; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    Thyroid function test values are generally at low levels in patients with end-stage kidney disease. Life-threatening thyrotoxicosis or thyroid storm is rare, especially in hemodialysis (HD) patients, and is characterized by multisystem involvement and a high mortality rate if not immediately recognized and treated. Here, we report a female patient with severe symptomatic thyroid storm, receiving long-term HD and glucocorticoid therapy. Methimazole at a dose of 15 mg per day, β-adrenergic bloc...

  3. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  4. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Eberhardt, Ralf; Weinheimer, Oliver; Fink, Christian; Puderbach, Michael; Eichinger, Monika; Herth, Felix; Kauczor, Hans-Ulrich

    2007-01-01

    Purpose: To assess the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level using CT and MRI in patients with emphysema. Material and methods: Forty-five patients with severe emphysema (GOLD III and IV) underwent inspiratory 3D-HRCT and contrast-enhanced MR-perfusion (1.5T; 3.5 mm x 1.9 mm x 4 mm). 3D-HRCT data was analyzed using a software for detection and visualization of emphysema. Emphysema was categorized in four clusters with different volumes and presented as overlay on the CT. CT and lung perfusion were visually analyzed for three lobes on each side using a four-point-score to grade the abnormalities on CT (1: predominantly small emphysema-clusters to 4: >75% large emphysema-clusters) and MRI (1: normal perfusion to 4: no perfusion). Results: A total of 270 lobes were evaluated. At CT, the score was 1 for 9 lobes, 2 for 43, 3 for 77, and 4 for 141 lobes. At MRI, the score was 1 for 13 lobes, 2 for 45, 3 for 92, and 4 for 120 lobes. Matching of lung parenchymal destruction and reduced perfusion was found in 213 lobes (weighted kappa = 0.8). The score was higher on CT in 44, and higher on MRI in 13 lobes. Conclusion: 3D-HRCT and 3D MR-perfusion show a high lobar agreement between parenchymal destruction and reduction of perfusion in patients with severe emphysema

  5. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9.

    Science.gov (United States)

    Sanders, Elizabeth A; Berninger, Virginia W; Abbott, Robert D

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 ( N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling (dyslexia, n = 60), or oral and written language (oral and written language learning disabilities, n = 18). That is, SLDs are defined on the basis of cascading level of language impairment (subword, word, and syntax/text). A five-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word-form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block 4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% of variance. Orthographic word-form coding uniquely predicted nearly every measure, whereas attention switching uniquely predicted only reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and oral and written language learning disabilities were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed.

  6. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  7. Glucocorticoid exposure in preterm babies predicts saliva cortisol response to immunization at 4 months.

    Science.gov (United States)

    Glover, Vivette; Miles, Rachel; Matta, Simon; Modi, Neena; Stevenson, James

    2005-12-01

    Preterm babies are exposed to multiple stressors and this may have long-term effects. In particular, high levels of endogenous cortisol might have a programming effect on the hypothalamic-pituitary-adrenal axis as may administered glucocorticoids. In this study, we aimed to test the hypothesis that the level of endogenous and exogenous glucocorticoid exposure during the neonatal period predicts the saliva cortisol response to immunization at 4 mo of age. We followed 45 babies born below 32 wk gestation. We showed that their concentration of plasma cortisol during the first 4 wk was 358, 314, 231, and 195 nmol/L cortisol, respectively (geometric mean). This is four to seven times higher than fetal levels at the same gestational age range. We used routine immunization at 4 mo and 12 mo as a stressor and measured the change in saliva cortisol as the stress response. Mean circulating cortisol in the first 4 wk predicted the cortisol response at 4 but not at 12 mo. Path analysis showed that birthweight for gestational age, therapeutic antenatal steroids, and therapeutic postnatal steroids also contributed to the magnitude of the saliva cortisol response at 4 mo. This provides evidence that the magnitude of glucocorticoid exposure, both endogenous and exogenous, may have an effect on later stress responses.

  8. Addison disease in patients treated with glucocorticoid therapy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Acute adrenal crisis in patients with unrecognized chronic adrenocortical failure is difficult to diagnose and potentially fatal. We describe 2 patients with acute adrenal crisis whose diagnoses were hindered because of concomitant glucocorticoid treatment. Acute adrenal insufficiency is primarily a state of mineralocorticoid deficiency. Prednisolone and prednisone, the most frequently prescribed anti-inflammatory corticosteroid agents, have minimal mineralocorticoid activity. Several conditions that may be treated with pharmacological glucocorticoids are associated with an increased risk of Addison disease. An acute adrenal crisis, against which concurrent glucocorticoid therapy does not confer adequate protection, may develop in such patients.

  9. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration.

    Science.gov (United States)

    Starkman, Monica N

    2013-09-01

    This article reviews the neuropsychiatric presentations elicited by spontaneous hypercortisolism and exogenous supraphysiologic glucocorticoids. Patients with Cushing disease and syndrome develop a depressive syndrome: irritable and depressed mood, decreased libido, disrupted sleep and cognitive decrements. Exogenous short-term glucocorticoid administration may elicit a hypomanic syndrome with mood, sleep and cognitive disruptions. Treatment options are discussed. Brain imaging and neuropsychological studies indicate elevated cortisol and other glucocorticoids are especially deleterious to hippocampus and frontal lobe. The research findings also shed light on neuropsychiatric abnormalities in conditions that have substantial subgroups exhibiting elevated and dysregulated cortisol: aging, major depressive disorder and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Deposition of intranasal glucocorticoids--preliminary study.

    Science.gov (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz

    2015-01-01

    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  11. Circulating cortisol-associated signature of glucocorticoid-related gene expression in subcutaneous fat of obese subjects.

    Science.gov (United States)

    Pavlatou, Maria G; Vickers, Kasey C; Varma, Sudhir; Malek, Rana; Sampson, Maureen; Remaley, Alan T; Gold, Philip W; Skarulis, Monica C; Kino, Tomoshige

    2013-05-01

    Serum cortisol concentrations fluctuate in a circadian fashion, and glucocorticoids exert strong effects on adipose tissue and induce obesity through the glucocorticoid receptor. To examine the impact of physiologic levels of circulating cortisol on subcutaneous adipose tissue, 25 overweight and obese subjects were employed, and their serum levels of morning (AM) and evening (PM) cortisol, AM/PM cortisol ratios, and 24-h urinary-free cortisol (UFC) were compared with their clinical parameters, serum cytokine levels, and mRNA expression of 93 receptor action-regulating and 93 glucocorticoid-responsive genes in abdominal subcutaneous fat. AM cortisol levels did not correlate with mRNA expression of the all genes examined, whereas PM cortisol levels, AM/PM cortisol ratios, and 24-h UFC were associated with distinct sets of these genes. Body mass index did not significantly correlate with the four cortisol parameters employed. These results suggest that physiologic levels of AM serum cortisol do not solely represent biological effects of circulating cortisol on the expression of glucocorticoid-related genes in subcutaneous adipose tissue, whereas PM levels, amplitude, and net amounts of the diurnally fluctuating serum cortisol have distinct effects. Through the genes identified in this study, glucocorticoids appear to influence intermediary metabolism, energy balance, inflammation, and local circadian rythmicity in subcutaneous fat. Our results may also explain in part the development of metabolic abnormality and obesity in subjects under stress or patients with melancholic/atypical depression who demonstrate elevated levels of PM serum cortisol. Copyright © 2013 The Obesity Society.

  12. Alpha spectral power and coherence in the patients with mild cognitive impairment during a three-level working memory task

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) was investigated. Methods:Subjects included 35 MCI patients according to the DSM-Ⅳ criteria (mean age: 62.3, SD: 6.5) and 34 healthy controls (mean age:57.4, SD: 4.0) were selected from the community at large. All subjects performed a simple calculation and recall task with three levels of working memory load while electroencephalograph (EEG) signal was recorded. The spectral EEG power was computed over alphal (8.0~10.0 Hz) and alpha2 (10.5~13.0 Hz) frequency bands and was compared between rest stage and working memory processing stage by two-way ANOVA. Post hoc testing analyzed the differences between each two levels of working memory load during task processing. The inter-hemisphere EEG coherence of frontal (F3-F4), central (C3-C4), parietal (P3-P4), temporal (T5-T6) as well as occipital (O1-O2) was compared between MCI patients and normal controls. The EEG signals from F3-C3,F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs resulted from the intra-hemispheric action for alphal and alpha2 frequency bands. Result: There was significantly higher EEG power from MCI patients than from normal controls both at rest and during working memory processing. Significant differences existed between rest condition and three-level working memory tasks (P<0.001). The inter- and intra-hemispheric coherence during working memory tasks showed a "drop to rise" tendency compared to that at rest condition. There was significantly higher coherence in MCI patients than in the controls.When task difficulties increased, the cortical connectivity of intra-hemispheric diminished while the inter-hemispheric connectivity dominantly maintained the cognitive processing in MCI patients. Conclusion: The results of the present study indicate that the

  13. Physical Impairment

    Science.gov (United States)

    Trewin, Shari

    Many health conditions can lead to physical impairments that impact computer and Web access. Musculoskeletal conditions such as arthritis and cumulative trauma disorders can make movement stiff and painful. Movement disorders such as tremor, Parkinsonism and dystonia affect the ability to control movement, or to prevent unwanted movements. Often, the same underlying health condition also has sensory or cognitive effects. People with dexterity impairments may use a standard keyboard and mouse, or any of a wide range of alternative input mechanisms. Examples are given of the diverse ways that specific dexterity impairments and input mechanisms affect the fundamental actions of Web browsing. As the Web becomes increasingly sophisticated, and physically demanding, new access features at the Web browser and page level will be necessary.

  14. The Relationship of Level of Positive Mental Health with Current Mental Disorders in Predicting Suicidal Behavior and Academic Impairment in College Students

    Science.gov (United States)

    Keyes, Corey L. M.; Eisenberg, Daniel; Perry, Geraldine S.; Dube, Shanta R.; Kroenke, Kurt; Dhingra, Satvinder S.

    2012-01-01

    Objective: To investigate whether level of positive mental health complements mental illness in predicting students at risk for suicidal behavior and impaired academic performance. Participants: A sample of 5,689 college students participated in the 2007 Healthy Minds Study and completed an Internet survey that included the Mental Health…

  15. Braille Reading Accuracy of Students Who Are Visually Impaired: The Effects of Gender, Age at Vision Loss, and Level of Education

    Science.gov (United States)

    Argyropoulos, Vassilis; Papadimitriou, Vassilios

    2015-01-01

    Introduction: The present study assesses the performance of students who are visually impaired (that is, those who are blind or have low vision) in braille reading accuracy and examines potential correlations among the error categories on the basis of gender, age at loss of vision, and level of education. Methods: Twenty-one visually impaired…

  16. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    NARCIS (Netherlands)

    Zappia, C.D.; Granja-Galeano, G.; Fernández, N.; Shayo, C.; Davio, C.; Fitzsimons, C.P.; Monczor, F.

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast

  17. Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life

    NARCIS (Netherlands)

    van Hasselt, F.N.; Cornelisse, S.; Zhang, T.Y.; Meaney, M.J.; Velzing, E.H.; Krugers, H.J.; Joëls, M.

    2012-01-01

    Maternal care in mammals is the prevailing environmental influence during perinatal development. The adult rat offspring of mothers exhibiting increased levels of pup licking/grooming (LG; High LG mothers), compared to those reared by Low LG dams, show increased hippocampal glucocorticoid receptor

  18. Prescription duration and treatment episodes in oral glucocorticoid users: application of the parametric waiting time distribution

    DEFF Research Database (Denmark)

    Laugesen, Kristina; Støvring, Henrik; Hallas, Jesper

    2017-01-01

    for oral glucocorticoids and to describe continuous treatment episodes using the parametric waiting time distribution. Methods: We used Danish nationwide registries to identify all prescriptions for oral glucocorticoids during 1996-2014. We applied the parametric waiting time distribution to estimate...... duration of individual prescriptions each year by estimating the 80th, 90th, 95th and 99th percentiles for the interarrival distribution. These corresponded to the time since last prescription during which 80%, 90%, 95% and 99% of users presented a new prescription for redemption. We used the Kaplan...... of the interarrival distribution to apply as prescription duration has an impact on the level of misclassification. Use of the 80th percentile provides a measure of drug exposure that is specific, while the 99th percentile provides a sensitive measure....

  19. Leptin and glucocorticoid signaling pathways in the hypothalamus of female and male fructose-fed rats

    Directory of Open Access Journals (Sweden)

    Vojnović-Milutinović Danijela

    2014-01-01

    Full Text Available Alterations in leptin and glucocorticoid signaling pathways in the hypothalamus of male and female rats subjected to a fructose-enriched diet were studied. The level of expression of the key components of the leptin signaling pathway (neuropeptide Y /NPY/ and suppressor of cytokine signaling 3 /SOCS3/, and the glucocorticoid signaling pathway (glucocorticoid receptor /GR/, 11β-hydroxysteroid dehydrogenase type 1 /11βHSD1/ and hexose-6-phosphate dehydrogenase /H6PDH/ did not differ between fructose-fed rats and control animals of both genders. However, in females, a fructose-enriched diet provoked increases in the adiposity index, plasma leptin and triglyceride concentrations, and displayed a tendency to decrease the leptin receptor (ObRb protein and mRNA levels. In male rats, the fructose diet caused elevations in plasma non-esterified fatty acids and triglycerides, as well as in both plasma and hypothalamic leptin concentrations. Our results suggest that a fructose-enriched diet can induce hyperleptinemia in both female and male rats, but with a more pronounced effect on hypothalamic leptin sensitivity in females, probably contributing to the observed development of visceral adiposity. [Projekat Ministarstva nauke Republike Srbije, br. III41009

  20. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress

    DEFF Research Database (Denmark)

    Brouwers, O; Niessen, P M; Haenen, G

    2010-01-01

    -hydro-5-methylimidazolone (MG-H1) was detected with an antibody against MG-H1 and quantified with ultra-performance liquid chromatography (tandem) mass spectrometry. Reactive oxygen species formation was measured with a 5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester probe...... for AGE ligand S100b did (p cells and adventitia by fivefold accompanied by an eightfold increase in the oxidative stress marker nitrotyrosine. Antioxidant pre-incubation prevented methylglyoxal......-induced impairment of vasoreactivity. CONCLUSIONS/INTERPRETATION: These data show that hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation is mediated by increased intracellular methylglyoxal levels in a pathway dependent on oxidative stress....

  1. Cardiovascular disease risk factors in a Nigerian population with impaired fasting blood glucose level and diabetes mellitus.

