WorldWideScience

Sample records for glucocorticoid gc regulates

  1. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.

    Science.gov (United States)

    Vyas, Sheela; Maatouk, Layal

    2013-12-01

    Isolation of glucocorticoids (GCs) from adrenal glands followed by synthesis led rapidly to their first clinical application, about 70 years ago, for treatment of rheumatoid arthritis. To this day GCs are used in diseases that have an inflammatory component. However, their use is carefully monitored because of harmful side effects. GCs are also synonymous with stress and adaptation. In CNS, GC binds and activates high affinity mineralocorticoid receptor (MR) and low affinity glucocorticoid receptor (GR). GR, whose expression is ubiquitous, is only activated when GC levels rise as during circadian peak and in response to stress. Numerous recent studies have yielded important and new insights on the mechanisms concerning pulsatile secretory pattern of GCs as well as various processes that tightly control their synthesis via hypothalamic-pituitary-adrenal (HPA) axis involving regulated release of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) from hypothalamus and pituitary, respectively. GR modulates neuronal functions and viability through both genomic and non-genomic actions, and importantly its transcriptional regulatory activity is tightly locked with GC secretory pattern. There is increasing evidence pointing to involvement of GC-GR in neurodegenerative disorders. Patients with Alzheimer's or Parkinson's or Huntington's disease show chronically high cortisol levels suggesting changes occurring in controls of HPA axis. In experimental models of these diseases, chronic stress or GC treatment was found to exacerbate both the clinical symptoms and neurodegenerative processes. However, recent evidence also shows that GC-GR can exert neuroprotective effects. Thus, for any potential therapeutic strategies in these neurodegenerative diseases we need to understand the precise modifications both in HPA axis and in GR activity and find ways to harness their protective actions.

  2. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  3. Multimodal Regulation of Circadian Glucocorticoid Rhythm by Central and Adrenal Clocks.

    Science.gov (United States)

    Son, Gi Hoon; Cha, Hyo Kyeong; Chung, Sooyoung; Kim, Kyungjin

    2018-05-01

    Adrenal glucocorticoids (GCs) control a wide range of physiological processes, including metabolism, cardiovascular and pulmonary activities, immune and inflammatory responses, and various brain functions. During stress responses, GCs are secreted through activation of the hypothalamic-pituitary-adrenal axis, whereas circulating GC levels in unstressed states follow a robust circadian oscillation with a peak around the onset of the active period of a day. A recent advance in chronobiological research has revealed that multiple regulatory mechanisms, along with classical neuroendocrine regulation, underlie this GC circadian rhythm. The hierarchically organized circadian system, with a central pacemaker in the suprachiasmatic nucleus of the hypothalamus and local oscillators in peripheral tissues, including the adrenal gland, mediates periodicities in physiological processes in mammals. In this review, we primarily focus on our understanding of the circadian regulation of adrenal GC rhythm, with particular attention to the cooperative actions of the suprachiasmatic nucleus central and adrenal local clocks, and the clinical implications of this rhythm in human diseases.

  4. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-06-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Differential effect of glucocorticoids on tumour necrosis factor production in mice: up-regulation by early pretreatment with dexamethasone.

    Science.gov (United States)

    Fantuzzi, G; Demitri, M T; Ghezzi, P

    1994-04-01

    Glucocorticoids (GC) are well known inhibitors of tumour necrosis factor (TNF) production. We investigated the role of endogenous GC in the regulation of TNF production in mice treated with lipopolysaccharide (LPS) using a pretreatment with dexamethasone (DEX) to down-regulate the hypothalamus-pituitary-adrenal axis (HPA). Short-term DEX pretreatment (up to 12 h before LPS) inhibited TNF production, but earlier (24-48 h) pretreatments potentiated it. This up-regulating effect was not observed in adrenalectomized mice or when GC synthesis was inhibited with cyanoketone (CK). This effect could not be explained only by the suppression of LPS-induced corticosterone (CS) levels induced by DEX, since a 48-h pretreatment potentiated TNF production without affecting LPS-induced CS levels. On the other hand, mice chronically pretreated with DEX were still responsive to its inhibitory effect on TNF production, thus ruling out the possibility of a decreased responsiveness to GC.

  6. Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Laura L Gathercole

    Full Text Available Patients with glucocorticoid (GC excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc and omental (om adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.

  7. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  8. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  9. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Sheela Vyas

    2016-01-01

    Full Text Available Stress and stress hormones, glucocorticoids (GCs, exert widespread actions in central nervous system, ranging from the regulation of gene transcription, cellular signaling, modulation of synaptic structure, and transmission and glial function to behavior. Their actions are mediated by glucocorticoid and mineralocorticoid receptors which are nuclear receptors/transcription factors. While GCs primarily act to maintain homeostasis by inducing physiological and behavioral adaptation, prolonged exposure to stress and elevated GC levels may result in neuro- and psychopathology. There is now ample evidence for cause-effect relationships between prolonged stress, elevated GC levels, and cognitive and mood disorders while the evidence for a link between chronic stress/GC and neurodegenerative disorders such as Alzheimer’s (AD and Parkinson’s (PD diseases is growing. This brief review considers some of the cellular mechanisms through which stress and GC may contribute to the pathogenesis of AD and PD.

  10. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis.

    Science.gov (United States)

    Talabér, Gergely; Jondal, Mikael; Okret, Sam

    2013-11-05

    Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The Regulation of Muscle Mass by Endogenous Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Daniel L Marks

    2015-02-01

    Full Text Available Glucocorticoids are highly conserved fundamental regulators of energy homeostasis. In response to stress in the form of perceived danger or acute inflammation, glucocorticoids are released from the adrenal gland, rapidly mobilizing energy from carbohydrate, fat and protein stores. In the case of inflammation, mobilized protein is critical for the rapid synthesis of acute phase reactants and an efficient immune response to infection. While adaptive in response to infection, chronic mobilization can lead to a p rofound depletion of energy stores. Skeletal muscle represents the major body store of protein, and can become substantially atrophied under conditions of chronic inflammation. Glucocorticoids elicit the atrophy of muscle by increasing the rate of protein degradation by the ubiquitin-proteasome system and autophagy lysosome system. Protein synthesis is also suppressed at the level of translational initiation, preventing the production of new myofibrillar protein. Glucocorticoids also antagonize the action of anabolic regulators such as insulin further exacerbating the loss of protein and muscle mass. The loss of muscle mass in the context of chronic disease is a key feature of cachexia and contributes substantially to morbidity and mortality. A growing body of evidence demonstrates that glucocorticoid signaling is a common mediator of wasting, irrespective of the underlying initiator or disease state. This review will highlight fundamental mechanisms of glucocorticoid signaling and detail the mechanisms of glucocorticoid-induced muscle atrophy. Additionally, the evidence for glucocorticoids as a driver of muscle wasting in numerous disease states will be discussed. Given the burden of wasting diseases and the nodal nature of glucocorticoid signaling, effective anti-glucocorticoid therapy would be a valuable clinical tool. Therefore, the progress and potential pitfalls in the development of glucocorticoid antagonists for muscle wasting will

  12. Glucocorticoid Receptor Interacting Co-regulators: Putative Candidates for Future Drug Targeting Therapy.

    Science.gov (United States)

    Di Silvestre, Alessia; Lucafo, Marianna; De Iudicibus, Sara; Ventura, Alessandro; Martelossi, Stefano; Stocco, Gabriele; Decorti, Giuliana

    2017-01-01

    Glucocorticoids (GCs) are largely used in different inflammatory, autoimmune and proliferative diseases. To date their mechanism of action is not completely clear and more studies are necessary, in particular to explain the great interindividual variability in clinical response. In this panorama the glucocorticoid receptor (GR) has an important role: in fact it regulates the pharmacological response thanks to the capability to interact with different molecules (DNA, RNA, ncRNA and proteins) that are known to influence its activity. In this review our aim is to highlight the knowledge about the role of protein-protein, RNAprotein interactions and epigenetic modifications on the GR and the consequent response to GCs. The characteristics of these interactions with the GR and their effects on the pharmacological activity of GCs will be examined. This information could contribute to the prediction of individual sensitivity to steroids through the identification of new markers of GC resistance. In addition this knowledge may be used in developing new strategies for targeted therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Translational profiling in childhood acute lymphoblastic leukemia: no evidence for glucocorticoid regulation of mRNA translation.

    Science.gov (United States)

    Aneichyk, Tatsiana; Bindreither, Daniel; Mantinger, Christine; Grazio, Daniela; Goetsch, Katrin; Kofler, Reinhard; Rainer, Johannes

    2013-12-01

    Glucocorticoids (GCs) are natural stress induced steroid hormones causing cell cycle arrest and cell death in lymphoid tissues. Therefore they are the central component in the treatment of lymphoid malignancies, in particular childhood acute lymphoblastic leukemia (chALL). GCs act mainly via regulating gene transcription, which has been intensively studied by us and others. GC control of mRNA translation has also been reported but has never been assessed systematically. In this study we investigate the effect of GCs on mRNA translation on a genome-wide scale. Childhood T- (CCRF-CEM) and precursor B-ALL (NALM6) cells were exposed to GCs and subjected to "translational profiling", a technique combining sucrose-gradient fractionation followed by Affymetrix Exon microarray analysis of mRNA from different fractions, to assess the translational efficiency of the expressed genes. Analysis of GC regulation in ribosome-bound fractions versus transcriptional regulation revealed no significant differences, i.e., GC did not entail a significant shift between ribosomal bound and unbound mRNAs. In the present study we analyzed for the first time possible effects of GC on the translational efficiency of expressed genes in two chALL model systems employing whole genome polysome profiling. Our results did not reveal significant differences in translational efficiency of expressed genes thereby arguing against a potential widespread regulatory effect of GCs on translation at least in the investigated in vitro systems.

  14. Early Life Stress Effects on the Glucocorticoid - BDNF interplay in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Nikolaos P Daskalakis

    2015-11-01

    Full Text Available Early life stress (ELS is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid and/or neurotrophin signaling pathways. Glucocorticoid (GC signaling mediates the regulation of the stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and glucocorticoid signaling pathways co-exist throughout the central nervous system (CNS, particularly in the hippocampus, which has high expression of glucocorticoid and mineralocorticoid receptors (GR and MR as well as brain-derived neurotrophic factor (BDNF and its receptor, tropomyosin-related kinase receptor B (TrkB. This review addresses the effects of ELS paradigms on GC- and BDNF- dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.

  15. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis

    DEFF Research Database (Denmark)

    Melief, Jeroen; Koper, Jan W; Endert, Erik

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus-pituitary-adrenal (HPA...

  16. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis.

    Science.gov (United States)

    Hardy, Rowan; Juarez, Maria; Naylor, Amy; Tu, Jinwen; Rabbitt, Elizabeth H; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Raza, Karim; Cooper, Mark S

    2012-10-18

    Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytokines regulate DKK1 synthesis in synovial fibroblasts during inflammatory arthritis. We examined expression and regulation of DKK1 in primary cultures of human synovial fibroblasts isolated from patients with inflammatory arthritis. The effect of TNFα, IL-1β and glucocorticoids on DKK1 mRNA and protein expression was examined by real-time PCR and ELISA. The ability of inflammatory cytokine-induced expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to sensitise fibroblasts to endogenous glucocorticoids was explored. Global expression of Wnt signalling and target genes in response to TNFα and glucocorticoids was assessed using a custom array. DKK1 expression in human synovial fibroblasts was directly regulated by glucocorticoids but not proinflammatory cytokines. Glucocorticoids, but not TNFα, regulated expression of multiple Wnt agonists and antagonists in favour of inhibition of Wnt signalling. However, TNFα and IL-1β indirectly stimulated DKK1 production through increased expression of 11β-HSD1. These results demonstrate that in rheumatoid arthritis synovial fibroblasts, DKK1 expression is directly regulated by glucocorticoids rather than TNFα. Consequently, the links between synovial inflammation, altered Wnt signalling and bone remodelling are not direct but are dependent on local activation of endogenous glucocorticoids.

  17. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor.

    Science.gov (United States)

    Schmidt, Stefan; Irving, Julie A E; Minto, Lynne; Matheson, Elizabeth; Nicholson, Lindsay; Ploner, Andreas; Parson, Walther; Kofler, Anita; Amort, Melanie; Erdel, Martin; Hall, Andy; Kofler, Reinhard

    2006-12-01

    Glucocorticoids (GCs) specifically induce apoptosis in malignant lymphoblasts and are thus pivotal in the treatment of acute lymphoblastic leukemia (ALL). However, GC-resistance is a therapeutic problem with an unclear molecular mechanism. We generated approximately 70 GC-resistant sublines from a GC-sensitive B- and a T-ALL cell line and investigated their mechanisms of resistance. In response to GCs, all GC-resistant subclones analyzed by real-time polymerase chain reaction (PCR) showed a deficient up-regulation of the GC-receptor (GR) and its downstream target, GC-induced leucine zipper. This deficiency in GR up-regulation was confirmed by Western blotting and on retroviral overexpression of GR in resistant subclones GC-sensitivity was restored. All GC-resistant subclones were screened for GR mutations using denaturing high-pressure liquid chromatography (DHPLC), DNA-fingerprinting, and fluorescence in situ hybridization (FISH). Among the identified mutations were some previously not associated with GC resistance: A484D, P515H, L756N, Y663H, L680P, and R714W. This approach revealed three genotypes, complete loss of functional GR in the mismatch repair deficient T-ALL model, apparently normal GR genes in B-ALLs, and heterozygosity in both. In the first genotype, deficiency in GR up-regulation was fully explained by mutational events, in the second by a putative regulatory defect, and in the third by a combination thereof. In all instances, GC-resistance occurred at the level of the GR in both models.

  18. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  19. microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis

    Science.gov (United States)

    de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan

    2015-01-01

    In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864

  20. Glucocorticoids and the regulation of memory in health and disease

    NARCIS (Netherlands)

    de Quervain, Dominique J. -F; Aerni, Amanda; Schelling, Gustav; Roozendaal, Benno

    Over the last decades considerable evidence has accumulated indicating that glucocorticoids - stress hormones released from the adrenal cortex - are crucially involved in the regulation of memory. Specifically, glucocorticoids have been shown to enhance memory consolidation of emotionally arousing

  1. Regulation of NAD(P)H:quininone oxidoreductase by glucocorticoids

    International Nuclear Information System (INIS)

    Pinaire, J.A.; Xiao, G.-H.; Falkner, K.C.; Prough, R.A.

    2004-01-01

    Previous studies in neonatal and adolescent rats as well as adrenalectomized rats have demonstrated that glucocorticoids regulate the expression of the rat NAD(P)H:quinone oxidoreductase gene (QOR). We used primary cultures of rat adult hepatocytes to document that added glucorticoids repress both the basal and 1,2-benzanthracene-induced expression of QOR mRNA by 65-70%. QOR enzyme activity and protein were concomitantly suppressed as well. The monotonic concentration response for repression of QOR gene products up to 100 μM DEX concentration demonstrated that the glucocorticoid receptor (GR) was most likely involved in this process. The lack of effect at higher concentration rules out a role for the Pregnane X receptor in this regulation by DEX. In addition, the anti-glucorticoid RU38486 blocked this negative regulation and the protein synthesis inhibitor cycloheximide had no effect on this repression process. Similar results of GR dependence were observed using a luciferase reporter construct containing the 5'-flanking region of the human QOR gene using HepG2 cells. Collectively, these results demonstrate that GR must directly participate in the negative regulation of QOR gene expression by dexamethasone and other glucocorticoids in vivo

  2. Glucocorticoids in early rheumatoid arthritis

    NARCIS (Netherlands)

    Everdingen, Amalia A. van

    2002-01-01

    For 50 years, glucocorticoids (GC) are used for symptomatic treatment of rheumatoid arthritis (RA). In the last decade, results from clinical studies of treatment with GC as additional therapy to long-acting antirheumatic drugs in patients with early RA suggested also disease-modifying properties of

  3. Pathophysiology of Glucocorticoid Signaling.

    Science.gov (United States)

    Vitellius, Géraldine; Trabado, Séverine; Bouligand, Jérôme; Delemer, Brigitte; Lombès, Marc

    2018-06-01

    Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo

    Directory of Open Access Journals (Sweden)

    Bradley S. Carter

    2013-08-01

    Full Text Available Previous studies have primarily interpreted gene expression regulation by glucocorticoids in the brain in terms of impact on neurons; however, less is known about the corresponding impact of glucocorticoids on glia and specifically astrocytes in vivo. Recent microarray experiments have identified glucocorticoid-sensitive mRNAs in primary astrocyte cell culture, including a number of mRNAs that have reported astrocyte-enriched expression patterns relative to other brain cell types. Here, we have tested whether elevations of glucocorticoids regulate a subset of these mRNAs in vivo following acute and chronic corticosterone exposure in adult mice. Acute corticosterone exposure was achieved by a single injection of 10 mg/kg corticosterone, and tissue samples were harvested two hours post-injection. Chronic corticosterone exposure was achieved by administering 10 mg/mL corticosterone via drinking water for two weeks. Gene expression was then assessed in two brain regions associated with glucocorticoid action (prefrontal cortex and hippocampus by qPCR and by in situ hybridization. The majority of measured mRNAs regulated by glucocorticoids in astrocytes in vitro were similarly regulated by acute and/or chronic glucocorticoid exposure in vivo. In addition, the expression levels for mRNAs regulated in at least one corticosterone exposure condition (acute/chronic demonstrated moderate positive correlation between the two conditions by brain region. In situ hybridization analyses suggest that select mRNAs are regulated by chronic corticosterone exposure specifically in astroctyes based on (1 similar general expression patterns between corticosterone-treated and vehicle-treated animals and (2 similar expression patterns to the pan-astrocyte marker Aldh1l1. Our findings demonstrate that glucocorticoids regulate astrocyte-enriched mRNAs in vivo and suggest that glucocorticoids regulate gene expression in the brain in a cell type-dependent fashion.

  5. Social Regulation of Leukocyte Homeostasis: The Role of Glucocorticoid Sensitivity

    Science.gov (United States)

    Cole, Steve W.

    2010-01-01

    Recent small-scale genomics analyses suggest that physiologic regulation of pro-inflammatory gene expression by endogenous glucocorticoids may be compromised in individuals who experience chronic social isolation. This could potentially contribute to the elevated prevalence of inflammation-related disease previously observed in social isolates. The present study assessed the relationship between leukocyte distributional sensitivity to glucocorticoid regulation and subjective social isolation in a large population-based sample of older adults. Initial analyses confirmed that circulating neutrophil percentages were elevated, and circulating lymphocyte and monocyte percentages were suppressed, in direct proportion to circulating cortisol levels. However, leukocyte distributional sensitivity to endogenous glucocorticoids was abrogated in individuals reporting either occasional or frequent experiences of subjective social isolation. This finding held in both nonparametric univariate analyses and in multivariate linear models controlling for a variety of biological, social, behavioral, and psychological confounders. The present results suggest that social factors may alter immune cell sensitivity to physiologic regulation by the hypothalamic-pituitary-adrenal axis in ways that could ultimately contribute to the increased physical health risks associated with social isolation. PMID:18394861

  6. Glucocorticoid programming of intrauterine development.

    Science.gov (United States)

    Fowden, A L; Valenzuela, O A; Vaughan, O R; Jellyman, J K; Forhead, A J

    2016-07-01

    Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transcriptional effects of glucocorticoid receptors in the dentate gyrus increase anxiety-related behaviors.

    Directory of Open Access Journals (Sweden)

    Nadège Sarrazin

    Full Text Available The Glucocorticoid Receptor (GR is a transcription factor ubiquitously expressed in the brain. Activation of brain GRs by high levels of glucocorticoid (GC hormones modifies a large variety of physiological and pathological-related behaviors. Unfortunately the specific cellular targets of GR-mediated behavioral effects of GC are still largely unknown. To address this issue, we generated a mutated form of the GR called DeltaGR. DeltaGR is a constitutively transcriptionally active form of the GR that is localized in the nuclei and activates transcription without binding to glucocorticoids. Using the tetracycline-regulated system (Tet-OFF, we developed an inducible transgenic approach that allows the expression of the DeltaGR in specific brain areas. We focused our study on a mouse line that expressed DeltaGR almost selectively in the glutamatergic neurons of the dentate gyrus (DG of the hippocampus. This restricted expression of the DeltaGR increased anxiety-related behaviors without affecting other behaviors that could indirectly influence performance in anxiety-related tests. This behavioral phenotype was also associated with an up-regulation of the MAPK signaling pathway and Egr-1 protein in the DG. These findings identify glutamatergic neurons in the DG as one of the cellular substrate of stress-related pathologies.

  8. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  9. Glucocorticoid mediated regulation of inflammation in human monocytes is associated with depressive mood and obesity.

    Science.gov (United States)

    Cheng, Tiefu; Dimitrov, Stoyan; Pruitt, Christopher; Hong, Suzi

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is observed in various conditions, including depression and obesity, which are also often related. Glucocorticoid (GC) resistance and desensitization of peripheral GC receptors (GRs) are often the case in HPA dysregulation seen in depression, and GC plays a critical role in regulation of inflammation. Given the growing evidence that inflammation is a central feature of some depression cases and obesity, we aimed to investigate the immune-regulatory role of GC-GR in relation to depressive mood and obesity in 35 healthy men and women. Depressive mood and level of obesity were assessed, using Beck Depression Inventory (BDI-Ia) and body mass index (BMI), respectively. We measured plasma cortisol levels via enzyme-linked immunosorbent assay and lipopolysaccharide-stimulated intracellular tumor necrosis factor (TNF) production by monocytes, using flow cytometry. Cortisol sensitivity was determined by the difference in monocytic TNF production between the conditions of 1 and 0 μM cortisol incubation ("cortisol-mediated inflammation regulation, CoMIR"). GR vs. mineralocorticoid receptor (MR) antagonism for CoMIR was examined by using mifepristone and spironolactone. A series of multiple regression analyses were performed to investigate independent contribution of depressive mood vs. obesity after controlling for age, gender, systolic blood pressure (SBP), and plasma cortisol in predicting CoMIR. CoMIR was explained by somatic subcomponents of depressive mood (BDI-S: β=-0.499, p=0.001), or BMI (β=-0.466, pcortisol dose (1 μM). There was initial indication that greater obesity and somatic depressive symptoms were associated with smaller efficacy of the blockers, which warrants further investigation. Our findings, although in a preclinical sample, signify the shared pathophysiology of immune dysregulation in depression and obesity and warrant further mechanistic investigation. Published by Elsevier Ltd.

  10. Fatal and non-fatal adverse events of glucocorticoid therapy for Graves' orbitopathy

    DEFF Research Database (Denmark)

    Marcocci, Claudio; Watt, Torquil; Altea, Maria Antonietta

    2012-01-01

    The objective of this study was to investigate the side effects of glucocorticoid (GC) therapy observed by European thyroidologists during the treatment of Graves' orbitopathy (GO).......The objective of this study was to investigate the side effects of glucocorticoid (GC) therapy observed by European thyroidologists during the treatment of Graves' orbitopathy (GO)....

  11. Glucocorticoid-induced myopathy in the intensive care unit

    DEFF Research Database (Denmark)

    Eddelien, Heidi Shil; Hoffmeyer, Henrik Westy; Lund, Eva Charlotte Løbner

    2015-01-01

    Glucocorticoids (GC) are used for intensive care unit (ICU) patients on several indications. We present a patient who was admitted to the ICU due to severe respiratory failure caused by bronchospasm requiring mechanical ventilation and treated with methylprednisolone 240 mg/day in addition...... to antibiotics and bronchiolytics. When the sedation was lifted on day 10, the patient was awake but quadriplegic. Blood samples revealed elevated muscle enzymes, electromyography showed myopathy, and a muscle biopsy was performed. Glucocorticoid-induced myopathy was suspected, GC treatment was tapered...

  12. The emerging importance of ultradian glucocorticoid rhythms within metabolic pathology.

    Science.gov (United States)

    Flynn, Benjamin P; Conway-Campbell, Becky L; Lightman, Stafford L

    2018-06-01

    Glucocorticoid (GC) hormones play significant roles within homeostasis and the chrono-dynamics of their regulatory role has become increasingly recognised within dysregulated GC pathology, particularly with metabolic phenotypes. Within this article, we will discuss the relevance of the ultradian homeostatic rhythm, how its dysregulation effects glucocorticoid receptor and RNA polymeraseII recruitment and may play a significant role within aberrant metabolic action. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  13. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  14. Significance of glucocorticoids and their receptors in patients with nephritic syndrome

    International Nuclear Information System (INIS)

    Yang Liusong; Li Dapei; Liu Deyi; Wang Weiyue; Wang Haodan

    1996-01-01

    The glucocorticoid receptor (GCR) in 34 patients with nephritic syndrome (NS) and 40 normal controls is investigated by radioligand binding assay. The results show that the GCR levels of NS patients are correlated well with the treatment results by glucocorticoids (GC). These patients who are sensitive to GC treatment have much higher levels of GCR than those who are not responsive to GC treatment (P<0.01) and the normal controls. The plasma ACTH and cortisol in the same subjects are also measured and the results show that NS patients have much lower levels of these two hormones than the normal controls', but no significant correlation is noted between the levels and the GC treatment effects

  15. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    Science.gov (United States)

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  16. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques

    Science.gov (United States)

    Kohn, Jordan N.; Snyder-Mackler, Noah; Barreiro, Luis B.; Johnson, Zachary P.; Tung, Jenny; Wilson, Mark E.

    2017-01-01

    Low social status is frequently associated with heightened exposure to social stressors and altered glucocorticoid regulation by the hypothalamic-pituitary-adrenal (HPA) axis. Additionally, personality differences can affect how individuals behave in response to social conditions, and thus may aggravate or protect against the effects of low status on HPA function. Disentangling the relative importance of personality from the effects of the social environment on the HPA axis has been challenging, since social status can predict aspects of behavior, and both can remain stable across the lifespan. To do so here, we studied an animal model of social status and social behavior, the rhesus macaque (Macaca mulatta). We performed two sequential experimental manipulations of dominance rank (i.e., social status) in 45 adult females, allowing us to characterize personality and glucocorticoid regulation (based on sensitivity to the exogenous glucocorticoid dexamethasone) in each individual while she occupied two different dominance ranks. We identified two behavioral characteristics, termed ‘social approachability’ and ‘boldness,’ which were highly social status-dependent. Social approachability and a third dimension, anxiousness, were also associated with cortisol dynamics in low status females, suggesting that behavioral tendencies may sensitize individuals to the effects of low status on HPA axis function. Finally, we found that improvements in dominance rank increased dexamethasone-induced acute cortisol suppression and glucocorticoid negative feedback. Our findings indicate that social status causally affects both behavioral tendencies and glucocorticoid regulation, and that some behavioral tendencies also independently affect cortisol levels, beyond the effects of rank. Together, they highlight the importance of considering personality and social status together when investigating their effects on HPA axis function. PMID:27639059

  17. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  18. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Carlet, Michela; Kofler, Reinhard; Janjetovic, Kristina; Rainer, Johannes; Schmidt, Stefan; Panzer-Grümayer, Renate; Mann, Georg; Prelog, Martina; Meister, Bernhard; Ploner, Christian

    2010-01-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC

  19. Effects of Social Isolation on Glucocorticoid Regulation in Social Mammals

    Science.gov (United States)

    Hawkley, Louise C.; Cole, Steve W.; Capitanio, John P.; Norman, Greg J.; Cacioppo, John T.