    Science.gov (United States)

    Oguoma, Victor M; Nwose, Ezekiel U; Ulasi, Ifeoma I; Akintunde, Adeseye A; Chukwukelu, Ekene E; Bwititi, Phillip T; Richards, Ross S; Skinner, Timothy C

    2017-01-06

    Diabetes is a risk factor for cardiovascular diseases (CVDs) and there are reports of increasing prevalence of prediabetes in Nigeria. This study therefore characterised CVDs risk factors in subjects with impaired fasting glucose (IFG) and diabetes. Data from 4 population-based cross-sectional studies on 2447 apparently healthy individuals from 18 - 89 years were analysed. Anthropometric, blood pressure and biochemical parameters were collected and classified. Individuals with IFG (prediabetes) and diabetes were merged each for positive cases of dyslipidaemia, high blood pressure (HBP) or obesity. Optimal Discriminant and Hierarchical Optimal Classification Tree Analysis (HO-CTA) were employed. Overall prevalence of IFG and diabetes were 5.8% (CI: 4.9 - 6.7%) and 3.1% (CI: 2.4 - 3.8%), respectively. IFG co-morbidity with dyslipidaemia (5.0%; CI: 4.1 - 5.8%) was the highest followed by overweight/obese (3.1%; CI: 2.5 - 3.8%) and HBP (1.8%; CI: 1.3 - 2.4%). The predicted age of IFG or diabetes and their co-morbidity with other CVD risk factors were between 40 - 45 years. Elevated blood level of total cholesterol was the most predictive co-morbid risk factor among IFG and diabetes subjects. Hypertriglyceridaemia was an important risk factor among IFG-normocholesterolaemic-overweight/obese individuals. The higher prevalence of co-morbidity of CVD risk factors with IFG than in diabetes plus the similar age of co-morbidity between IFG and diabetes highlights the need for risk assessment models for prediabetes and education of individuals at risk about factors that mitigate development of diabetes and CVDs.

  2. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk.

    Science.gov (United States)

    Gutzwiller, Jean-Pierre; Aschwanden, Josef; Iff, Samuel; Leuenberger, Michèle; Perrig, Martin; Stanga, Zeno

    2011-12-01

    The hypothesis of this clinical study was to determine whether glucocorticoid use and immobility were associated with in-hospital nutritional risk. One hundred and one patients consecutively admitted to the medical wards were enrolled. Current medical conditions, symptoms, medical history, eating and drinking habits, diagnosis, laboratory findings, medications, and anthropometrics were recorded. The Nutrition Risk Score 2002 (NRS-2002) was used as a screening instrument to identify nutritional risk. The results confirmed that glucocorticoid use and immobility are independently associated with nutritional risk determined by the NRS-2002. Constipation could be determined as an additional cofactor independently associated with nutritional risk. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk in a mixed hospitalized population. The presence of long-time glucocorticoid use, immobility, or constipation should alert the clinician to check for nutritional status, which is an important factor in mortality and morbidity.

  3. Hypersensitivity Reactions from Excipients in Systemic Glucocorticoid Formulations

    DEFF Research Database (Denmark)

    Calogiuri, Gianfranco; Garvey, Lene H; Romita, Paolo

    2016-01-01

    Glucocorticoids are the most widely used drugs for the treatment of hypersensitivity, however these drugs themselves and the excipients contained in commercial corticosteroid formulations are able to induce severe immediate-type hypersensitivity reactions. Reactions involving excipients have been...

  4. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice

    NARCIS (Netherlands)

    Zhou, M.; Bakker, E.H.M.; Velzing, E.; Berger, S.; Oitzl, M.; Joëls, M.; Krugers, H.J.

    2010-01-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory

  5. Association of glucocorticoid receptor polymorphisms with clinical and metabolic profiles in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo A.Rosa Maciel

    2014-03-01

    Full Text Available OBJECTIVES: We aimed to investigate whether glucocorticoid receptor gene polymorphisms are associated with clinical and metabolic profiles in patients with polycystic ovary syndrome. Polycystic ovary syndrome is a complex endocrine disease that affects 5-8% of women and may be associated with metabolic syndrome, which is a risk factor for cardiovascular disease. Cortisol action and dysregulation account for metabolic syndrome development in the general population. As glucocorticoid receptor gene (NR3C1 polymorphisms regulate cortisol sensitivity, we hypothesized that variants of this gene may be involved in the adverse metabolic profiles of patients with polycystic ovary syndrome. METHOD: Clinical, metabolic and hormonal profiles were evaluated in 97 patients with polycystic ovary syndrome who were diagnosed according to the Rotterdam criteria. The alleles of the glucocorticoid gene were genotyped. Association analyses were performed using the appropriate statistical tests. RESULTS: Obesity and metabolic syndrome were observed in 42.3% and 26.8% of patients, respectively. Body mass index was positively correlated with blood pressure, triglyceride, LDL-c, total cholesterol, glucose and insulin levels as well as HOMA-IR values and inversely correlated with HDL-c and SHBG levels. The BclI and A3669G variants were found in 24.7% and 13.4% of alleles, respectively. BclI carriers presented a lower frequency of insulin resistance compared with wild-type subjects. CONCLUSION: The BclI variant is associated with a lower frequency of insulin resistance in women with polycystic ovary syndrome. Glucocorticoid gene polymorphism screening during treatment of the syndrome may be useful for identifying subgroups of at-risk patients who would benefit the most from personalized treatment.

  6. Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line.

    Science.gov (United States)

    Klopčič, Ivana; Kolšek, Katra; Dolenc, Marija Sollner

    2015-01-22

    Endocrine-disrupting compounds can interfere with the endocrine organs or hormone system and cause tumors, birth defects and developmental disorders in humans. The estrogen-like activity of compounds has been widely studied but little is known concerning their possible modulation of the glucocorticoid receptor. Steroidal (synthetic and natural) and non-steroidal endocrine-active compounds commonly occur as complex mixtures in human environments. Identification of such molecular species, which are responsible for modulating the glucocorticoid receptor are necessary to fully assess their risk. We have used the MDA-kb2 cell line, which expresses endogenous glucocorticoid receptor and a stably transfected luciferase reporter gene construct, to quantify the glucocorticoid-like activity of four compounds present in products in everyday use - propylparaben (PP), butylparaben (BP), diethylhexyl phthalate (DEHP) and tetramethrin (TM). We tested all possible combinations of these compounds at two concentrations (1 μM and 10 nM) and compared their glucocorticoid-like activity. At the concentration of 1 μM seven mixtures were identified to have glucocorticoid-like activity except: DEHP+TM, BP+TM, DEHP+PP+TM, BP+PP+TM. At the concentration of 10 nM only three mixtures have glucocorticoid modulatory activity: DEHP+PP, BP+PP, DEHP+BP+PP+TM. Identified glucocorticoid-like activities were between 1.25 and 1.51 fold at the concentration of 1 μM and between 1.23 and 1.44 fold at the concentration of 10 nM in comparison with the solvent control. Individually BP, PP, and DEHP had glucocorticoid-like activity of 1.60, 1.57 and 1.50 fold over the solvent control at the concentration of 1 μM. On the other hand PP and DEHP, at the concentration of 10nM, showed no glucocorticoid-like activity, while BP showed 1.44 fold. The assertion that individual glucocorticoid-like compounds do not produce harm because they are present at low, ineffective levels in humans may be irrelevant when we

  7. Altered placental development in undernourished rats: role of maternal glucocorticoids

    Directory of Open Access Journals (Sweden)

    Chen Chun-Hung

    2011-08-01

    Full Text Available Abstract Maternal undernutrition (MUN during pregnancy may lead to fetal intrauterine growth restriction (IUGR, which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1, 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1 predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC to corticosterone, although can sometimes drive the opposing (inactivating reaction, and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents in control and MUN rats at embryonic day 20 (E20. Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3 and amino acids (SLC38A1, 2, and 4. Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC

  8. The emerging importance of ultradian glucocorticoid rhythms within metabolic pathology.

    Science.gov (United States)

    Flynn, Benjamin P; Conway-Campbell, Becky L; Lightman, Stafford L

    2018-06-01

    Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. The role of glucocorticoids in sodium retention in cirrhotic patients

    DEFF Research Database (Denmark)

    Hansen, Martin Højmark; Kristensen, Steffen Skott; Schaffalitzky de Muckadell, Ove B

    2012-01-01

    sodium retention evident in cirrhosis. The aim was to elucidate the role of glucocorticoids in sodium retention in decompensated cirrhotic patients. Methods. A randomized, double-blind, placebo-controlled, crossover study was performed in nine patients with alcoholic cirrhosis of the liver. A washout....... Conclusion. These results indicate that endogenous glucocorticoids contribute to the sodium retention in patients with alcoholic cirrhosis of the liver....

  10. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990

    Science.gov (United States)

    Lee, Anne CC; Kozuki, Naoko; Blencowe, Hannah; Vos, Theo; Bahalim, Adil; Darmstadt, Gary L.; Niermeyer, Susan; Ellis, Matthew; Robertson, Nicola J.; Cousens, Simon; Lawn, Joy E.

    2013-01-01

    Background: Intrapartum hypoxic events (“birth asphyxia”) may result in stillbirth, neonatal or postneonatal mortality, and impairment. Systematic morbidity estimates for the burden of impairment outcomes are currently limited. Neonatal encephalopathy (NE) following an intrapartum hypoxic event is a strong predictor of long-term impairment. Methods: Linear regression modeling was conducted on data identified through systematic reviews to estimate NE incidence and time trends for 184 countries. Meta-analyses were undertaken to estimate the risk of NE by sex of the newborn, neonatal case fatality rate, and impairment risk. A compartmental model estimated postneonatal survivors of NE, depending on access to care, and then the proportion of survivors with impairment. Separate modeling for the Global Burden of Disease 2010 (GBD2010) study estimated disability adjusted life years (DALYs), years of life with disability (YLDs), and years of life lost (YLLs) attributed to intrapartum-related events. Results: In 2010, 1.15 million babies (uncertainty range: 0.89–1.60 million; 8.5 cases per 1,000 live births) were estimated to have developed NE associated with intrapartum events, with 96% born in low- and middle-income countries, as compared with 1.60 million in 1990 (11.7 cases per 1,000 live births). An estimated 287,000 (181,000–440,000) neonates with NE died in 2010; 233,000 (163,000–342,000) survived with moderate or severe neurodevelopmental impairment; and 181,000 (82,000–319,000) had mild impairment. In GBD2010, intrapartum-related conditions comprised 50.2 million DALYs (2.4% of total) and 6.1 million YLDs. Conclusion: Intrapartum-related conditions are a large global burden, mostly due to high mortality in low-income countries. Universal coverage of obstetric care and neonatal resuscitation would prevent most of these deaths and disabilities. Rates of impairment are highest in middle-income countries where neonatal intensive care was more recently

  11. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  12. Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management

    Science.gov (United States)

    Chan, KL; Mok, CC

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty. PMID:23115605

  13. Glucocorticoid-induced avascular bone necrosis: diagnosis and management.

    Science.gov (United States)

    Chan, K L; Mok, C C

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty.

  14. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  15. The Assessment of the Quality of Life in Visually Impaired People with Different Level of Physical Activity

    Directory of Open Access Journals (Sweden)

    Kamelska Anna Malwina

    2015-09-01

    Full Text Available Quality of life (QOL is associated with factors such as health, physical functioning, life satisfaction, a sense of happiness, and others. In case of disabled people, much attention is paid to their QOL rather than only the improvement of physiological variables. In a group of blind and visually impaired people, the effect of physical activity (PA on the socialization process, the ability to explore own personality traits, developing creativity, and more motivation and desire to overcome the difficulties associated with visual impairment were observed.

  16. Gender, season and management affect fecal glucocorticoid metabolite concentrations in captive goral (Naemorhedus griseus in Thailand.

    Directory of Open Access Journals (Sweden)

    Jaruwan Khonmee

    Full Text Available Chinese goral (Naemorhedus griseus are a threatened species in Thailand and the focus of captive breeding for possible reintroduction. However, little is known of their biology or what factors in the captive environment affect welfare. Our objective was to determine the impact of gender, season, and management on goral adrenal activity. We hypothesized that differences in fecal glucocorticoid concentrations would be related to animal density. Fecal samples were collected 3 days/week for 1 year from 63 individuals (n = 32 males, 31 females at two facilities that house the majority of goral in Thailand: Omkoi Wildlife Sanctuary (Omkoi, an off-exhibit breeding center that houses goral in individual pens (16 pens; n = 8 males, 8 females and in small family groups (8 pens; n = 8 males, 8 females; and the Chiang Mai Night Safari (NS, a zoo that maintains 31 goral (n = 17 males, 14 females in one large pen. Glucocorticoid metabolite concentrations were higher in male than female goral at Omkoi throughout the year, and there was a seasonal effect on adrenal activity (p<0.05. Goral at Omkoi and NS were used to test the effect of animal density on fecal glucocorticoid excretion of goral housed in similar-sized enclosures. Overall, the highest levels were found at NS (n = 31 adults/pen; 27 m2 per animal compared to Omkoi (n = 2 adults/pen; 400 m2 per animal (p<0.05. Overall findings support our hypothesis that animal density and aspects of the captive environment impact adrenal steroid activity in captive goral. In addition, gender and season also had significant effects on glucocorticoid metabolite production. Potential stressors pertaining to the welfare of this species were identified, which will guide future efforts to improve management and create self-sustaining and healthy populations of this threatened species.

  17. Transcriptional effects of glucocorticoid receptors in the dentate gyrus increase anxiety-related behaviors.

    Directory of Open Access Journals (Sweden)

    Nadège Sarrazin

    Full Text Available The Glucocorticoid Receptor (GR is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called DeltaGR. DeltaGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF, we developed an inducible transgenic approach that allows the expression of the DeltaGR in specific brain areas. We focused our study on a mouse line that expressed DeltaGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG of the hippocampus. This restricted expression of the DeltaGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies.

  18. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  19. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  20. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  1. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy.

    Science.gov (United States)

    Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I

    2018-04-01

    A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Alcohol levels do not accurately predict physical or mental impairment in ethanol-tolerant subjects: relevance to emergency medicine and dram shop laws.

    Science.gov (United States)

    Roberts, James R; Dollard, Denis

    2010-12-01

    The human body and the central nervous system can develop tremendous tolerance to ethanol. Mental and physical dysfunctions from ethanol, in an alcohol-tolerant individual, do not consistently correlate with ethanol levels traditionally used to define intoxication, or even lethality, in a nontolerant subject. Attempting to relate observed signs of alcohol intoxication or impairment, or to evaluate sobriety, by quantifying blood alcohol levels can be misleading, if not impossible. We report a case demonstrating the disconnect between alcohol levels and generally assigned parameters of intoxication and impairment. In this case, an alcohol-tolerant man, with a serum ethanol level of 515 mg/dl, appeared neurologically intact and cognitively normal. This individual was without objective signs of impairment or intoxication by repeated evaluations by experienced emergency physicians. In alcohol-tolerant individuals, blood alcohol levels cannot always be predicted by and do not necessarily correlate with outward appearance, overt signs of intoxication, or physical examination. This phenomenon must be acknowledged when analyzing medical decision making in the emergency department or when evaluating the ability of bartenders and party hosts to identify intoxication in dram shop cases.

  3. The Association of Prenatal Exposure to Perfluorinated Chemicals with Glucocorticoid and Androgenic Hormones in Cord Blood Samples: The Hokkaido Study.

    Science.gov (United States)

    Goudarzi, Houman; Araki, Atsuko; Itoh, Sachiko; Sasaki, Seiko; Miyashita, Chihiro; Mitsui, Takahiko; Nakazawa, Hiroyuki; Nonomura, Katsuya; Kishi, Reiko

    2017-01-01

    Perfluorinated chemicals (PFCs) disrupt cholesterol homeostasis. All steroid hormones are derived from cholesterol, and steroid hormones such as glucocorticoids and androgenic hormones mediate several vital physiologic functions. However, the in utero effects of PFCs exposure on the homeostasis of these steroid hormones are not well understood in humans. We examined the relationship between prenatal exposure to perfluorooctane sulfonate (PFOS)/perfluorooctanoate (PFOA) and cord blood levels of glucocorticoid and androgenic hormones. We conducted a hospital-based birth cohort study between July 2002 and October 2005 in Sapporo, Japan (n = 514). In total, 185 mother-infant pairs were included in the present study. Prenatal PFOS and PFOA levels in maternal serum samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Cord blood levels of glucocorticoid (cortisol and cortisone) and androgenic hormones [dehydroepiandrosterone (DHEA) and androstenedione] were also measured in the same way. We found a dose-response relationship of prenatal PFOS, but not PFOA, exposure with glucocorticoid levels after adjusting for potential confounders. Cortisol and cortisone concentrations were -23.98-ng/mL (95% CI: -0.47.12, -11.99; p for trend = 0.006) and -63.21-ng/mL (95% CI: -132.56, -26.72; p for trend blood. Citation: Goudarzi H, Araki A, Itoh S, Sasaki S, Miyashita C, Mitsui T, Nakazawa H, Nonomura K, Kishi R. 2017. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: the Hokkaido Study. Environ Health Perspect 125:111-118; http://dx.doi.org/10.1289/EHP142.

  4. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Systematic review of the clinical effect of glucocorticoids on nonhematologic malignancy

    Directory of Open Access Journals (Sweden)

    Keith Bruce D

    2008-03-01

    Full Text Available Abstract Background Glucocorticoids are often used in the treatment of nonhematologic malignancy. This review summarizes the clinical evidence of the effect of glucocorticoid therapy on nonhematologic malignancy. Methods A systematic review of clinical studies of glucocorticoid therapy in patients with nonhematologic malignancy was undertaken. Only studies having endpoints of tumor response or tumor control or survival were included. PubMed, EMBASE, the Cochrane Register/Databases, conference proceedings (ASCO, AACR, ASTRO/ASTR, ESMO, ECCO and other resources were used. Data was extracted using a standard form. There was quality assessment of each study. There was a narrative synthesis of information, with presentation of results in tables. Where appropriate, meta-analyses were performed using data from published reports and a fixed effect model. Results Fifty four randomized controlled trials (RCTs, one meta-analysis, four phase l/ll trials and four case series met the eligibility criteria. Clinical trials of glucocorticoid monotherapy in breast and prostate cancer showed modest response rates. In advanced breast cancer meta-analyses, the addition of glucocorticoids to either chemotherapy or other endocrine therapy resulted in increased response rate, but not increased survival. In GI cancer, there was one RCT each of glucocorticoids vs. supportive care and chemotherapy +/- glucocorticoids; glucocorticoid effect was neutral. The only RCT found of chemotherapy +/- glucocorticoids, in which the glucocorticoid arm did worse, was in lung cancer. In glucocorticoid monotherapy, meta-analysis found that continuous high dose glucocorticoids had a detrimental effect on survival. The only other evidence, for a detrimental effect of glucocorticoid monotherapy, was in one of the two trials in lung cancer. Conclusion Glucocorticoid monotherapy has some benefit in breast and prostate cancer. In advanced breast cancer, the addition of glucocorticoids to other

  6. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  7. High level of reactive oxygen species impaired mesenchymal stem cell migration via overpolymerization of F-actin cytoskeleton in systemic lupus erythematosus.

    Science.gov (United States)

    Shi, D; Li, X; Chen, H; Che, N; Zhou, S; Lu, Z; Shi, S; Sun, L

    2014-12-01

    Some lines of evidence have demonstrated abnormalities of bone marrow mesenchymal stem cells (MSCs) in systemic lupus erythematosus (SLE) patients, characterized by defective phenotype of MSCs and slower growth with enhanced apoptosis and senescence. However, whether SLE MSCs demonstrate aberrant migration capacity or abnormalities in cytoskeleton are issues that remain poorly understood. In this study, we found that MSCs from SLE patients did show impairment in migration capacity as well as abnormalities in F-actin cytoskeleton, accompanied by a high level of intracellular reactive oxygen species (ROS). When normal MSCs were treated in vitro with H2O2, which increases intracellular ROS level as an oxidant, both reorganization of F-actin cytoskeleton and impairment of migration capability were observed. On the other hand, treatment with N-acetylcysteine (NAC), as an exogenous antioxidant, made F-actin more orderly and increased migration ratio in SLE MSCs. In addition, oral administration of NAC markedly reduced serum autoantibody levels and ameliorated lupus nephritis (LN) in MRL/lpr mice, partially reversing the abnormalities of MSCs. These results indicate that overpolymerization of F-actin cytoskeleton, which may be associated with high levels of ROS, causes impairment in the migration capacity of SLE MSCs and that oral administration of NAC may have potential therapeutic effects on MRL/lpr mice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  9. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    Science.gov (United States)

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (Pcancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  10. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  12. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

    Science.gov (United States)

    de Vega, Wilfred C; Herrera, Santiago; Vernon, Suzanne D; McGowan, Patrick O

    2017-02-23

    axis dysfunction in ME/CFS. Modifications to epigenetic loci associated with differences in glucocorticoid sensitivity may be important as biomarkers for future clinical testing. Overall, these findings align with recent ME/CFS work that point towards impairment in cellular energy production in this patient population.

  13. Association of Branched and Aromatic Amino Acids Levels with Metabolic Syndrome and Impaired Fasting Glucose in Hypertensive Patients

    OpenAIRE

    Weng, Liming; Quinlivan, Eoin; Gong, Yan; Beitelshees, Amber L.; Shahin, Mohamed H.; Turner, Stephen T.; Chapman, Arlene B.; Gums, John G.; Johnson, Julie A.; Frye, Reginald F.; Garrett, Timothy J.; Cooper-DeHoff, Rhonda M.

    2015-01-01

    Background: The three branched amino acids (valine, leucine, and isoleucine) and two aromatic amino acids (tyrosine and phenylalanine) have been associated with many adverse metabolic pathways, including diabetes. However, these associations have been identified primarily in otherwise healthy Caucasian populations. We aimed to investigate the association of this five-amino-acid signature with metabolic syndrome and impaired fasting glucose (IFG) in a hypertensive cohort of Caucasian and Afric...

  14. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease.

    Science.gov (United States)

    Riebold, Mathias; Kozany, Christian; Freiburger, Lee; Sattler, Michael; Buchfelder, Michael; Hausch, Felix; Stalla, Günter K; Paez-Pereda, Marcelo

    2015-03-01

    One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.

  15. The role of glucocorticoids in emotional memory reconsolidation.

    Science.gov (United States)

    Meir Drexler, Shira; Wolf, Oliver T

    2017-07-01

    Glucocorticoids are secreted following exposure to stressful events. Their modulating role on memory reconsolidation, a post-retrieval process of re-stabilization, has been investigated only recently, at times with conflicting results. The goal of this review is twofold. First, to establish the modulating role of glucocorticoids on memory reconsolidation. Second, to point the potential factors and confounds that might explain the seemingly paradoxical findings. Here we review recent pharmacological studies, conducted in rodents and humans, which suggest a critical role of glucocorticoids in this post-retrieval process. In particular, the activation of glucocorticoid receptors in the amygdala and hippocampus is suggested to be involved in emotional memories reconsolidation, pointing to a similarity between post-retrieval reconsolidation and initial memory consolidation. In addition, based on the general reconsolidation literature, we suggest several factors that might play a role in determining the direction and strength of the reconsolidation effect following glucocorticoids treatment: memory-related factors, manipulation-related factors, and individual differences. We conclude that only when taking these additional factors into account can the paradox be resolved. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  17. The association of short-term memory and cognitive impairment with ghrelin, leptin, and cortisol levels in non-diabetic and diabetic elderly individuals.

    Science.gov (United States)

    Sang, Yu Ming; Wang, Li Jun; Mao, Hong Xian; Lou, Xue Yong; Zhu, Yi Jun

    2018-06-01

    This study assessed short-term memory and biochemical indicators with the levels of ghrelin, leptin, and cortisol between cognitive impairment and normal older adults with or without diabetes. We enrolled 286 older adults (aged 65-85 years) with or without diabetes from the local community. Short-term memory was assessed using pictures of common objects; cognitive functioning was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The physiological indexes assessed were plasma levels of fasting ghrelin and leptin, ghrelin level at 2_h after breakfast, 24-h urinary cortisol value, body mass index, and plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m. In both non-diabetic and diabetic subjects, short-term memory was significantly lower in the impaired cognition group (5.99 ± 2.90 in non-diabetic subjects and 4.71 ± 2.14 in diabetic subjects) than in the normal cognition group (8.14 ± 2.23 in non-diabetic subjects and 7.82 ± 3.37 in diabetic subjects). Baseline ghrelin level was significantly lower in the impaired cognition group (9.07 ± 1.13 ng/mL in non-diabetic subjects and 7.76 ± 1.34 ng/mL in diabetic subjects) than in the normal cognition group (10.94 ± 1.53 ng/mL in non-diabetic subjects and 9.93 ± 1.76 ng/mL in diabetic subjects); plasma cortisol levels at 8:00 a.m., 4:00 p.m., and 12:00 p.m. were significantly higher in the impaired cognition group than in the normal cognition group, while no significant difference was observed in plasma levels of fasting leptin between different groups. Fasting plasma ghrelin and cortisol levels may be markers of cognitive decline and memory loss. It is possible that adjusting their levels may have a therapeutic effect, and this should be investigated in future studies.

  18. Low levels of neurocognitive impairment detected in screening HIV-infected men who have sex with men: The MSM Neurocog Study.

    Science.gov (United States)

    Barber, T J; Bansi, L; Pozniak, A; Asboe, D; Nelson, M; Moyle, G; Davies, N; Margetts, A; Ratcliffe, D; Catalan, J; Boffito, M; Gazzard, B

    2017-06-01

    This study aimed to determine the prevalence of HIV neurocognitive impairment in HIV-infected men who have sex with men aged 18-50 years, using a simple battery of screening tests in routine clinical appointments. Those with suspected abnormalities were referred on for further assessment. The cohort was also followed up over time to look at evolving changes. HIV-infected participants were recruited at three clinical sites in London during from routine clinical visits. They could be clinician or self-referred and did not need to be symptomatic. They completed questionnaires on anxiety, depression, and memory. They were then screened using the Brief Neurocognitive Screen (BNCS) and International HIV Dementia Scale (IHDS). Two hundred and five HIV-infected subjects were recruited. Of these, 59 patients were excluded as having a mood disorder and two patients were excluded due to insufficient data, leaving 144 patients for analysis. One hundred and twenty-four (86.1%) had a normal composite z score (within 1 SD of mean) calculated for their scores on the three component tests of the BNCS. Twenty (13.9%) had an abnormal z score, of which seven (35%) were symptomatic and 13 (65%) asymptomatic. Current employment and previous educational level were significantly associated with BNCS scores. Of those referred onwards for diagnostic testing, only one participant was found to have impairment likely related to HIV infection. We were able to easily screen for mood disorders and cognitive impairment in routine clinical practice. We identified a high level of depression and anxiety in our cohort. Using simple screening tests in clinic and an onward referral process for further testing, we were not able to identify neurocognitive impairment in this cohort at levels consistent with published data.

  19. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  20. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison's disease

    NARCIS (Netherlands)

    Smans, L.; Lentjes, E.G.W.M.; Hermus, A.R.; Zelissen, P.M.J.

    2013-01-01

    OBJECTIVE: Patients with Addison's disease require lifelong treatment with glucocorticoids. At present, no glucocorticoid replacement therapy (GRT) can exactly mimic normal physiology. As a consequence, under- and especially overtreatment can occur. Suboptimal GRT may lead to various side effects.

  1. Adrenal Insufficiency Caused by Locally Applied Glucocorticoids-Myth or Fact?

    DEFF Research Database (Denmark)

    Dinsen, Stina; Klose, Marianne; Rasmussen, Åse Krogh

    2015-01-01

    Case-reports have made it evident that both inhaled, percutaneous, intranasal, intraarticular and ophthalmic administered glucocorticoids have the potential to cause life threatening adrenal insufficiency. With few and sometimes conflicting data and study methodology the prevalence of adrenal...... insufficiency secondary to locally applied glucocorticoids is not clear. Adrenal insufficiency can only be correctly evaluated by a stimulation test, and has by this procedure been reported in up to 40-50% of patients treated with high-dose inhaled glucocorticoids. Medium- to low-dose inhaled glucocorticoids...... have been shown to cause adrenal suppression in 0-16% of patients. Glucocorticoid creams and nasal glucocorticoids can cause adrenal insufficiency, also when used within prescribed doses, but the frequency seems to be less than with inhaled glucocorticoids. Intraarticularly administered glucocorticoids...

  2. Treatment of frozen shoulder with subcutaneous TNF-alpha blockade compared with local glucocorticoid injection

    DEFF Research Database (Denmark)

    Schydlowsky, Pierre; Szkudlarek, Marcin; Madsen, Ole Rintek

    2012-01-01

    We compared the effect of subcutaneous adalimumab injections with intraarticular glucocorticoid injections on frozen shoulder of 18 patients with unilateral joint involvement. Ten patients were randomised to subcutaneous injections with adalimumab and eight to intraarticular glucocorticoid inject...

  3. Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities.

    Science.gov (United States)

    Zoladz, Phillip R; Fleshner, Monika; Diamond, David M

    2012-09-01

    Post-traumatic stress disorder (PTSD) is characterized by a pathologically intense memory for a traumatic experience, persistent anxiety and physiological abnormalities, such as low baseline glucocorticoid levels and increased sensitivity to dexamethasone. We have addressed the hypothesis that rats subjected to chronic psychosocial stress would exhibit PTSD-like sequelae, including traumatic memory expression, increased anxiety and abnormal glucocorticoid responses. Adult male Sprague-Dawley rats were exposed to a cat on two occasions separated by 10 days, in conjunction with chronic social instability. Three weeks after the second cat exposure, the rats were tested for glucocorticoid abnormalities, general anxiety and their fear-conditioned memory of the two cat exposures. Stressed rats exhibited reduced basal glucocorticoid levels, increased glucocorticoid suppression following dexamethasone administration, heightened anxiety and a robust fear memory in response to cues that were paired with the two cat exposures. The commonalities in endocrine and behavioral measures between psychosocially stressed rats and traumatized people with PTSD provide the opportunity to explore mechanisms underlying psychological trauma-induced changes in neuroendocrine systems and cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Scanning patterns of faces do not explain impaired emotion recognition in Huntington Disease: Evidence for a high level mechanism

    Directory of Open Access Journals (Sweden)

    Marieke evan Asselen

    2012-02-01

    Full Text Available Previous studies in patients with amygdala lesions suggested that deficits in emotion recognition might be mediated by impaired scanning patterns of faces. Here we investigated whether scanning patterns also contribute to the selective impairment in recognition of disgust in Huntington disease (HD. To achieve this goal, we recorded eye movements during a two-alternative forced choice emotion recognition task. HD patients in presymptomatic (n=16 and symptomatic (n=9 disease stages were tested and their performance was compared to a control group (n=22. In our emotion recognition task, participants had to indicate whether a face reflected one of six basic emotions. In addition, and in order to define whether emotion recognition was altered when the participants were forced to look at a specific component of the face, we used a second task where only limited facial information was provided (eyes/mouth in partially masked faces. Behavioural results showed no differences in the ability to recognize emotions between presymptomatic gene carriers and controls. However, an emotion recognition deficit was found for all 6 basic emotion categories in early stage HD. Analysis of eye movement patterns showed that patient and controls used similar scanning strategies. Patterns of deficits were similar regardless of whether parts of the faces were masked or not, thereby confirming that selective attention to particular face parts is not underlying the deficits. These results suggest that the emotion recognition deficits in symptomatic HD patients cannot be explained by impaired scanning patterns of faces. Furthermore, no selective deficit for recognition of disgust was found in presymptomatic HD patients.