    2012-01-01

    The regulation and function of the hypothalamic-pituitary-adrenocortical (HPA) axis and glucocorticoids have been well conserved across vertebrate species. Glucocorticoids influence a wide range of physiological functions that include glucose regulation, metabolism, inflammatory control, as well as cardiovascular, reproductive, and neuronal effects. Some of these are relatively quick-acting non-genomic effects, but most are slower-acting genomic effects. Thus, any stimulus that affects HPA function has the potential to exert wide-ranging short-term and long-term effects on much of vertebrate physiology. Here, we review the effects of social isolation on the functioning of the HPA axis in social species, and on glucocorticoid physiology in social mammals in particular. Evidence indicates that objective and perceived social isolation alter HPA regulation, although the nature and direction of the HPA response differs among species and across age. The inconsistencies in the direction and nature of HPA effects have implications for drawing cross-species conclusions about the effects of social isolation, and are particularly problematic for understanding HPA-related physiological processes in humans. The animal and human data are incommensurate because, for example, animal studies of objective isolation have typically not been modeled on, or for comparability with, the subjective experience of isolation in humans. An animal model of human isolation must be taken more seriously if we want to advance our understanding of the mechanisms for the effects of objective and perceived isolation in humans. PMID:22663934

  20. Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid.

    Directory of Open Access Journals (Sweden)

    Rehana Parvin

    Full Text Available The mechanism of the negative regulation of proopiomelanocortin gene (Pomc by glucocorticoids (Gcs is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1 in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX (1-100 nM and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58 activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.

  1. Synovial DKK1 expression is regulated by local glucocorticoid metabolism in inflammatory arthritis

    OpenAIRE

    Hardy, Rowan; Juarez, Maria; Naylor, Amy; Tu, Jinwen; Rabbitt, Elizabeth H; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Raza, Karim; Cooper, Mark S

    2012-01-01

    Introduction: Inflammatory arthritis is associated with increased bone resorption and suppressed bone formation. The Wnt antagonist dickkopf-1 (DKK1) is secreted by synovial fibroblasts in response to inflammation and this protein has been proposed to be a master regulator of bone remodelling in inflammatory arthritis. Local glucocorticoid production is also significantly increased during joint inflammation. Therefore, we investigated how locally derived glucocorticoids and inflammatory cytok...

  2. Glucocorticoid resistance as a major drive in sepsis pathology.

    Science.gov (United States)

    Dendoncker, Karen; Libert, Claude

    2017-06-01

    Sepsis is an acute systemic inflammatory disease. Glucocorticoids (GCs), which function by binding to the GC receptor GR have very powerful anti-inflammatory activities, yet they are hardly useful in sepsis. We can thus consider sepsis as a GC resistant disease. We here review the literature which has investigated this GC resistance, and summarize the mechanisms of GC resistance that have been observed in other diseases and in experimental models. We also discuss the importance of GC resistance in sepsis, in terms of the contribution of this phenomenon to the pathogenesis of sepsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Locomotor therapy with extended-release crystalline glucocorticoids

    Directory of Open Access Journals (Sweden)

    Vladimir Vasilyevich Badokin

    2013-01-01

    Full Text Available Topical glucocorticoid (GC therapy for locomotor diseases is an extremely important component of a comprehensive program to treat inflammatory and, to a lesser extent, degenerative diseases. It reduces the time of hospitalization by 5—10 days in this category of patients, has a prompt and potent anti-inflammatory effect, and shows predictable efficiency. This therapy shows good tolerability and high safety and prevents serious adverse reactions to GC treatment.

  4. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  5. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    Science.gov (United States)

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  6. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  7. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP

    International Nuclear Information System (INIS)

    Lewis, E.J.; Harrington, C.A.; Chikaraishi, D.M.

    1987-01-01

    Glucocorticoid and cyclic AMP increase tyrosine hydroxylase (TH) activity and mRNA levels in pheochromocytoma cultures. The transcriptional activity of the TH gene, as measured by nuclear run-on assay, is also increased when cultures are treated with the synthetic glucocorticoid dexamethasone or agents that increase intracellular cyclic AMP, such as forskolin and 8-BrcAMP. Both inducers effect transcriptional changes within 10 min after treatment and are maximal after 30 min for forskolin and after 60 min for dexamethasone. The 5' flanking sequences of the TH gene were fused to the bacterial gene chloramphenicol acetyltransferase (CAT), and the hybrid gene was transfected into pheochromocytoma cultures and GH 4 pituitary cells. In both cell lines, a region of the TH gene containing bases -272 to +27 conferred induction of CAT by cyclic AMP, but not by glucocorticoid. The same results were found when a region of the TH gene containing -773 to + 27 was used. Thus, the sequences required for induction of TH by cyclic AMP are contained within 272 bases of 5' flanking sequence, but sequences sufficient for glucocorticoid regulation are not contained with 773 bases

  8. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus

    OpenAIRE

    Jeanneteau, Freddy D.; Lambert, W. Marcus; Ismaili, Naima; Bath, Kevin G.; Lee, Francis S.; Garabedian, Michael J.; Chao, Moses V.

    2012-01-01

    Regulation of the hypothalamic–pituitary–adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased ...

  9. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  10. Regulation of hippocampal neurogenesis by systemic factors including stress, glucocorticoids, sleep, and inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.; van Dam, A.-M.; Czéh, B.; Gage, F.H.; Kempermann, G.; Song, H.

    2008-01-01

    This review summarizes and discusses the regulation of adult neurogenesis and hippocampal cellular plasticity by systemic factors. We focus on the role of stress, glucocorticoids, and related factors such as sleep deprivation and inflammation.

  11. Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation

    NARCIS (Netherlands)

    Lucassen, P.J.; Oomen, C.A.; Naninck, E.F.G.; Fitzsimons, C.P.; van Dam, A.M.; Czeh, B.; Korosi, A.

    2015-01-01

    Exposure to stress is one of the best-known negative regulators of adult neurogenesis (AN). We discuss changes in neurogenesis in relation to exposure to stress, glucocorticoid hormones, and inflammation, with a particular focus on early development and on lasting effects of stress. Although the

  12. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  13. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  14. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  15. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  16. Glucocorticoid Regulation of Food-Choice Behavior in Humans: Evidence from Cushing's Syndrome.

    Science.gov (United States)

    Moeller, Scott J; Couto, Lizette; Cohen, Vanessa; Lalazar, Yelena; Makotkine, Iouri; Williams, Nia; Yehuda, Rachel; Goldstein, Rita Z; Geer, Eliza B

    2016-01-01

    The mechanisms by which glucocorticoids regulate food intake and resulting body mass in humans are not well-understood. One potential mechanism could involve modulation of reward processing, but human stress models examining effects of glucocorticoids on behavior contain important confounds. Here, we studied individuals with Cushing's syndrome, a rare endocrine disorder characterized by chronic excess endogenous glucocorticoids. Twenty-three patients with Cushing's syndrome (13 with active disease; 10 with disease in remission) and 15 controls with a comparably high body mass index (BMI) completed two simulated food-choice tasks (one with "explicit" task contingencies and one with "probabilistic" task contingencies), during which they indicated their objective preference for viewing high calorie food images vs. standardized pleasant, unpleasant, and neutral images. All participants also completed measures of food craving, and approximately half of the participants provided 24-h urine samples for assessment of cortisol and cortisone concentrations. Results showed that on the explicit task (but not the probabilistic task), participants with active Cushing's syndrome made fewer food-related choices than participants with Cushing's syndrome in remission, who in turn made fewer food-related choices than overweight controls. Corroborating this group effect, higher urine cortisone was negatively correlated with food-related choice in the subsample of all participants for whom these data were available. On the probabilistic task, despite a lack of group differences, higher food-related choice correlated with higher state and trait food craving in active Cushing's patients. Taken together, relative to overweight controls, Cushing's patients, particularly those with active disease, displayed a reduced vigor of responding for food rewards that was presumably attributable to glucocorticoid abnormalities. Beyond Cushing's, these results may have relevance for elucidating

  17. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1

    NARCIS (Netherlands)

    Lemke, U.; Krones-Herzig, A.; Berriel Diaz, M.; Narvekar, P.; Ziegler, A.; Vegiopoulos, A.; Cato, A.C.B.; Bohl, S.; Klingmüller, U.; Screaton, R.A.; Müller-Decker, K.; Kersten, A.H.; Herzig, S.

    2008-01-01

    Aberrant accumulation of lipids in the liver (¿fatty liver¿ or hepatic steatosis) represents a hallmark of the metabolic syndrome and is tightly associated with obesity, type II diabetes, starvation, or glucocorticoid (GC) therapy. While fatty liver has been connected with numerous abnormalities of

  18. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  19. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  20. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  1. Impact of HSCT conditioning and glucocorticoid dose on exercise adherence and response

    OpenAIRE

    Wiskemann, Joachim; Herzog, Benedikt; Kuehl, Rea; Schmidt, Martina E.; Steindorf, Karen; Schwerdtfeger, Rainer; Dreger, Peter; Bohus, Martin

    2017-01-01

    Abstract: Purpose: Evidence from randomized controlled trials (RCT) that exercise interventions have beneficial effects in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) is growing. However, intensive chemotherapy conditioning and glucocorticoid (GC) treatment is always part of an allo-HSCT and possibly affect exercise adherence and training response. Therefore, we aimed to examine whether various conditioning protocols or different doses of GC treatment af...

  2. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

    Science.gov (United States)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M

    2015-12-08

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.

  3. OSTEOPENIA in cancellous bone of sheep induced by Glucocorticoid alone

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, L.; Bollen, Peter

    2008-01-01

    Introduction: There is a great need for suitable large animal models that closely resemble osteoporosis in humans, and that they have adequate bone size for bone prosthesis and biomaterial research. Previous investigations have shown that osteoporotic sheep model requires glucocorticoid (GC......) microarchitectural properties and mechanical properties of sheep cancellous bone after a 7 months steroid treatment; and thus to validate a large animal model for orthopaedic implant/biomaterial research. Materials and Methods: Eighteen female sheep were randomly allocated into 3 groups: group 1 (GC-1) received GC......, osteocalcin was significantly reduced after 7 months but a rebound phenomenon was observed 3 months after cessation of GC. In conclusion, this study has validated an osteopenia sheep model. Bone quality was significantly reduced following a 7 months GC-treatment and recovered after further 3 month observation...

  4. Chronic Glucocorticoid Hypersecretion in Cushing's Syndrome Exacerbates Cognitive Aging

    Science.gov (United States)

    Michaud, Kathy; Forget, Helene; Cohen, Henri

    2009-01-01

    Cumulative exposure to glucocorticoid hormones (GC) over the lifespan has been associated with cognitive impairment and may contribute to physical and cognitive degeneration in aging. The objective of the present study was to examine whether the pattern of cognitive deficits in patients with Cushing's syndrome (CS), a disorder characterized by…

  5. Glucocorticoid-induced effects on the growth plate and the IGF system

    NARCIS (Netherlands)

    Smink, Jeske Johanna

    2003-01-01

    Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive drugs. The use of these potent drugs, however, often results in side-effects, such as growth retardation in children. For already many years, this GC-induced growth retardation is suggested to involve impaired action of

  6. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  7. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  8. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  9. Age-related synthesis of glucocorticoids in thymocytes

    International Nuclear Information System (INIS)

    Qiao Shengjun; Chen Liying; Okret, Sam; Jondal, Mikael

    2008-01-01

    Glucocorticoids (GCs) are primarily synthesized in the adrenal glands but an ectopic production has also been reported in the brain, the gastrointestinal tract and in thymic epithelial cells (TEC). Here we show that thymocytes express genes encoding for all enzymes required for de novo GC synthesis and produce the hormone as demonstrated by both a GC specific reporter assay and a corticosterone specific ELISA assay. Interestingly, GC synthesis is detectable in cells from young mice (4 weeks) and thereafter increases during aging (14-22 weeks) together with an increased gene expression of the rate-limiting enzymes StAR and CYP11A1. Hormone production occurred at a thymocyte differentiation stage characterized by being double positive for the CD4 and CD8 surface markers but was found to be unrelated to CD69 expression, a marker for thymocytes undergoing positive selection. No GC synthesis was found in resting or anti-CD3 activated CD4 and CD8 positive T cells isolated from the spleen. Thymocyte-derived GC had an anti-proliferative effect on a GR-transfected cell line and induced apoptosis in thymocytes. The age- and differentiation stage-related GC synthesis in thymocytes may play a role in the involution process that the thymus gland undergoes

  10. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  11. Emerging Role of Corticosteroid Binding Globulin in Glucocorticoid-driven Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Moisan

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs are critical for survival since they ensure energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism and storage. However, in order to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g. Cushing’s syndrome or Addison’s disease are associated with severe alterations of energy metabolism. Corticosteroid Binding Globulin (CBG, through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels. Genetic studies in various species including humans have revealed that CBG is the major factor influencing inter-individual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all of these genetic studies have also provided data linking CBG levels to body composition. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. The importance of CBG is even more striking when animals are submitted to high-fat diet combined to chronic stress, mimicking our occidental lifestyle. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.

  12. Expression of neuropeptide W in rat stomach mucosa: regulation by nutritional status, glucocorticoids and thyroid hormones.

    Science.gov (United States)

    Caminos, Jorge E; Bravo, Susana B; García-Rendueles, María E R; Ruth González, C; Garcés, Maria F; Cepeda, Libia A; Lage, Ricardo; Suárez, Miguel A; López, Miguel; Diéguez, Carlos

    2008-02-07

    Neuropeptide W (NPW) is a recently identified neuropeptide that binds to G-protein-coupled receptor 7 (GPR7) and 8 (GPR8). In rodent brain, NPW mRNA is confined to specific nuclei in hypothalamus, midbrain and brainstem. Expression of NPW mRNA has also been confirmed in peripheral organs such as stomach. Several reports suggested that brain NPW is implicated in the regulation of energy and hormonal homeostasis, namely the adrenal and thyroid axes; however the precise physiological role and regulation of peripheral NPW remains unclear. In this study, we examined the effects of nutritional status on the regulation of NPW in stomach mucosa. Our results show that in this tissue, NPW mRNA and protein expression is negatively regulated by fasting and food restriction, in all the models we studied: males, females and pregnant females. Next, we examined the effect of glucocorticoids and thyroid hormones on NPW mRNA expression in the stomach mucosa. Our data showed that NPW expression is decreased in this tissue after glucocorticoid treatment or hyperthyroidism. Conversely, hypothyroidism induces a marked increase in the expression of NPW in rat stomach. Overall, these data indicate that stomach NPW is regulated by nutritional and hormonal status.

  13. Short-and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    OpenAIRE

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  14. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  15. Development and validation of a GC-C-IRMS method for the confirmation analysis of pseudo-endogenous glucocorticoids in doping control.

    Science.gov (United States)

    de la Torre, Xavier; Curcio, Davide; Colamonici, Cristiana; Molaioni, Francesco; Cilia, Marta; Botrè, Francesco

    2015-01-01

    Glucocorticoids are included in the S9 section of the World Anti-doping Agency (WADA) prohibited list international standard. Some among them are pseudo-endogenous steroids, like cortisol and cortisone, which present the same chemical structure as endogenously produced steroids. We are proposing an analytical method based on gas chromatography coupled to isotope ratio mass spectrometry (GC-C-IRMS) which allows discrimination between endogenous and synthetic origin of the urinary metabolites of the pseudo-endogenous glucocorticoids. A preliminary purification treatment by high-performance liquid chromatography (HPLC) of the target compounds (TC) (i.e., cortisol, tetrahydrocortisone (THE) 5α-tetrahydrocortisone (aTHE), tetrahydrocortisol (THF), and 5α-tetrahydrocortisol (aTHF)) allows collection of extracts with adequate purity for the subsequent analysis by IRMS. A population of 40 urine samples was analyzed for the TC and for the endogenous reference compounds (ERC: i.e., 11-desoxy-tetrahydrocortisol (THS) or pregnanediol). For each sample, the difference between the delta values of the ERCs and TCs (Δδ values) were calculated and based on that, some decision limits for atypical findings are proposed. The limits are below 3% units except for cortisol. The fit to purpose of the method has been confirmed by the analysis of urine samples collected in two patients under treatment with 25 mg of cortisone acetate (p.o). The samples showed Δδ values higher than 3 for at least 24 h following administration depending on the TC considered. The method can easily be integrated into existing procedures already used for the HPLC purification and IRMS analysis of pseudo-endogenous steroids with androgenic/anabolic activity. Copyright © 2015 John Wiley & Sons, Ltd.

  16. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  17. Glucocorticoid inhibition of leptin- and lipopolysaccharide-induced interleukin-6 production in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Acevedo, Edmund O; Mari, David C; Randazzo, Christopher; Shibata, Yoshimi

    2014-01-01

    Obesity is considered a chronic inflammatory condition that enhances the risk of numerous inflammatory diseases, including diabetes and cardiovascular disease. Glucocorticoids (GCs) and synthetic therapeutic GCs are anti-inflammatory agents, but the exact functions of GCs in obesity-related inflammation are unknown. Therefore, the objective of this study was to examine the inhibitory effect of an exogenous GC (dexamethasone, DEX) on leptin- and lipopolysaccharide (LPS)-induced IL-6 production by peripheral blood mononuclear cells (PBMCs) ex vivo in obese subjects compared to normal-weight subjects. Blood samples were drawn from 14 obese (BMI>30 kg/m(2)) and 14 normal-weight (BMIobese subjects showed greater leptin- and LPS-induced IL-6 production compared to normal-weight subjects. The suppressive effect of DEX on leptin- and LPS-induced IL-6 production (IC50) was not different between the two groups. However, the IC50 of DEX for LPS-induced was correlated with BMI, waist circumference, and hip circumference. These findings suggest that reduced GC sensitivity may be an important mechanism in the up-regulation of selected obese inflammation. Published by Elsevier Inc.

  18. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  19. Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2009-04-01

    Full Text Available Silvia Migliaccio1, Marina Brama1, Nazzarena Malavolta21Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy; 2Dipartimento di Medicina Interna, Policlinico S Orsola Malpighi, Bologna, ItalyAbstract: Glucocorticoids (GC-induced osteoporosis (GIOP is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34 parathyroid hormone (PTH molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34 stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34 modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.Keywords: glucocorticoids, osteoblasts, osteoclasts, osteoporosis, teriparatide

  20. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang [Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Zhang, Yuanzhen [Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China)

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by {sup 1}H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal

  1. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    International Nuclear Information System (INIS)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-01-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by 1 H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal metabonome

  2. Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Serafin, Valentina; Capuzzo, Giorgia; Milani, Gloria; Minuzzo, Sonia Anna; Pinazza, Marica; Bortolozzi, Roberta; Bresolin, Silvia; Porcù, Elena; Frasson, Chiara; Indraccolo, Stefano; Basso, Giuseppe; Accordi, Benedetta

    2017-12-21

    Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 ( IL-4 ) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients. © 2017 by The American Society of Hematology.

  3. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  4. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation.

    Science.gov (United States)

    Malyukova, A; Brown, S; Papa, R; O'Brien, R; Giles, J; Trahair, T N; Dalla Pozza, L; Sutton, R; Liu, T; Haber, M; Norris, M D; Lock, R B; Sangfelt, O; Marshall, G M

    2013-04-01

    Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.

  5. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary.

    Science.gov (United States)

    Whirledge, Shannon; Cidlowski, John A

    2013-12-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.

  6. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  7. The Role of Osteopontin and Its Gene on Glucocorticoid Response in Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Yanchen Xie

    2017-05-01

    Full Text Available Biomarkers that assess treatment response for patients with the autoimmune disorder, myasthenia gravis (MG, have not been evaluated to a significant extent. We hypothesized the pro-inflammatory cytokine, osteopontin (OPN, may be associated with variability of response to glucocorticoids (GCs in patients with MG. A cohort of 250 MG patients treated with standardized protocol of GCs was recruited, and plasma OPN and polymorphisms of its gene, secreted phosphoprotein 1 (SPP1, were evaluated. Mean OPN levels were higher in patients compared to healthy controls. Carriers of rs11728697*T allele (allele definition: one of two or more alternative forms of a gene were more frequent in the poorly GC responsive group compared to the GC responsive group indicating an association of rs11728697*T allele with GC non-responsiveness. One risk haplotype (AGTACT was identified associated with GC non-responsiveness compared with GC responsive MG group. Genetic variations of SPP1 were found associated with the response to GC among MG patients.

  8. Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala.

    Science.gov (United States)

    Lee, Eun Jeong; Son, Gi Hoon; Chung, Sooyoung; Lee, Sukwon; Kim, Jeongyeon; Choi, Sukwoo; Kim, Kyungjin

    2011-05-11

    The environment in early life elicits profound effects on fetal brain development that can extend into adulthood. However, the long-lasting impact of maternal stress on emotional learning remains largely unknown. Here, we focus on amygdala-related learning processes in maternally stressed mice. In these mice, fear memory consolidation and certain related signaling cascades were significantly impaired, though innate fear, fear memory acquisition, and synaptic NMDA receptor expression in the amygdala were unaltered. In accordance with these findings, maintenance of long-term potentiation (LTP) at amygdala synapses, but not its induction, was significantly impaired in the maternally stressed animals. Interestingly, amygdala glucocorticoid receptor expression was reduced in the maternally stressed mice, and administration of glucocorticoids (GCs) immediately after fear conditioning and LTP induction restored memory consolidation and LTP maintenance, respectively, suggesting that a weakening of GC signaling was responsible for the observed impairment. Furthermore, microinfusion of a membrane-impermeable form of GC (BSA-conjugated GC) into the amygdala mimicked the restorative effects of GC, indicating that a nongenomic activity of GC mediates the restorative effect. Together, these findings suggest that prenatal stress induces long-term dysregulation of nongenomic GC action in the amygdala of adult offspring, resulting in the impairment of fear memory consolidation. Since modulation of amygdala activity is known to alter the consolidation of emotionally influenced memories allocated in other brain regions, the nongenomic action of GC on the amygdala shown herein may also participate in the amygdala-dependent modulation of memory consolidation.

  9. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  10. Glucocorticoid programming of the fetal male hippocampal epigenome.

    Science.gov (United States)

    Crudo, Ariann; Suderman, Matthew; Moisiadis, Vasilis G; Petropoulos, Sophie; Kostaki, Alisa; Hallett, Michael; Szyf, Moshe; Matthews, Stephen G

    2013-03-01

    The late-gestation surge in fetal plasma cortisol is critical for maturation of fetal organ systems. As a result, synthetic glucocorticoids (sGCs) are administered to pregnant women at risk of delivering preterm. However, animal studies have shown that fetal exposure to sGC results in increased risk of behavioral, endocrine, and metabolic abnormalities in offspring. Here, we test the hypothesis that prenatal GC exposure resulting from the fetal cortisol surge or after sGC exposure results in promoter-specific epigenetic changes in the hippocampus. Fetal guinea pig hippocampi were collected before (gestational day [GD52]) and after (GD65) the fetal plasma cortisol surge (Term∼GD67) and 24 hours after (GD52) and 14 days after (GD65) two repeat courses of maternal sGC (betamethasone) treatment (n = 3-4/gp). We identified extensive genome-wide alterations in promoter methylation in late fetal development (coincident with the fetal cortisol surge), whereby the majority of the affected promoters exhibited hypomethylation. Fetuses exposed to sGC in late gestation exhibited substantial differences in DNA methylation and histone h3 lysine 9 (H3K9) acetylation in specific gene promoters; 24 hours after the sGC treatment, the majority of genes affected were hypomethylated or hyperacetylated. However, 14 days after sGC exposure these differences did not persist, whereas other promoters became hypermethylated or hyperacetylated. These data support the hypothesis that the fetal GC surge is responsible, in part, for significant variations in genome-wide promoter methylation and that prenatal sGC treatment profoundly changes the epigenetic landscape, affecting both DNA methylation and H3K9 acetylation. This is important given the widespread use of sGC in the management of women in preterm labor.

  11. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  12. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  13. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research.

    Science.gov (United States)

    Ding, Ming; Cheng, Liming; Bollen, Peter; Schwarz, Peter; Overgaard, Søren

    2010-02-15

    Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. To validate a large animal model for spine fusion and biomaterial research. A variety of ovariectomized animals has been used to study osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous bone volume fraction and trabecular thickness, and bone strength. However, the microarchitecture and bone strength of GC-2 recovered to a similar level of the controls. A similar trend of microarchitectural changes was also observed in the distal femur and proximal tibia of both GC treated sheep. The bone formation marker serum-osteocalcin was largely reduced in GC-1 compared to the controls, but recovered with a rebound increase at month 10 in GC-2. The current investigation demonstrates that the changes in microarchitecture and mechanical properties were comparable with those observed in humans after long-term GC treatment. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term glucocorticoid treated osteoporotic model, and is useful in preclinical studies.

  14. Effect of the systemic versus inhalatory administration of synthetic glucocorticoids on the urinary steroid profile as studied by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Mazzarino, Monica; Rossi, Francesca; Giacomelli, Laura; Botre, Francesco

    2006-01-01

    This paper presents a gas chromatography-mass spectrometry (GC-MS) study carried out on human urine to verify whether the administration of glucocorticoids can affect the urinary steroid profile, and especially the levels of endogenous glucocorticoids, androgens and their main metabolites. Betamethasone and beclomethasone, administered either systemically (per os or i.m.) or locally (by inhalation) have been studied. The determination of the urinary levels of endogenous glucocorticoids and androgens was carried out by GC-MS in electron impact ionization mode. Data were evaluated taking into account the baseline individual variability, and compared with values obtained on a control group. Detectable differences were recorded in the steroids metabolites excretion profiles between men and women. The circadian variability of the steroid profile was the same for both sexes, showing a maximum during the morning hours. After systemic treatment with synthetic glucocorticoids, the relative urinary concentrations of corticosteroids, androgens and of their metabolites were significantly altered, recording a transient decrease of the concentration of cortisol and tetrahydrocortisol and a parallel, although less pronounced, increase of the concentration of testosterone, epitestosterone and related androgenic steroids; while no effects were recorded if the administration was by inhalation

  15. Effect of the systemic versus inhalatory administration of synthetic glucocorticoids on the urinary steroid profile as studied by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mazzarino, Monica [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy); Rossi, Francesca [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy); Giacomelli, Laura [Dipartimento di Scienze Chirurgiche, Universita La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Botre, Francesco [Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome (Italy) and Dipartimento CGMIA, Universita La Sapienza, Via del Castro Laurenziano 9, 00161 Rome (Italy)]. E-mail: francesco.botre@uniroma1.it

    2006-02-10

    This paper presents a gas chromatography-mass spectrometry (GC-MS) study carried out on human urine to verify whether the administration of glucocorticoids can affect the urinary steroid profile, and especially the levels of endogenous glucocorticoids, androgens and their main metabolites. Betamethasone and beclomethasone, administered either systemically (per os or i.m.) or locally (by inhalation) have been studied. The determination of the urinary levels of endogenous glucocorticoids and androgens was carried out by GC-MS in electron impact ionization mode. Data were evaluated taking into account the baseline individual variability, and compared with values obtained on a control group. Detectable differences were recorded in the steroids metabolites excretion profiles between men and women. The circadian variability of the steroid profile was the same for both sexes, showing a maximum during the morning hours. After systemic treatment with synthetic glucocorticoids, the relative urinary concentrations of corticosteroids, androgens and of their metabolites were significantly altered, recording a transient decrease of the concentration of cortisol and tetrahydrocortisol and a parallel, although less pronounced, increase of the concentration of testosterone, epitestosterone and related androgenic steroids; while no effects were recorded if the administration was by inhalation.