  5. Osteoporosis secundaria y Osteoporosis inducida por glucocorticoides (OIG

    Directory of Open Access Journals (Sweden)

    Elías Forero Illera

    2006-01-01

    Full Text Available La osteoporosis es un problema de salud pública importante a nivel mundial, y su prevalencia está aumentando. La osteoporosis secundaria se puede producir por varias patologías y el uso de ciertos medicamentos. Los glucocorticoides son un grupo de fármacos usados extensamente en la práctica médica debido a su indiscutible utilidad. La osteoporosis inducida por glucocorticoides es un problema de salud pública. Aunque la patogénesis de la pérdida producida por los glucocorticoides en el hueso no se conoce totalmente, investigaciones recientes han proporcionado nuevas conocimientos en los mecanismos de estos fármacos a nivel celular y molecular. Diversas guías han sido propuestas por diversos grupos para el tratamiento de la OIG; desafortunadamente, las guías del tratamiento no se utilizan adecuadamente en los pacientes.

  6. Glucocorticoid receptors in monocytes in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P; Binder, C

    1989-01-01

    Glucocorticoid receptor binding characteristics were investigated in 8 males with poorly controlled Type 1 diabetes mellitus and 14 healthy males. The cell type studied was monocytes, and a method for correction for heterogeneity in glucocorticoid binding in a mononuclear leucocyte population...... or with HbA1c. In conclusion, no major abnormalities in glucocorticoid receptor binding characteristics could be demonstrated in Type 1 diabetes mellitus....... was introduced. The number of receptors and the dissociation constant KD were, respectively, 13,699 and 2.93 X 10(-8) mol/l for the control group and 15,788 and 2.75 X 10(-8) mol/l for diabetics (p greater than 0.05). In diabetics, KD correlated negatively with blood glucose (r = 0.762, p less than 0...

  7. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  8. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  9. Cardiovascular disease risk factors in a Nigerian population with impaired fasting blood glucose level and diabetes mellitus

    DEFF Research Database (Denmark)

    Oguoma, Victor M.; Nwose, Ezekiel U.; Ulasi, Ifeoma I.

    2017-01-01

    Background Diabetes is a risk factor for cardiovascular diseases (CVDs) and there are reports of increasing prevalence of prediabetes in Nigeria. This study therefore characterised CVDs risk factors in subjects with impaired fasting glucose (IFG) and diabetes. Methods Data from 4 population......-based cross-sectional studies on 2447 apparently healthy individuals from 18 - 89 years were analysed. Anthropometric, blood pressure and biochemical parameters were collected and classified. Individuals with IFG (prediabetes) and diabetes were merged each for positive cases of dyslipidaemia, high blood...... the need for risk assessment models for prediabetes and education of individuals at risk about factors that mitigate development of diabetes and CVDs....

  10. Low-dose glucocorticoids in hyperandrogenism Efecto de bajas dosis de glucocorticoides en el hiperandrogenismo

    Directory of Open Access Journals (Sweden)

    Leonardo Rizzo

    2007-06-01

    Full Text Available To investigate the effect of low-doses of glucocorticoids on androgen and cortisol secretion during the course of the day, we evaluated clinical signs of hyperandrogenism and total, free and bioavailable testosterone, SHBG, and cortisol following two different protocols: A fourteen patients received betamethasone 0.6 mg/day (n=8 or methylprednisolone 4 mg/day (n=6, as single daily oral dose at 11.00 PM, during 30 days, B fourteen patients were evaluated under betamethasone 0.3 mg in a single daily dose at 11.00 PM during six months, 11 out of whom were re-evaluated six months later. Twenty eight women with hyperandrogenism were included and seven normal females were used as control. Blood samples were taken in follicular phase at 8 AM and 7 PM to determine SHBG, cortisol, total, free and bioavailable testosterone. In both protocols, a significant morning and evening decrease in cortisol and testosterone (pCon el objetivo de investigar el efecto de bajas dosis de glucocorticoides sobre la secreción de andrógenos y cortisol en el curso del día, evaluamos signos de hiperandrogenismo, testosterona total, libre y biodisponible y cortisol según dos protocolos diferentes: A catorce pacientes recibieron betametasona 0.6 mg/día (n= 8 o metilprednisolona 4 mg/día (n= 6 en dosis única cotidiana, a las 23 h, durante 30 días, B catorce pacientes fueron evaluadas bajo betametasona 0.3 mg en dosis única cotidiana a la 23 h, administrada durante 6 meses; de ellas, 11 pacientes fueron re-evaluadas 6 meses más tarde. Se incluyeron 28 mujeres con hiperandrogenismo y 7 controles normales. Se obtuvieron muestras de sangre en fase folicular a las 08:00 y 9:00 h para determinar SHBG, cortisol, testosterona total, libre y biodisponible. En ambos protocolos se observó una disminución significativa de cortisol y testosterona (p<0.05 a <0.01, más importante con betametasona (p<0.05. En el protocolo B, los niveles matutinos de SHBG aumentaron

  11. Diet matters: Glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys.

    Science.gov (United States)

    Godfrey, Jodi R; Diaz, Maylen Perez; Pincus, Melanie; Kovacs-Balint, Zsofia; Feczko, Eric; Earl, Eric; Miranda-Dominguez, Oscar; Fair, Damien; Sanchez, Mar M; Wilson, Mark E; Michopoulos, Vasiliki

    2018-05-01

    Exposure to psychosocial stressors increases consumption of palatable, calorically dense diets (CDD) and the risk for obesity, especially in females. While consumption of an obesogenic diet and chronic stress have both been shown to decrease dopamine 2 receptor (D2R) binding and alter functional connectivity (FC) within the prefrontal cortex (PFC) and the nucleus accumbens (NAcc), it remains uncertain how social experience and dietary environment interact to affect reward pathways critical for the regulation of motivated behavior. Using positron emission tomography (PET) and resting state functional connectivity magnetic resonance neuroimaging (rs-fMRI), in female rhesus monkeys maintained in a low calorie chow (n = 18) or a dietary choice condition (chow and a CDD; n = 16) for 12 months, the current study tested the overarching hypothesis that the adverse social experience resulting from subordinate social status would interact with consumption of an obesogenic diet to increase caloric intake that would be predicted by greater cortisol, lower prefrontal D2R binding potential (D2R-BP) and lower PFC-NAcc FC. Results showed that the consequences of adverse social experience imposed by chronic social subordination vary significantly depending on the dietary environment and are associated with alterations in prefrontal D2R-BP and FC in NAcc-PFC sub-regions that predict differences in caloric intake, body weight gain, and fat accumulation. Higher levels of cortisol in the chow-only condition were associated with mild inappetence, as well as increased orbitofrontal (OFC) D2R-BP and greater FC between the NAcc and the dorsolateral PFC (dlPFC) and ventromedial PFC (vmPFC). However, increased cortisol release in females in the dietary choice condition was associated with reduced prefrontal D2R-BP, and opposite FC between the NAcc and the vmPFC and dlPFC observed in the chow-only females. Importantly, the degree of these glucocorticoid-related neuroadaptations

  12. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis.

    Science.gov (United States)

    Mouri, Akihiro; Ukai, Mayu; Uchida, Mizuki; Hasegawa, Sho; Taniguchi, Masayuki; Ito, Takahiro; Hida, Hirotake; Yoshimi, Akira; Yamada, Kiyofumi; Kunimoto, Shohko; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-05-01

    Adverse juvenile experiences, including physical abuse, often have negative health consequences later in life. We investigated the influence of social defeat stress exposure as juveniles on neuropsychological behaviors, and the causal role of glucocorticoids in abnormal behaviors and impairment of neurogenesis in mice exposed to the stress. The juvenile (24-day-old) and adult (70-day-old) male C57BL/6J mice were exposed to social defeat stress induced by an aggressive ICR mouse. Social defeat stress exposure as juveniles, even for 1 day, induced persistent social avoidance to the unfamiliar ICR mouse in the social interaction test, but that was not observed in mice exposed to the stress as adults. Social avoidance by the stress exposure as juveniles for 10 consecutive days was observed, when the target mouse was not only unfamiliar ICR but also another C57BL/J mouse, but not an absent or an anesthetized ICR mouse. The stress exposure did not induce anxiety- and depression-like behaviors in spontaneous locomotor activity, elevated plus-maze test, marble-burying test, forced swimming test, or sucrose preference test. Serum corticosterone levels increased immediately after the stress exposure. The hippocampal neurogenesis was suppressed 1 day and 4 weeks after the stress exposure. Administration of mifepristone, a glucocorticoid receptor antagonist, prior to each stress exposure, blocked the persistent social avoidance and suppression of neurogenesis. In conclusion, social avoidance induced by social defeat stress exposure as juveniles are more persistent than that as adults. These social avoidances are associated with suppression of hippocampal neurogenesis via glucocorticoid receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Glucocorticoid-induced myopathy in the intensive care unit

    DEFF Research Database (Denmark)

    Eddelien, Heidi Shil; Hoffmeyer, Henrik Westy; Lund, Eva Charlotte Løbner

    2015-01-01

    Glucocorticoids (GC) are used for intensive care unit (ICU) patients on several indications. We present a patient who was admitted to the ICU due to severe respiratory failure caused by bronchospasm requiring mechanical ventilation and treated with methylprednisolone 240 mg/day in addition...... to antibiotics and bronchiolytics. When the sedation was lifted on day 10, the patient was awake but quadriplegic. Blood samples revealed elevated muscle enzymes, electromyography showed myopathy, and a muscle biopsy was performed. Glucocorticoid-induced myopathy was suspected, GC treatment was tapered...

  14. Quintupling Inhaled Glucocorticoids to Prevent Childhood Asthma Exacerbations.

    Science.gov (United States)

    Jackson, Daniel J; Bacharier, Leonard B; Mauger, David T; Boehmer, Susan; Beigelman, Avraham; Chmiel, James F; Fitzpatrick, Anne M; Gaffin, Jonathan M; Morgan, Wayne J; Peters, Stephen P; Phipatanakul, Wanda; Sheehan, William J; Cabana, Michael D; Holguin, Fernando; Martinez, Fernando D; Pongracic, Jacqueline A; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Covar, Ronina; Gentile, Deborah A; Israel, Elliot; Krishnan, Jerry A; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Long, Dayna; Ly, Ngoc; Marbin, Jyothi; Moy, James N; Myers, Ross E; Olin, J Tod; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Lemanske, Robert F

    2018-03-08

    Asthma exacerbations occur frequently despite the regular use of asthma-controller therapies, such as inhaled glucocorticoids. Clinicians commonly increase the doses of inhaled glucocorticoids at early signs of loss of asthma control. However, data on the safety and efficacy of this strategy in children are limited. We studied 254 children, 5 to 11 years of age, who had mild-to-moderate persistent asthma and had had at least one asthma exacerbation treated with systemic glucocorticoids in the previous year. Children were treated for 48 weeks with maintenance low-dose inhaled glucocorticoids (fluticasone propionate at a dose of 44 μg per inhalation, two inhalations twice daily) and were randomly assigned to either continue the same dose (low-dose group) or use a quintupled dose (high-dose group; fluticasone at a dose of 220 μg per inhalation, two inhalations twice daily) for 7 days at the early signs of loss of asthma control ("yellow zone"). Treatment was provided in a double-blind fashion. The primary outcome was the rate of severe asthma exacerbations treated with systemic glucocorticoids. The rate of severe asthma exacerbations treated with systemic glucocorticoids did not differ significantly between groups (0.48 exacerbations per year in the high-dose group and 0.37 exacerbations per year in the low-dose group; relative rate, 1.3; 95% confidence interval, 0.8 to 2.1; P=0.30). The time to the first exacerbation, the rate of treatment failure, symptom scores, and albuterol use during yellow-zone episodes did not differ significantly between groups. The total glucocorticoid exposure was 16% higher in the high-dose group than in the low-dose group. The difference in linear growth between the high-dose group and the low-dose group was -0.23 cm per year (P=0.06). In children with mild-to-moderate persistent asthma treated with daily inhaled glucocorticoids, quintupling the dose at the early signs of loss of asthma control did not reduce the rate of severe asthma

  15. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Mankind is exposed to a number of stressors, and among them noise is one which can cause intense stress. High levels of background noise can severely impair one's ability to concentrate. The present study was aimed to investigate the effect of sub-chronic noise stress on cognitive behavior and hippocampal monoamine levels in male rats. The study was performed on 12 male Wistar rats, divided into two groups; the control and noise-exposed. The rats in the test group were subjected to noise stress, 4h daily for 15 days. Cognitive testing was performed by the Elevated Plus Maze test (EPM) and Novel Object Recognition test (NOR). HPLC-EC was used to determine hippocampal monoamine levels and their metabolites. The data obtained revealed a significant decrease in hippocampal serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) levels, whereas turnover ratios of 5-HT and DA were significantly increased compared to the controls. Rats exposed to noise exhibited a significant decrement in spatial memory. A significantly decreased recognition index of rats exposed to noise as compared to the control was also observed in the NOR test. Results of the present findings suggest the role of decreased hippocampal 5-HT and DA in the impairment of cognitive function following noise exposure.

  16. Benefits of glucocorticoids in non-ambulant boys/men with Duchenne muscular dystrophy: A multicentric longitudinal study using the Performance of Upper Limb test.