  16. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11β-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    International Nuclear Information System (INIS)

    Hong, Dun; Li, Xing-Wang; Lian, Qing-Quan; Lamba, Pankaj; Bernard, Daniel J.; Hardy, Dianne O.; Chen, Hai-Xiao; Ge, Ren-Shan

    2009-01-01

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), not 11β-HSD1, is strongly expressed in murine gonadotrope LβT2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11β-HSD2 enzyme activity in LβT2 cells at as low as 10 -7 M. Corticosterone (CORT) at a concentration of 10 -6 M significantly inhibited LβT2 cell proliferation after 2-day culture, and 10 -6 M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10 -5 or 10 -4 M MEHP, the minimal concentration of CORT to inhibit the proliferation of LβT2 cells was lowered to 10 -7 M, and 10 -6 M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11β-HSD2 may have a key role in glucocorticoid metabolism in LβT2 cells. MEHP may participate in the glucocorticoid metabolism in LβT2 cells through inhibition of 11β-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.

  17. Glucocorticoid-related bone changes from endogenous or exogenous glucocorticoids.

    Science.gov (United States)

    Warriner, Amy H; Saag, Kenneth G

    2013-12-01

    Glucocorticoids have a negative impact on bone through direct effects on bone cells and indirect effects on calcium absorption. Here, recent findings regarding glucocorticoid-induced osteoporosis, bone changes in patients with endogenous glucocorticoid derangements, and treatment of steroid-induced bone disease are reviewed. Although the majority of our understanding arises from the outcomes of patients treated with exogenous steroids, endogenous overproduction appears to be similarly destructive to bone, but these effects are reversible with cure of the underlying disease process. Additionally, there are bone changes that occur in diseases that interrupt adrenal glucocorticoid production, both in response to our inability to perfectly match glucocorticoid replacement and also related to the underlying disease process. More investigation is required to understand which patients with endogenous overproduction or underproduction of glucocorticoid would benefit from osteoporosis treatment. Better understood is the benefit that can be achieved with currently approved treatments for glucocorticoid-induced osteoporosis from exogenous steroids. With growing concern of long-term use of bisphosphonates, however, further investigation into the duration of use and use in certain populations, such as children and premenopausal women, is essential. Glucocorticoid-induced osteoporosis is a complex disease that is becoming better understood through advances in the study of exogenous and endogenous glucocorticoid exposure. Further advancement of proper treatment and prevention is on the horizon.

  18. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  19. Instructions for producing a mouse model of glucocorticoid-induced osteoporosis

    DEFF Research Database (Denmark)

    Thiele, S.; Baschant, U.; Rauch, A.

    2014-01-01

    Glucocorticoids are effective drugs used for the treatment of inflammatory diseases such as rheumatoid arthritis or asthma. Furthermore, they regulate various physiological processes, including bone remodeling. However, long-term high- and even low-dose glucocorticoid use is associated...... with a compromised bone quality and an increased fracture risk. At the cellular level, glucocorticoids suppress bone formation and stimulate bone resorption, which leads to loss of bone mass. To investigate the underlying mechanisms and new therapeutic strategies, the in vivo model for glucocorticoid-induced bone...... loss is widely used. This protocol outlines the common procedure that is currently used for the induction of bone loss in mice using glucocorticoids. It further provides useful hints and highlights possible pitfalls to take into account before starting an experiment....

  20. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition.

    Science.gov (United States)

    Mueller, Kristina M; Hartmann, Kerstin; Kaltenecker, Doris; Vettorazzi, Sabine; Bauer, Mandy; Mauser, Lea; Amann, Sabine; Jall, Sigrid; Fischer, Katrin; Esterbauer, Harald; Müller, Timo D; Tschöp, Matthias H; Magnes, Christoph; Haybaeck, Johannes; Scherer, Thomas; Bordag, Natalie; Tuckermann, Jan P; Moriggl, Richard

    2017-02-01

    Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice. © 2017 by the American Diabetes Association.

  1. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  2. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  3. Exenatide improves glucocorticoid-induced glucose intolerance in mice

    Directory of Open Access Journals (Sweden)

    Ruiying Zhao

    2011-01-01

    Full Text Available Ruiying Zhao1,2*, Enrique Fuentes-Mattei1,2*, Guermarie Velazquez-Torres1,3, Chun-Hui Su1,2, Jian Chen1, Mong-Hong Lee1,2, Sai-Ching Jim Yeung4,51Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Program in Genes and Development, 3Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center in Houston, Houston, TX, USA; 4Department of Endocrine Neoplasia and Hormonal Disorders, 5Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA *Both authors contributed equally.Abstract: Exenatide is an incretin mimetic that is recently available in the US for the treatment of diabetes. There is a paucity of information on the effects of exenatide in glucocorticoid (GC-induced diabetes. Although the effect of continuous intravenous infusion of exenatide on GC-induced glucose intolerance has been investigated before in healthy human males receiving oral prednisolone, we investigated the efficacy of a single subcutaneous dose of exenatide (3 µg/kg in lowering blood glucose in GC-induced glucose intolerance in C57BL/6 mice. In a longitudinal experiment, the area under the curve (AUC of oral glucose tolerance tests (OGTT significantly increased after dexamethasone (P = 0.004, which was subsequently decreased by exenatide (P < 0.001. A cross-sectional experiment showed that exenatide improved glucose tolerance compared with placebo in a mouse model of dexamethasone-induced glucose intolerance. AUC of OGTT in the exenatide group were significantly (P < 0.001 lower than in the placebo group. Insulin tolerance tests (ITT demonstrated that exenatide decreased the ability of the mice to tolerate insulin compared with placebo. The AUC of ITT in the exenatide group were also significantly (P = 0.006 lower than in the placebo group. In conclusion, a single dose of exenatide was able to decrease glucose intolerance and

  4. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  5. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice

    Directory of Open Access Journals (Sweden)

    Lisa M. Walter

    2018-05-01

    Full Text Available The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone, genetic (muscle-specific Klf15 overexpression and dietary (BCAA supplementation interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. Keywords: Spinal muscular atrophy, KLF15, Glucocorticoids, Branched-chain amino acids, Metabolism, Therapy

  6. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z.

    2015-01-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. PMID:25676786

  8. Effort-reward-imbalance in healthy teachers is associated with higher LPS-stimulated production and lower glucocorticoid sensitivity of interleukin-6 in vitro.

    Science.gov (United States)

    Bellingrath, Silja; Rohleder, Nicolas; Kudielka, Brigitte M

    2013-02-01

    According to the effort-reward-imbalance (ERI) model, a lack of reciprocity between costs and gains at work increases the risk for adverse health outcomes. Inflammation has been shown to play a crucial role in a variety of stress-related diseases and alterations in immune system glucocorticoid sensitivity may help to explain the increased risk for cardiovascular disease (CVD) and depression related to chronic work stress. Changes in lipopolysaccharide (LPS)-induced interleukin (IL)-6 production and inhibition of IL-6 production by dexamethasone in reaction to the Trier Social Stress Test (TSST) were assessed in forty-six healthy school teachers to test whether chronic work stress is accompanied by alterations in inflammatory activity and glucocorticoid sensitivity of the innate immune system. High ERI was associated with an increase in pro-inflammatory potential, reflected in elevated IL-6 production before and after stress and with a lower capacity of dexamethasone to suppress IL-6 production in vitro over all measurement time points. ERI was not associated with stress-related changes in GC sensitivity. The present findings suggest a less effective anti-inflammatory regulation by glucocorticoids in teachers suffering from chronic work stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  10. Serum levels of parathyroid hormone and markers of bone metabolism in patients with rheumatoid arthritis. Relationship to disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran; Hansen, M; Madsen, J C

    2001-01-01

    OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before and ....... The increased levels of markers of type I collagen metabolism (s-ICTP, Pyr) and s-AlbCorrCa2+ in patients with active disease and patients treated with GC may be a result of increased degradation in synovium, cartilage and bone due to the inflammatory process.......OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before...... groups. The levels of urine pyridinoline (Pyr) and s-albumin-corrected calcium (s-AlbCorrCa2+) were elevated in patients with active disease and patients treated with GC. S-PTH and s-phosphate were within normal ranges. S-TAP, s-ICTP, Pyr and s-AlbCorrCa2+ correlated positively with indices of disease...

  11. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos

    2010-02-01

    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  12. Glucocorticoids and fetal programming part 1: Outcomes.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    Fetal development is a critical period for shaping the lifelong health of an individual. However, the fetus is susceptible to internal and external stimuli that can lead to adverse long-term health consequences. Glucocorticoids are an important developmental switch, driving changes in gene regulation that are necessary for normal growth and maturation. The fetal hypothalamic-pituitary-adrenal (HPA) axis is particularly susceptible to long-term programming by glucocorticoids; these effects can persist throughout the life of an organism. Dysfunction of the HPA axis as a result of fetal programming has been associated with impaired brain growth, altered behaviour and increased susceptibility to chronic disease (such as metabolic and cardiovascular disease). Moreover, the effects of glucocorticoid-mediated programming are evident in subsequent generations, and transmission of these changes can occur through both maternal and paternal lineages.

  13. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  14. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    DEFF Research Database (Denmark)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han

    2015-01-01

    in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription......Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy...... factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although...

  15. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  16. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance.

    Science.gov (United States)

    Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N

    2017-04-28

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP

    International Nuclear Information System (INIS)

    Osman, Waffa; Laine, Sanna; Zilliacus, Johanna

    2006-01-01

    Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation

  18. Plasma-Glucocorticoids and ACTH Levels During Different Periods of Activity in the European Beaver (Castor fiber L.).

    Science.gov (United States)

    Czerwińska, Joanna; Chojnowska, Katarzyna; Kamiński, Tadeusz; Bogacka, Iwona; Panasiewicz, Grzegorz; Smolińska, Nina; Kamińska, Barbara

    2015-01-01

    Glucocorticoids (GCs) and adrenocorticotropic hormone (ACTH) are major components of the classic endocrine stress response. Free-living vertebrates are characterized by circannual changes in the baseline and/or stress-induced secretion of GCs and ACTH. In mammalian species, GC and ACTH levels vary seasonally but there is no consensus to the season in which animals have elevated GC and ACTH levels. The aim of our study was to determine, for the first time, the type and amount of glucocorticoids produced in free-living beaver (Castor fiber L.)--the largest rodent in Eurasia, and to find out whether stress-induced plasma GC and ACTH levels show seasonal variations. Blood samples were obtained from animals under general anesthesia in April (pregnancy in females), July (offspring rearing) and November (preparing for the winter). The adrenals of beavers produce both cortisol and corticosterone, and plasma cortisol levels were higher than corticosterone. In the current experiment, plasma cortisol concentrations in beavers were affected by the season. The highest stress-associated cortisol levels were noted in males in July during offspring rearing. Corticosterone and ACTH concentrations in beavers remained generally constant, regardless of the season and sex. In conclusion, seasonal changes were observed only in relation to stress-induced plasma cortisol levels in the beaver.

  19. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  20. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  1. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  2. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  3. Pulsatile thyrotropin secretion in patients with Addison's disease during variable glucocorticoid therapy

    DEFF Research Database (Denmark)

    Hangaard, J; Andersen, M; Grodum, E

    1996-01-01

    , increasing significantly (P glucocorticoids, when the pulse frequency was also significantly reduced (P ... of glucocorticoids on the TSH response to TRH, our data indicate that even physiological serum levels of cortisol have an influence on endogenous TSH secretion, probably caused by regulation of the pituitary sensitivity to TRH....

  4. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease.

    Science.gov (United States)

    Fries, Gabriel R; Gassen, Nils C; Rein, Theo

    2017-12-05

    Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels-transcription, post-transcription, and post-translation-and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51's involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.

  5. The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids

    Science.gov (United States)

    Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.

    2015-01-01

    The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907

  6. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity

    Directory of Open Access Journals (Sweden)

    Burnsides C

    2012-08-01

    Full Text Available Christopher Burnsides,1,* Jacqueline Corry,1,* Jacob Alexander,1 Catherine Balint,1 David Cosmar,1 Gary Phillips,2 Jeanette I Webster Marketon1,31Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Center for Biostatistics, 3Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA*JC and CB have equally contributed to this workPurpose: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity.Patients and methods: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay.Results: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC50 and IC50 concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day.Conclusion: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.Keywords: glucocorticoid responsiveness, gene regulation, nuclear receptor, GILZ, FKBP51, cytokines

  7. “CAMBIOS EN LAS FIBRAS DEL MÚSCULO ESQUELÉTICO INDUCIDOS POR GLUCOCORTICOIDES Y SU RELACIÓN CON LOS NIVELES DE EXPRESIÓN DEL GEN MSTN EN RATAS”.

    OpenAIRE

    Ortiz Tinoco, Vinicio

    2012-01-01

    Los glucocorticoides (GC) son utilizados ampliamente en la medicina humana y veterinaria, como potentes antiinflamatorios e inmunosupresores, sin embargo su uso se ha asociado con atrofia muscular. Los GC son una amplia familia de compuestos con un núcleo estructural común pero con diferentes grupos sustituyentes o funcionales. Los efectos farmacológicos de los GC resultan de la activación y/o represión de la expresión génica al interactuar con elementos de respuestas a GC (...

  8. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...... that in response to glucocorticoid administration, induced autophagy aids to maintain proliferation and prevent apoptosis of BMSCs. Thus, it is hypothesized that autophagy may be a novel target in the treatment or prevention of osteoporosis....

  10. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenyu Ma

    Full Text Available Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD, the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.

  11. Use of parenteral glucocorticoids and the risk of new onset type 2 diabetes mellitus : A case-control study

    NARCIS (Netherlands)

    Keyany, Ala; Nielen, Johannes T H; Souverein, Patrick C.; de Vries, Frank; van den Bemt, Bart

    2018-01-01

    Background: Use of oral glucocorticoids (GCs) has been associated with hyperglycaemia and type 2 diabetes mellitus (T2DM). However, unlike oral GCs, there is minimal or no data on the effect of parenteral GC use on T2DM. Objective: To assess the association between use of parenteral GCs and the risk

  12. Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice

    NARCIS (Netherlands)

    Zhou, M.; Bakker, E.H.M.; Velzing, E.; Berger, S.; Oitzl, M.; Joëls, M.; Krugers, H.J.

    2010-01-01

    Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory

  13. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    Science.gov (United States)

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  14. The Ups and Downs of Glucocorticoid Signaling | Center for Cancer Research

    Science.gov (United States)

    Glucocorticoids are steroids that react to stress by regulating inflammation and controlling metabolism. Because of their anti-inflammatory and immunosuppressive properties, corticosteroids are among the most frequently prescribed drugs. Glucocorticoids are often used to treat arthritis and autoimmune diseases and are also given in combination with other drugs to treat cancers—such as leukemias and lymphomas—or to alleviate side effects from chemotherapy and radiation. In humans, a glucocorticoid called cortisol is released from the adrenal gland approximately every hour to send signals to cells throughout the body. This pulsed release of hormone is called ultradian secretion.  

  15. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  16. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    Science.gov (United States)

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  17. Unmasking of Partial Diabetes Insipidus during Stress but Not Maintenance Dosing of Glucocorticoids in an Infant with Septo-Optic Dysplasia

    Directory of Open Access Journals (Sweden)

    Loechner KarenJ

    2011-03-01

    Full Text Available Background. It is well acknowledged that glucocorticoid (GC replacement can unmask diabetes insipidus (DI in subjects with hypopituitarism. Objective. To increase the awareness and monitoring for transient and symptomatic DI in children with partial hypopituitarism during periods in which increased GC needs are required. Methods/Case. A 2-month-old female infant with septo-optic dysplasia (SOD; on thyroid and maintenance GC replacement therapy at 8 mg/m2/day developed transient DI during 2 separate episodes of stress (one hypothermia, one febrile when stress dosing of GC (25 mg/m2/day was instituted. Conclusion. Children not diagnosed with DI during initial evaluation for hypopituitarism may benefit from rescreening of serum sodium levels during acute periods of stress that demand "stress" GC dosing. This will permit treatment and/or increased vigilance for ensuing permanent DI.

  18. Use of glucocorticoids during pregnancy and risk of attention-deficit/hyperactivity disorder in offspring

    DEFF Research Database (Denmark)

    Laugesen, Kristina; Byrjalsen, Anna; Frøslev, Trine

    2017-01-01

    OBJECTIVE: Prenatal exposure to excess endogenous glucocorticoid (GC) has been linked to attention-deficit/hyperactivity disorder (ADHD). We investigated whether prenatal exposure to exogenous GC is associated with ADHD. DESIGN: Nationwide cohort study. SETTING: A cohort of 875 996 singletons born...... ADHD risk in children prenatally exposed to GCs and in children of former GC users with risk in unexposed children of never users. We computed cumulative incidence at 10 years of age and adjusted HRs (aHRs). In addition, we compared exposed children with unexposed siblings in a sibling design. RESULTS......: We identified 875 996 children, among whom 5319 were prenatally exposed to systemic GCs and 36 780 to local/inhaled GCs. Cumulative incidences of ADHD at 10 years of age were 2.65% in prenatally exposed children and 2.03% in unexposed children of never users. At the general population level, prenatal...

  19. Long-term glucocorticoid concentrations as a risk factor for childhood obesity and adverse body-fat distribution.

    Science.gov (United States)

    Noppe, G; van den Akker, E L T; de Rijke, Y B; Koper, J W; Jaddoe, V W; van Rossum, E F C

    2016-10-01

    Childhood obesity is an important risk factor for premature development of the metabolic syndrome (MetS) at adulthood. There is need for understanding of the mechanisms underlying the MetS and obesity. Patients with Cushing's disease suffer from similar metabolic complications, leading to the hypothesis that inter-individual cortisol variation may contribute to the onset of obesity. In addition, glucocorticoid receptor (GR)-gene polymorphisms resulting in differential glucocorticoid (GC) sensitivity, have been associated with an adverse metabolic profile. To study associations of GC levels in scalp hair, as a marker of long-term systemic GC concentrations, and genetically determined GC sensitivity with obesity and body-fat distribution in children. We performed a cross-sectional study of cortisol and cortisone concentrations over a 3-month period, measured by LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry) in hair of 3019 6-year-old children participating in the Generation R study. Genotyping of GR-gene polymorphisms was performed. Of all children, 4.3% was obese and 13.4% overweight. Cortisol was significantly associated with risk of obesity (odd ratio (OR): 9.4 (3.3-26.9)) and overweight (OR: 1.4 (1.0-2.0)). Cortisone was associated with risk of obesity (OR: 1.9 (1.0-3.5)). Cortisol and cortisone were significantly positively associated with body mass index, fat mass (FM) index and android/gynecoid FM ratio. GR polymorphisms were not associated with adiposity parameters. Long-term cortisol concentrations are strongly associated with an increased risk of childhood obesity and adverse body-fat distribution. Future research may reveal whether these are causal relations and may be a target for therapy.

  20. Glucocorticoid effects on object recognition memory require training-associated emotional arousal

    OpenAIRE

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2004-01-01

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague–Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two condition...

  1. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    Science.gov (United States)

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Cytokine release and its modulation by dexamethasone in whole blood following exercise

    NARCIS (Netherlands)

    Smits, H. H.; Grünberg, K.; DeRijk, R. H.; Sterk, P. J.; Hiemstra, P. S.

    1998-01-01

    Glucocorticoids (GC) play an important role in the treatment of inflammatory diseases like asthma. However, in selected patients a relative resistance to GC has been reported. Recently, it has been suggested that GC sensitivity of peripheral blood leucocytes may be regulated in a dynamic fashion

  3. Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival.

    Science.gov (United States)

    Adhikary, Sulekha; Choudhary, Dharmendra; Ahmad, Naseer; Karvande, Anirudha; Kumar, Avinash; Banala, Venkatesh Teja; Mishra, Prabhat Ranjan; Trivedi, Ritu

    2018-02-13

    Kaempferol, a dietary flavonoid found in fruits and vegetables, has been reported to reverse osteopenic condition in ovariectomized rats. Because kaempferol is endowed with osteogenic activity, the aim of this study was to determine whether it has a beneficial effect on glucocorticoid (GC)-induced bone loss. Adult female rats were divided into four groups as control (vehicle; distilled water), methylprednisolone (MP; 5 mg•kg•d, subcutaneously), MP + kaempferol (5 mg•kg•d, oral), and MP + human parathyroid 1-34 (30 µg/kg, 5 times/wk, subcutaneously) and treated for 4 wk. To study the antagonizing effect of kaempferol on GC-induced inhibition of fracture healing, drill-hole injury was performed on control and GC-treated rats. An oral dose of kaempferol was given for 14 d to observe the effect on callus formation at the site of injury. After treatment, bones were collected for further analysis. GC was associated with a decreased bone mineral density and impaired bone microarchitecture parameters. Consumption of kaempferol induced bone-sparing effects in GC-induced osteopenic condition. Additionally, improved callus formation at site of drill injury in femur diaphysis was observed with kaempferol consumption in animals on GC. Consistent with the in vivo data, kaempferol elicited a higher expression of osteogenic markers in vitro and antagonized the apoptotic effect of dexamethasone on calvarial osteoblasts. These results suggested that kaempferol reduced GC-induced bone loss and enhanced bone regeneration at fractured site, thus emphasizing the positive role of flavonoids on bone health. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Down-regulation of serum/glucocorticoid regulated kinase 1 in colorectal tumours is largely independent of promoter hypermethylation.

    Directory of Open Access Journals (Sweden)

    Francesca Lessi

    2010-11-01

    Full Text Available We have previously shown that serum/glucocorticoid regulated kinase 1 (SGK1 is down-regulated in colorectal cancers (CRC with respect to normal tissue. As hyper-methylation of promoter regions is a well-known mechanism of gene silencing in cancer, we tested whether the SGK1 promoter region was methylated in colonic tumour samples.We investigated the methylation profile of the two CpG islands present in the promoter region of SGK1 in a panel of 5 colorectal cancer cell lines by sequencing clones of bisulphite-treated DNA samples. We further confirmed our findings in a panel of 10 normal and 10 tumour colonic tissue samples of human origin. We observed CpG methylation only in the smaller and more distal CpG island in the promoter region of SGK1 in both normal and tumour samples of colonic origin. We further identified a single nucleotide polymorphism (SNP, rs1743963 which affects methylation of the corresponding CpG.Our results show that even though partial methylation of the promoter region of SGK1 is present, this does not account for the different expression levels seen between normal and tumour tissue.

  5. Glucocorticoid regimens for prevention of Graves' ophthalmopathy progression following radioiodine treatment: systematic review and meta-analysis.

    Science.gov (United States)

    Shiber, Shachaf; Stiebel-Kalish, Hadas; Shimon, Ilan; Grossman, Alon; Robenshtok, Eyal

    2014-10-01

    Glucocorticoid (GC) therapy has been shown to prevent Graves' ophthalmopathy (GO) progression following radioactive iodine (RAI) treatment. However, the optimal regimen is controversial, with studies from recent years suggesting the use of lower doses and shorter GC treatment courses. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) and retrospective controlled trials comparing GC regimens versus placebo, no treatment, or other GC regimens. Eight trials evaluating 850 patients fulfilled inclusion criteria. In patients with preexisting GO, standard dose prednisone (0.4-0.5 mg/kg tapered over 3 months) was very effective for prevention of GO progression (OR 0.14 [CI 0.06-0.35], phyperthyroidism resolution (OR 1.05 [CI 0.69-1.58]), and GC side effects were common but mild. Current evidence supports a three-tier approach for prevention of GO progression following RAI. Standard dose prednisone is the best validated regimen and should be used in patients with mild to moderate GO who have high risk of progression, while low dose prednisone can be used in patients with mild GO, and in patients without preexisting GO who have risk factors and are selected for GC prophylaxis. Patients without preexisting GO and without risk factors should not be treated with GC prophylaxis.

  6. Adrenal responses of large whales: Integrating fecal aldosterone as a complementary biomarker to glucocorticoids.

    Science.gov (United States)

    Burgess, Elizabeth A; Hunt, Kathleen E; Kraus, Scott D; Rolland, Rosalind M

    2017-10-01

    Until now, physiological stress assessment of large whales has predominantly focused on adrenal glucocorticoid (GC) measures. Elevated GC concentrations in feces (fGC) are known to reflect stressful disturbances, such as fishing gear entanglement and human-generated underwater noise, in North Atlantic right whales (Eubalaena glacialis). However, there can be considerable variation in GC production as a function of sex and life history stage, which may confound the interpretation of fGC levels. Additionally, GC antibodies used in immunoassays can cross-react with other fecal metabolites (i.e., non-target steroids), potentially influencing fGC data. Here, aldosterone concentrations (fALD; aldosterone and related metabolites) were measured in fecal samples from right whales (total n=315 samples), including samples from identified individuals of known life history (n=82 individual whales), to evaluate its utility as a complementary biomarker to fGC for identifying adrenal activation. Concentrations of fALD were positively correlated with fGCs in right whales (r=0.59, Pwhales, fALD concentrations showed similar patterns to those reported for fGC, with higher levels in pregnant females (35.9±7.6ng/g) followed by reproductively mature males (9.5±0.9ng/g) (Pwhales. The addition of fALD measurement as a biomarker of adrenal activation may help distinguish between intrinsic and external causes of stress hormone elevations in large whales, as well as other free-living wildlife species, providing a more comprehensive approach for associating adrenal activation with specific natural and anthropogenic stressors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  8. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  9. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  10. Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus

    Directory of Open Access Journals (Sweden)

    Yu Richard MK

    2009-11-01

    Full Text Available Abstract Background CITED proteins belong to a family of non-DNA-binding transcriptional co-regulators that are characterized by a conserved ED-rich domain at the C-terminus. This family of genes is involved in the regulation of a variety of transcriptional responses through interactions with the CBP/p300 integrators and various transcription factors. In fish, very little is known about the expression and functions of CITEDs. Results We have characterized two closely related but distinct CITED3 genes, gcCited3a and gcCited3b, from the hypoxia-tolerant grass carp. The deduced gcCITED3a and gcCITED3b proteins share 72% amino acid identity, and are highly similar to the CITED3 proteins of both chicken and Xenopus. Northern blot analysis indicates that the mRNA expression of gcCited3a and gcCited3b is strongly induced by hypoxia in the kidney and liver, respectively. Luciferase reporter assays demonstrated that both gene promoters are activated by gcHIF-1. Further, ChIP assays comparing normal and hypoxic conditions reveal differential in vivo binding of gcHIF-1 to both gene promoters in kidney and liver tissues. HRE-luciferase reporter assays demonstrated that both gcCITED3a and gcCITED3b proteins inhibit gcHIF-1 transcriptional activity, and GST pull-down assays confirmed that both proteins bind specifically to the CH1 domain of the grass carp p300 protein. Conclusion The grass carp gcCITED3a and gcCITED3b genes are differentially expressed and regulated in different fish organs in response to hypoxic stress. This is the first report demonstrating in vivo regulation of two closely-related CITED3 isogenes by HIF-1, as well as CITED3 regulation of HIF-1 transcriptional activity in fish. Overall, our findings suggest that unique molecular mechanisms operate through these two gcCITED3 isoforms that likely play an important regulatory role in the hypoxic response in the grass carp.

  11. Influence of chronic x-ray exposure on adrenal glucocorticoid function and adrenocorticocyte membrane potential

    International Nuclear Information System (INIS)

    Gorban', Je.M.; Topol'nikova, N.V.

    1998-01-01

    The peculiarities of adrenal glucocorticoid function and membrane potential (MP) of zona fasciculata adrenocorticocyte (ACC) in rats after chronic x-ray exposure was studied. The changes of adrenal glucocorticoid function caused by chronic x-ray exposure within a relatively small period of irradiation (1.5 months) are obscure and manifest themselves only at physiological load. With the prolongation of the period (8 and 15 months), more considerable inhibition of the adrenal glucocorticoid function and disturbances in the membrane mechanisms of ACC MP level regulation are revealed

  12. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, Liming; Bollen, Peter

    2010-01-01

    STUDY DESIGN: Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. OBJECTIVE: To validate a large animal model for spine fusion and biomaterial research. SUMMARY OF BACKGROUND DATA: A variety of ovariectomized animals has been used to study...... osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. METHODS: Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC......-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium...

  13. Glucocorticoid receptor gene haplotypes are not associated with birth anthropometry, blood pressure, glucose and insulin concentrations, and body composition in subjects born small for gestational age

    NARCIS (Netherlands)

    L. Manenschijn (Laura); E.L.T. van den Akker (Erica); W.A. Ester (Wietske); R.W.J. Leunissen (Ralph); R.H. Willemsen (Ruben); E.F.C. van Rossum (Liesbeth); J.W. Koper (Jan); S.W.J. Lamberts (Steven); A.C.S. Hokken-Koelega (Anita)

    2010-01-01

    textabstractObjective: Smaller size at birth has been associated with an increased risk of metabolic and cardiovascular disorders in adult life. Fetal programing of the hypothalamic - pituitary - adrenal axis has been suggested as a possible explanation. Fetal glucocorticoid (GC) overexposure has

  14. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors.

    Science.gov (United States)

    Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel

    2014-02-01

    Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.

  15. Glucocorticoid control of rat growth hormone gene expression: Effect on cytoplasmic messenger ribonucleic acid production and degradation

    International Nuclear Information System (INIS)

    Gertz, B.J.; Gardner, D.G.; Baxter, J.D.

    1987-01-01

    The effect of the glucocorticoid dexamethasone on the production and degradation of rat GH (rGH) cytoplasmic mRNA was studied in cultured rat pituitary tumor (GC) cells. The incorporation of [3H]uridine into both rGH cytoplasmic mRNA and the pyrimidine nucleotide precursor pool was determined in hormone-treated and control cells. From these measurements glucocorticoid effects on absolute production rates of rGH cytoplasmic mRNA were determined and compared to effects on rGH mRNA accumulation. Rat GH mRNA half-life was then calculated based on a first-order decay model. Rat GH mRNA half-life was also directly assayed by: (1) pulse-chase studies and (2) measuring the kinetics of decay of rGH mRNA in cells after transfer from serum-containing to hormone-deficient media. From these independent analyses rGH mRNA half-life estimates ranged from 28-55 h in different experiments. Within individual experiments there was little variability of rGH mRNA decay rates; glucocorticoids were found not to alter the stability of rGH cytoplasmic mRNA. Glucocorticoid induction of rGH cytoplasmic mRNA accumulation was accounted for solely on the basis of increased mRNA production

  16. Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection.

    Science.gov (United States)

    Correia-Branco, Ana; Keating, Elisa; Martel, Fátima

    2015-02-01

    An adequate maternal nutrition during pregnancy is crucial for the health outcome of offspring in adulthood. Maternal undernutrition during critical periods of fetal development can program the fetus for metabolic syndrome (MetS) later in life, especially when postnatally challenged with a hypernutritive diet. Adipogenesis, which begins in utero and accelerates in neonatal life, is a major candidate for developmental programming. During fetal development, the hypothalamic-pituitary-adrenal (HPA) axis is extremely susceptible to programming, and the HPA tone is increased throughout life in undernourished conditions. As a consequence, an alteration in the expression and function of glucocorticoid (GC) receptors and of the major GC regulatory enzymes (11β-hydroxysteroid dehydrogenase 1 and -2) occurs. In this review, we will give insights into the role of maternoplacental adverse interactions under the specific context of maternal undernutrition, for later-in-life MetS development, with a special emphasis on the role of GCs. © The Author(s) 2014.

  17. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    International Nuclear Information System (INIS)

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-01-01

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX

  18. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  19. GPR158, an orphan member of G protein-coupled receptor Family C: glucocorticoid-stimulated expression and novel nuclear role.

    Science.gov (United States)

    Patel, Nitin; Itakura, Tatsuo; Gonzalez, Jose M; Schwartz, Stephen G; Fini, M Elizabeth

    2013-01-01

    Members of the large G protein-coupled receptor (GPCR) clan are implicated in many physiological and disease processes, making them important therapeutic drug targets. In the present study, we follow up on results of a pilot study suggesting a functional relationship between glucocorticoid (GC)-induced ocular hypertension and GPR158, one of three orphan members of the GPCR Family C. GC treatment increases levels of GPR158 mRNA and protein through transcriptional mechanisms, in cultured trabecular meshwork (TBM) cells derived from the eye's aqueous outflow pathway. Like treatment with GCs, transient overexpression of GPR158 stimulates cell proliferation, while siRNA knockdown of endogenous GPR158 has the opposite effect. Both endogenous and overexpressed GPR158 show an unusual subcellular localization pattern, being found almost entirely in the nucleus. However, when cells are treated with inhibitors of clathrin-mediated endocytosis, GPR158 is shifted to the plasma membrane. Mutation of a bipartite nuclear localization signal (NLS) in the 8(th) helix also shifts GPR158 out of the nucleus, but in this case the protein is found in vesicles localized in the cytoplasm. These results suggest that newly synthesized GPR158 first traffics to the plasma membrane, where it rapidly undergoes endocytosis and translocation to the nucleus. Significantly, mutation of the NLS abrogates GPR158-mediated enhancement of cell proliferation, indicating a functional requirement for nuclear localization. GPR158 overexpression upregulates levels of the cell cycle regulator cyclin D1, but mutation of the NLS reverses this. Overexpression of GPR158 enhances the barrier function of a TBM cell monolayer, which is associated with an increase in the levels of tight junction proteins ZO-1 and occludin, similar to reported studies on GC treatment. Regulated paracellular permeability controls aqueous outflow facility in vivo. Since GCs stimulate GPR158 expression, the result is consistent with a

  20. Short-term glucocorticoid administration in patients with protracted and chronic gout arthritis. Part 2 — comparison of different medication forms efficacy

    Directory of Open Access Journals (Sweden)

    A A Fedorova

    2008-01-01

    Full Text Available Objective. To compare efficacy of different glucocorticoid (GC medication forms in protracted and chronic gout arthritis. Material and methods. 59 pts with tophaceous gout (crystal-verified diagnosis and arthritis of three and more joints lasting more than a months in spite of treatment with sufficient doses of nonsteroidal anti-inflammatory drugs were included. Median age of pts was 56 [48;63], median disease duration — 15,2 years [7,4;20], median swollen joint count at the examination — 8 [5; 11]. The patients were randomized into 2 groups. Methylprednisolone (MP 500 mg/day iv during 2 days and placebo im once was administered in one of them, betamethasone (BM 7 mg im once and placebo iv twice — in the other. Results. Number of pts with full resolution of arthritis, recurrent exacerbation, insufficient arthritis resolution or clinically insignificant response was comparable in both groups. More rapid decrease of pain at moving was achieved during the first 2-3 days after GC administration in pts with full resolution of arthritis (p=0,03 in group receiving MP in comparison with BM. At day 14 joint damage measures did not differ between groups. Conclusion. Efficacy of short-term glucocorticoid administration does not depend on mode of administration and GC medication form (methylprednisolone 500 mg/day iv during 2 days or betamethasone 7 mg im once.

  1. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  2. Divergent effects of endogenous and exogenous glucocorticoid-induced leucine zipper in animal models of inflammation and arthritis

    NARCIS (Netherlands)

    Ngo, Devi; Beaulieu, Elaine; Gu, Ran; Leaney, Alexandra; Santos, Leilani; Fan, Huapeng; Yang, Yuanhang; Kao, Wenping; Xu, Jiake; Escriou, Virginie; Loiler, Scott; Vervoordeldonk, Margriet J.; Morand, Eric F.

    2013-01-01

    Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency

  3. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  4. Programming of stress pathways: A transgenerational perspective.

    Science.gov (United States)

    Constantinof, Andrea; Moisiadis, Vasilis G; Matthews, Stephen G

    2016-06-01

    The embryo and fetus are highly responsive to the gestational environment. Glucocorticoids (GC) represent an important class of developmental cues and are crucial for normal brain development. Levels of GC in the fetal circulation are tightly regulated. They are maintained at low levels during pregnancy, and increase rapidly at the end of gestation. This surge in GC is critical for maturation of the organs, specifically the lungs, brain and kidney. There are extensive changes in brain epigenetic profiles that accompany the GC surge, suggesting that GC may drive regulation of gene transcription through altered epigenetic pathways. The epigenetic profiles produced by the GC surge can be prematurely induced as a result of maternal or fetal stress, as well as through exposure to synthetic glucocorticoids (sGC). This is highly clinically relevant as 10% of pregnant women are at risk for preterm labour and receive treatment with sGC to promote lung development in the fetus. Fetal overexposure to GC (including sGC) has been shown to cause lasting changes in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis leading to altered stress responses, and mood and anxiety disorders in humans and animals. In animal models, GC exposure is associated with transcriptomic and epigenomic changes that influence behaviour, HPA function and growth. Importantly, programming by GC results in sex-specific effects that can be inherited over multiple generations via paternal and maternal transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats.

    Science.gov (United States)

    Witzmann, Simone R; Turner, Jonathan D; Mériaux, Sophie B; Meijer, Onno C; Muller, Claude P

    2012-11-01

    Regulation of glucocorticoid receptor (GR) levels is an important stress adaptation mechanism. Transcription factor Nfgi-a and environmentally induced Gr promoter 1 7 methylation have been implicated in fine-tuning the expression of Gr 1 7 transcripts. Here, we investigated Gr promoter 1 7 methylation and Gr 1 7 expression in adult rats exposed to either acute or chronic stress paradigms. A strong negative correlation was observed between the sum of promoter-wide methylation levels and Gr 1 7 transcript levels, independent of the stressor. Methylation of individual sites did not, however, correlate with transcript levels. This suggested that promoter 1 7 was directly regulated by promoter-wide DNA methylation. Although acute stress increased Ngfi-a expression in the hypothalamic paraventricular nucleus (PVN), Gr 1 7 transcript levels remained unaffected despite low methylation levels. Acute stress had little effect on these low methylation levels, except at four hippocampal CpGs. Chronic stress altered the corticosterone response to an acute stressor. In the adrenal and pituitary glands, but not in the brain, this was accompanied by an increase in methylation levels in orchestrated clusters rather than individual CpGs. PVN methylation levels, unaffected by acute or chronic stress, were significantly more variable within- than between-groups, suggesting that they were instated probably during the perinatal period and represent a pre-established trait. Thus, in addition to the known perinatal programming, the Gr 1 7 promoter is epigenetically regulated by chronic stress in adulthood, and retains promoter-wide tissue-specific plasticity. Differences in methylation susceptibility between the PVN in the perinatal period and the peripheral HPA axis tissues in adulthood may represent an important "trait" vs. "state" regulation of the Gr gene.

  6. Columbia University: Direct Reversal of Glucocorticoid Resistance by AKT inhibition in Acute Lymphoblastic Leukemia (T-ALL) | Office of Cancer Genomics

    Science.gov (United States)

    The goal of this project is to identify key druggable regulators of glucocorticoid resistance in T-ALL. To this end, a reverse-engineered T-ALL context-specific regulatory interaction network was created from a phenotypically diverse T-ALL gene expression dataset, and then this network was interrogated using master regulator analysis to find drivers of glucocorticoid resistance.

  7. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Jie Yu

    Full Text Available Prolonged and excessive glucocorticoids (GC exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g were administrated with 100 µg/ml corticosterone (CORT or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.

  8. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  9. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  10. Oral glucocorticoid therapy and all-cause and cause-specific mortality in patients with rheumatoid arthritis: a retrospective cohort study

    International Nuclear Information System (INIS)

    Movahedi, Mohammad; Costello, Ruth; Lunt, Mark; Pye, Stephen Richard; Sergeant, Jamie Christopher; Dixon, William Gregory

    2016-01-01

    Previous studies of glucocorticoid (GC) therapy and mortality have had inconsistent results and have not considered possible perimortal bias—a type of protopathic bias where illness in the latter stages of life influences GC exposure, and might affect the observed relationship between GC use and death. This study aimed to investigate all-cause and cause-specific mortality in association with GC therapy in patients with rheumatoid arthritis (RA), and explore possible perimortal bias. A retrospective cohort study using the primary care electronic medical records. Oral GC exposure was identified from prescriptions. Mortality data were obtained from the UK Office for National Statistics. Multivariable Cox proportional hazards regression models assessed the association between GC use models and death. Several methods to explore perimortal bias were examined. The cohort included 16,762 patients. For ever GC use there was an adjusted hazard ratio for all-cause mortality of 1.97 (95 % CI 1.81–2.15). Current GC dose of below 5 mg per day (prednisolone equivalent dose) was not associated with an increased risk of death, but a dose–response association was seen for higher dose categories. The association between ever GC use and all-cause mortality was partly explained by perimortal bias. GC therapy was associated with an increased risk of mortality for all specific causes considered, albeit to a lesser extent for cardiovascular causes. GC use was associated with an increased risk of death in RA, at least partially explained by perimortal bias. Importantly, GC doses below 5 mg were not associated with an increased risk of death.

  11. Impact of glucocorticoid on neurogenesis

    Directory of Open Access Journals (Sweden)

    Haruki Odaka

    2017-01-01

    Full Text Available Neurogenesis is currently an area of great interest in neuroscience. It is closely linked to brain diseases, including mental disorders and neurodevelopmental disease. Both embryonic and adult neurogeneses are influenced by glucocorticoids secreted from the adrenal glands in response to a variety of stressors. Moreover, proliferation/differentiation of the neural stem/progenitor cells (NSPCs is affected by glucocorticoids through intracellular signaling pathways such as phosphoinositide 3-kinase (PI3K/Akt, hedgehog, and Wnt. Our review presents recent evidence of the impact of glucocorticoids on NSPC behaviors and the underlying molecular mechanisms; this provides important information for understanding the pathological role of glucocorticoids on neurogenesis-associated brain diseases.

  12. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  13. Glucocorticoid management in rheumatoid arthritis: morning or night low dose?

    Directory of Open Access Journals (Sweden)

    Sabrina Paolino

    2017-08-01

    Full Text Available Morning symptoms of rheumatoid arthritis (RA are linked to circadian increase of night inflammation, supported by inadequate cortisol secretion in active disease. Therefore, exogenous glucocorticoid administration in RA is recommended by EULAR and ACR from the beginning of the diagnosis, since may partially act like a “replacement therapy”. In addition, the prevention/treatment of the night up-regulation of the immune/inflammatory reaction has been shown more effective when exogenous glucocorticoid administration is managed with a night-time-release formulation. Despite a considerably higher cost than conventional prednisone (immediate release, chronotherapy with night-time-release prednisone has been recognized a cost-effective option for RA patients not on glucocorticoids who are eligible for therapy with biologic disease-modifying antirheumatic drugs (DMARDs. Interestingly, since different cell populations involved in the inflammatory process are particularly activated during the night (i.e. monocytes, macrophages, other therapeutical approaches used in RA, such as conventional DMARDs and non-steroidal anti-inflammatory drugs (NSAIDs should follow the same concepts of glucocorticoid chronotherapy. Therefore, bedtime methotrexate chronotherapy was found to better manage RA symptoms, and several available NSAIDs (i.e. indomethacin, aceclofenac, ketoprofen, flurbiprofen, lornoxicam have been recently modified in their formulation, in order to obtain more focused night action.

  14. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  15. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

    NARCIS (Netherlands)

    S.W. Paugh (Steven); E.J. Bonten (Erik J.); D. Savic (Daniel); L.B. Ramsey (Laura B.); W.E. Thierfelder (William E.); P. Gurung (Prajwal); R.K.S. Malireddi (R. K. Subbarao); M. Actis (Marcelo); A. Mayasundari (Anand); J. Min (Jaeki); D.R. Coss (David R.); L.T. Laudermilk (Lucas T.); J.C. Panetta (John); J.R. McCorkle (J. Robert); Y. Fan (Yiping); K.R. Crews (Kristine R.); G. Stocco (Gabriele); M.R. Wilkinson (Mark R.); A.M. Ferreira (Antonio M.); C. Cheng (Cheng); W. Yang (Wenjian); S.E. Karol (Seth E.); C.A. Fernandez (Christian A.); B. Diouf (Barthelemy); C. Smith (Colton); J.K. Hicks (J Kevin); A. Zanut (Alessandra); A. Giordanengo (Audrey); D.J. Crona; J.J. Bianchi (Joy J.); L. Holmfeldt (Linda); C.G. Mullighan (Charles); M.L. den Boer (Monique); R. Pieters (Rob); S. Jeha (Sima); T.L. Dunwell (Thomas L.); F. Latif (Farida); D. Bhojwani (Deepa); W.L. Carroll (William L.); C.-H. Pui (Ching-Hon); R.M. Myers (Richard M.); R.K. Guy (R Kiplin); T.-D. Kanneganti (Thirumala-Devi); M.V. Relling (Mary); W.E. Evans (William)

    2015-01-01

    textabstractGlucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia

  16. Prevention and treatment of glucocorticoid-induced osteoporosis in International and Italian scenarios

    Directory of Open Access Journals (Sweden)

    A. Delle Sedie

    2011-09-01

    Full Text Available Osteoporosis (OP and increased risk of fracture (Fx associated with chronic glucocorticoid treatment pushed panels of experts and scientific societies to produce recommendations for both prevention and treatment of glucocorticoid-induced OP (GIO. Recently the American College of Rheumatology developed and/or endorsed their updated guidelines and recommendations for the prevention and treatment of GIO. In these recommendations the use of FRAX tool, for the 10-year probability of a major osteoporotic Fx, was integrated with other clinical risk factors to define low-, medium-, and high-risk patients. Updated approaches are delineated for post-menopausal women and men >50 years, pre-menopausal women not of childbearing potential, men 50 years, receiving >5 mg/day prednisone equivalent for >3 months; more recently teriparatide has also been included, only for those patients presenting ≥1 prevalent fragility Fx and receiving >5 mg/day prednisone equivalent for >12 months. Also zoledronic acid has been approved by Italian Agency of the Drug (AIFA, 30/08/10 for “… post-menopausal women and men chronically treated with GC ad high risk of Fx”, but the drug is dispensed exclusively at the hospital.

  17. Topical glucocorticoids and the skin-mechanisms of action: an update

    Directory of Open Access Journals (Sweden)

    A. Ahluwalia

    1998-01-01

    Full Text Available The topical glucocorticoids (GCs represent the treatment of choice for many types of inflammatory dermatoses. Despite the extensive use of this class of drugs as first line therapy the mechanism of their action is uncertain. It is clear that the multiplicity of actions of the topical GCs is an important facet of their scope in the treatment of dermal disorders. The aim of this update is to review past and current theories regarding how these agents might work. Current understanding of the molecular mechanism s of GC action has advanced significantly over the past decade with the realisation that multiple systems are responsible for transduction of GC effects at a molecular level. The two primary modes of action are via interaction directly with DNA or indirectly through modulation of specific transcription factors: the endpoint in both cases being modulation of specific protein synthesis. Both of these mechanisms will be discussed. In particular this review will concentrate on the possibility that a GC-inducible protein, termed lipocortin 1, may have a significant role to play in the anti-inflammatory actions of these drugs. Additionally it has become apparent that several inflammatory enzymes induced in inflamm ation are sites of inhibitory action of the GCs, and the possibility that this occurs in the skin will be discussed paying particular attention to the inducible phospholipase A2, nitric oxide synthase and cyclooxygenase systems.

  18. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system.......Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  19. The effects of duration of glucocorticoid therapy on relapse rate in anti-neutrophil cytoplasm antibody associated vasculitis: A meta-analysis

    Science.gov (United States)

    Walsh, Michael; Merkel, Peter A.; Mahr, Alfred; Jayne, David

    2010-01-01

    Objective Disease relapses are common for patients with anti-neutrophil cytoplasm antibody associated vasculitis (AAV). The role of low-dose glucocorticoids (GC) in relapse prevention is controversial. We undertook a systematic review and meta-analysis to determine if GC target doses influence relapses of AAV. Methods Medline, EMBASE and Cochrane databases were searched for observational studies and randomized controlled trials of treatment of AAV that included a predefined GC treatment plan. The association of GC target dose with the proportion of relapses in studies was assessed using meta-regression and multi-level generalized linear modeling. Results Thirteen studies (983 patients) were identified for inclusion. There were no studies directly comparing GC regimens. We classified 288 patients as having a non-zero GC target dose by study end and 695 patients as having a zero GC target dose by study end. The pooled proportion of patients with a relapse was 36% (95% confidence interval [CI] 25 to 47%). GC regimen was the most significant variable explaining the variability between the proportions of patients with relapses. The proportion of patients with a relapse was 14% (95% CI 10 to 19%) in non-zero GC target dose and 43% (95% CI 33 to 52%) in zero GC target dose studies. Differences other than GC regimens exist between studies that complicate the comparability of trials and isolation of the variability in relapses due to GC target alone. Conclusions Studies with longer courses of GC in AAV are associated with fewer relapses. These results have implications for study design and outcome assessment in clinical trials of AAV. PMID:20235186

  20. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  1. Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk

    Science.gov (United States)

    Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.

    2012-01-01

    Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.

  2. Benefits of glucocorticoids in non-ambulant boys/men with Duchenne muscular dystrophy: A multicentric longitudinal study using the Performance of Upper Limb test.

    Science.gov (United States)

    Pane, Marika; Fanelli, Lavinia; Mazzone, Elena Stacy; Olivieri, Giorgia; D'Amico, Adele; Messina, Sonia; Scutifero, Marianna; Battini, Roberta; Petillo, Roberta; Frosini, Silvia; Sivo, Serena; Vita, Gian Luca; Bruno, Claudio; Mongini, Tiziana; Pegoraro, Elena; De Sanctis, Roberto; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Carlesi, Adelina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Bianco, Flaviana; Bonfiglio, Serena; Rolle, Enrica; Palermo, Concetta; D'Angelo, Grazia; Pini, Antonella; Iotti, Elena; Gorni, Ksenija; Baranello, Giovanni; Bertini, Enrico; Politano, Luisa; Sormani, Maria Pia; Mercuri, Eugenio

    2015-10-01

    The aim of this study was to establish the possible effect of glucocorticoid treatment on upper limb function in a cohort of 91 non-ambulant DMD boys and adults of age between 11 and 26 years. All 91 were assessed using the Performance of Upper Limb test. Forty-eight were still on glucocorticoid after loss of ambulation, 25 stopped steroids at the time they lost ambulation and 18 were GC naïve or had steroids while ambulant for less than a year. At baseline the total scores ranged between 0 and 74 (mean 41.20). The mean total scores were 47.92 in the glucocorticoid group, 36 in those who stopped at loss of ambulation and 30.5 in the naïve group (p < 0.001). The 12-month changes ranged between -20 and 4 (mean -4.4). The mean changes were -3.79 in the glucocorticoid group, -5.52 in those who stopped at loss of ambulation and -4.44 in the naïve group. This was more obvious in the patients between 12 and 18 years and at shoulder and elbow levels. Our findings suggest that continuing glucocorticoids throughout teenage years and adulthood after loss of ambulation appears to have a beneficial effect on upper limb function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Glucocorticoid regulation of gonadotropin release from gonadotropes of ovine pituitary gland in vitro

    International Nuclear Information System (INIS)

    Nangalama, A.W.

    1989-01-01

    In order to understand the role of glucocorticoids in the regulation of gonadotropin release by the pituitary gland, the short-term effects of cortisol perifusion (1.5 h to 8 hrs) on GnRH-induced LH secretion were investigated. To determine the biochemical mechanism(s) by which cortisol can act to modulate GnRH-induced LH release, the interactions of cortisol and arachidonic acid in GnRH-stimulated LH release were examined. Cortisol perifusion for 1.5 hr had no effect on GnRH-induced LH release, but longer treatment periods (4 hr-8 hrs) significantly reduced GnRH-stimulated LH release (4.0 hr, p -4 M AA was administered for 20 min before a 10 min, 10 -10 M GnRH pulse. Like cortisol, chloroquine also failed to inhibit AA-induced LH release. Perifusion with 10 -6 M cortisol for 6.0 hours significantly (p 3 ]AA release 24% below the basal (100%) [ 3 H]AA secretion. Reduction of [ 3 H]AA release was accompanied by decreased GnRH-stimulated LH secretion

  4. Optimal glucocorticoid replacement in adrenal insufficiency.

    Science.gov (United States)

    Øksnes, Marianne; Ross, Richard; Løvås, Kristian

    2015-01-01

    Adrenal insufficiency (glucocorticoid deficiency) comprises a group of rare diseases, including primary adrenal insufficiency, secondary adrenal insufficiency and congenital adrenal hyperplasia. Lifesaving glucocorticoid therapy was introduced over 60 years ago, but since then a number of advances in treatment have taken place. Specifically, little is known about short- and long-term treatment effects, and morbidity and mortality. Over the past decade, systematic cohort and registry studies have described reduced health-related quality of life, an unfavourable metabolic profile and increased mortality in patients with adrenal insufficiency, which may relate to unphysiological glucocorticoid replacement. This has led to the development of new modes of replacement that aim to mimic normal glucocorticoid physiology. Here, evidence for the inadequacy of conventional glucocorticoid therapy and recent developments in treatment are reviewed, with an emphasis on primary adrenal insufficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  6. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  7. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  8. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage.

    Science.gov (United States)

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (Pmyostatin. DEX increased (P0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (Pmyostatin (P 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.

  9. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  10. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  11. Patients newly diagnosed with clinical type 2 diabetes during oral glucocorticoid treatment and observed for 14 years: all-cause mortality and clinical developments

    DEFF Research Database (Denmark)

    Olivarius, Niels de Fine; Siersma, Volkert Dirk; Dyring-Andersen, B.

    2011-01-01

    and sex and to 1.39 (0.92-2.11, p = 0.12, n = 1086) when risk factors, complications and cancer were added to the model. Apart from differences in age and overweight, patients in this relatively small sample of those diagnosed with clinical type 2 diabetes during GC treatment were comparable at diagnosis...... treatment. A population-based sample of 1369 people newly diagnosed with clinical type 2 diabetes underwent a clinical examination at diagnosis, and surviving patients were followed up 6 and 14 years later. Patients receiving oral GC treatment at diagnosis were compared with the other patients. Of 1369......Chronic exposure to glucocorticoids (GCs) has many side effects including glucose intolerance and diabetes and may accelerate the occurrence of cardiovascular disease and increase mortality. We studied the 14-year clinical development of diabetes in patients diagnosed with diabetes during GC...

  12. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  13. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Emily C. Dunford

    2016-12-01

    Full Text Available Glucocorticoids (GCs are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD. Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.