    Science.gov (United States)

    Pane, Marika; Fanelli, Lavinia; Mazzone, Elena Stacy; Olivieri, Giorgia; D'Amico, Adele; Messina, Sonia; Scutifero, Marianna; Battini, Roberta; Petillo, Roberta; Frosini, Silvia; Sivo, Serena; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Pegoraro, Elena; De Sanctis, Roberto; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Carlesi, Adelina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Bianco, Flaviana; Bonfiglio, Serena; Rolle, Enrica; Palermo, Concetta; D'Angelo, Grazia; Pini, Antonella; Iotti, Elena; Gorni, Ksenija; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio

    2015-10-01

    The aim of this study was to establish the possible effect of glucocorticoid treatment on upper limb function in a cohort of 91 non-ambulant DMD boys and adults of age between 11 and 26 years. All 91 were assessed using the Performance of Upper Limb test. Forty-eight were still on glucocorticoid after loss of ambulation, 25 stopped steroids at the time they lost ambulation and 18 were GC naïve or had steroids while ambulant for less than a year. At baseline the total scores ranged between 0 and 74 (mean 41.20). The mean total scores were 47.92 in the glucocorticoid group, 36 in those who stopped at loss of ambulation and 30.5 in the naïve group (p < 0.001). The 12-month changes ranged between -20 and 4 (mean -4.4). The mean changes were -3.79 in the glucocorticoid group, -5.52 in those who stopped at loss of ambulation and -4.44 in the naïve group. This was more obvious in the patients between 12 and 18 years and at shoulder and elbow levels. Our findings suggest that continuing glucocorticoids throughout teenage years and adulthood after loss of ambulation appears to have a beneficial effect on upper limb function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Progesterone attenuates airway remodeling and glucocorticoid resistance in a murine model of exposing to ozone.

    Science.gov (United States)

    Zhang, Xue; Bao, Wuping; Fei, Xia; Zhang, Yingying; Zhang, Guoqing; Zhou, Xin; Zhang, Min

    2018-04-01

    Airway remodeling is a vital component of chronic obstructive pulmonary disease (COPD). Despite the broad anti-inflammation effects of glucocorticoids, they exhibit relatively little therapeutic benefit in COPD, indicating the accelerating demands of new agents for COPD. We aim to explore the effect of progesterone on airway remodeling in a murine modeling of exposing to ozone and to further examine the potential effect of progesterone on glucocorticoid insensitivity. C57/BL6 mice were exposed to ozone for 12 times over 6 weeks, and were administered with progesterone alone or combined with budesonide (BUD) after each exposure until the 10th week. The peribronchial collagen deposition was measured. The protein levels of MMP8 and MMP9 in bronchoalveolar lavage fluid (BALF) and lungs were assessed. Western blot analysis was used to detect the levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), a-smooth muscle actin (α-SMA), glycogen synthase kinase-3β (GSK-3β). The expression of VEGF and histone deacetylase 2 (HDAC2) in the lung were determined by Immunohistochemical analyses. We observe that progesterone attenuates the peribronchial collagen deposition, as well as the expression of MMP8, MMP9, HIF-1α, VEGF, α-SMA, and GSK-3β in BALF or lung tissues. Progesterone or BUD monotherapy has no effect on HDAC2 production. Progesterone combines with BUD induce dramatically enhanced effects. Thus, these results demonstrate novel roles of progesterone for the pathogenesis and airway remodeling in COPD. Progesterone plus BUD administration exerts more significant inhibition on airway remodeling with dose-independent. Additionally, progesterone may, to some extent, improve the glucocorticoid insensitivity. Copyright © 2018. Published by Elsevier Ltd.

  18. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    Science.gov (United States)

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  20. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1

    NARCIS (Netherlands)

    Lemke, U.; Krones-Herzig, A.; Berriel Diaz, M.; Narvekar, P.; Ziegler, A.; Vegiopoulos, A.; Cato, A.C.B.; Bohl, S.; Klingmüller, U.; Screaton, R.A.; Müller-Decker, K.; Kersten, A.H.; Herzig, S.

    2008-01-01

    Aberrant accumulation of lipids in the liver (¿fatty liver¿ or hepatic steatosis) represents a hallmark of the metabolic syndrome and is tightly associated with obesity, type II diabetes, starvation, or glucocorticoid (GC) therapy. While fatty liver has been connected with numerous abnormalities of

  1. CINRG: Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2013-10-01

    Contract W81XWH-09-1-0726 SYSTEMS BIOLOGY OF GLUCOCORTICOIDS IN MUSCLE DISEASE Introduction Duchenne muscular dystrophy (DMD) is the most... muscle and enable the development of better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant...common and incurable muscular dystrophy of childhood. Muscle regeneration fails with advancing age, leading to considerable fibrosis. Corticosteroid

  2. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    International Nuclear Information System (INIS)

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. 3 H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse

  3. Uso de glucocorticoides en enfermedades alérgicas

    Directory of Open Access Journals (Sweden)

    M Rodríguez-González

    2017-01-01

    Full Text Available Los glucocorticoides son análogos sintéticos de las hormonas adrenocorticales, de uso común, de gran utilidad en la práctica clínica del pediatra y se consideran la piedra angular del tratamiento farmacológico de enfermedades alérgicas.

  4. Glucocorticoid management in rheumatoid arthritis: morning or night low dose?

    Directory of Open Access Journals (Sweden)

    Sabrina Paolino

    2017-08-01

    Full Text Available Morning symptoms of rheumatoid arthritis (RA are linked to circadian increase of night inflammation, supported by inadequate cortisol secretion in active disease. Therefore, exogenous glucocorticoid administration in RA is recommended by EULAR and ACR from the beginning of the diagnosis, since may partially act like a “replacement therapy”. In addition, the prevention/treatment of the night up-regulation of the immune/inflammatory reaction has been shown more effective when exogenous glucocorticoid administration is managed with a night-time-release formulation. Despite a considerably higher cost than conventional prednisone (immediate release, chronotherapy with night-time-release prednisone has been recognized a cost-effective option for RA patients not on glucocorticoids who are eligible for therapy with biologic disease-modifying antirheumatic drugs (DMARDs. Interestingly, since different cell populations involved in the inflammatory process are particularly activated during the night (i.e. monocytes, macrophages, other therapeutical approaches used in RA, such as conventional DMARDs and non-steroidal anti-inflammatory drugs (NSAIDs should follow the same concepts of glucocorticoid chronotherapy. Therefore, bedtime methotrexate chronotherapy was found to better manage RA symptoms, and several available NSAIDs (i.e. indomethacin, aceclofenac, ketoprofen, flurbiprofen, lornoxicam have been recently modified in their formulation, in order to obtain more focused night action.

  5. The effect of early administration of glucocorticoids on learning and ...

    African Journals Online (AJOL)

    It has been observed that steroids administered postnatally may have transient retarding effect on learning and memory functions, and that animal age and sex may modify such effects. This study aims to illustrate the effect of early administration of glucocorticoids on learning and spatial memory. Wistar rat pups were ...

  6. Glucocorticoid receptor effects on the immune system and infl ammation

    NARCIS (Netherlands)

    E.L.T. van den Akker (Erica)

    2008-01-01

    textabstractThomas Addison’s discovery in the mid-1800s that the adrenal cortex was essential for survival preceded by nearly a century the demonstration that this gland produced at least two distinct hormones, each essential for normal life. How glucocorticoids sustained life remained a mystery for

  7. Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease

    DEFF Research Database (Denmark)

    Nathanson, D; Zethelius, B; Berne, C

    2009-01-01

    stimulated GLP-1 levels and: (1) cardiovascular risk factors (blood pressure, lipids, urinary albumin, waist circumference and insulin sensitivity index [M/I] assessed by euglycaemic-hyperinsulinaemic clamp); and (2) impaired glucose tolerance (IGT) and type 2 diabetes mellitus. RESULTS: During the follow......AIMS/HYPOTHESIS: Besides the insulinotropic effects of glucagon-like peptide-1 (GLP-1) mimetics, their effects on endothelial dysfunction and myocardial ischaemia are of interest. No previous study has investigated associations between plasma levels of GLP-1 and CHD. METHODS: We investigated...... longitudinal relationships of fasting GLP-1 with the dynamic GLP-1 response after OGTT (difference between 60 min OGTT-stimulated and fasting GLP-1 levels [DeltaGLP-1]) and CHD in a population-based cohort of 71-year-old men. In the same cohort, we also cross-sectionally investigated the association between...

  8. Soluble CD163 levels are elevated in cerebrospinal fluid and serum in people with Type 2 diabetes mellitus and are associated with impaired peripheral nerve function

    DEFF Research Database (Denmark)

    Kallestrup, M; Møller, Holger Jon; Tankisi, H

    2015-01-01

    and serum in participants with neuropathy than in those without neuropathy [cerebrospinal fluid: median (range) 131 (86-173) vs 101 (70-190) μg/l, P = 0.08 and serum: 3725 (920-7060) vs 2220 (1130-4780), P = 0.06). CONCLUSIONS: Cerebrospinal fluid soluble CD163 level is associated with impaired peripheral......AIMS: To measure soluble CD163 levels in the cerebrospinal fluid and serum of people with Type 2 diabetes, with and without polyneuropathy, and to relate the findings to peripheral nerve function. METHODS: A total of 22 people with Type 2 diabetes and 12 control subjects without diabetes were...... included in this case-control study. Participants with diabetes were divided into those with neuropathy (n = 8) and those without neuropathy (n = 14) based on clinical examination, vibratory perception thresholds and nerve conduction studies. Serum and cerebrospinal fluid soluble CD163 levels were analysed...

  9. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  10. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  11. The significance of the glucocorticoid receptor measurement in the treatment of acute leukemia

    International Nuclear Information System (INIS)

    Wang Haodan

    1992-01-01

    We studied the method of measuring the glucocorticoid receptor (GCR) using whole peripheral leukocytes, and measured the GCR level of 20 healthy and 50 cases of acute leukemia. The Kd values were 5.51 ± 2.01 nmol/L and 5.38 ± 1.21 nmol/L. The normal R 0 value (x-bar ± s) was 6878 ±1563 sites/cell, and had no co-relationship with the serum level of total cortisol. The relationship between the GCR level and the effect of chemotherapy and short-term prognosis was also studied. The low affinitive binding sites of glucocorticoid hormone were for the first time observed in 9 normal persons and 5 cases of acute leukemia in the normal subjects, the Kd values were 0.8224±0.241 μmol/L and the R 0 values were 3614.43±1233.33 f mole/10 7 cells. In the leukemic patients, the Kd values were 1.067±0.456 μmol/L and the R 0 values were 3488.94 ± 2272.56 f mole/10 7 cells. The Scatchard curves were obviously of the concave

  12. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis

    Science.gov (United States)

    de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan

    2015-01-01

    In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864

  13. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself

    DEFF Research Database (Denmark)

    Dinsen, Stina; Baslund, Bo; Klose, Marianne

    2013-01-01

    Glucocorticoid therapy is widely used, but withdrawal from glucocorticoids comes with a potential life-threatening risk of adrenal insufficiency. Recent case reports document that adrenal crisis after glucocorticoid withdrawal remains a serious problem in clinical practice. Partly due...... to difficulties in inter-study comparison the true prevalence of glucocorticoid-induced adrenal insufficiency is unknown, but it might be somewhere between 46 and 100% 24h after glucocorticoid withdrawal, 26-49% after approximately one week, and some patients show prolonged suppression lasting months to years....... Adrenal insufficiency might therefore be underdiagnosed in clinical practice. Clinical data do not permit accurate estimates of a lower limit of glucocorticoid dose and duration of treatment, where adrenal insufficiency will not occur. Due to individual variation, neither the glucocorticoid dose nor...

  14. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2

    Science.gov (United States)

    Tsabar, Michael; Eapen, Vinay V.; Mason, Jennifer M.; Memisoglu, Gonen; Waterman, David P.; Long, Marcus J.; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5′ to 3′ end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5′ to 3′ resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  15. Effects of level of processing at encoding and types of retrieval task in mild cognitive impairment and normal aging.

    Science.gov (United States)

    Froger, Charlotte; Taconnat, Laurence; Landré, Lionel; Beigneux, Katia; Isingrini, Michel

    2009-04-01

    A total of 16 young (M = 27.25 years), 13 healthy elderly (M = 75.38 years), and 10 older adults with probable mild cognitive impairment (MCI; M = 78.6 years) carried out a task under two different encoding conditions (shallow vs. semantic) and two retrieval conditions (free recall vs. recognition). For the shallow condition, participants had to decide whether the first or last letter of each word in a list was "E." For the semantic condition, they had to decide whether each word represented a concrete or abstract entity. The MCI group was only able to benefit from semantic encoding to the same extent as the healthy older adults in the recognition task, whereas the younger and healthy older adults benefited in both retrieval tasks. These results suggest that the MCI group required cognitive support at retrieval to make effective use of semantic processing carried out at encoding. In the discussion, we suggest that adults with MCI engage more in deep processing, using the semantic network, than hitherto thought.

  16. Preadmission Use of Glucocorticoids and 30-Day Mortality After Stroke.

    Science.gov (United States)

    Sundbøll, Jens; Horváth-Puhó, Erzsébet; Schmidt, Morten; Dekkers, Olaf M; Christiansen, Christian F; Pedersen, Lars; Bøtker, Hans Erik; Sørensen, Henrik T

    2016-03-01

    The prognostic impact of glucocorticoids on stroke mortality remains uncertain. We, therefore, examined whether preadmission use of glucocorticoids is associated with short-term mortality after ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). We conducted a nationwide population-based cohort study using medical registries in Denmark. We identified all patients with a first-time inpatient diagnosis of stroke between 2004 and 2012. We categorized glucocorticoid use as current use (last prescription redemption ≤90 days before admission), former use, and nonuse. Current use was further classified as new or long-term use. We used Cox regression to compute 30-day mortality rate ratios with 95% confidence intervals (CIs), controlling for confounders. We identified 100 042 patients with a first-time stroke. Of these, 83 735 patients had ischemic stroke, 11 779 had ICH, and 4528 had SAH. Absolute mortality risk was higher for current users compared with nonusers for ischemic stroke (19.5% versus 10.2%), ICH (46.5% versus 34.4%), and SAH (35.0% versus 23.2%). For ischemic stroke, the adjusted 30-day mortality rate ratio was increased among current users compared with nonusers (1.58, 95% CI: 1.46-1.71), driven by the effect of glucocorticoids among new users (1.80, 95% CI: 1.62-1.99). Current users had a more modest increase in the adjusted 30-day mortality rate ratio for hemorrhagic stroke (1.26, 95% CI: 1.09-1.45 for ICH and 1.40, 95% CI: 1.01-1.93 for SAH) compared with nonusers. Former use was not substantially associated with mortality. Preadmission use of glucocorticoids was associated with increased 30-day mortality among patients with ischemic stroke, ICH, and SAH. © 2016 American Heart Association, Inc.

  17. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Jie Yu

    Full Text Available Prolonged and excessive glucocorticoids (GC exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g were administrated with 100 µg/ml corticosterone (CORT or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.

  18. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  19. [Examination of relationship between level of hearing and written language skills in 10-14-year-old hearing impaired children].