  14. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    Science.gov (United States)

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from effluents in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cushing’s glucocorticoid syndrome in the practice of a rheumatologist (A review of literature

    Directory of Open Access Journals (Sweden)

    Azamat Makhmudovich Satybaldyev

    2013-12-01

    Full Text Available Glucocorticoids (GCs are used to treat different inflammatory and autoimmune diseases due to their anti-inflammatory and immunoregulatory properties. However, GC may lead to the development of many adverse reactions (ARs: hypertension, diabetes mellitus, lipid metabolic disturbances, sleep apnea, osteoporosis, myopathy, and coagulation and fibrinolysis disorders, which are components of the Itsenko – Cushing syndrome. ARs induced by GCs are known to depend on their composition, route of administration, dose, and duration of treatment. However, the major pathogenic mechanisms of ARs are not clearly defined. There is evidence suggesting a role for imbalance between vasoconstrictionand vasodilation, and its possible association with nitric oxide, prostanoids (prostaglandins, prostacyclin, and thromboxane, angiotensin II, vasopressin, arginine, endothelins, catecholamines, neuropeptides Y, and atrial natriuretic peptide. Enhanced oxidative stress, activated reninangiotensin system, escalating pressor response, metabolic syndrome, and sleep apnea also make their contribution. It could be ideal to discontinue GC treatment; but this is most commonly impossible because of a further disease exacerbation. In addition, it is necessary to carefully plan the choice of the dose, time, and route of administration of GCs and to evaluate each AR. The design of a GC with marked anti-inflammatory activity and insignificant metabolic effects must hold a central position in its researches.

  16. Cushing’s glucocorticoid syndrome in the practice of a rheumatologist (A review of literature

    Directory of Open Access Journals (Sweden)

    Azamat Makhmudovich Satybaldyev

    2013-01-01

    Full Text Available Glucocorticoids (GCs are used to treat different inflammatory and autoimmune diseases due to their anti-inflammatory and immunoregulatory properties. However, GC may lead to the development of many adverse reactions (ARs: hypertension, diabetes mellitus, lipid metabolic disturbances, sleep apnea, osteoporosis, myopathy, and coagulation and fibrinolysis disorders, which are components of the Itsenko – Cushing syndrome. ARs induced by GCs are known to depend on their composition, route of administration, dose, and duration of treatment. However, the major pathogenic mechanisms of ARs are not clearly defined. There is evidence suggesting a role for imbalance between vasoconstrictionand vasodilation, and its possible association with nitric oxide, prostanoids (prostaglandins, prostacyclin, and thromboxane, angiotensin II, vasopressin, arginine, endothelins, catecholamines, neuropeptides Y, and atrial natriuretic peptide. Enhanced oxidative stress, activated reninangiotensin system, escalating pressor response, metabolic syndrome, and sleep apnea also make their contribution. It could be ideal to discontinue GC treatment; but this is most commonly impossible because of a further disease exacerbation. In addition, it is necessary to carefully plan the choice of the dose, time, and route of administration of GCs and to evaluate each AR. The design of a GC with marked anti-inflammatory activity and insignificant metabolic effects must hold a central position in its researches.

  17. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Accumulation of GC donor splice signals in mammals

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2008-07-01

    Full Text Available Abstract The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. Reviewers This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.

  19. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... logistic regression analysis was applied using the summarised descriptive data (for example, % with encephalopathy, mean bilirubin value) of the treatment and control groups of 12 controlled trials that gave this information. Despite evidence of publication bias favouring glucocorticoid treatment, its...... overall effect on mortality was not statistically significant (p = 0.20)--the relative risk (steroid/control) was 0.78 (95% confidence intervals 0.51, 1.18). There was indication of interaction between glucocorticoid therapy and gender, but not encephalopathy. Thus, the effect of glucocorticoid treatment...

  20. Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells.

    Science.gov (United States)

    Shi, Ming; Du, Libin; Liu, Dan; Qian, Lu; Hu, Meiru; Yu, Ming; Yang, Zhengyan; Zhao, Mingzhen; Chen, Changguo; Guo, Liang; Wang, Lina; Song, Lun; Ma, Yuanfang; Guo, Ning

    2012-10-01

    Glucocorticoids are stress-responsive neuroendocrine mediators and play an important role in malignant progression, especially in solid tumours. We demonstrate a novel mechanism by which glucocorticoids modulate p53-dependent miR-145 expression in HPV-positive cervical cancer cells through induction of E6 proteins. We found that expression of miR-145 was reduced in cervical cancer tissues. Cortisol induced HPV-E6 expression and suppressed p53 and miR-145 in cervical cancer cells. MiR-145 expression in cervical cancer cells was wild-type p53-dependent, and cortisol-induced down-regulation of miR-145 expression prevented chemotherapy-induced apoptosis, whereas over-expression of miR-145 enhanced sensitivity to mitomycin and reversed the chemoresistance induced by glucocorticoids. We also show that miR-145 augments the effects of p53 by suppressing the inhibitors of p53 in cervical cancer cells, suggesting that miR-145 plays a role in p53 tumour suppression. Finally, we demonstrate that miR-145 inhibits both the motility and invasion of cervical cancer cells. Our findings identify a novel pathway through which the neuroendocrine macroenvironment affects cervical tumour growth, invasion and therapy resistance and show that miR-145 may serve as a target for cervical cancer therapy. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Independent association of glucocorticoids with damage accrual in SLE.

    Science.gov (United States)

    Apostolopoulos, Diane; Kandane-Rathnayake, Rangi; Raghunath, Sudha; Hoi, Alberta; Nikpour, Mandana; Morand, Eric F

    2016-01-01

    To determine factors associated with damage accrual in a prospective cohort of patients with SLE. Patients with SLE who attended the Lupus Clinic at Monash Health, Australia, between 2007 and 2013 were studied. Clinical variables included disease activity (Systemic Lupus Erythematosus Disease Activity Index-2K, SLEDAI-2K), time-adjusted mean SLEDAI, cumulative glucocorticoid dose and organ damage (Systemic Lupus International Collaborating Clinics Damage Index (SDI)). Multivariate logistic regression analyses were performed to identify factors associated with damage accrual. A total of 162 patients were observed over a median (IQR) 3.6 (2.0-4.7) years. Seventy-five per cent (n=121) of patients received glucocorticoids. Damage accrual was significantly more frequent in glucocorticoid-exposed patients (42% vs 15%, p<0.01). Higher glucocorticoid exposure was independently associated with overall damage accrual after controlling for factors including ethnicity and disease activity and was significant at time-adjusted mean doses above 4.42 mg prednisolone/day; the OR of damage accrual in patients in the highest quartile of cumulative glucocorticoid exposure was over 10. Glucocorticoid exposure was independently associated with damage accrual in glucocorticoid-related and non-glucocorticoid related domains of the SDI. Glucocorticoid use is independently associated with the accrual of damage in SLE, including in non-glucocorticoid related domains.

  2. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice.

    Science.gov (United States)

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne

    2016-11-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.

  3. [Primary glucocorticoid resistance syndrome presenting as pseudo-precocious puberty and galactorrhea].

    Science.gov (United States)

    Xiang, Shu-lin; He, Li-ping; Ran, Xing-wu; Tian, Hao-ming; Li, Xiu-jun; Liang, Jin-zhong

    2008-09-01

    Primary glucocorticoid resistance syndrome (PGRS) is a rare condition characterized by hypercortisolism without Cushing's syndrome. This report describes a 7-year-old boy of PGRS with pseudo-precocious puberty and galactorrhea as the main manifestation. His height was 135 cm and body weight was 31 kg. Pigmentation could be seen in the skin, mammary areola and penis. He had hirsutism, low hair line, coarse voice, Tanner stage 3 pubic hair, penis in adult form, accelerated linear growth, and advanced bone age (13 yr.), but normal (for age) testes. Furthermore, he had mammoplasia and galactorrhea. There were no features of glucocorticoid (GC) excess. Hepatic function was impaired (ALT 1426 IU/L, AST 611 IU/L) with no definite causes. Serum cortisol concentration was 1294 nmol/L, 777 nmol/L, 199.3 nmol/L at 8:00, 16:00 and 24:00 respectively. Plasma adrenocorticotropic hormone (ACTH) was normal or a little higher (43.9-80 ng/L). Urinary-free cortisol (UFC) was normal (55.5-62.4 microg/24 h). Serum estradiol (E2), progesterone (P), testosterone (T), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were normal. Serum dehydroepiandrosterone sulfate (DHEAS, 60 microg/dL) and serum prolactin (PRL, 58.7-183.9 ng/mL) level were high, urinary dehydroepiandrosterone (DHEA) level was also elevated (0.96-3.2 mg/mL). Gonadotrophin hormone-releasing hormone (GnRH) stimulation test was negative. Serum cortisol responded normally to insulin-induced hypoglycemia. However, serum cortisol and plasma ACTH concentration was suppressed to more than 50% by 0.5 mg dexamethasone (DEX). The diagnosis of PGRS was made. TREATMENT AND FOLLOW-UP: The patient received a treatment of 0.75-1.0 mg/d DEX. Because of galactorrhea, bromocriptine was given by 1.25-3.75 mg/d. After 24 months follow-up, the pigmentation was relieved and galactorrhea disappeared. No advanced development of the external genitalia and breast was found. The acceleration of the bone age was also slowed down. But

  4. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  5. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  6. Altered placental development in undernourished rats: role of maternal glucocorticoids

    Directory of Open Access Journals (Sweden)

    Chen Chun-Hung

    2011-08-01

    Full Text Available Abstract Maternal undernutrition (MUN during pregnancy may lead to fetal intrauterine growth restriction (IUGR, which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1, 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1 predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC to corticosterone, although can sometimes drive the opposing (inactivating reaction, and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents in control and MUN rats at embryonic day 20 (E20. Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3 and amino acids (SLC38A1, 2, and 4. Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC

  7. Mecanismos de ação dos corticosteróides na polipose rinossinusal Mechanism of action of glucocorticoids in nasal polyposis

    Directory of Open Access Journals (Sweden)

    Atílio Maximino Fernandes

    2008-04-01

    Full Text Available Os glicocorticóides (GC são drogas de escolha no tratamento clínico da polipose nasossinusal conforme recomendação da literatura. Entretanto, seus mecanismos de ação nas regressões dos sintomas clínicos e dos pólipos não são totalmente compreendidos. Sabe-se que a administração tópica e ou sistêmica dos glicocorticóides leva a variações na expressão de citocinas, quimiocinas e linfocinas, além das alterações celulares. Assim, os GC suprimem a expressão de citocinas pró-inflamatórias, de quimiocinas, de moléculas de adesão, além de estimular a transcrição de citocinas antiinflamatórias. Citocinas pró-fibróticas como a IL-11, fator básico de crescimento do fibroblasto (b-FGF e fator de crescimento endotelial vascular (VEGF, relacionados com o crescimento do pólipo, também são suprimidos pela ação do GC. Tal ação depende fundamentalmente da interação com os seus receptores (GR, pois alguns indivíduos apresentam algum grau de resistência celular ao seu efeito, que parece estar relacionada com a presença da isoforma b do GR. Genes envolvidos nas fases de produção de imunoglobulinas, apresentação e processamento do antígeno também sofrem ação dos GC de forma variada. OBJETIVOS: Fazer uma revisão da literatura sobre os mecanismos de ação do GC na PNS. CONCLUSÃO: A compreensão desses mecanismos implicará no desenvolvimento de drogas mais eficazes na sua terapêutica.Glucocorticoids (GC are the drugs of choice for the clinical treatment of nasal polyposis, according to the medical literature. Its mechanism of action in the regression of clinical symptoms and polyps, however, is not fully understood. The topical and/or systemic use of glucocorticoids lead to variable expression of cytokines, chemokines and lymphokines, as well as changes in cells. It is known that GC suppresses the expression of pro-inflammatory cytokines, chemokines and adhesion molecules such as ICAM-1 and E-selectin; GC also

  8. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  9. Effect of Discontinuation or Initiation of Methotrexate or Glucocorticoids on Tofacitinib Efficacy in Patients with Rheumatoid Arthritis: A Post Hoc Analysis.

    Science.gov (United States)

    Fleischmann, Roy; Wollenhaupt, Jürgen; Cohen, Stanley; Wang, Lisy; Fan, Haiyun; Bandi, Vara; Andrews, John; Takiya, Liza; Bananis, Eustratios; Weinblatt, Michael E

    2018-06-01

    Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). We evaluated the effect of concomitant methotrexate (MTX) or glucocorticoid (GC) use on tofacitinib clinical efficacy. Data were pooled from two open-label, long-term extension studies of tofacitinib 5 or 10 mg twice daily in patients with RA. Response according to Clinical Disease Activity Index (CDAI) was assessed separately in patients who discontinued (no MTX/GC use within 30 days prior to year-3 visit; assessment at month 3/year 3) or initiated (on/before year 3; assessment at initiation and year 3) MTX/GC. By year 3, among patients receiving background MTX at baseline, 186/1608 (11.6%) discontinued MTX, and 319/1434 (22.2%) patients receiving GC at baseline discontinued GC. Overall, 70.4/69.1% of patients who discontinued/continued MTX and 72.7/65.9% who discontinued/continued GC achieved CDAI remission or low disease activity (LDA) at year 3. Month 3 remission/LDA rates were maintained at year 3 in the majority of patients, irrespective of MTX/GC discontinuation/continuation. By year 3, 6.2% of patients receiving tofacitinib without MTX at baseline had initiated concomitant MTX, and 25.1% receiving tofacitinib without GC initiated GC; 69.0% and 45.4% initiating MTX or GC, respectively, had a CDAI-defined incomplete response prior to initiation. RA signs/symptoms improved following MTX initiation; only modest improvement was observed with GC initiation. Patients achieving remission/LDA with tofacitinib may discontinue MTX or GC and maintain treatment response. Patients with an incomplete response may benefit from adding concomitant MTX. Pfizer Inc. Study A3921024 [NCT00413699] and Study A3921041 [NCT00661661].

  10. Adrenal Insufficiency Caused by Locally Applied Glucocorticoids-Myth or Fact?

    DEFF Research Database (Denmark)

    Dinsen, Stina; Klose, Marianne; Rasmussen, Åse Krogh

    2015-01-01

    Case-reports have made it evident that both inhaled, percutaneous, intranasal, intraarticular and ophthalmic administered glucocorticoids have the potential to cause life threatening adrenal insufficiency. With few and sometimes conflicting data and study methodology the prevalence of adrenal...... insufficiency secondary to locally applied glucocorticoids is not clear. Adrenal insufficiency can only be correctly evaluated by a stimulation test, and has by this procedure been reported in up to 40-50% of patients treated with high-dose inhaled glucocorticoids. Medium- to low-dose inhaled glucocorticoids...... have been shown to cause adrenal suppression in 0-16% of patients. Glucocorticoid creams and nasal glucocorticoids can cause adrenal insufficiency, also when used within prescribed doses, but the frequency seems to be less than with inhaled glucocorticoids. Intraarticularly administered glucocorticoids...

  11. Diretrizes para prevenção e tratamento da osteoporose induzida por glicocorticoide Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis

    Directory of Open Access Journals (Sweden)

    Rosa Maria Rodrigues Pereira

    2012-08-01

    Full Text Available Os glicocorticoides (GC são prescritos por praticamente todas as especialidades médicas, e cerca de 0,5% da população geral do Reino Unido utiliza esses medicamentos. Com o aumento da sobrevida dos pacientes com doenças reumatológicas, a morbidade secundária ao uso dessa medicação representa um aspecto importante que deve ser considerado no manejo de nossos pacientes. As incidências de fraturas vertebrais e não vertebrais são elevadas, variando de 30%-50% em pessoas que usam GC por mais de três meses. Assim, a osteoporose e as fraturas por fragilidade devem ser prevenidas e tratadas em todos os pacientes que iniciarão ou que já estejam em uso desses esteroides. Diversas recomendações elaboradas por várias sociedades internacionais têm sido descritas na literatura, porém não há consenso entre elas. Recentemente, o Americam College of Rheumatology publicou novas recomendações, porém elas são fundamentadas na FRAX (WHO Fracture Risk Assessment Tool para analisar o risco de cada indivíduo e, dessa maneira, não podem ser completamente utilizadas pela população brasileira. Dessa forma, a Comissão de Osteoporose e Doenças Osteometabólicas da Sociedade Brasileira de Reumatologia, em conjunto com a Associação Médica Brasileira e a Associação Brasileira de Medicina Física e Reabilitação, implementou as diretrizes brasileiras de osteoporose induzida por glicocorticoide (OPIG, baseando-se na melhor evidência científica disponível e/ou experiência de experts. DESCRIÇÃO DO MÉTODO DE COLETA DE EVIDÊNCIA: A revisão bibliográfica de artigos científicos desta diretriz foi realizada na base de dados MEDLINE. A busca de evidência partiu de cenários clínicos reais, e utilizou as seguintes palavras-chave (MeSH terms: Osteoporosis, Osteoporosis/chemically induced*= (Glucocorticoids= Adrenal Cortex Hormones, Steroids, Glucocorticoids, Glucocorticoids/administration and dosage, Glucocorticoids/therapeutic use

  12. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer.

    Science.gov (United States)

    Shah, Neel; Wang, Ping; Wongvipat, John; Karthaus, Wouter R; Abida, Wassim; Armenia, Joshua; Rockowitz, Shira; Drier, Yotam; Bernstein, Bradley E; Long, Henry W; Freedman, Matthew L; Arora, Vivek K; Zheng, Deyou; Sawyers, Charles L

    2017-09-11

    In prostate cancer, resistance to the antiandrogen enzalutamide (Enz) can occur through bypass of androgen receptor (AR) blockade by the glucocorticoid receptor (GR). In contrast to fixed genomic alterations, here we show that GR-mediated antiandrogen resistance is adaptive and reversible due to regulation of GR expression by a tissue-specific enhancer. GR expression is silenced in prostate cancer by a combination of AR binding and EZH2-mediated repression at the GR locus, but is restored in advanced prostate cancers upon reversion of both repressive signals. Remarkably, BET bromodomain inhibition resensitizes drug-resistant tumors to Enz by selectively impairing the GR signaling axis via this enhancer. In addition to revealing an underlying molecular mechanism of GR-driven drug resistance, these data suggest that inhibitors of broadly active chromatin-readers could have utility in nuanced clinical contexts of acquired drug resistance with a more favorable therapeutic index.

  13. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...... reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported....... Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular...

  15. Perioperative glucocorticoids in hip and knee surgery - benefit vs. harm?

    DEFF Research Database (Denmark)

    Lunn, T H; Kehlet, H

    2013-01-01

    with systemic glucocorticoid. Pain was reduced with high-dose systemic and local glucocorticoid, but not with low-dose systemic glucocorticoid. Systemic inflammatory markers were reduced with low-dose and high-dose systemic glucocorticoid, and with local glucocorticoid. Functional recovery was improved...... with local glucocorticoid. All studies were small-sized and none sufficiently powered to meaningfully evaluate uncommon adverse events. Most of the local administration studies had poor scientific quality (high risk of bias). Due to clinical heterogeneity and poor scientific quality, no meta......-analysis was performed. In conclusion, in addition to PONV reduction with low-dose systemic glucocorticoid, this review supports high-dose systemic glucocorticoid to ameliorate post-operative pain after hip and knee surgery. However, large-scale safety and dose-finding studies are warranted before final recommendations....

  16. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  17. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  18. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  19. Using fecal glucocorticoids for stress assessment in Mourning Doves

    Science.gov (United States)

    Washburn, Brian E.; Millspaugh, Joshua J.; Schulz, John H.; Jones, Susan B.; Mong, T.

    2003-01-01

    Fecal glucocorticoid assays provide a potentially useful, noninvasive means to study physiological responses of wildlife to various stressors. The objective of our study was to validate a method for measuring glucocorticoid metabolites in Mourning Dove (Zenaida macroura) feces. We validated the assay using standard procedures (e.g., parallelism, recovery of exogenous corticosterone) to demonstrate that the assay accurately and precisely measured glucocorticoid metabolites in Mourning Dove fecal extracts. We conducted adrenocorticotropin (ACTH) challenge experiments to validate the assay's ability to determine biologically important changes in fecal glucocorticoids. Fecal glucocorticoid levels increased significantly approximately 2-3 hr after administration of ACTH at 50 IU per kg body mass to wild Mourning Doves held in captivity. In contrast, fecal glucocorticoid metabolites did not increase in control birds, birds that received saline injections, or a lower dose of ACTH (1 IU per kg body mass). Variation in overall fecal glucocorticoid metabolite levels may have been influenced by season and the length of time birds were held in captivity. Non-invasive fecal glucocorticoid metabolite analyses, in combination with demographic information, may have considerable utility for monitoring the effects of natural and anthropogenic disturbances on Mourning Dove populations.

  20. Glucocorticoid actions on L6 muscle cells in culture

    International Nuclear Information System (INIS)

    Max, S.R.; Konagaya, M.; Konagaya, Y.

    1986-01-01

    Glucocorticoids exert striking catabolic effects on skeletal muscle. The mechanism of these effects remains poorly understood. They employed L6 muscle cells in culture to ascertain whether intracellular glucocorticoid receptors are involved. Studies in vitro permit exploration of glucocorticoid effects in the absence of other hormonal influences. L6 myoblasts were induced to form differentiated myotubes by growth in 1% serum. L6 myotubes were found to possess a high-affinity, limited capacity intracellular glucocorticoid receptor (apparent K/sub D/ = 5 x 10 -10 M; B/sub max/ = 711 pmols/g protein) with ligand specificity similar to that of glucocorticoid receptors from classical glucocorticoid target tissues. Further, [ 3 H] triamcinolone acetonide specific binding to L6 cell homogenates was blocked by a glucocorticoid antagonist, RU38486 (11β-(4-dimethyl-aminophenyl)-17β-hydroxy-17α-(prop-l-ynyl)-estra-4,9-dien-3-one). Dexamethasone (10 -5 M) caused a 10-fold increase in the activity of gluatmine synthetase in L6 myotubes; this increase was prevented by RU38486. Similarly, dexamethasone (10 -5 M) caused a 20% decrease in [ 12 C] leucine incorporation into protein. This effect also was blocked by RU38486. Thus, induction of glutamine synthetase and diminution of protein synthesis by dexamethasone require intracellular glucocorticoid receptors. L6 cells should prove particularly valuable for further studies of glucocorticoid actions on skeletal muscle

  1. Systematic review of the clinical effect of glucocorticoids on nonhematologic malignancy

    Directory of Open Access Journals (Sweden)

    Keith Bruce D

    2008-03-01

    Full Text Available Abstract Background Glucocorticoids are often used in the treatment of nonhematologic malignancy. This review summarizes the clinical evidence of the effect of glucocorticoid therapy on nonhematologic malignancy. Methods A systematic review of clinical studies of glucocorticoid therapy in patients with nonhematologic malignancy was undertaken. Only studies having endpoints of tumor response or tumor control or survival were included. PubMed, EMBASE, the Cochrane Register/Databases, conference proceedings (ASCO, AACR, ASTRO/ASTR, ESMO, ECCO and other resources were used. Data was extracted using a standard form. There was quality assessment of each study. There was a narrative synthesis of information, with presentation of results in tables. Where appropriate, meta-analyses were performed using data from published reports and a fixed effect model. Results Fifty four randomized controlled trials (RCTs, one meta-analysis, four phase l/ll trials and four case series met the eligibility criteria. Clinical trials of glucocorticoid monotherapy in breast and prostate cancer showed modest response rates. In advanced breast cancer meta-analyses, the addition of glucocorticoids to either chemotherapy or other endocrine therapy resulted in increased response rate, but not increased survival. In GI cancer, there was one RCT each of glucocorticoids vs. supportive care and chemotherapy +/- glucocorticoids; glucocorticoid effect was neutral. The only RCT found of chemotherapy +/- glucocorticoids, in which the glucocorticoid arm did worse, was in lung cancer. In glucocorticoid monotherapy, meta-analysis found that continuous high dose glucocorticoids had a detrimental effect on survival. The only other evidence, for a detrimental effect of glucocorticoid monotherapy, was in one of the two trials in lung cancer. Conclusion Glucocorticoid monotherapy has some benefit in breast and prostate cancer. In advanced breast cancer, the addition of glucocorticoids to other

  2. Glucocorticoids at the Olympic Games: state-of-the-art review.

    Science.gov (United States)

    Fitch, Ken

    2016-10-01

    In this state-of-the-art review, the author discusses the history of prohibiting glucocorticoids (GCs) and how this has occurred over nearly three decades at the Olympic Games. He relates how prohibiting systemic GCs in sport was a major factor in the development of therapeutic use exemptions and the fluctuating status of non-systemic GCs (banned, not banned). Concern is expressed that for 2017, the World Anti-Doping Agency (WADA) is proposing to prohibit injecting GCs shortly prior to competition. The author notes that in 1986, when GCs were first prohibited, analytical chemistry techniques could not distinguish the route of GC administration from its urinary concentration. Thirty years later, this remains the case. Importantly, this article discusses how the desired pharmacological effects of injecting GCs locally and intra-articularly can be achieved and why exercising vigorously immediately or shortly after a GC injection is therapeutically unsound. The review concludes by agreeing that injecting GCs shortly prior to strenuous training or competition is medically unwise but stresses that this is a clinical matter that sport-not WADA-needs to address. Cycling and rowing have managed this successfully for the past 5 years. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    International Nuclear Information System (INIS)

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-01-01

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPARγ) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPARγ-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPARγ activation in an AD mouse model.

  4. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  5. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  6. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    Directory of Open Access Journals (Sweden)

    Glenda E. Gillies

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester, we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA and substantia nigra pars compacta (SNc (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites that impact on the adult brain. The effects of antenatal GC treatment (AGT were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked

  7. Decreased ligand affinity rather than glucocorticoid receptor down-regulation in patients with endogenous Cushing's syndrome

    NARCIS (Netherlands)

    N.A.T.M. Huizenga (Nannette); W.W. de Herder (Wouter); J.W. Koper (Jan); P. de Lange (Pieter); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); A-J. van der Lely (Aart-Jan)

    2000-01-01

    textabstractOBJECTIVE: Glucocorticoids (GCs) serve a variety of important functions throughout the body. The synthesis and secretion of GCs are under the strict influence of the hypothalamo-pituitary-adrenal axis. The mechanisms of action of GCs are mediated by the

  8. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    International Nuclear Information System (INIS)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone [GH] is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A) + RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A) + RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with [ 3 H]uridine, and quantitating [ 3 H]GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones

  9. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  10. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase.

    Science.gov (United States)

    Randall, Matthew J; Haenen, Guido R M M; Bouwman, Freek G; van der Vliet, Albert; Bast, Aalt

    2016-01-05

    Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Short-term, high-dose glucocorticoid treatment does not contribute to reduced bone mineral density in patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Olsson, A.; Oturai, D B; Sørensen, P S

    2015-01-01

    BACKGROUND: Patients with multiple sclerosis (MS) are at increased risk of reduced bone mineral density (BMD). A contributing factor might be treatment with high-dose glucocorticoids (GCs). OBJECTIVES: The objective of this paper is to assess bone mass in patients with MS and evaluate...... the importance of short-term, high-dose GC treatment and other risk factors that affect BMD in patients with MS. METHODS: A total of 260 patients with MS received short-term high-dose GC treatment and had their BMD measured by dual x-ray absorptiometry. BMD was compared to a healthy age-matched reference...... population (Z-scores). Data regarding GCs, age, body mass index (BMI), serum 25(OH)D, disease duration and severity were collected retrospectively and analysed in a multiple linear regression analysis to evaluate the association between each risk factor and BMD. RESULTS: Osteopenia was present in 38...

  12. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    International Nuclear Information System (INIS)

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-01-01

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension

  13. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  14. Pre-receptor Regulation of Cortisol in Hypothalamic-Pituitary-Adrenal Axis Functioning an Metabolism

    NARCIS (Netherlands)

    M.J.H.J. Dekker (Marieke)

    2011-01-01

    textabstractGlucocorticoids (GCs) are ubiquitous, nuclear hormones, which are essential for life. In man, the main GC is cortisol, produced by the adrenals, endocrine glands that are situated on top of the kidneys. Cortisol exerts its functions in nearly all tissues and is crucial in the

  15. Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus

    Science.gov (United States)

    Daskalakis, Nikolaos P.; De Kloet, Edo Ronald; Yehuda, Rachel; Malaspina, Dolores; Kranz, Thorsten M.