    Science.gov (United States)

    Turğut, Nedim; Karlıdağ, Turgut; Başar, Figen; Yalçın, Şinasi; Kaygusuz, İrfan; Keleş, Erol; Birkent, Ömer Faruk

    2015-01-01

    This study aims to review the relationship between written language skills and factors which are thought to affect this skill such as mean hearing loss, duration of auditory deprivation, speech discrimination score, and pre-school education attendance and socioeconomic status of hearing impaired children who attend 4th-7th grades in primary school in inclusive environment. The study included 25 hearing impaired children (14 males, 11 females; mean age 11.4±1.4 years; range 10 to 14 years) (study group) and 20 children (9 males, 11 females; mean age 11.5±1.3 years; range 10 to 14 years) (control group) with normal hearing in the same age group and studying in the same class. Study group was separated into two subgroups as group 1a and group 1b since some of the children with hearing disability used hearing aid while some used cochlear implant. Intragroup comparisons and relational screening were performed for those who use hearing aids and cochlear implants. Intergroup comparisons were performed to evaluate the effect of the parameters on written language skills. Written expression skill level of children with hearing disability was significantly lower than their normal hearing peers (p=0.001). A significant relationship was detected between written language skills and mean hearing loss (p=0.048), duration of auditory deprivation (p=0.021), speech discrimination score (p=0.014), and preschool attendance (p=0.005), when it comes to socioeconomic status we were not able to find any significant relationship (p=0.636). It can be said that hearing loss affects written language skills negatively and hearing impaired individuals develop low-level written language skills compared to their normal hearing peers.

  20. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison's disease.

    Science.gov (United States)

    Smans, Lisanne; Lentjes, Eef; Hermus, Ad; Zelissen, Pierre

    2013-01-01

    Patients with Addison's disease require lifelong treatment with glucocorticoids. At present, no glucocorticoid replacement therapy (GRT) can exactly mimic normal physiology. As a consequence, under- and especially overtreatment can occur. Suboptimal GRT may lead to various side effects. The aim of this study was to investigate the use of salivary cortisol day curves (SCDC) in the individual adjustment of GRT in order to approach normal cortisol levels as closely as possible, reduce over- and underreplacement and study the short-term effects on quality of life (QoL). Twenty patients with Addison's disease were included in this prospective study. A SCDC was obtained and compared to normal controls; general and disease specific QoL-questionnaires were completed. Based on SCDC assessment of over- and undertreatment (calculated as duration (h) × magnitude (nmol/L) at different time points, glucocorticoid dose and regime were adjusted. After 4 weeks SCDC and QoL assessment were repeated and the effect of adjusting GRT was analysed. At baseline, underreplacement was present in 3 and overreplacement in 18 patients; total calculated overreplacement was 32.8 h.nmol/L. Overreplacement decreased significantly to 13.3 h. nmol/L (p =0.005) after adjustment of GRT. Overreplacement was found particularly in the afternoon and evening. After reducing overreplacement in the evening, complaints about sleep disturbances significantly decreased. Individual adjustment of GRT based on SCDC to approach normal cortisol concentrations during the day can reduce overreplacement, especially in the evening. This can lead to a reduction of sleep disturbances and fatigue in patients with Addison's disease. A SCDC is a simple and patient-friendly tool for adjusting GRT and can be useful in the follow-up of patients with Addison's disease.

  2. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2011-07-01

    Full Text Available In various tissues, glucocorticoids (GCs are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR. Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1 are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR

  3. Glucocorticoid-induced leucine zipper expression is associated with response to treatment and immunoregulation in systemic lupus erythematosus.

    Science.gov (United States)

    Mohammadi, Saeed; Ebadpour, Mohammad Reza; Sedighi, Sima; Saeedi, Mohsen; Memarian, Ali

    2017-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder in which cytokine balance is disturbed. Glucocorticoids (GCs) are shown to balance immune response by transcriptional regulation of glucocorticoid receptor target genes such as Glucocorticoid-induced leucine zipper (GILZ) which has been introduced as an endogenous anti-inflammatory mediator. In the present study, we assessed the expression of GILZ in association with interferon-γ (IFN-γ), interleukine-10 (IL-10), and B lymphocyte stimulator (BLyS) plasma levels in SLE patients. A total of 40 female patients (18 under treatment and 22 newly diagnosed) were recruited in this study. Real-time RT PCR was conducted to quantify the mRNA expression of GILZ. The plasma levels of IFN-γ, IL-10, and BLyS were evaluated using ELISA method. GILZ was overexpressed among under treatment SLE patients. The mRNA expression of GILZ was significantly correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score. IFN-γ and BLyS were downregulated in response to therapies with negative correlations to GILZ. Moreover, IL-10 was upregulated among treated patients. The levels of IFN-γ and BLyS were correlated with the severity of disease, while IL-10 was negatively correlated with SLEDAI score. GILZ could be introduced as one of the acting molecules in mediating the regulatory effects of GCs on producing pro- and anti-inflammatory cytokines in SLE.

  4. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings.

    Science.gov (United States)

    Almasi, Bettina; Béziers, Paul; Roulin, Alexandre; Jenni, Lukas

    2015-09-01

    Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

  5. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.

    Science.gov (United States)

    Pilkington, Suzanne M; Ogden, Stephanie; Eaton, Laura H; Dearman, Rebecca J; Kimber, Ian; Griffiths, Christopher E M

    2018-01-01

    Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young ( 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology.

  6. Circulating omentin-1 levels and its association with insulin resistance in newly diagnosed impaired glucose tolerant subjects

    Directory of Open Access Journals (Sweden)

    L Hossain

    2016-01-01

    Full Text Available Adipose tissue derived a novel adipokine; omentin -1, w hich has recently been characterized as a potent insulin-sensitizing agent, but its pathophysiologic role in the development of insulin resistance among the impaired glucose tolerance (IGT su bjects remains largely unknow n. The present study has been undertaken to explore the relationship of serum omentin -1 w ith insulin resistance in new ly diagnosed IGT subjects of Bangladeshi population. Fifty-five subjects w ith IGT and 50 (age, sex and body m ass index (BMI matched healthy control subjects w ere recruited in this study. Serum insulin and omentin-1 w ere measured by the ELISA technique. Insulin resistance (IR w as calculated by homeostasis model assessment (HOMA. HOMA-IR w as significantly higher (p < 0.001 as w ell as log transformed omentin-1 w as significantly low er (p = 0.031 in IGT subjects compared to the control. Pearson′s correlation analysis show ed a significant negative correlation of log omentin -1 w ith HOMA-IR (r = -0.290, p = 0.008 in all subjects. Multiple linear regression analysis show ed a significant negative association of HOMA-IR w ith log omentin-1 (β = -0.285, p = 0.017 in IGT subjects after adjusting the effects of potential confounders of glycated hemoglobin (HbA1c and triglyceride (TG. Binary logistic regression analysis show ed that log omentin-1 [odds ratio (OR = 0.631, p = 0.038] and HOMA-IR (OR = 1.998, p = 0.029 w ere found to be significant determinants of IGT after adjusting the effect of HbA1c and TG. Serum concentration of omentin-1 is decreased in the state of insulin resistance of IGT subjects and this reduction seemed to be mediated by adiposity and hyperglycemia among these subjects.

  7. Low levels of maximal aerobic power impair the profile of mood state in individuals with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Rodrigo Luiz Vancini

    2015-01-01

    Full Text Available Objective To investigate the correlation between cardiorespiratory fitness and mood state in individuals with temporal lobe epilepsy (TLE. Method Individuals with TLE (n = 20 and healthy control subjects (C, n = 20 were evaluated. Self-rating questionnaires were used to assess mood (POMS and habitual physical activity (BAECKE. Cardiorespiratory fitness was evaluated by a maximal incremental test. Results People with TLE presented lower cardiorespiratory fitness; higher levels of mood disorders; and lower levels of vigor when compared to control health subjects. A significant negative correlation was observed between the levels of tension-anxiety and maximal aerobic power. Conclusion Low levels of cardiorespiratory fitness may modify the health status of individuals with TLE and it may be considered a risk factor for the development of mood disorders.

  8. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  9. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-07-01

    Full Text Available Masoumeh Falah,1,2 Mohammad Najafi,2 Massoud Houshmand,3 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran Abstract: Age-related hearing impairment (ARHI is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. Keywords: age-related hearing impairment (ARHI, presbycusis, biomarker, treatment

  11. Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Serafin, Valentina; Capuzzo, Giorgia; Milani, Gloria; Minuzzo, Sonia Anna; Pinazza, Marica; Bortolozzi, Roberta; Bresolin, Silvia; Porcù, Elena; Frasson, Chiara; Indraccolo, Stefano; Basso, Giuseppe; Accordi, Benedetta

    2017-12-21

    Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 ( IL-4 ) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients. © 2017 by The American Society of Hematology.

  12. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma Exacerbations.

    Science.gov (United States)

    McKeever, Tricia; Mortimer, Kevin; Wilson, Andrew; Walker, Samantha; Brightling, Christopher; Skeggs, Andrew; Pavord, Ian; Price, David; Duley, Lelia; Thomas, Mike; Bradshaw, Lucy; Higgins, Bernard; Haydock, Rebecca; Mitchell, Eleanor; Devereux, Graham; Harrison, Timothy

    2018-03-08

    Asthma exacerbations are frightening for patients and are occasionally fatal. We tested the concept that a plan for patients to manage their asthma (self-management plan), which included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate, would reduce the incidence of severe asthma exacerbations among adults and adolescents with asthma. We conducted a pragmatic, unblinded, randomized trial involving adults and adolescents with asthma who were receiving inhaled glucocorticoids, with or without add-on therapy, and who had had at least one exacerbation in the previous 12 months. We compared a self-management plan that included an increase in the dose of inhaled glucocorticoids by a factor of 4 (quadrupling group) with the same plan without such an increase (non-quadrupling group), over a period of 12 months. The primary outcome was the time to a first severe asthma exacerbation, defined as treatment with systemic glucocorticoids or an unscheduled health care consultation for asthma. A total of 1922 participants underwent randomization, of whom 1871 were included in the primary analysis. The number of participants who had a severe asthma exacerbation in the year after randomization was 420 (45%) in the quadrupling group as compared with 484 (52%) in the non-quadrupling group, with an adjusted hazard ratio for the time to a first severe exacerbation of 0.81 (95% confidence interval, 0.71 to 0.92; P=0.002). The rate of adverse effects, which were related primarily to local effects of inhaled glucocorticoids, was higher in the quadrupling group than in the non-quadrupling group. In this trial involving adults and adolescents with asthma, a personalized self-management plan that included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate resulted in fewer severe asthma exacerbations than a plan in which the dose was not increased. (Funded by the Health Technology

  13. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Science.gov (United States)

    Zielińska, Karolina A.; de Cauwer, Lode; Knoops, Sofie; Van der Molen, Kristof; Sneyers, Alexander; Thommis, Jonathan; De Souza, J. Brian; Opdenakker, Ghislain; De Bosscher, Karolien; Van den Steen, Philippe E.

    2017-01-01

    Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs. PMID:29033931

  14. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Directory of Open Access Journals (Sweden)

    Karolina A. Zielińska

    2017-09-01

    Full Text Available Malaria-associated acute respiratory distress syndrome (MA-ARDS is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ and Plasmodium berghei NK65 (PbNK65. Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES by 90% and both CCL2 (MCP-1 and CXCL10 (IP-10 by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1 unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK, JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.

  15. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad.

    Science.gov (United States)

    Bekhbat, Mandakh; Rowson, Sydney A; Neigh, Gretchen N

    2017-07-01

    Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Assessment of pregnancy status of Asian elephants (Elephas maximus) by measurement of progestagen and glucocorticoid and their metabolite concentrations in serum and feces, using enzyme immunoassay (EIA).

    Science.gov (United States)

    Kajaysri, Jatuporn; Nokkaew, Weerapun

    2014-03-01

    The study was to find patterns of progestagen (progesterone and its metabolite) and glucocorticoid and their metabolite concentrations in serum and feces of pregnant Asian elephants (Elephas maximus). The 5 female Asian domestic elephants were naturally mated until pregnancy. After that, blood and feces samples were collected monthly during pregnancy for progestagen, glucocorticoid and their metabolites analysis by enzyme immunoassay (EIA). The results showed the serum progestagen concentration during gestation was 2.11 ± 0.60 to 18.44 ± 2.28 ng/ml. Overall, serum progestagen concentration rose from the 1st month to reach peak in the 11th month, after which it declined to its lowest level in the 22nd month of pregnancy. Fecal progestagen concentration varied from 1.18 ± 0.54 to 3.35 ± 0.45 µg/g during pregnancy. In general, fecal progestagen concentration increased from the 1st month to its highest level in the 12th month. After this, it declined reaching its lowest point in the 22nd month of pregnancy. Glucocorticoid hormones and their metabolite concentrations both in serum and feces fluctuated from low to medium throughout almost the entire pregnancy period and then rapidly increased around the last week before calving. Our study suggests that this profile of progestagen and glucocorticoid hormones and their metabolite concentration levels in serum and feces can be used to assess the pregnancy status of Asian elephants. If serum and fecal progestagen concentrations were found in very low levels and glucocorticoid and their metabolite concentrations were found in very high levels, it was indicated that the cow elephant would calve within 7 days.

  17. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  18. Effect of glucocorticoids and gamma radiation on epidermal Langerhans cells

    International Nuclear Information System (INIS)

    Belsito, D.V.; Baer, R.L.; Thorbecke, G.J.; Gigli, I.

    1984-01-01

    The effect of 750 rads of gamma radiation on the rate of return of epidermal Langerhans cells (LC) following suppressive doses of topical glucorticoids was studied in guinea pigs. Gamma radiation alone had no effect on the LC as assessed by staining for cell membrane ATPase activity and Ia antigen. It did, however, delay the expected return of Ia but not ATPase surface markers on the LC after perturbation with glucocorticoids. The delayed return of surface Ia antigen is possibly related to a radiation-induced defect in the production of a required lymphokine and/or in intracellular Ia transport. Although our data do not rule out a cytolytic effect of steroids on the LC, they do strongly suggest that, at least in part, glucocorticoids act on the LC by altering cell surface characteristics

  19. Gastroprotective role of glucocorticoids during NSAID-induced gastropathy.

    Science.gov (United States)

    Filaretova, Ludmila

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) make significant contributions to gastric ulcer disease which remains widespread. Although several factors have been postulated as pathogenic elements of the gastric injury induced by NSAIDs, it is, however believed that prostaglandin deficiency plays a critical role in the pathogenesis of this injury. During prostaglandin deficiency, other defensive mechanisms might operate to attenuate NSAID-induced gastropathy. According to our results, NSAIDs, similar to stress, induce an increase in glucocorticoid production that in turn helps the gastric mucosa to resist the harmful actions of these drugs. In this article, we review our experimental data suggesting that glucocorticoids may play a role as natural defensive factors in maintaining the integrity of the gastric mucosa during NSAID therapy and might operate to attenuate NSAID-induced gastropathy.