    2015-01-01

    Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders. PMID:26635521

  16. Inflammation in Parkinson’s disease: Role of glucocorticoids

    Directory of Open Access Journals (Sweden)

    Maria Trinidad eHerrero

    2015-04-01

    Full Text Available Chronic inflammation is a major characteristic feature of Parkinson’s disease (PD. Studies in PDpatients show evidence of augmented levels of potent pro-inflammatory molecules e.g. TNF-α, iNOS,IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergicneurons are particularly vulnerable to activated glia releasing these toxic factors. Recent geneticstudies point to the role of immune system in the etiology of PD, thus in combination withenvironmental factors, both peripheral and CNS-mediated immune responses could play importantroles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are knownto mediate chronic inflammation, the roles of other immune-competent cells are less well understood.Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis.Glucocorticoids released from adrenal glands upon stimulation of HPA axis, in response to either cellinjury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both throughdirect transcriptional action on target genes and by indirectly inhibiting transcriptional activities oftranscriptional factors such as NF-kB, AP-1 or interferon regulatory factors. In PD patients, the HPAaxis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GRfunction in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucialeffect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover,glucocorticoids are also known to regulate human brain vasculature as well as blood brain barrierpermeability, any dysfunction in their actions may influence infiltration of cytotoxic moleculesresulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation ofGR actions is likely important in dopamine neuron degeneration throughestablishment of chronic inflammation.

  17. Older mothers follow conservative strategies under predator pressure: the adaptive role of maternal glucocorticoids in yellow-bellied marmots.

    Science.gov (United States)

    Monclús, Raquel; Tiulim, Justin; Blumstein, Daniel T

    2011-11-01

    When the maternal environment is a good predictor of the offspring environment, maternal glucocorticoid (GC) levels might serve to pre-program offspring to express certain phenotypes or life-history characteristics that will increase their fitness. We conducted a field study to assess the effects of naturally occurring maternal GC levels on their offspring in yellow-bellied marmots (Marmota flaviventris) subjected to different predator pressures. Maternal fecal corticosteroid metabolites (FCM) were positively correlated with predator pressure. Predators had both direct and indirect effects on pups. We found that older mothers with higher FCM levels had smaller and female-biased litters. Moreover, sons from older mothers with high FCM levels dispersed significantly more than those from older mothers with low FCM levels, whereas the opposite pattern was found in pups from younger mothers. These age-related effects may permit females to make adaptive decisions that increase their pups' fitness according to their current situation. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Influence of the A3669G Glucocorticoid Receptor Gene Polymorphism on the Metabolic Profile of Pediatric Patients with Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Ricardo P. P. Moreira

    2014-01-01

    Full Text Available Background. Pediatric CAH patients have an increased risk of cardiovascular disease, and it remains unknown if genetic predisposition is a contributing factor. Glucocorticoid receptor gene (NR3C1 polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of pediatric CAH patients. Methods. Forty-one patients (26SW/15SV received glucocorticoid (GC replacement therapy to achieve normal androgen levels. Obesity was defined by BMI≥95th percentile. NR3C1 alleles were genotyped, and association analyses with phenotype were done with Chi-square, t-test, and multivariate and regression analysis. Results. Obesity was observed in 31.7% of patients and was not correlated with GC doses and treatment duration. Z-score BMI was positively correlated with blood pressure, triglycerides, LDL-c levels, and HOMA-IR. NR3C1 polymorphisms, BclI and A3669G, were found in 23.1% and 9.7% of alleles, respectively. A3669G carriers presented higher LDL-c levels compared to wild-type subjects. BclI-carriers and noncarriers did not differ. Conclusion. Our results suggest that A3669G-polymorphism could be involved with a susceptibility to adverse lipid profile in pediatric CAH patients. This study provides new insight into the GR screening during CAH treatment, which could help to identify the subgroup of at-risk patients who would most benefit from preventive therapeutic action.

  19. Cross-talk between oxysterols and glucocorticoids: differential regulation of secreted phopholipase A2 and impact on oligodendrocyte death.

    Directory of Open Access Journals (Sweden)

    Amalia Trousson

    Full Text Available BACKGROUND: Oxysterols are oxidized forms of cholesterol. They have been shown to be implicated in cholesterol turnover, inflammation and in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis. Glial cells are targets of oxysterols: they inhibit astrocyte proliferation after brain injury, and we have previously shown that 25-hydroxycholesterol (25OH provokes oligodendrocyte apoptosis and stimulates the expression of sPLA2 type IIA (sPLA2-IIA, which has a protective effect. METHODOLOGY/PRINCIPAL FINDINGS: As glucocorticoids are well-known for their anti-inflammatory effects, our aim was to understand their direct effects on oxysterol-induced responses in oligodendrocytes (sPLA2-IIA stimulation and apoptosis. We demonstrate that the synthetic glucocorticoid dexamethasone (Dex abolishes the stimulation of sPLA2-IIA by 25-hydroxycholesterol (25-OH. This inhibition is mediated by the glucocorticoid receptor (GR, which decreases the expression of the oxysterol receptor Pregnane X Receptor (PXR and interferes with oxysterol signaling by recruiting a common limiting coactivator PGC1alpha. Consistent with the finding that sPLA2-IIA can partially protect oligodendrocytes against oxysterol-triggered apoptosis, we demonstrate here that the inhibition of sPLA2-IIA by Dex accelerates the apoptotic phenomenon, leading to a shift towards necrosis. We have shown by atomic force microscopy and electron microscopy that 25-OH and Dex alters oligodendrocyte shape and disorganizes the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our results provide a new understanding of the cross-talk between oxysterol and glucocorticoid signaling pathways and their respective roles in apoptosis and oligodendrocyte functions.

  20. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  1. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  2. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    Science.gov (United States)

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  3. Evaluation of the collaborative network of highly correlating skin proteins and its change following treatment with glucocorticoids

    Directory of Open Access Journals (Sweden)

    Farman Nicolette

    2010-05-01

    Full Text Available Abstract Background Glucocorticoids (GC represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined. Material/Methods Scar formation was observed under different doses of GC, which were locally applied on the back skin of mice (1 to 3 weeks. After euthanasia we analyzed protein expression of collagen I and III (picrosirius in scar tissue together with 16 additional protein markers, which are involved in wound healing, with immunhistochemistry. For assessing GC's effect on co-expression we compared our results with a model of random figures to estimate how many significant correlations should be expected by chance. Results GC altered collagen and protein expression with distinct results in different areas of investigation. Most often we observed a reduced expression after application of low dose GC. In the scar infiltrate a multivariate analysis confirmed the significant impact of both GC concentrations. Calculation of Spearman's correlation coefficient similarly resulted in a significant impact of GC, and furthermore, offered the possibility to grasp the entire interactive profile in between all variables studied. The biological markers, which were connected by significant correlations could be arranged in a highly cross-linked network that involved most of the markers measured. A marker highly cross-linked with more than 3 significant correlations was indicated by a higher variation of all its correlations to the other variables, resulting in a standard deviation of > 0.2. Conclusion In addition to immunohistochemical analysis of single protein markers

  4. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    Science.gov (United States)

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  5. Circumvention of glucocorticoid resistance in childhood leukemia.

    Science.gov (United States)

    Haarman, E G; Kaspers, G J L; Pieters, R; Rottier, M M A; Veerman, A J P

    2008-09-01

    In this study, we determined if in vitro resistance to prednisolone and dexamethasone could be circumvented by cortivazol or methylprednisolone, or reversed by meta-iodobenzylguanidine in pediatric lymphoblastic and myeloid leukemia. As there were strong correlations between the LC50 values (drug concentration inducing 50% leukemic cell kill, LCK) of the different glucocorticoids and median prednisolone/methylprednisolone, prednisolone/dexamethasone and prednisolone/cortivazol LC50 ratios did not differ between the leukemia subtypes, we conclude that none of the glucocorticoids had preferential anti-leukemic activity. Meta-iodobenzylguanidine however, partially reversed glucocorticoid resistance in 19% of the lymphoblastic leukemia samples.

  6. Are BDNF and glucocorticoid activities calibrated?

    Science.gov (United States)

    Jeanneteau, Freddy; Chao, Moses V.

    2012-01-01

    One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of ‘BDNF therapies’, however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitate stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles share by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects. PMID:23022538

  7. Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR.

    Science.gov (United States)

    Kubwabo, C; Rollmann, B; Tilquin, B

    1993-04-01

    The alkaloid composition of the aerial parts and roots of PHYSALIS PERUVIANA was analysed by capillary GC (GC (2)), GC (2)-MS and GC (2)-FTIR. Eight alkaloids were identified, three of those alkaloids are 3beta-acetoxytropane and two N-methylpyrrolidinylhygrine isomers, which were not previously found in the genus PHYSALIS. A reproduction of the identification of alkaloids detected in the plant by the use of retention indices has been proposed.

  8. The role of glucocorticoids in emotional memory reconsolidation.

    Science.gov (United States)

    Meir Drexler, Shira; Wolf, Oliver T

    2017-07-01

    Glucocorticoids are secreted following exposure to stressful events. Their modulating role on memory reconsolidation, a post-retrieval process of re-stabilization, has been investigated only recently, at times with conflicting results. The goal of this review is twofold. First, to establish the modulating role of glucocorticoids on memory reconsolidation. Second, to point the potential factors and confounds that might explain the seemingly paradoxical findings. Here we review recent pharmacological studies, conducted in rodents and humans, which suggest a critical role of glucocorticoids in this post-retrieval process. In particular, the activation of glucocorticoid receptors in the amygdala and hippocampus is suggested to be involved in emotional memories reconsolidation, pointing to a similarity between post-retrieval reconsolidation and initial memory consolidation. In addition, based on the general reconsolidation literature, we suggest several factors that might play a role in determining the direction and strength of the reconsolidation effect following glucocorticoids treatment: memory-related factors, manipulation-related factors, and individual differences. We conclude that only when taking these additional factors into account can the paradox be resolved. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    International Nuclear Information System (INIS)

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A.

    1989-01-01

    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of [35S]methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression

  10. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself

    DEFF Research Database (Denmark)

    Dinsen, Stina; Baslund, Bo; Klose, Marianne

    2013-01-01

    Glucocorticoid therapy is widely used, but withdrawal from glucocorticoids comes with a potential life-threatening risk of adrenal insufficiency. Recent case reports document that adrenal crisis after glucocorticoid withdrawal remains a serious problem in clinical practice. Partly due...... to difficulties in inter-study comparison the true prevalence of glucocorticoid-induced adrenal insufficiency is unknown, but it might be somewhere between 46 and 100% 24h after glucocorticoid withdrawal, 26-49% after approximately one week, and some patients show prolonged suppression lasting months to years....... Adrenal insufficiency might therefore be underdiagnosed in clinical practice. Clinical data do not permit accurate estimates of a lower limit of glucocorticoid dose and duration of treatment, where adrenal insufficiency will not occur. Due to individual variation, neither the glucocorticoid dose nor...

  11. Glucocorticoid-Induced Osteoporosis

    Science.gov (United States)

    ... nervosa Cigarette smoking Alcohol abuse Low calcium and vitamin D, by low dietary intake or poor absorption in your gut Sedentary (inactive) lifestyle or immobility Certain medications besides glucocorticoids, including the following: excess thyroid hormone replacement the blood thinner heparin some ...

  12. Involvement of the insular cortex in regulating glucocorticoid effects on memory consolidation of inhibitory avoidance training

    NARCIS (Netherlands)

    Fornari, Raquel V.; Wichmann, Romy; Atucha, Erika; Desprez, Tifany; Eggens-Meijer, Ellie; Roozendaal, Benno

    2012-01-01

    Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC) to be part of this network, the present findings indicate that the

  13. Circulating cortisol-associated signature of glucocorticoid-related gene expression in subcutaneous fat of obese subjects.

    Science.gov (United States)

    Pavlatou, Maria G; Vickers, Kasey C; Varma, Sudhir; Malek, Rana; Sampson, Maureen; Remaley, Alan T; Gold, Philip W; Skarulis, Monica C; Kino, Tomoshige

    2013-05-01

    Serum cortisol concentrations fluctuate in a circadian fashion, and glucocorticoids exert strong effects on adipose tissue and induce obesity through the glucocorticoid receptor. To examine the impact of physiologic levels of circulating cortisol on subcutaneous adipose tissue, 25 overweight and obese subjects were employed, and their serum levels of morning (AM) and evening (PM) cortisol, AM/PM cortisol ratios, and 24-h urinary-free cortisol (UFC) were compared with their clinical parameters, serum cytokine levels, and mRNA expression of 93 receptor action-regulating and 93 glucocorticoid-responsive genes in abdominal subcutaneous fat. AM cortisol levels did not correlate with mRNA expression of the all genes examined, whereas PM cortisol levels, AM/PM cortisol ratios, and 24-h UFC were associated with distinct sets of these genes. Body mass index did not significantly correlate with the four cortisol parameters employed. These results suggest that physiologic levels of AM serum cortisol do not solely represent biological effects of circulating cortisol on the expression of glucocorticoid-related genes in subcutaneous adipose tissue, whereas PM levels, amplitude, and net amounts of the diurnally fluctuating serum cortisol have distinct effects. Through the genes identified in this study, glucocorticoids appear to influence intermediary metabolism, energy balance, inflammation, and local circadian rythmicity in subcutaneous fat. Our results may also explain in part the development of metabolic abnormality and obesity in subjects under stress or patients with melancholic/atypical depression who demonstrate elevated levels of PM serum cortisol. Copyright © 2013 The Obesity Society.

  14. Glucocorticoid-Induced Avascular Bone Necrosis: Diagnosis and Management

    Science.gov (United States)

    Chan, KL; Mok, CC

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty. PMID:23115605

  15. Glucocorticoid-induced avascular bone necrosis: diagnosis and management.

    Science.gov (United States)

    Chan, K L; Mok, C C

    2012-01-01

    Glucocorticoid use is one of the most important causes of avascular bone necrosis (AVN). The pathogenesis of glucocorticoid-induced AVN is not fully understood but postulated mechanisms include fat hypertrophy, fat emboli and intravascular coagulation that cause impedance of blood supply to the bones. Data regarding the relationship between AVN and dosage, route of administration and treatment duration of glucocorticoids are conflicting, with some studies demonstrating the cumulative dose of glucocorticoid being the most important determining factor. Early recognition of this complication is essential as the prognosis is affected by the stage of the disease. Currently, there is no consensus on whether universal screening of asymptomatic AVN should be performed for long-term glucocorticoid users. A high index of suspicion should be exhibited for bone and joint pain at typical sites. Magnetic resonance imaging (MRI) or bone scintigraphy is more sensitive than plain radiograph for diagnosing early-stage AVN. Conservative management of AVN includes rest and reduction of weight bearing. Minimization of glucocorticoid dose or a complete withdrawal of the drug should be considered if the underlying conditions allow. The efficacy of bisphosphonates in reducing the rate of collapse of femoral head in AVN is controversial. Surgical therapy of AVN includes core decompression, osteotomy, bone grafting and joint replacement. Recent advances in the treatment of AVN include the use of tantalum rod and the development of more wear resistant bearing surface in hip arthroplasty.

  16. On the retinal toxicity of intraocular glucocorticoids.

    Science.gov (United States)

    Torriglia, Alicia; Valamanesh, Fatemeh; Behar-Cohen, Francine

    2010-12-15

    Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.

    Science.gov (United States)

    Barik, Jacques; Marti, Fabio; Morel, Carole; Fernandez, Sebastian P; Lanteri, Christophe; Godeheu, Gérard; Tassin, Jean-Pol; Mombereau, Cédric; Faure, Philippe; Tronche, François

    2013-01-18

    Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.

  18. Quintupling Inhaled Glucocorticoids to Prevent Childhood Asthma Exacerbations.

    Science.gov (United States)

    Jackson, Daniel J; Bacharier, Leonard B; Mauger, David T; Boehmer, Susan; Beigelman, Avraham; Chmiel, James F; Fitzpatrick, Anne M; Gaffin, Jonathan M; Morgan, Wayne J; Peters, Stephen P; Phipatanakul, Wanda; Sheehan, William J; Cabana, Michael D; Holguin, Fernando; Martinez, Fernando D; Pongracic, Jacqueline A; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Covar, Ronina; Gentile, Deborah A; Israel, Elliot; Krishnan, Jerry A; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Long, Dayna; Ly, Ngoc; Marbin, Jyothi; Moy, James N; Myers, Ross E; Olin, J Tod; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Lemanske, Robert F

    2018-03-08

    Asthma exacerbations occur frequently despite the regular use of asthma-controller therapies, such as inhaled glucocorticoids. Clinicians commonly increase the doses of inhaled glucocorticoids at early signs of loss of asthma control. However, data on the safety and efficacy of this strategy in children are limited. We studied 254 children, 5 to 11 years of age, who had mild-to-moderate persistent asthma and had had at least one asthma exacerbation treated with systemic glucocorticoids in the previous year. Children were treated for 48 weeks with maintenance low-dose inhaled glucocorticoids (fluticasone propionate at a dose of 44 μg per inhalation, two inhalations twice daily) and were randomly assigned to either continue the same dose (low-dose group) or use a quintupled dose (high-dose group; fluticasone at a dose of 220 μg per inhalation, two inhalations twice daily) for 7 days at the early signs of loss of asthma control ("yellow zone"). Treatment was provided in a double-blind fashion. The primary outcome was the rate of severe asthma exacerbations treated with systemic glucocorticoids. The rate of severe asthma exacerbations treated with systemic glucocorticoids did not differ significantly between groups (0.48 exacerbations per year in the high-dose group and 0.37 exacerbations per year in the low-dose group; relative rate, 1.3; 95% confidence interval, 0.8 to 2.1; P=0.30). The time to the first exacerbation, the rate of treatment failure, symptom scores, and albuterol use during yellow-zone episodes did not differ significantly between groups. The total glucocorticoid exposure was 16% higher in the high-dose group than in the low-dose group. The difference in linear growth between the high-dose group and the low-dose group was -0.23 cm per year (P=0.06). In children with mild-to-moderate persistent asthma treated with daily inhaled glucocorticoids, quintupling the dose at the early signs of loss of asthma control did not reduce the rate of severe asthma

  19. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  20. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts.

    Science.gov (United States)

    Zhang, Haining; He, Yanhua; Zhang, Guiping; Li, Xiaobin; Yan, Suikai; Hou, Ning; Xiao, Qing; Huang, Yue; Luo, Miaoshan; Zhang, Genshui; Yi, Quan; Chen, Minsheng; Luo, Jiandong

    2017-09-01

    We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.

  1. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats.

    Directory of Open Access Journals (Sweden)

    Alex Rafacho

    Full Text Available Glucocorticoid (GC-based therapies can cause insulin resistance (IR, glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p. (DEX or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11βHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory β-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.

  2. Addison disease in patients treated with glucocorticoid therapy.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Acute adrenal crisis in patients with unrecognized chronic adrenocortical failure is difficult to diagnose and potentially fatal. We describe 2 patients with acute adrenal crisis whose diagnoses were hindered because of concomitant glucocorticoid treatment. Acute adrenal insufficiency is primarily a state of mineralocorticoid deficiency. Prednisolone and prednisone, the most frequently prescribed anti-inflammatory corticosteroid agents, have minimal mineralocorticoid activity. Several conditions that may be treated with pharmacological glucocorticoids are associated with an increased risk of Addison disease. An acute adrenal crisis, against which concurrent glucocorticoid therapy does not confer adequate protection, may develop in such patients.

  3. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  4. Immunoprecipitation assay of alpha-fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and glucocorticoids.

    Science.gov (United States)

    Rosebrock, J A; Parker, C L; Kute, T E

    1981-01-01

    This investigation was to study the biosynthesis of 3H-labeled alpha-fetoprotein (AFP) by cultured mouse hepatoma (HEPA-2) cells. Both the function and regulation of this oncodevelopmental gene are unknown. However, evidence indicates that mechanisms controlling the expression of AFP involve aspects of both normal embryonic development and neoplastic transformation. the secretion of AFP was analyzed during different phases of the growth cycle to provide information on AFP production using standard culture conditions. The highest rate of secretion occurred during the stationary phase, followed by the late logarithmic and early logarithmic phases of growth, respectively. The production of AFP was then determined following the addition of glucocorticoids and estrogens in an attempt to understand hormonal factors that may be involved. Studies utilizing estradiol-17 beta indicated that the secretion of AFP did not appear to be sensitive to this steroid even though sucrose density gradient analysis of HEPA-2 cytosol, for estrogenic receptors, revealed competitive binding moieties on the 8S and 4S regions of the gradient. In contrast, the secretion of the total complement of proteins, including AFP, was significantly stimulated by the glucocorticoids, dexamethasone and corticosterone. Analysis of HEPA-2 cytosol for glucocorticoid receptors revealed binding components in the 7S and 3-4S regions of the gradient. The 3H-dexamethasone binding appeared to be stereospecific since nonlabeled dexamethasone, but not nonlabeled estradiol-17 beta, effectively displaced the bound radioactivity. The glucocorticoid-binding component in HEPA-2 therefore displayed characteristics reported for glucocorticoid receptors in normal liver and other hepatomas.

  5. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  6. Differential effects of the new glucocorticoid receptor antagonist ORG 34517 and RU486 (mifepristone) on glucocorticoid receptor nuclear translocation in the AtT20 cell line.

    Science.gov (United States)

    Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P

    2008-12-01

    Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.

  7. Optimal glucocorticoid therapy.

    Science.gov (United States)

    Debono, Miguel; Ross, Richard J

    2011-01-01

    The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.

  8. Short-term, high-dose glucocorticoid treatment does not contribute to reduced bone mineral density in patients with multiple sclerosis.

    Science.gov (United States)

    Olsson, A; Oturai, D B; Sørensen, P S; Oturai, P S; Oturai, A B

    2015-10-01

    Patients with multiple sclerosis (MS) are at increased risk of reduced bone mineral density (BMD). A contributing factor might be treatment with high-dose glucocorticoids (GCs). The objective of this paper is to assess bone mass in patients with MS and evaluate the importance of short-term, high-dose GC treatment and other risk factors that affect BMD in patients with MS. A total of 260 patients with MS received short-term high-dose GC treatment and had their BMD measured by dual x-ray absorptiometry. BMD was compared to a healthy age-matched reference population (Z-scores). Data regarding GCs, age, body mass index (BMI), serum 25(OH)D, disease duration and severity were collected retrospectively and analysed in a multiple linear regression analysis to evaluate the association between each risk factor and BMD. Osteopenia was present in 38% and osteoporosis in 7% of the study population. Mean Z-score was significantly below zero, indicating a decreased BMD in our MS patients. Multiple linear regression analysis showed no significant association between GCs and BMD. In contrast, age, BMI and disease severity were independently associated with both lumbar and femoral BMD. Reduced BMD was prevalent in patients with MS. GC treatment appears not to be the primary underlying cause of secondary osteoporosis in MS patients. © The Author(s), 2015.

  9. Identifying a Mechanism for Crosstalk Between the Estrogen and Glucocorticoid Receptors | Center for Cancer Research

    Science.gov (United States)

    Estrogen has long been known to play important roles in the development and progression of breast cancer. Its receptor (ER), a member of the steroid receptor family, binds to estrogen response elements (EREs) in DNA and regulates gene transcription. More recently, another steroid receptor family member, the glucocorticoid receptor (GR), has been implicated in breast cancer

  10. Org 214007-0: a novel non-steroidal selective glucocorticoid receptor modulator with full anti-inflammatory properties and improved therapeutic index.

    Science.gov (United States)

    van Lierop, Marie-José C; Alkema, Wynand; Laskewitz, Anke J; Dijkema, Rein; van der Maaden, Hans M; Smit, Martin J; Plate, Ralf; Conti, Paolo G M; Jans, Christan G J M; Timmers, C Marco; van Boeckel, Constant A A; Lusher, Scott J; McGuire, Ross; van Schaik, Rene C; de Vlieg, Jacob; Smeets, Ruben L; Hofstra, Claudia L; Boots, Annemieke M H; van Duin, Marcel; Ingelse, Benno A; Schoonen, Willem G E J; Grefhorst, Aldo; van Dijk, Theo H; Kuipers, Folkert; Dokter, Wim H A

    2012-01-01

    Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.

  11. Protein chemical characterization of Gc globulin (vitamin D-binding protein) isoforms; Gc-1f, Gc-1s and Gc-2

    DEFF Research Database (Denmark)

    Christiansen, Maja; Jørgensen, Charlotte S; Laursen, Inga

    2007-01-01

    -survival of patients with fulminant hepatic failure and trauma. Here, we characterize the dominant isoforms of plasma-derived Gc globulin from Cohn fraction IV paste with respect to amino acid sequence and posttranslational modifications. Gc globulin was purified in large scale and the isoforms separated by ion...

  12. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary

    OpenAIRE

    Whirledge, Shannon; Cidlowski, John A.

    2013-01-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that oth...

  13. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    Science.gov (United States)

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  14. Stress, glucocorticoids and memory: implications for treating fear-related disorders.

    Science.gov (United States)

    de Quervain, Dominique; Schwabe, Lars; Roozendaal, Benno

    2017-01-01

    Glucocorticoid stress hormones are crucially involved in modulating mnemonic processing of emotionally arousing experiences. They enhance the consolidation of new memories, including those that extinguish older memories, but impair the retrieval of information stored in long-term memory. As strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias, the memory-modulating properties of glucocorticoids have recently become of considerable translational interest. Clinical trials have provided the first evidence that glucocorticoid-based pharmacotherapies aimed at attenuating aversive memories might be helpful in the treatment of fear-related disorders. Here, we review important advances in the understanding of how glucocorticoids mediate stress effects on memory processes, and discuss the translational potential of these new conceptual insights.

  15. Eosinophil Resistance to Glucocorticoid-Induced Apoptosis is Mediated by the Transcription Factor NFIL3

    Science.gov (United States)

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-01-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired prop-aptoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that 1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and 2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils. PMID:26880402

  16. Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2010-01-01

    that glucocorticoids deeply modify this resorptive behavior. First, glucocorticoids gradually induce excavations with a trenchlike morphology while reducing the time-dependent increase in excavation numbers. This indicates that glucocorticoids make osteoclasts elongate the excavations they initiated rather than...... migrating to a new resorption site, as in control conditions. Second, the round excavations in control conditions contain undegraded demineralized collagen as repeatedly reported earlier, whereas the excavations with a trenchlike morphology generated under glucocorticoid exposure appear devoid of leftovers...... of demineralized collagen. This indicates that collagenolysis proceeds generally at a lower rate than demineralization under control conditions, whereas collagenolysis rates are increased up to the level of demineralization rates in the presence of glucocorticoids. Taking these observations together leads...

  17. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Science.gov (United States)

    Zielińska, Karolina A.; de Cauwer, Lode; Knoops, Sofie; Van der Molen, Kristof; Sneyers, Alexander; Thommis, Jonathan; De Souza, J. Brian; Opdenakker, Ghislain; De Bosscher, Karolien; Van den Steen, Philippe E.