  20. Changes in Fasting Plasma Glucose Levels with Ribavirin and Pegylated Interferon Treatment in Normal and Impaired Glucose Tolerant Patients with Chronic Hepatitis C

    Science.gov (United States)

    Sarasombath, Ongkarn; Suwantarat, Nuntra; Tice, Alan D

    2012-01-01

    Background Patients with Hepatitis C Virus (HCV) infection have increased rates of glucose intolerance, and studies have shown the improvement of fasting plasma glucose (FPG) levels after clearance of HCV infection with standard ribavirin plus pegylated interferon treatment. The purpose of this study was to examine glycemic changes with standard HCV treatment in patients with impaired fasting glucose (IFG) and normal fasting glucose (NFG). Methods A retrospective study of FPG changes in HCV patients with IFG and NFG treated with standard HCV therapy was conducted. Baseline characteristics and viral responses were assessed; FPG levels before treatment, at the end of treatment, and more than one-month post treatment were compared. Results The mean FPG levels increased by 8.68 mg/dl at the end of treatment in the NFG group but decreased by 9.0 mg/dl in the IFG group, a statistically significant difference (P=0.019). The change in FPG levels remained significantly different after adjusting for weight change (P=0.009) and weight changes and initial weight (P=0.039). FPG change from baseline at more than one month after treatment were similar in both groups (P=0.145). The change in FPG levels was not associated with sustained viral response. Conclusions In HCV-infected patients, standard ribavirin plus pegylated interferon treatment reduced FPG levels in patients with IFG and increased FPG levels in NFG individuals; independent of initial weight, weight change, or viral response. Standard HCV treatment modulates fasting plasma glucose levels which supports the need for a prospective study to determine the clinical significance of this finding. PMID:22737650

  1. Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimer's disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates.

    Directory of Open Access Journals (Sweden)

    Agustín Ruiz

    Full Text Available Plasma amyloid beta (Aβ levels are being investigated as potential biomarkers for Alzheimer's disease. In AB128 cross-sectional study, a number of medical relevant correlates of blood Aβ40 or Aβ42 were analyzed in 140 subjects (51 Alzheimer's disease patients, 53 healthy controls and 36 individuals diagnosed with mild cognitive impairment. We determined the association between multiple variables with Aβ40 and Aβ42 levels measured in three different blood compartments called i Aβ directly accessible (DA in the plasma, ii Aβ recovered from the plasma matrix (RP after diluting the plasma sample in a formulated buffer, and iii associated with the remaining cellular pellet (CP. We confirmed that diastolic blood pressure (DBP is consistently correlated with blood DA Aβ40 levels (r=-0.19, P=0.032. These results were consistent in the three phenotypic groups studied. Importantly, the observation resisted covariation with age, gender or creatinine levels. Observed effect size and direction of Aβ40 levels/DBP correlation are in accordance with previous reports. Of note, DA Aβ40 and the RP Aβ40 were also strongly associated with creatinine levels (r=0.599, P<<0.001 and to a lesser extent to urea, age, hematocrit, uric acid and homocysteine (p<0.001. DBP and the rest of statistical significant correlates identified should be considered as potential confounder factors in studies investigating blood Aβ levels as potential AD biomarker. Remarkably, the factors affecting Aβ levels in plasma (DA, RP and blood cell compartments (CP seem completely different.

  2. Fecal glucocorticoid response to environmental stressors in green iguanas (Iguana iguana).

    Science.gov (United States)

    Kalliokoski, Otto; Timm, Jeanette A; Ibsen, Ida B; Hau, Jann; Frederiksen, Anne-Marie B; Bertelsen, Mads F

    2012-05-15

    Quantification of glucocorticoid metabolites in feces has been shown to be a powerful tool in evaluating well-being in vertebrates. Little is known however about the hypothalamic-pituitary-adrenal axis response to stressors, and consequent glucocorticoid excretion, in reptiles. In a longitudinal study, fecal corticosterone metabolite (FCM) levels in green iguanas (Iguana iguana) were quantified during periods of rest and exposure to hypothesized stressors. FCM quantification was combined with behavioral analysis to further contextualize the measured increases. It was shown that both daily 5-minute handling/restraint, as well as housing devoid of climbing opportunity, resulted in increased FCM excretion. Behavioral analysis suggested that the iguanas were chronically stressed by the lack of climbing opportunity, whereas handling may have induced only a transient stress response. The experimental design, using repeated periods of stressor-exposure, also revealed a facilitating effect, where the two stressors potentiated one another. Furthermore, the order of the two stressors was found to be important. The study provides insight into the functioning of the hormonal stress response in green iguanas, and to the refining of their housing and handling. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  4. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  5. Ovarian hormones modify anxiety behavior and glucocorticoid receptors after chronic social isolation stress.

    Science.gov (United States)

    Ramos-Ortolaza, Dinah L; Doreste-Mendez, Raura J; Alvarado-Torres, John K; Torres-Reveron, Annelyn

    2017-06-15

    Chronic social isolation could lead to a disruption in the Hypothalamic-Pituitary-Adrenal (HPA) axis, resulting in anxiety and depressive-like behaviors but cycling estrogens could modify these behaviors. The aim of this study was to determine if changes in ovarian hormones during the normal cycle could interact with social isolation to alter anxiety and depressive-like behaviors. In parallel, we examined the expression of glucocorticoid receptor (GR) and synaptic vesicle protein synaptophysin in the hippocampus and hypothalamus of Sprague Dawley normal cycling female rats. We assigned rats to either isolated or paired housing for 8 weeks. To assess anxiety and depressive-like behaviors, we used the open field test and forced swim test, respectively. Female rats were tested at either diestrus, estrus, or proestrus stage of the estrous cycle. After behaviors, rats were perfused and brains collected. Brain sections containing hippocampus and hypothalamus were analyzed using immunohistochemistry for synaptophysin and glucocorticoid receptor (GR) levels. We found an increase in depressive-like behaviors for isolated animals compared to paired housed rats, regardless of the estrous cycle stage. Interestingly, we found a decrease in anxiety behaviors in females in the estrus stage accompanied by a decrease in GR expression in hippocampal DG and CA3. However, no changes in synaptophysin were observed in any of the areas of studied. Our results support the beneficial effects of circulating ovarian hormones in anxiety, possibly by decreasing GR expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  7. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  8. Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jungki; Perera, Lalith; Krahn, Juno M.; Jewell, Christine M.; Moon, Andrea F.; Cidlowski, John A.; Pedersen, Lars C.

    2018-02-05

    ABSTRACT

    Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.

  9. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Stubbe, Jane; Skøtt, Ole

    2004-01-01

    COX-2 in these cells. Thus low plasma concentrations of corticosterone allowed for cortical and medullary COX-2 induction during postnatal kidney development. Increased circulating glucocorticoid in the postnatal period may damage late renal development through inhibition of COX-2.......In postnatal weeks 2-4, cyclooxygenase-2 (COX-2) is induced in the rat kidney cortex where it is critically involved in final stages of kidney development. We examined whether changes in circulating gluco- or mineralocorticosteroids or in their renal receptors regulate postnatal COX-2 induction....... Plasma corticosterone concentration peaked at birth, decreased to low levels at days 3-13, and increased to adult levels from day 22. Aldosterone peaked at birth and then stabilized at adult levels. Gluco- and mineralocorticoid receptor (GR and MR) mRNAs were expressed stably in kidney before, during...

  11. Locomotor therapy with extended-release crystalline glucocorticoids

    Directory of Open Access Journals (Sweden)

    Vladimir Vasilyevich Badokin

    2013-01-01

    Full Text Available Topical glucocorticoid (GC therapy for locomotor diseases is an extremely important component of a comprehensive program to treat inflammatory and, to a lesser extent, degenerative diseases. It reduces the time of hospitalization by 5—10 days in this category of patients, has a prompt and potent anti-inflammatory effect, and shows predictable efficiency. This therapy shows good tolerability and high safety and prevents serious adverse reactions to GC treatment.

  12. The effect of weight loss on anti-Müllerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment.

    Science.gov (United States)

    Thomson, R L; Buckley, J D; Moran, L J; Noakes, M; Clifton, P M; Norman, R J; Brinkworth, G D

    2009-08-01

    Anti-Müllerian hormone (AMH) has been proposed as a clinical predictor of improvements in reproductive function following weight loss in overweight and obese women with polycystic ovary syndrome (PCOS). This study aimed to assess whether baseline and/or change in AMH levels with weight loss predict improvements in reproductive function in overweight and obese women with PCOS. Fifty-two overweight and obese women with PCOS and reproductive impairment (age 29.8 +/- 0.8 years, BMI 36.5 +/- 0.7 kg/m(2)) followed a 20-week weight loss programme. AMH, weight, menstrual cyclicity and ovulatory function were assessed at baseline and post-intervention. Participants who responded with improvements in reproductive function (n = 26) had lower baseline AMH levels (23.5 +/- 3.7 versus 32.5 +/- 2.9 pmol/l; P = 0.03) and experienced greater weight loss (-11.7 +/- 1.2 versus -6.4 +/- 0.9 kg; P = 0.001) compared with those who did not respond (n = 26). Logistic regression analysis showed that weight loss and baseline AMH were independently related to improvements in reproductive function (P = 0.002 and P = 0.013, respectively). AMH levels did not change with weight loss in both responders and non-responders. In overweight and obese women with PCOS and reproductive dysfunction, a 20-week weight loss intervention resulted in improvements in reproductive function but no change in AMH levels. ACTRN12606000198527.

  13. Cannabinoids and glucocorticoids modulate emotional memory after stress.

    Science.gov (United States)

    Akirav, Irit

    2013-12-01

    Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Regulation of NAD(P)H:quininone oxidoreductase by glucocorticoids

    International Nuclear Information System (INIS)

    Pinaire, J.A.; Xiao, G.-H.; Falkner, K.C.; Prough, R.A.

    2004-01-01

    Previous studies in neonatal and adolescent rats as well as adrenalectomized rats have demonstrated that glucocorticoids regulate the expression of the rat NAD(P)H:quinone oxidoreductase gene (QOR). We used primary cultures of rat adult hepatocytes to document that added glucorticoids repress both the basal and 1,2-benzanthracene-induced expression of QOR mRNA by 65-70%. QOR enzyme activity and protein were concomitantly suppressed as well. The monotonic concentration response for repression of QOR gene products up to 100 μM DEX concentration demonstrated that the glucocorticoid receptor (GR) was most likely involved in this process. The lack of effect at higher concentration rules out a role for the Pregnane X receptor in this regulation by DEX. In addition, the anti-glucorticoid RU38486 blocked this negative regulation and the protein synthesis inhibitor cycloheximide had no effect on this repression process. Similar results of GR dependence were observed using a luciferase reporter construct containing the 5'-flanking region of the human QOR gene using HepG2 cells. Collectively, these results demonstrate that GR must directly participate in the negative regulation of QOR gene expression by dexamethasone and other glucocorticoids in vivo

  15. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  16. Effects of Social Isolation on Glucocorticoid Regulation in Social Mammals

    Science.gov (United States)

    Hawkley, Louise C.; Cole, Steve W.; Capitanio, John P.; Norman, Greg J.; Cacioppo, John T.

    2012-01-01

    The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans. PMID:22663934

  17. Level of recall, retrieval speed, and variability on the Cued-Recall Retrieval Speed Task (CRRST) in individuals with amnestic mild cognitive impairment.

    Science.gov (United States)

    Ramratan, Wendy S; Rabin, Laura A; Wang, Cuiling; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B; Buschke, Herman

    2012-03-01

    Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = -0.13; p cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults.

  18. Combined impairments in vision, hearing and cognition are associated with greater levels of functional and communication difficulties than cognitive impairment alone: Analysis of interRAI data for home care and long-term care recipients in Ontario.

    Directory of Open Access Journals (Sweden)

    Dawn M Guthrie

    Full Text Available The objective of the current study was to understand the added effects of having a sensory impairment (vision and/or hearing impairment in combination with cognitive impairment with respect to health-related outcomes among older adults (65+ years old receiving home care or residing in a long-term care (LTC facility in Ontario, Canada.Cross-sectional analyses were conducted using existing data collected with one of two interRAI assessments, one for home care (n = 291,824 and one for LTC (n = 110,578. Items in the assessments were used to identify clients with single sensory impairments (e.g., vision only [VI], hearing only [HI], dual sensory impairment (DSI; i.e., vision and hearing and those with cognitive impairment (CI. We defined seven mutually exclusive groups based on the presence of single or combined impairments.The rate of people having all three impairments (i.e., CI+DSI was 21.3% in home care and 29.2% in LTC. Across the seven groups, individuals with all three impairments were the most likely to report loneliness, to have a reduction in social engagement, and to experience reduced independence in their activities of daily living (ADLs and instrumental ADLs (IADLs. Communication challenges were highly prevalent in this group, at 38.0% in home care and 49.2% in LTC. In both care settings, communication difficulties were more common in the CI+DSI group versus the CI-alone group.The presence of combined sensory and cognitive impairments is high among older adults in these two care settings and having all three impairments is associated with higher rates of negative outcomes than the rates for those having CI alone. There is a rising imperative for all health care professionals to recognize the potential presence of hearing, vision and cognitive impairments in those for whom they provide care, to ensure that basic screening occurs and to use those results to inform care plans.

  19. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    Science.gov (United States)

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk

    Science.gov (United States)

    Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.

    2012-01-01

    Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.

  1. Low blood lead levels impair intellectual and hematological function in children from Cartagena, Caribbean coast of Colombia.

    Science.gov (United States)

    Alvarez-Ortega, Neda; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2017-12-01

    Lead produces numerous biochemical and physiological changes in humans, including hematological disorders, toxic effects on the central nervous system and in the function of several organs. The aim of this study was to determine blood lead levels (BLL) in children from Cartagena, Colombia, associating those with hematological and liver damage markers, the intelligence quotient (IQ), as well as with gene expression of the aminolevulinate dehydratase (ALAD), superoxide dismutase 1 (SOD1), gamma interferon (INF-γ), tumor necrosis factor (TNF) and tumor protein (p53). To achieve this purpose, 118 blood samples were collected from children 5-16 years old, with their respective informed consent from their parents. BLL was measured by atomic absorption; hematological parameters were obtained with automated systems; plasma was utilized to analyze hepatic toxicity markers, alanine aminotransferase (ALT), gamma-glutamyltransferase (γ-GT) and alkaline phosphatase (ALP); the Kaufman Brief Intelligence Test (K-BIT) was administered to measure the IQ; and gene expression was quantified from blood RNA. The mean BLL was 1.7±0.3μg/dL. A low proportion of the children (3.4%) had BLL above the CDC recommended limit (5μg/dL). BLL were correlated weakly, but negatively with child age, weight, height, body mass index, platelets wide distribution, mean platelet volume, γ-GT and IQ. There were not significant changes in the expression of evaluated genes. These results support the hypothesis that BLL below 5μg/dL may still be a detrimental factor on children's cognitive abilities, development and hematology, in line with recent concerns that there is no safe level of pediatric lead exposure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  3. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  4. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  5. Effect of the systemic versus inhalatory administration of synthetic glucocorticoids on the urinary steroid profile as studied by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Mazzarino, Monica; Rossi, Francesca; Giacomelli, Laura; Botre, Francesco

    2006-01-01

    This paper presents a gas chromatography-mass spectrometry (GC-MS) study carried out on human urine to verify whether the administration of glucocorticoids can affect the urinary steroid profile, and especially the levels of endogenous glucocorticoids, androgens and their main metabolites. Betamethasone and beclomethasone, administered either systemically (per os or i.m.) or locally (by inhalation) have been studied. The determination of the urinary levels of endogenous glucocorticoids and androgens was carried out by GC-MS in electron impact ionization mode. Data were evaluated taking into account the baseline individual variability, and compared with values obtained on a control group. Detectable differences were recorded in the steroids metabolites excretion profiles between men and women. The circadian variability of the steroid profile was the same for both sexes, showing a maximum during the morning hours. After systemic treatment with synthetic glucocorticoids, the relative urinary concentrations of corticosteroids, androgens and of their metabolites were significantly altered, recording a transient decrease of the concentration of cortisol and tetrahydrocortisol and a parallel, although less pronounced, increase of the concentration of testosterone, epitestosterone and related androgenic steroids; while no effects were recorded if the administration was by inhalation

  6. Effect of the systemic versus inhalatory administration of synthetic glucocorticoids on the urinary steroid profile as studied by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mazzarino, Monica [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy); Rossi, Francesca [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy); Giacomelli, Laura [Dipartimento di Scienze Chirurgiche, Universita La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Botre, Francesco [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy) and Dipartimento CGMIA, Universita La Sapienza, Via del Castro Laurenziano 9, 00161 Rome (Italy)]. E-mail: francesco.botre@uniroma1.it

    2006-02-10

    This paper presents a gas chromatography-mass spectrometry (GC-MS) study carried out on human urine to verify whether the administration of glucocorticoids can affect the urinary steroid profile, and especially the levels of endogenous glucocorticoids, androgens and their main metabolites. Betamethasone and beclomethasone, administered either systemically (per os or i.m.) or locally (by inhalation) have been studied. The determination of the urinary levels of endogenous glucocorticoids and androgens was carried out by GC-MS in electron impact ionization mode. Data were evaluated taking into account the baseline individual variability, and compared with values obtained on a control group. Detectable differences were recorded in the steroids metabolites excretion profiles between men and women. The circadian variability of the steroid profile was the same for both sexes, showing a maximum during the morning hours. After systemic treatment with synthetic glucocorticoids, the relative urinary concentrations of corticosteroids, androgens and of their metabolites were significantly altered, recording a transient decrease of the concentration of cortisol and tetrahydrocortisol and a parallel, although less pronounced, increase of the concentration of testosterone, epitestosterone and related androgenic steroids; while no effects were recorded if the administration was by inhalation.