    2017-01-01

    Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs. PMID:29033931

  18. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Directory of Open Access Journals (Sweden)

    Karolina A. Zielińska

    2017-09-01

    Full Text Available Malaria-associated acute respiratory distress syndrome (MA-ARDS is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ and Plasmodium berghei NK65 (PbNK65. Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES by 90% and both CCL2 (MCP-1 and CXCL10 (IP-10 by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1 unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK, JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.

  19. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    Science.gov (United States)

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  20. A case report: Familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ram Nanik

    2012-12-01

    Full Text Available Abstract Background Familial glucocorticoid deficiency (FGD is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency in the presence of normal plasma renin and aldosterone level. Focal segmental glomerulosclerosis (FSGS is a form of glomerular disease associated with proteinuria and nephritic syndrome. This is the first case of familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis. Case presentation An eight month old boy presented with increased genital pigmentation. Initial investigation revealed that he was glucocorticoid deficient and was started on hydrocortisone and fludrocortisone with a diagnosis of primary adrenal insufficiency. Later fludrocortisone was withdrawn and he was diagnosed to have isolated glucocorticoid deficiency. He later developed focal segmental glomerulosclerosis for which he underwent renal transplantation at the age of five years. Now at the age of twelve years, this boy is doing well on hydrocortisone treatment. His two siblings and a first degree cousin also had isolated glucocorticoid deficiency. One of the above two siblings died due to renal failure secondary to focal segmental glomerulosclerosis. Conclusion Patients with familial glucocorticoid deficiency should be carefully followed for development of features of nephrotic syndrome.

  1. Theoretical study of GC+/GC base pair derivatives

    International Nuclear Information System (INIS)

    Meng Fancui; Wang Huanjie; Xu Weiren; Liu Chengbu

    2005-01-01

    The geometries of R (R=CH 3 , CH 3 O, F, NO 2 ) substituted GC base pair derivatives and their cations have been optimized at B3LYP/6-31G* level and the substituent effects on the neutral and cationic geometric structures and energies have been discussed. The inner reorganization energies of various base pair derivatives and the native GC base pair have been calculated to discuss the substituent effects on the reorganization energy. NBO (natural bond orbital) analysis has been carried out on both the neutral and the cationic systems to investigate the differences of the charge distributions and the electronic structures. The outcomes indicate that 8-CH 3 O-G:C has the greatest reorganization energy and 8-NO 2 -G:C has the least, while the other substituted base pairs have a reorganization energy close to that of G:C. The one charge is mostly localized on guanine part after ionization and as high as 0.95e. The bond distances of N1-N3'andN2-O2' in the cationic base pair derivatives shortened and that of O6-N4' elongated as compared with the corresponding bond distances of the neutral GC base pair derivatives

  2. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method

    Science.gov (United States)

    Zhang, Guanghui; Zhang, Tianyong; Li, Bin; Jiang, Shuang; Zhang, Xia; Hai, Li; Chen, Xingwei; Wu, Wubin

    2018-03-01

    An ingenious method was employed to design and fabricate the TiO2/g-C3N4 heterojunction photocatalysts in this study. The thermal oxidation etching of g-C3N4 nanosheets and the in situ growth of TiO2 nanocrystal on the surface of g-C3N4 nanosheets were completed simultaneously by the calcination process. The g-C3N4 nanosheets played a crucial role in regulating and assembling the structures and morphologies of TiO2. Furthermore, the thickness and content of g-C3N4, and the crystallinity of TiO2 in TiO2/g-C3N4 composites could be regulated and controlled by the calcination temperature. Among the resultant TiO2/g-C3N4 samples, the TiO2/g-C3N4 sample with 41.6 wt% g-C3N4 exhibited the highest photocatalytic activity. It could degrade almost all MO molecules under visible light irradiation within 3 h. Moreover, it displayed higher visible light photocatalytic performance for degrading MO solution than pure g-C3N4 and D-TiO2. The synergistic effect between TiO2 and g-C3N4 makes significant contributions to the enhancement of the visible light photocatalytic activity. In addition, the favorable photocatalytic performance of TiO2/g-C3N4 nanocomposites is also attributed to the porous structures and uniform morphologies, and large surface area. Furthermore, the resultant TiO2/g-C3N4 exhibits excellent photocatalytic stability. Radical trapping experiments indicated that rad O2- and h+ were the main reactive species during the photodegradation process under visible light irradiation. Hopefully, the results can offer new design and strategy for preparing other g-C3N4-based nanocomposites for environmental and energy applications.

  3. Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition

    Directory of Open Access Journals (Sweden)

    Maayan Amit

    2012-05-01

    Full Text Available During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus “marking” them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.

  4. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  5. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally.

    Science.gov (United States)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg·d) from gestational days (GD) 11 to 20, or 180 mg/kg·d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose-effect study and on GD11, 14 and 17 in the time-course study were analyzed by ¹H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line.

    Science.gov (United States)

    Zhu, Xiaoling; Chen, Shuxiong; Jiang, Yanwen; Xu, Ying; Zhao, Yun; Chen, Lu; Li, Chunjin; Zhou, Xu

    2018-02-05

    Melatonin is an endocrine neurohormone secreted by pinealocytes in the pineal gland. It exerts diverse physiological effects, such as circadian rhythm regulator and antioxidant. However, the functional importance of melatonin in spermatogenesis regulation remains unclear. The objectives of this study are to: (1) detect melatonin affection on miRNA expression profiles in GC-1 spg cells by miRNA deep sequencing (DeepSeq) and (2) define melatonin affected miRNA-mRNA interactions and associated biological processes using bioinformatics analysis. GC-1 spg cells were cultured with melatonin (10 -7 M) for 24h. DeepSeq data were validated using quantitative real-time reverse transcription polymerase chain reaction analysis (qRT-PCR). A total of 176 miRNA expressions were found to be significantly different between two groups (fold change of >2 or melatonin could regulate the expression of miRNA to perform its physiological effects in GC-1 spg cells. These results should be useful to investigate the biological function of miRNAs regulated by melatonin in spermatogenesis and testicular germ cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mannotriose regulates learning and memory signal transduction in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Lina Zhang; Weiwei Dai; Xueli Zhang; Zhangbin Gong; Guoqin Jin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10-4 mol/L) cor-ticosterone, and treated with 1 × 10-4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were al dramatical y decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor.

  8. GC-MS-Based Metabolome and Metabolite Regulation in Serum-Resistant Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Zhe; Li, Min-Yi; Peng, Bo; Cheng, Zhi-Xue; Li, Hui; Peng, Xuan-Xian

    2016-07-01

    Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC-MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites.

  9. Glucocorticoid receptors in anorexia nervosa and Cushing's disease.

    Science.gov (United States)

    Invitti, C; Redaelli, G; Baldi, G; Cavagnini, F

    1999-06-01

    Patients with anorexia nervosa do not display cushingoid features in spite of elevated cortisol plasma levels. Whether a cortisol resistance or a reduced availability of the metabolic substrates necessary to develop the effect of glucocorticoids is responsible for this has not been established. Twenty-two patients with severe restrictive anorexia nervosa, 10 patients with active Cushing's disease, and 24 healthy volunteers without psychiatric disorders or mood alterations were investigated. Glucocorticoid receptor characteristics were examined on mononuclear leukocytes by measuring [3H]dexamethasone binding and the effect of dexamethasone on [3H]thymidine incorporation, which represents an index of DNA synthesis. The number of glucocorticoid receptors on mononuclear leukocytes (MNL) was comparable in patients with anorexia nervosa, patients with active Cushing's disease, and normal subjects (binding capacity 3.3 +/- 0.23 vs. 3.7 +/- 0.30 and 3.5 +/- 0.20 fmol/10(6) cells). Conversely, glucocorticoid receptor affinity was significantly decreased in anorexia nervosa as well as in Cushing's patients compared to control subjects (dissociation constant 4.0 +/- 0.31 and 4.1 +/- 0.34 vs. 2.9 +/- 0.29 nmol/L, p Cushing's patients compared to control subjects (p Cushing's disease. In patients with anorexia nervosa, the incorporation of [3H]thymidine into the MNL was inversely correlated with urinary free cortisol levels. These data indicate that the lack of cushingoid features in patients with anorexia nervosa is not ascribable to a reduced sensitivity to glucocorticoids but is more likely due to the paucity of metabolic substrates.

  10. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration.

    Science.gov (United States)

    Starkman, Monica N

    2013-09-01

    This article reviews the neuropsychiatric presentations elicited by spontaneous hypercortisolism and exogenous supraphysiologic glucocorticoids. Patients with Cushing disease and syndrome develop a depressive syndrome: irritable and depressed mood, decreased libido, disrupted sleep and cognitive decrements. Exogenous short-term glucocorticoid administration may elicit a hypomanic syndrome with mood, sleep and cognitive disruptions. Treatment options are discussed. Brain imaging and neuropsychological studies indicate elevated cortisol and other glucocorticoids are especially deleterious to hippocampus and frontal lobe. The research findings also shed light on neuropsychiatric abnormalities in conditions that have substantial subgroups exhibiting elevated and dysregulated cortisol: aging, major depressive disorder and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma Exacerbations.

    Science.gov (United States)

    McKeever, Tricia; Mortimer, Kevin; Wilson, Andrew; Walker, Samantha; Brightling, Christopher; Skeggs, Andrew; Pavord, Ian; Price, David; Duley, Lelia; Thomas, Mike; Bradshaw, Lucy; Higgins, Bernard; Haydock, Rebecca; Mitchell, Eleanor; Devereux, Graham; Harrison, Timothy

    2018-03-08

    Asthma exacerbations are frightening for patients and are occasionally fatal. We tested the concept that a plan for patients to manage their asthma (self-management plan), which included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate, would reduce the incidence of severe asthma exacerbations among adults and adolescents with asthma. We conducted a pragmatic, unblinded, randomized trial involving adults and adolescents with asthma who were receiving inhaled glucocorticoids, with or without add-on therapy, and who had had at least one exacerbation in the previous 12 months. We compared a self-management plan that included an increase in the dose of inhaled glucocorticoids by a factor of 4 (quadrupling group) with the same plan without such an increase (non-quadrupling group), over a period of 12 months. The primary outcome was the time to a first severe asthma exacerbation, defined as treatment with systemic glucocorticoids or an unscheduled health care consultation for asthma. A total of 1922 participants underwent randomization, of whom 1871 were included in the primary analysis. The number of participants who had a severe asthma exacerbation in the year after randomization was 420 (45%) in the quadrupling group as compared with 484 (52%) in the non-quadrupling group, with an adjusted hazard ratio for the time to a first severe exacerbation of 0.81 (95% confidence interval, 0.71 to 0.92; P=0.002). The rate of adverse effects, which were related primarily to local effects of inhaled glucocorticoids, was higher in the quadrupling group than in the non-quadrupling group. In this trial involving adults and adolescents with asthma, a personalized self-management plan that included a temporary quadrupling of the dose of inhaled glucocorticoids when asthma control started to deteriorate resulted in fewer severe asthma exacerbations than a plan in which the dose was not increased. (Funded by the Health Technology

  12. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects

    NARCIS (Netherlands)

    Judd, L.L.; Schettler, P.J.; Brown, E.S.; Wolkowitz, O.M.; Sternberg, E.M.; Bender, B.G.; Bulloch, K.; Cidlowski, J.A.; Kloet, E.R. de; Fardet, L.; Joels, M.; Leung, D.Y.; McEwen, B.S.; Roozendaal, B.; Rossum, E.F. van; Ahn, J.; Brown, D.W.; Plitt, A.; Singh, G.

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  13. Adverse Consequences of Glucocorticoid Medication : Psychological, Cognitive, and Behavioral Effects

    NARCIS (Netherlands)

    Judd, Lewis L.; Schettler, Pamela J.; Brown, E. Sherwood; Wolkowitz, Owen M.; Sternberg, Esther M.; Bender, Bruce G.; Bulloch, Karen; Cidlowski, John A.; de Kloet, E. Ronald; Fardet, Laurence; Joëls, Marian; Leung, Donald Y. M.; McEwen, Bruce S.; Roozendaal, Benno; Van Rossum, Elisabeth F. C.; Ahn, Junyoung; Brown, David W.; Plitt, Aaron; Singh, Gagandeep

    2014-01-01

    Glucocorticoids are the most commonly prescribed anti-inflammatory/immunosuppressant medications worldwide. This article highlights the risk of clinically significant and sometimes severe psychological, cognitive, and behavioral disturbances that may be associated with glucocorticoid use, as well as

  14. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  15. Effect of Glucocorticoids on the Clinical and Radiographic Efficacy of Tofacitinib in Patients with Rheumatoid Arthritis: A Posthoc Analysis of Data from 6 Phase III Studies.

    Science.gov (United States)

    Charles-Schoeman, Christina; van der Heijde, Désirée; Burmester, Gerd R; Nash, Peter; Zerbini, Cristiano A F; Connell, Carol A; Fan, Haiyun; Kwok, Kenneth; Bananis, Eustratios; Fleischmann, Roy

    2018-02-01

    Tofacitinib has been investigated for the treatment of rheumatoid arthritis (RA) in phase III studies in which concomitant glucocorticoids (GC) were allowed. We analyzed the effect of GC use on efficacy outcomes in patients with RA receiving tofacitinib and/or methotrexate (MTX) or conventional synthetic disease-modifying antirheumatic drugs (csDMARD) in these studies. Our posthoc analysis included data from 6 phase III studies (NCT01039688; NCT00814307; NCT00847613; NCT00853385; NCT00856544; NCT00960440). MTX-naive patients or patients with inadequate response to csDMARD or biological DMARD received tofacitinib 5 or 10 mg twice daily alone or with csDMARD, with or without concomitant GC. Patients receiving GC (≤ 10 mg/day prednisone or equivalent) before enrollment maintained a stable dose throughout. Endpoints included the American College of Rheumatology (ACR) 20/50/70 response rates, rates of Clinical Disease Activity Index (CDAI)-defined low disease activity (LDA; CDAI ≤ 10) and remission (CDAI ≤ 2.8), and changes from baseline in CDAI, 28-joint count Disease Activity Score (DAS28-4)-erythrocyte sedimentation rate (ESR), Health Assessment Questionnaire-Disability Index (HAQ-DI), pain visual analog scale (VAS), and modified total Sharp score. Of 3200 tofacitinib-treated patients, 1258 (39.3%) received tofacitinib monotherapy and 1942 (60.7%) received tofacitinib plus csDMARD; 1767 (55.2%) received concomitant GC. ACR20/50/70 response rates, rates of CDAI LDA and remission, and improvements in CDAI, DAS28-4-ESR, HAQ-DI, and pain VAS with tofacitinib were generally similar with or without GC in monotherapy and combination therapy studies. GC use did not appear to affect radiographic progression in tofacitinib-treated MTX-naive patients. MTX plus GC appeared to inhibit radiographic progression to a numerically greater degree than MTX alone. Concomitant use of GC with tofacitinib did not appear to affect clinical or radiographic efficacy. MTX plus GC showed a

  16. Association of glucocorticoid receptor polymorphisms with clinical and metabolic profiles in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo A.Rosa Maciel

    2014-03-01

    Full Text Available OBJECTIVES: We aimed to investigate whether glucocorticoid receptor gene polymorphisms are associated with clinical and metabolic profiles in patients with polycystic ovary syndrome. Polycystic ovary syndrome is a complex endocrine disease that affects 5-8% of women and may be associated with metabolic syndrome, which is a risk factor for cardiovascular disease. Cortisol action and dysregulation account for metabolic syndrome development in the general population. As glucocorticoid receptor gene (NR3C1 polymorphisms regulate cortisol sensitivity, we hypothesized that variants of this gene may be involved in the adverse metabolic profiles of patients with polycystic ovary syndrome. METHOD: Clinical, metabolic and hormonal profiles were evaluated in 97 patients with polycystic ovary syndrome who were diagnosed according to the Rotterdam criteria. The alleles of the glucocorticoid gene were genotyped. Association analyses were performed using the appropriate statistical tests. RESULTS: Obesity and metabolic syndrome were observed in 42.3% and 26.8% of patients, respectively. Body mass index was positively correlated with blood pressure, triglyceride, LDL-c, total cholesterol, glucose and insulin levels as well as HOMA-IR values and inversely correlated with HDL-c and SHBG levels. The BclI and A3669G variants were found in 24.7% and 13.4% of alleles, respectively. BclI carriers presented a lower frequency of insulin resistance compared with wild-type subjects. CONCLUSION: The BclI variant is associated with a lower frequency of insulin resistance in women with polycystic ovary syndrome. Glucocorticoid gene polymorphism screening during treatment of the syndrome may be useful for identifying subgroups of at-risk patients who would benefit the most from personalized treatment.

  17. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  18. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  19. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male.

    Science.gov (United States)

    Ajdžanović, Vladimir Z; Filipović, Branko R; Šošić Jurjević, Branka T; Milošević, Verica Lj

    2017-08-01

    Male ageing is entwined with a continuous fall in free testosterone levels, which contributes to the pathogenesis of bone loss. Glucocorticoid excess, either dependent on the ageing process or iatrogenically induced, was found to additionally impair the bone structure and metabolism. Cautious testosterone supplementation in this respect may positively affect the glucocorticoid milieu and bone homeostasis, while testosterone-induced changes in the glucocorticoid output could serve as a determinant of bone-related therapeutic outcome. Namely, bone mineral content/density, the parameters of trabecular bone structure as well as bone strength are enhanced, serum calcitonin levels tend to increase, while serum osteocalcin, serum parathyroid hormone and urinary calcium decrease, all upon testosterone administration to the ageing male. In parallel, testosterone application decreases glucocorticoid secretion in the animal models of male ageing, while clinical data in this field are still inconsistent. Importantly, a physiological link exists between testosterone-induced changes in glucocorticoid levels and the tendency of bone status improvement in the ageing male. We believe that the assessment of circulating adrenocorticotropic hormone concentrations together with glucocorticoid levels, reflecting the hypothalamic-pituitary-adrenal axis feedback loop operativeness during testosterone supplementation, represents a well-balanced bone-related therapeutic update. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  20. Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Sheila Xinxuan Soh

    Full Text Available A broad range of anti-cancer agents, including glucocorticoids (GCs and tyrosine kinase inhibitors (TKIs, kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL, we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.

  1. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  2. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T.; Van Der Horst, Geertje; Lemhemmer, Daniël; Marijt, Koen A.; Hwang, Ming S.; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Meijer, Onno C.; Culig, Zoran; Van Der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCA). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  3. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Kroon, Jan; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.; Grimm, S.; Storm, Gerrit; Metselaar, Josbert Maarten; Meijer, O.C.; Culig, Z.; van der Pluijm, M.

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  4. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  5. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  6. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk.

    Science.gov (United States)

    Gutzwiller, Jean-Pierre; Aschwanden, Josef; Iff, Samuel; Leuenberger, Michèle; Perrig, Martin; Stanga, Zeno

    2011-12-01

    The hypothesis of this clinical study was to determine whether glucocorticoid use and immobility were associated with in-hospital nutritional risk. One hundred and one patients consecutively admitted to the medical wards were enrolled. Current medical conditions, symptoms, medical history, eating and drinking habits, diagnosis, laboratory findings, medications, and anthropometrics were recorded. The Nutrition Risk Score 2002 (NRS-2002) was used as a screening instrument to identify nutritional risk. The results confirmed that glucocorticoid use and immobility are independently associated with nutritional risk determined by the NRS-2002. Constipation could be determined as an additional cofactor independently associated with nutritional risk. Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk in a mixed hospitalized population. The presence of long-time glucocorticoid use, immobility, or constipation should alert the clinician to check for nutritional status, which is an important factor in mortality and morbidity.

  7. Activated Glucocorticoid Receptor Interacts with the INHAT Component Set/TAF-Iβ and Releases it from a Glucocorticoid-responsive Gene Promoter, Relieving Repression: Implications for the Pathogenesis of Glucocorticoid Resistance in Acute Undifferentiated Leukemia with Set-Can Translocation

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P.; Kino, Tomoshige

    2008-01-01

    SUMMARY Set/template-activating factor (TAF)-Iβ, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Iβ interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Iβ was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Iβ from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Iβ acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids. PMID:18096310

  8. Activated glucocorticoid receptor interacts with the INHAT component Set/TAF-Ibeta and releases it from a glucocorticoid-responsive gene promoter, relieving repression: implications for the pathogenesis of glucocorticoid resistance in acute undifferentiated leukemia with Set-Can translocation.

    Science.gov (United States)

    Ichijo, Takamasa; Chrousos, George P; Kino, Tomoshige

    2008-02-13

    Set/template-activating factor (TAF)-Ibeta, part of the Set-Can oncogene product found in acute undifferentiated leukemia, is a component of the inhibitor of acetyltransferases (INHAT) complex. Set/TAF-Ibeta interacted with the DNA-binding domain of the glucocorticoid receptor (GR) in yeast two-hybrid screening, and repressed GR-induced transcriptional activity of a chromatin-integrated glucocorticoid-responsive and a natural promoter. Set/TAF-Ibeta was co-precipitated with glucocorticoid response elements (GREs) of these promoters in the absence of dexamethasone, while addition of the hormone caused dissociation of Set/TAF-Ibeta from and attraction of the p160-type coactivator GRIP1 to the promoter GREs. Set-Can fusion protein, on the other hand, did not interact with GR, was constitutively co-precipitated with GREs and suppressed GRIP1-induced enhancement of GR transcriptional activity and histone acetylation. Thus, Set/TAF-Ibeta acts as a ligand-activated GR-responsive transcriptional repressor, while Set-Can does not retain physiologic responsiveness to ligand-bound GR, possibly contributing to the poor responsiveness of Set-Can-harboring leukemic cells to glucocorticoids.

  9. Safety and tolerability of high doses of glucocorticoides

    Directory of Open Access Journals (Sweden)

    Rakić Branislava D.

    2016-01-01

    Full Text Available Introduction: Treatment of acute lymphoblastic leukemia includes the use of high doses of glucocorticoides (prednisone and dexamethasone, which significantly increase the success of therapy due to lymphocytolitic effect. The aim: The aim of the study was to determine tolerability of high doses of prednisone and dexamethasone in children with acute lymphoblastic leukemia and the structure and the intensity of adverse effects, occurred after application of these medicines. Subjects and methods: In a prospective study, we analyzed adverse effects of high doses of glucocorticoides in children suffering acute lymphoblastic leukemia treated in the Institute for Child and Youth Health Care of Vojvodina, since December 2010. until October 2014, were analyzed. This study included 18 patients, aged from 2 to 15 years. Results: Hyperglycemia appeared in 89% of patients treated with prednisone and in 61% of patients treated with dexamethasone. In order to control the high blood glucose level (above 10 mmol /L, in 11% of patients insulin was used. Hypertension appeared in 28% patients treated with prednisone and dexamethasone. Antihypertensives were needed for regulation in 17% patients. Hypopotassemia and hypocalcaemia were significantly more expressed after the use of prednisone in comparison to dexamethasone. In 11% of patients, the treatment with dexamethasone caused depressive behavior, followed by agitation. Conclusion: Adverse effects of dexamethasone and prednisone, administered in high doses in children with ALL were known, expected and reversible. Adverse reactions usually disappeared spontaneously or after short-term symptomatic therapy.

  10. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  11. Total brain, cortical and white matter volumes in children previously treated with glucocorticoids

    DEFF Research Database (Denmark)

    Holm, Sara K; Madsen, Kathrine S; Vestergaard, Martin

    2018-01-01

    BACKGROUND: Perinatal exposure to glucocorticoids and elevated endogenous glucocorticoid-levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid-treatment during childhood on brain volumes. METHODS: Thirty children and adolescents...... with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical grey and white matter, brain, and intracranial volume, and total cortical thickness and surface area were...... were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures. CONCLUSION: Observed smaller total brain...

  12. Analysis of Biogenic Amines by GC/FID and GC/MS

    OpenAIRE

    Nakovich, Laura

    2003-01-01

    Low levels of biogenic amines occur naturally, but high levels (FDA sets 50 ppm of histamine in fish as the maximum allowable level) can lead to scombroid poisoning. Amines in general are difficult to analyze by Gas Chromatography (GC) due to their lack of volatility and their interaction with the GC column, often leading to significant tailing and poor reproducibility. Biogenic amines need to be derivatized before both GC and HPLC analyses. The objective of this research was to devel...

  13. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu

    2017-11-18

    Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  15. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  16. Combination therapy of leflunomide and glucocorticoids for the maintenance of remission in patients with IgG4-related disease: a retrospective study and literature review.

    Science.gov (United States)

    Wang, Yiwen; Li, Kunpeng; Gao, Dai; Luo, Gui; Zhao, Yurong; Wang, Xiuru; Zhang, Jie; Jin, Jingyu; Zhao, Zheng; Yang, Chunhua; Zhu, Jian; Zhang, Jianglin; Huang, Feng

    2017-06-01

    Although glucocorticoids are effective in IgG4-related disease (IgG4-RD), patients may relapse during or after glucocorticoid tapering. Immunosuppressive agents, including leflunomide (LEF), are regarded as steroid-sparing agents in other autoimmune disorders and need to be discussed in the management of IgG4-RD. To identify the efficacy and safety of combination therapy of LEF and glucocorticoids in IgG4-RD. We retrospectively summarised data of patients diagnosed with IgG4-RD between November 2012 and November 2015. Only patients treated with LEF plus glucocorticoids and had been followed up for more than three visits and 6 months were analysed with clinical symptoms, laboratory and imaging findings, treatment protocol, LEF-related adverse events and disease activity reflected by IgG4-RD Responder Index (IgG4-RD RI). A total of 18 patients, including 14 untreated patients and 4 relapsing patients, was included. The mean (SD) onset age was 54.0 (9.6) years. The mean (SD) follow-up period was 12.1 (7.4) months. All patients had active disease with mean (SD) IgG4-RD RI of 15.0 (5.6) at baseline and experienced improvements at 1 month. At the last follow up, the mean (SD) IgG4-RD Responder Index declined to 3.1 (1.7) in all patients and to 2.5 (1.2) in patients without relapse. The mean (SD) dose of GC declined to 6.9 (2.7) mg/day. A total of 12 (66.7%) and 11 (61.1%) patients were in remission at 6 months and the last follow up respectively. Three (16.7%) patients relapsed in clinical course. Two reversible adverse events were observed. The combination therapy of LEF and glucocoticoids is effective and safe in IgG4-RD. © 2017 Royal Australasian College of Physicians.

  17. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    Science.gov (United States)

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  18. THE COOPERATIVE INTERNATIONAL NEUROMUSCULAR RESEARCH GROUP DUCHENNE NATURAL HISTORY STUDY—A LONGITUDINAL INVESTIGATION IN THE ERA OF GLUCOCORTICOID THERAPY: DESIGN OF PROTOCOL AND THE METHODS USED

    Science.gov (United States)

    McDonald, Craig M.; Henricson, Erik K.; Abresch, R. Ted; Han, Jay J.; Escolar, Diana M.; Florence, Julaine M.; Duong, Tina; Arrieta, Adrienne; Clemens, Paula R.; Hoffman, Eric P.; Cnaan, Avital

    2014-01-01

    Contemporary natural history data in Duchenne muscular dystrophy (DMD) is needed to assess care recommendations and aid in planning future trials. Methods The Cooperative International Neuromuscular Research Group (CINRG) DMD Natural History Study (DMD-NHS) enrolled 340 individuals, aged 2–28 years, with DMD in a longitudinal, observational study at 20 centers. Assessments obtained every 3 months for 1 year, at 18 months, and annually thereafter included: clinical history; anthropometrics; goniometry; manual muscle testing; quantitative muscle strength; timed function tests; pulmonary function; and patient-reported outcomes/ health-related quality-of-life instruments. Results Glucocorticoid (GC) use at baseline was 62% present, 14% past, and 24% GC-naive. In those ≥6 years of age, 16% lost ambulation over the first 12 months (mean age 10.8 years). Conclusions Detailed information on the study methodology of the CINRG DMD-NHS lays the groundwork for future analyses of prospective longitudinal natural history data. These data will assist investigators in designing clinical trials of novel therapeutics. PMID:23677550

  19. Baseline Shoulder Ultrasonography Is Not a Predictive Marker of Response to Glucocorticoids in Patients with Polymyalgia Rheumatica: A 12-month Followup Study.