  7. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  8. The effect of extending high-frequency bandwidth on the acceptable noise level (ANL) of hearing-impaired listeners.

    Science.gov (United States)

    Johnson, Earl; Ricketts, Todd; Hornsby, Benjamin

    2009-01-01

    This study examined the effects of extending high-frequency bandwidth, for both a speech signal and a background noise, on the acceptable signal-to-noise ratio (SNR) of listeners with mild sensorineural hearing loss through utilization of the Acceptable Noise Level (ANL) procedure. In addition to extending high-frequency bandwidth, the effects of reverberation time and background noise type and shape were also examined. The study results showed a significant increase in the mean ANL (i.e. participants requested a better SNR for an acceptable listening situation) when high-frequency bandwidth was extended from 3 to 9 kHz and from 6 to 9 kHz. No change in the ANL of study participants was observed as a result of isolated modification to reverberation time or background noise stimulus. An interaction effect, however, of reverberation time and background noise stimulus was demonstrated. These findings may have implications for future design of hearing aid memory programs for listening to speech in the presence of broadband background noise.

  9. Assignment of the human gene for the glucocorticoid receptor to chromosome 5.

    OpenAIRE

    Gehring, U; Segnitz, B; Foellmer, B; Francke, U

    1985-01-01

    Human lymphoblastic leukemia cells of line CEM-C7 are glucocroticoid-sensitive and contain glucocorticoid receptors of wild-type characteristics. EL4 mouse lymphoma cells are resistant to lysis by glucocorticoids due to mutant receptors that exhibit abnormal DNA binding. Hybrids between the two cell lines were prepared and analyzed with respect to glucocorticoid responsiveness and to receptor types by DNA-cellulose chromatrography. Sensitive hybrid cell clones contained the CEM-C7-specific re...

  10. [Prenatal lead exposure related to cord blood brain derived neurotrophic factor (BDNF) levels and impaired neonatal neurobehavioral development].

    Science.gov (United States)

    Ren, L H; Mu, X Y; Chen, H Y; Yang, H L; Qi, W

    2016-06-01

    To explore the relationship between umbilical cord blood brain-derived neurotrophic factor (BDNF) and neonatal neurobehavioral development in lead exposure infants. All infants and their mother were randomly selected during 2011 to 2012, subjects were selected according to the umbilical cord blood lead concentrations, which contcentration of lead was higher than 0.48 μmol/L were taken into high lead exposure group, about 60 subjects included. Comparing to the high lead exposure group, according to gender, weight, pregnant week, length and head circumferenece, the level of cord blood lead concentration under 0.48 μmol/L were taken into control group, 60 cases included. Lead content was determined by graphite furnace atomic absorption spectrometry. Neonatal behavioral neurological assessment (NBNA) was used to determine the development of neonatal neuronal behavior. The content of BDNF was detected by ELISA. Comparing the BDNF and the NBNA score between two groups, and linear correlation was given on analysis the correlation between lead concentration in cord blood and BDNF, BDNF and the NBNA score. Lead content in high exposure group was (0.613±0.139) μmol/L, and higher than (0.336±0.142) μmol/L in low exposure group (t=3.21, PBDNF content in high exposure group which was (3.538±1.203) ng/ml was higher than low exposure group (2.464±0.918) ng/ml (t=7.60, PBDNF content was negatively correlated with NBNA summary score, passive muscle tension and active muscle tone score (r was -0.27, -0.29, -0.30, respectively, P values were BDNF was negatively correlated with neonatal neurodevelopment, may serve as a useful biomarker.

  11. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  12. Negative impact of high cumulative glucocorticoid dose on bone metabolism of patients with myasthenia gravis.

    Science.gov (United States)

    Braz, Nayara Felicidade Tomaz; Rocha, Natalia Pessoa; Vieira, Érica Leandro Marciano; Gomez, Rodrigo Santiago; Barbosa, Izabela Guimarães; Malheiro, Olívio Brito; Kakehasi, Adriana Maria; Teixeira, Antonio Lucio

    2017-08-01

    This current study aimed to evaluate the frequency of low bone mass, osteopenia, and osteoporosis in patients with myasthenia gravis (MG) and to investigate the possible association between bone mineral density (BMD) and plasma levels of bone metabolism markers. Eighty patients with MG and 62 controls BMD were measured in the right femoral neck and lumbar spine by dual-energy X-ray absorptiometry. Plasma concentrations of osteocalcin, osteopontin, osteoprotegerin, tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, dickkopf (DKK-1), sclerostin, insulin, leptin, adrenocorticotropic hormone, parathyroid hormone, and fibroblast growth factor (FGF-23) were analyzed by Luminex®. The mean age of patients was 41.9 years, with 13.5 years of length of illness, and a mean cumulative dose of glucocorticoids 38,123 mg. Patients had significant reduction in BMD of the lumbar, the femoral neck, and in the whole body when compared with controls. Fourteen percent MG patients had osteoporosis at the lumbar spine and 2.5% at the femoral neck. In comparison with controls, patients with MG presented lower levels of osteocalcin, adrenocorticotropic hormone, parathyroid hormone, sclerostin, TNF-α, and DKK-1 and higher levels of FGF-23, leptin, and IL-6. There was a significant negative correlation between cumulative glucocorticoid dose and serum calcium, lumbar spine T-score, femoral neck BMD, T-score, and Z-score. After multivariate analysis, higher TNF-α levels increased the likelihood of presenting low bone mass by 2.62. MG patients under corticotherapy presented low BMD and altered levels of bone markers.

  13. Influence of moderate physical activity on the levels of plasma lipoproteins in subjects with impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Petković-Košćal Milanka

    2012-01-01

    Full Text Available Introduction. Physical activity and healthy diet, as lifestyle factors, are essential components in the prevention of chronic noncommunicable diseases. Impared glucose intolerance (IGT is an independent cardiovascular risk factor. Dyslipidaemia is a cardiometabolic risk factor for the development of type 2 diabetes mellitus. Objective. The aim of the study was to investigate the influence of moderate physical activity of plasma lipoprotein indicators in high-risk subjects for diabetes mellitus during one-year planned intervention. Methods. We randomly assigned 60 overweight subjects with IGT aged 30-60 years. The subjects were divided into intervention group with 30 subjects, who were intensively and individually instructed on weight reduction, nutrition and increased physical activity, and control group with 30 subjects, who were counselled, as standard, on nutrition and increased exercise. Total cholesterol (TC, LDL cholesterol (LDL-C, HDL cholesterol (HDL-C and triglycerides (Tg were measured at the beginning of the study, and at 2 months, 6 months, and at the end of the study (12 months. Results. Compared to the beginning of the study, after 2 and 6 months there was no statistically significant difference in serum lipid values. After 12 months, the average values of the measured lipid levels in the intervention group decreased by 18.36% for TC, 27.3% for LDL-C, and 34.2% for Tg (compared to 10.27%, 13.45%, and 10.4%, respectively in the control group. Value of HDL-C in the intervention group increased by 19.12%, and decreased in the control group by 1.48%. Total/HDL-C ratio was reduced by 30.6% and LDL-C/H by 38.1% in the intervention group (compared to 12.36%, and 15.9% in the control group. After 12 months, significantly greater decrease in TC (p<0.01, LDL-C (p<0.01 and Tg (p<0.0001 and significantly greater increase in HDL-C (p<0.05 was detected in the intervention group compared to the control group. Conclusion. Plasma lipoproteins can

  14. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Science.gov (United States)

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reducing glucocorticoid dosage improves serum osteocalcin in patients with rheumatoid arthritis-results from the TOMORROW study.

    Science.gov (United States)

    Tada, M; Inui, K; Sugioka, Y; Mamoto, K; Okano, T; Koike, T; Nakamura, H

    2016-02-01

    Decreasing the daily dose of glucocorticoids improved bone metabolic marker levels in patients with rheumatoid arthritis. However, changes in disease activity did not influence bone metabolism. Bone metabolism might thus remain uncontrolled even if disease activity is under good control. Decreasing glucocorticoid dosage appears important for improving bone metabolism. Patients with rheumatoid arthritis (RA) develop osteoporosis more frequently than healthy individuals. Bone resorption is increased and bone formation is inhibited in patients with RA, and glucocorticoid negatively affects bone metabolism. We aimed to investigate factors influencing bone metabolic markers in patients with RA. We started the 10-year prospective cohort Total Management of Risk Factors in Rheumatoid Arthritis Patients to Lower Morbidity and Mortality (TOMORROW) study in 2010. We compared changes in urinary cross-linked N-telopeptide of type I collagen (uNTx) and serum osteocalcin (OC), as markers of bone resorption and formation, respectively, in 202 RA patients and age- and sex-matched volunteers between 2010 and 2011. We also investigated factors influencing ΔuNTx and ΔOC in the RA group using multivariate analysis. Values of ΔuNTx were significantly lower in patients with RA than in healthy controls (-0.51 vs. 7.41 nmol bone collagen equivalents (BCE)/mmol creatinine (Cr); p = 0.0013), whereas ΔOC values were significantly higher in RA patients (0.94 vs. 0.37 ng/ml; p = 0.0065). Changes in prednisolone dosage correlated negatively with ΔOC (β = -0.229, p = 0.001), whereas changes in disease activity score, bisphosphonate therapy, and period of biologics therapy did not correlate significantly with ΔOC. No significant correlation was seen between ΔuNTx and change in prednisolone dosage. Decreased glucocorticoid dosage improved bone metabolic markers in RA, but disease activity, bisphosphonate therapy, and period of biologics therapy did not influence

  16. GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Oxana Bereshchenko

    2014-04-01

    Full Text Available Regulatory T (Treg cells expressing the transcription factor forkhead box P3 (FoxP3 control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ, a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg, associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production.

  17. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  18. A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers

    Directory of Open Access Journals (Sweden)

    Elham eRostami

    2012-07-01

    Full Text Available Mild traumatic brain injury (mTBI is one of the most common neuronal insults and can lead to long-term disabilities. mTBI occurs when the head is exposed to a rapid acceleration-deceleration movement triggering axonal injuries. Our limited understanding of the underlying pathological changes makes it difficult to predict the outcome of mTBI. In this study we used a scalable rat model for rotational acceleration TBI, previously characterized for the threshold of axonal pathology. We have analyzed whether a TBI just above the defined threshold would induce any detectable behavioral changes and/or changes in serum biomarkers. The effect of injury on sensory motor functions, memory and anxiety were assessed by beam walking, radial arms maze and elevated plus maze at 3 to 7 days following TBI. The only behavioral deficits found were transient impairments in working and reference memory. Blood serum was analyzed at 1, 3 and 14 days after injury for changes in selected protein biomarkers. Serum levels of neurofilament heavy chain (NF-H and Tau, as well as S100B and myelin basic protein (MBP showed significant increases in the injured animals at all time points. No signs of macroscopic injuries such as intracerebral hematomas or contusions were found. Amyloid precursor protein (APP immunostaining indicated axonal injuries at all time points analyzed. In summary, this model mimics some of the key symptoms of mTBI, such as transient memory impairment, which is paralleled by an increase in serum biomarkers. Our findings suggest that serum biomarkers may be used to detect mTBI. The model provides a suitable foundation for further investigation of the underlying pathology of mTBI.

  19. Raised urinary glucocorticoid and adrenal androgen precursors in the urine of young hypertensive patients: possible evidence for partial glucocorticoid resistance

    Science.gov (United States)

    Shamim, W; Yousufuddin, M; Francis, D; Gualdiero, P; Honour, J; Anker, S; Coats, A

    2001-01-01

    OBJECTIVE—To evaluate urinary glucocorticoid excretion profiles in a cohort of recently diagnosed young hypertensive patients.
METHODS—After excluding patients with secondary causes, 60 individuals with premature hypertension were recruited (diagnosed by ambulatory blood pressure monitoring before the age of 36 years). In addition, 30 older hypertensive controls (age of onset > 36 years, "middle aged hypertensive controls"), and 30 normal controls (age matched to the young hypertensive group) were studied. All provided 24 hour urine collections for mass spectrometry for total cortisol metabolites and total androgen metabolites by gas chromatography.
RESULTS—Among male patients, those with premature hypertension had higher total urinary excretion of cortisol metabolites (mean (SD), 13 332 (6472) µg/day) than age matched normal controls (7270 (1788) µg/day; p = 0.00001) or middle aged hypertensive controls (8315 (3565) µg/day; p = 0.002). A similar increase was seen among the female patients, although the absolute concentrations were lower. There was no significant difference between middle aged hypertensive patients and normal controls. Urinary total androgen excretion profiles in female patients also showed an unusual increase in the premature hypertension group (2958 (1672) µg/day) compared with the other groups (middle aged hypertensive controls, 1373 (748) µg/day, p = 0.0003; normal controls, 1687 (636) µg/day, p = 0.002). In all subjects, serum sodium and creatinine concentrations were within the normal range; serum potassium concentrations were found to be low before the start of treatment.
CONCLUSIONS—Individuals presenting with premature hypertension have an abnormally high excretion of glucocorticoid metabolites in the urine. While the mechanism remains uncertain, these findings are compatible with partial resistance of the glucocorticoid receptors, with a compensatory increase in cortisol and androgen

  20. Visual Impairment

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...