    Science.gov (United States)

    Miceli, Maria Concetta; Zoli, Angelo; Peluso, Giusy; Bosello, Silvia; Gremese, Elisa; Ferraccioli, Gianfranco

    2017-02-01

    In this study, we evaluated whether ultrasound (US) subdeltoid bursitis (SB) and/or biceps tenosynovitis (BT) presence at baseline could represent a predictive marker of response to standard therapy after 12 months of followup, and whether a positive US examination could highlight the need of higher maintenance dosage of glucocorticoids (GC) at 6 and 12 months in patients with polymyalgia rheumatica (PMR). Sixty-six consecutive patients with PMR underwent bilateral shoulder US evaluations before starting therapy and after 12 months of followup. Absence of girdle pain and morning stiffness (clinical remission) and laboratory variables were evaluated. After diagnosis, all patients were treated with prednisone. At baseline, SB and/or BT were present in 46 patients (70%), of whom 33 (72%) became negative while 13 (28%) remained positive at the 12-month US evaluation. All patients rapidly achieved a clinical remission, and at 6 months 26 (39%) also achieved a laboratory variable normalization. According to US positivity at baseline, no difference was found in remission or relapse rate after 12 months. Thirty patients (46%) at 6 months and 7 (11%) at 12 months were still taking more than 5 mg/day of prednisone. According to the US pattern at baseline, no difference was found in the mean GC dose at 6 and 12 months. In patients with PMR, the presence of SB and/or BT on US at diagnosis is not a predictive marker of GC response or of a higher GC dosage to maintain remission in a 12-month prospective followup study.

  20. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  1. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  2. Glucocorticoid receptors in monocytes in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P; Binder, C

    1989-01-01

    Glucocorticoid receptor binding characteristics were investigated in 8 males with poorly controlled Type 1 diabetes mellitus and 14 healthy males. The cell type studied was monocytes, and a method for correction for heterogeneity in glucocorticoid binding in a mononuclear leucocyte population...... or with HbA1c. In conclusion, no major abnormalities in glucocorticoid receptor binding characteristics could be demonstrated in Type 1 diabetes mellitus....... was introduced. The number of receptors and the dissociation constant KD were, respectively, 13,699 and 2.93 X 10(-8) mol/l for the control group and 15,788 and 2.75 X 10(-8) mol/l for diabetics (p greater than 0.05). In diabetics, KD correlated negatively with blood glucose (r = 0.762, p less than 0...

  3. Biochemical endpoints of glucocorticoid hormone action

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Nicholson, M.L.; Guyette, W.A.; Giddings, S.J.; Mendelsohn, S.L.; Nordeen, S.K.; Lyons, R.T.

    1978-01-01

    Both the rapidly evolving metabolic effects of glucocorticoids and the more slowly developing lethal actions appear to be initiated via the synthesis of new mRNAs and proteins. The chronic suppression of cell growth may be the consequence of suppression of overall rates of protein synthesis (and probably RNA and DNA synthesis as well) that in turn may represent the cellular response to the small changes in ratios of adenine nucleotides that result from the suppression of oxidative ATP production. The inhibition of glucose transport may also play a role here to prevent a compensatory increase in glycolytic ATP production. Some other hormone actions, the decrease in the ability of cells to concentrate AIB and the increase in nuclear fragility are unrelated to, and evolve separately from, the hormonal inhibitions on energy production. Cell killing is not the result of suppression of protein synthesis, nor of hormone-induced increases in calcium uptake. While the mechanisms are unknown, the increase in nuclear fragility appears to be the earliest measure of their operation. In tumor cells resistance to lethal actions of glucocorticoids may emerge via the selection of cells with hardier membranes, that are better able to withstand the intracellular destructive events set in motion by high levels of glucocorticoids.

  4. Osteoporosis secundaria y Osteoporosis inducida por glucocorticoides (OIG

    Directory of Open Access Journals (Sweden)

    Elías Forero Illera

    2006-01-01

    Full Text Available La osteoporosis es un problema de salud pública importante a nivel mundial, y su prevalencia está aumentando. La osteoporosis secundaria se puede producir por varias patologías y el uso de ciertos medicamentos. Los glucocorticoides son un grupo de fármacos usados extensamente en la práctica médica debido a su indiscutible utilidad. La osteoporosis inducida por glucocorticoides es un problema de salud pública. Aunque la patogénesis de la pérdida producida por los glucocorticoides en el hueso no se conoce totalmente, investigaciones recientes han proporcionado nuevas conocimientos en los mecanismos de estos fármacos a nivel celular y molecular. Diversas guías han sido propuestas por diversos grupos para el tratamiento de la OIG; desafortunadamente, las guías del tratamiento no se utilizan adecuadamente en los pacientes.

  5. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  6. Long-term safety, efficacy, and patient acceptability of teriparatide in the management of glucocorticoid-induced osteoporosis

    Directory of Open Access Journals (Sweden)

    Dore RK

    2013-05-01

    Full Text Available Robin K DoreDavid Geffen School of Medicine, University of California, Los Angeles, CA, USAAbstract: Glucocorticoids are commonly prescribed medications to treat multiple diseases across many medical specialties. One of the most common yet largely unappreciated side effect of glucocorticoid use is increased risk of fracture. Many different therapies are indicated to prevent and treat this condition; many guidelines exist that suggest appropriate use of both glucocorticoids and the medications approved to prevent this common side effect of glucocorticoid therapy. Nevertheless, 30%–50% of patients on long-term glucocorticoid therapy sustain a fracture. Teriparatide, recombinant human parathyroid hormone (1–34, is a daily self-injectable therapy for 24 months approved for use in patients taking long-term glucocorticoids. Teriparatide has been shown to increase bone mineral density and reduce vertebral fracture risk in glucocorticoid-treated patients. Glucocorticoids have many adverse effects on bone that teriparatide has been shown to prevent or negate. Given the fact that preventive therapy for glucocorticoid-induced osteoporosis is often not prescribed, one wonders whether a daily self-injectable therapy for this condition would be prescribed by physicians and accepted by patients. This article reviews the epidemiology, pathophysiology, treatment, guidelines, and persistence data (when available for patients with glucocorticoid-induced osteoporosis treated with teriparatide.Keywords: glucocorticoid-induced osteoporosis, teriparatide, anabolic, PTH, parathyroid hormone

  7. GC-MS Based Plasma Metabolomics for Identification of Candidate Biomarkers for Hepatocellular Carcinoma in Egyptian Cohort.

    Directory of Open Access Journals (Sweden)

    Mohammad R Nezami Ranjbar

    Full Text Available This study evaluates changes in metabolite levels in hepatocellular carcinoma (HCC cases vs. patients with liver cirrhosis by analysis of human blood plasma using gas chromatography coupled with mass spectrometry (GC-MS. Untargeted metabolomic analysis of plasma samples from participants recruited in Egypt was performed using two GC-MS platforms: a GC coupled to single quadruple mass spectrometer (GC-qMS and a GC coupled to a time-of-flight mass spectrometer (GC-TOFMS. Analytes that showed statistically significant changes in ion intensities were selected using ANOVA models. These analytes and other candidates selected from related studies were further evaluated by targeted analysis in plasma samples from the same participants as in the untargeted metabolomic analysis. The targeted analysis was performed using the GC-qMS in selected ion monitoring (SIM mode. The method confirmed significant changes in the levels of glutamic acid, citric acid, lactic acid, valine, isoleucine, leucine, alpha tocopherol, cholesterol, and sorbose in HCC cases vs. patients with liver cirrhosis. Specifically, our findings indicate up-regulation of metabolites involved in branched-chain amino acid (BCAA metabolism. Although BCAAs are increasingly used as a treatment for cancer cachexia, others have shown that BCAA supplementation caused significant enhancement of tumor growth via activation of mTOR/AKT pathway, which is consistent with our results that BCAAs are up-regulated in HCC.

  8. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  9. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  10. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring.

    Science.gov (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Lehrner, Amy; Desarnaud, Frank; Bader, Heather N; Makotkine, Iouri; Flory, Janine D; Bierer, Linda M; Meaney, Michael J

    2014-08-01

    Differential effects of maternal and paternal posttraumatic stress disorder (PTSD) have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The authors examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral blood mononuclear cells and its relationship to glucocorticoid receptor sensitivity in Holocaust offspring. Adult offspring with at least one Holocaust survivor parent (N=80) and demographically similar participants without parental Holocaust exposure or parental PTSD (N=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of GR-1F promoter methylation and of cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical clustering analysis was used to permit visualization of maternal compared with paternal PTSD effects on clinical variables and GR-1F promoter methylation. A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater postdexamethasone cortisol suppression. The clustering analysis revealed that maternal and paternal PTSD effects were differentially associated with clinical indicators and GR-1F promoter methylation. This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities.

  11. Experimental Study on the Effect of Calcitonin in Osteoporosis Induced by the Immobilization and Long-Term Glucocorticoid

    International Nuclear Information System (INIS)

    Park, Dong Jin; Lee, Sang Rae

    1989-01-01

    It is well known that the glucocorticoid induces osteoporosis by suppression of the osteoblast, but its effect on the osteoclast has some controversy whether it activates or suppresses the osteoclast. If the calcitonin, which is known to suppress the osteoclast, prevents the osteoporosis by glucocorticoid, then the suppression of the osteoclast by the glucocorticoid is not so significant. And if the calcitonin increases the osteoblastic activity, Tc-99m MDP uptake will be increased in spite of the glucocorticoid effect on the osteoblast. The immobilization operation was performed to the right leg of male Wistar rats weighing about 200 gm each. For 16 weeks after operation, rats were injected glucocorticoid alone or glucocorticoid and calcitonin. The bone density was measured by means of photodensitometry under reference aluminum step wedge and Tc-99m MDP uptake was available to the index of the osteoblastic activity. 1. The bone density of femoral head was markedly reduced than that of femoral shaft following ratio of cancellous and cortical components in both site. 2. glucocorticoid caused decrease in bone density of spine and femur, and there is significantly increase of it when medication of glucocorticoid and calcitonin injection simultaneously than that of glucocorticoid. 3. Tc-99m MDP uptake was revealed significant reduction in medication of glucocorticoid but increase in glucocorticoid and calcitonin injection simultaneously in later experimental period. 4. There was a slight reduction in plasma osteocalcin in medication of glucocorticoid through experimental periods and an increase in its value in case of giving glucocorticoid and calcitonin simultaneously in later experimental period. From these results, we suggest that osteoporosis by immobilization is more pronounced by glucocorticoid hormone and osteoporosis induced by immobilization and glucocorticoid use is prevented by calcitonin administration with increasing osteoblastic activity.

  12. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing's syndrome: cohort study.

    Science.gov (United States)

    Fardet, Laurence; Petersen, Irene; Nazareth, Irwin

    2012-07-30

    To investigate whether there is an increased risk of cardiovascular events in people who exhibit iatrogenic Cushing's syndrome during treatment with glucocorticoids. Cohort study. 424 UK general practices contributing to The Health Improvement Network database. People prescribed systemic glucocorticoids and with a diagnosis of iatrogenic Cushing's syndrome (n = 547) and two comparison groups: those prescribed glucocorticoids and with no diagnosis of iatrogenic Cushing's syndrome (n = 3231) and those not prescribed systemic glucocorticoids (n = 3282). Incidence of cardiovascular events within a year after diagnosis of iatrogenic Cushing's syndrome or after a randomly selected date, and association between iatrogenic Cushing's syndrome and risk of cardiovascular events. 417 cardiovascular events occurred in 341 patients. Taking into account only the first event by patient (coronary heart disease n = 177, heart failure n = 101, ischaemic stroke n = 63), the incidence rates of cardiovascular events per 100 person years at risk were 15.1 (95% confidence interval 11.8 to 18.4) in those prescribed glucocorticoids and with a diagnosis of iatrogenic Cushing's syndrome, 6.4 (5.5 to 7.3) in those prescribed glucocorticoids without a diagnosis of iatrogenic Cushing's syndrome, and 4.1 (3.4 to 4.8) in those not prescribed glucocorticoids. In multivariate analyses adjusted for sex, age, intensity of glucocorticoid use, underlying disease, smoking status, and use of aspirin, diabetes drugs, antihypertensive drugs, lipid lowering drugs, or oral anticoagulant drugs, the relation between iatrogenic Cushing's syndrome and cardiovascular events was strong (adjusted hazard ratios 2.27 (95% confidence interval 1.48 to 3.47) for coronary heart disease, 3.77 (2.41 to 5.90) for heart failure, and 2.23 (0.96 to 5.17) for ischaemic cerebrovascular events). The adjusted hazard ratio for any cardiovascular event was 4.16 (2.98 to 5.82) when the group prescribed glucocorticoids and with

  13. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  14. Assignment of the human gene for the glucocorticoid receptor to chromosome 5.

    OpenAIRE

    Gehring, U; Segnitz, B; Foellmer, B; Francke, U

    1985-01-01

    Human lymphoblastic leukemia cells of line CEM-C7 are glucocroticoid-sensitive and contain glucocorticoid receptors of wild-type characteristics. EL4 mouse lymphoma cells are resistant to lysis by glucocorticoids due to mutant receptors that exhibit abnormal DNA binding. Hybrids between the two cell lines were prepared and analyzed with respect to glucocorticoid responsiveness and to receptor types by DNA-cellulose chromatrography. Sensitive hybrid cell clones contained the CEM-C7-specific re...

  15. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  16. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. The Role of MKP-1 in the Anti-Proliferative Effects of Glucocorticoids in Primary Rat Pre-Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Micheline Sanderson

    Full Text Available Glucocorticoid (GC-induced osteoporosis has been attributed to a GC-induced suppression of pre-osteoblast proliferation. Our previous work identified a critical role for mitogen-activated protein kinase (MAPK phosphatase-1 (MKP-1 in mediating the anti-proliferative effects of GCs in immortalized pre-osteoblasts, but we subsequently found that MKP-1 null mice were not protected against the pathological effects of GCs on bone. In order to reconcile this discrepancy, we have assessed the effects of GCs on proliferation, activation of the MAPK ERK1/2 and MKP-1 expression in primary adipose-derived stromal cells (ADSCs and ADSC-derived pre-osteoblasts (ADSC-OBs. ADSCs were isolated by means of collagenase digestion from adipose tissue biopsies harvested from adult male Wistar rats. ADSC-OBs were prepared by treating ADSCs with osteoblast differentiation media for 7 days. The effects of increasing concentrations of the GC dexamethasone on basal and mitogen-stimulated cell proliferation were quantified by tritiated thymidine incorporation. ERK1/2 activity was measured by Western blotting, while MKP-1 expression was quantified on both RNA and protein levels, using semi-quantitative real-time PCR and Western blotting, respectively. GCs were strongly anti-proliferative in both naïve ADSCs and ADSC-OBs, but had very little effect on mitogen-induced ERK1/2 activation and did not upregulate MKP-1 protein expression. These findings suggest that the anti-proliferative effects of GCs in primary ADSCs and ADSC-OBs in vitro do not require the inhibition of ERK1/2 activation by MKP-1, which is consistent with our in vivo findings in MKP-1 null mice.

  18. Fecal glucocorticoid response to environmental stressors in green iguanas (Iguana iguana)

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Timm, Jeanette; Ibsen, Ida

    2012-01-01

    Quantification of glucocorticoid metabolites in feces has been shown to be a powerful tool in evaluating well-being in vertebrates. Little is known however about the hypothalamic–pituitary–adrenal axis response to stressors, and consequent glucocorticoid excretion, in reptiles. In a longitudinal...

  19. Glucocorticoids and Preterm Hypoxic-Ischemic Brain Injury: The Good and the Bad

    Directory of Open Access Journals (Sweden)

    Laura Bennet

    2012-01-01

    Full Text Available Fetuses at risk of premature delivery are now routinely exposed to maternal treatment with synthetic glucocorticoids. In randomized clinical trials, these substantially reduce acute neonatal systemic morbidity, and mortality, after premature birth and reduce intraventricular hemorrhage. However, the overall neurodevelopmental impact is surprisingly unclear; worryingly, postnatal glucocorticoids are consistently associated with impaired brain development. We review the clinical and experimental evidence on how glucocorticoids may affect the developing brain and highlight the need for systematic research.

  20. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

    Science.gov (United States)

    de Vega, Wilfred C; Herrera, Santiago; Vernon, Suzanne D; McGowan, Patrick O

    2017-02-23

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating idiopathic disease characterized by unexplained fatigue that fails to resolve with sufficient rest. Diagnosis is based on a list of symptoms and exclusion of other fatigue-related health conditions. Despite a heterogeneous patient population, immune and hypothalamic-pituitary-adrenal (HPA) axis function differences, such as enhanced negative feedback to glucocorticoids, are recurring findings in ME/CFS studies. Epigenetic modifications, such as CpG methylation, are known to regulate long-term phenotypic differences and previous work by our group found DNA methylome differences in ME/CFS, however the relationship between DNA methylome modifications, clinical and functional characteristics associated with ME/CFS has not been examined. We examined the DNA methylome in peripheral blood mononuclear cells (PBMCs) of a larger cohort of female ME/CFS patients using the Illumina HumanMethylation450 BeadChip Array. In parallel to the DNA methylome analysis, we investigated in vitro glucocorticoid sensitivity differences by stimulating PBMCs with phytohaemagglutinin and suppressed growth with dexamethasone. We explored DNA methylation differences using bisulfite pyrosequencing and statistical permutation. Linear regression was implemented to discover epigenomic regions associated with self-reported quality of life and network analysis of gene ontology terms to biologically contextualize results. We detected 12,608 differentially methylated sites between ME/CFS patients and healthy controls predominantly localized to cellular metabolism genes, some of which were also related to self-reported quality of life health scores. Among ME/CFS patients, glucocorticoid sensitivity was associated with differential methylation at 13 loci. Our results indicate DNA methylation modifications in cellular metabolism in ME/CFS despite a heterogeneous patient population, implicating these processes in immune and HPA

  1. Paired hormone response elements predict caveolin-1 as a glucocorticoid target gene.

    Directory of Open Access Journals (Sweden)

    Marinus F van Batenburg

    2010-01-01

    Full Text Available Glucocorticoids act in part via glucocorticoid receptor binding to hormone response elements (HREs, but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.

  2. Purification of equine Gc-globulin

    DEFF Research Database (Denmark)

    Houen, Gunnar; Pihl, Tina Holberg; Andersen, Pia Haubro

    Objectives With the aim of producing antibodies for an equine Group specific component (Gc)-globulin assay, the protein was purified from normal equine plasma. Methods Equine Gc-globulin was purified from healthy horse plasma using ion exchange chromatography (Q-Sepharose, CM......-Sepharose) and preparative PAGE. Results Equine Gc-globulin has successfully been purified from healthy horse plasma and rabbits and mice are being immunized to produce specific antibodies. Conclusions Purification of equine Gc-globulin and the production of specific antibodies will make it possible to develop an assay...... to be a sensitive marker of acute tissue injury and fatal outcome in humans. Patients with a low plasma concentration of Gc-globulin due to severe tissue injury might potentially benefit from infusions with purified Gc-globulin [1]. With an equine Gc-globulin assay, future studies will investigate the concentration...

  3. Glucocorticoid metabolites in newborns: A marker for traffic noise related stress?

    DEFF Research Database (Denmark)

    Lech Cantuaria, Manuella; Usermann, Jakob; Proietti, Elena

    2018-01-01

    Traffic noise has been associated with an increased risk for several non-auditory health effects, which may be explained by a noise-induced release of stress hormones (e.g. glucocorticoids). Although several studies in children and adults have indicated an increased secretion of glucocorticoids...

  4. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  5. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    OpenAIRE

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of pu...

  6. Glucocorticoids and hemopoietic stem cells

    International Nuclear Information System (INIS)

    Romashko, O.O.; Berin, G.I.

    1978-01-01

    Analyzing the data of home and foreign investigators the problems of the glucocorticoid effect on blood and bone marrow of experimental (including irradiated ones) animals are discussed. Considered are a character and mechanism of the adrenal cortex hormones effect on blood formation, as well as the effect of pharmacological doses of corticosteroids on CFU, their erythropoietic effect in physiological doses on a morphological picture of bone marrow after irradiation and subsequent introduction of hormones and the hormone effect on intensity of erythropoiesis recovery in irradiated mice. Presented are the experimental data on studying the effect of endogenic hypercorticoidism and a reduced level of endogenic corticosteroids on blood-forming stem cells in the irradiated mice and the data on the ACTH injection effect on CFU migration after irradiation. Evaluated are already available data and further investigations to ground advisability and conditions of using corticosteroids as well as determining rational therapeutic effects on secretion of endogenic glucocorticoids when treating blood system diseases

  7. Both selective and neutral processes drive GC content evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Cagliani Rachele

    2008-03-01

    Full Text Available Abstract Background Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait. Results Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs, as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations. Conclusion We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.

  8. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    International Nuclear Information System (INIS)

    Geest, Rick van der; Ouweneel, Amber B.; Sluis, Ronald J. van der; Groen, Albert K.; Van Eck, Miranda; Hoekstra, Menno

    2016-01-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  9. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Geest, Rick van der, E-mail: r.van.der.geest@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Ouweneel, Amber B., E-mail: a.b.ouweneel@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Sluis, Ronald J. van der, E-mail: r.vandersluis@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Groen, Albert K., E-mail: a.k.groen@umcg.nl [University Medical Center Groningen (Netherlands); Van Eck, Miranda, E-mail: m.eck@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Hoekstra, Menno, E-mail: hoekstra@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands)

    2016-09-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  10. The role of glucocorticoids in sodium retention in cirrhotic patients

    DEFF Research Database (Denmark)

    Hansen, Martin Højmark; Kristensen, Steffen Skott; Schaffalitzky de Muckadell, Ove B

    2012-01-01

    sodium retention evident in cirrhosis. The aim was to elucidate the role of glucocorticoids in sodium retention in decompensated cirrhotic patients. Methods. A randomized, double-blind, placebo-controlled, crossover study was performed in nine patients with alcoholic cirrhosis of the liver. A washout....... Conclusion. These results indicate that endogenous glucocorticoids contribute to the sodium retention in patients with alcoholic cirrhosis of the liver....

  11. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  12. Radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man

    International Nuclear Information System (INIS)

    Ballard, P.L.; Carter, J.P.; Graham, B.S.; Baxter, J.D.

    1975-01-01

    An assay for plasma glucocorticoid activity has been developed using specific glucocorticoid receptors. Unlike other assays for cortisol and certain synthetic corticosteroids, this radioreceptor assay measures the glucocorticoid activity of all natural and synthetic steroids. Steroids extracted from as little as 0.05 ml of plasma are incubated with 3 H-dexamethasone and cytosol receptors from cultured rat hepatoma cells. From 0.5 to 50 ng of cortisol are accurately detected. Glucocorticoid activities of adult plasmas determined by the assay correlate closely with corticoid levels obtained in the CBG-isotope and fluorometric assays. Other steroids are measured in proportion to both concentration and potency as glucocorticoids. Relative activities include: cortisol 100, dexamethasone 940, prednisolone 230, prednisone 3, estradiol 1 and androstenedione 1. A similar ranking of steroids was found using receptors from a human source (fetal lung). The assay has been useful in detecting glucocorticoid activity in unidentified medications and in measuring plasma glucocorticoid levels after administration of synthetic corticosteroids. (auth)

  13. Relationship of glucocorticoid receptor expression in peripheral blood mononuclear cells and the cochlea of guinea pigs and effects of dexamethasone administration.

    Directory of Open Access Journals (Sweden)

    Ling Lu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are widely used to treat sudden sensorineural hearing loss (SSNHL and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL. OBJECTIVE: To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs and in the cochlea of guinea pigs at mRNA and protein levels. METHODS: One group of guinea pigs received dexamethasone (10 mg/kg/day intraperitoneally for 7 consecutive days (dexamethasone group, and another group of guinea pigs received normal saline (control group. Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae. RESULTS: The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group. CONCLUSIONS: Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.

  14. Glucocorticoids exert context-dependent effects on cells of the joint in vitro

    DEFF Research Database (Denmark)

    Madsen, Suzi H; Andreassen, Kim V; Christensen, Søren T

    2011-01-01

    Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthritis. This st....... This study aimed at characterizing the effect of glucocorticoids on chondrocytes, osteoclasts, and osteoblasts....

  15. Cannabinoids and glucocorticoids modulate emotional memory after stress.

    Science.gov (United States)

    Akirav, Irit

    2013-12-01

    Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Tumor-promoting phorbol ester amplifies the inductions of tyrosine aminotransferase and ornithine decarboxylase by glucocorticoid

    International Nuclear Information System (INIS)

    Kido, H.; Fukusen, N.; Katunuma, N.

    1987-01-01

    In adrenalectomized rats, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the inductions of tyrosine aminotransferase (TAT) and ornithine decarboxylase by glucocorticoids, even with sufficient concentration of glucocorticoids to have a maximal effect, whereas it had no effect on TAT activity and increased ornithine decarboxylase activity only slightly in the absence of glucocorticoids. Phorbol derivatives and components of TPA such as 4β-phorbol, phorbol 12-tetradecanoate, phorbol 13-acetate, and 4-O-methylphorbol 12-tetradecanoate 13-acetate, which have no tumor-promoting activity or ability to activate protein kinase C, did not have any effect on TAT induction by glucocorticoid. TPA enhanced the induction of TAT by various glucocorticoids but had no effect on induction of TAT by glucagon or insulin and did not enhance the induction of glucose-6-phosphate dehydrogenase by 17β-estradiol. These results suggest that TPA specifically enhances the induction of TAT and ornithine decarboxylase by glucocorticoids. Similar effects of TPA on TAT induction by glucocorticoid were observed in primary cultures of adult rat hepatocytes. Another activator of protein kinase C, rac-1,2-dioctanoylglycerol, was also found to have similar effects on the cells

  17. Association of N-terminal domain polymorphisms of the porcine glucocorticoid receptor with carcass composition and meat quality traits.

    Science.gov (United States)

    Reyer, Henry; Ponsuksili, Siriluck; Wimmers, Klaus; Murani, Eduard

    2014-02-01

    The glucocorticoid receptor (GR) is a ubiquitously acting transcription factor that is responsible for mediating the physiological response to stress and adaptation to environmental conditions. Genetic variation of a GR gene (NR3C1) may therefore contribute to multiple phenotypic alterations and influence relevant traits of animal production. Here, we examined effects of two non-synonymous mutations of the porcine NR3C1, leading to amino acid exchanges p.Glu13Asp (c.39A>C) and p.Val19Leu (c.55G>C) in the N-terminal domain of the GR, on meat quality and carcass composition. In addition, we explored their influence on transcriptional activity of GR in vitro. A commercial crossbreed Pietrain × (German Large White × German Landrace) herd (n = 545) in which genotypes and relevant traits had been collected was used to perform the association analysis. The single nucleotide polymorphism (SNP) c.55G>C was significantly associated with conductivity and meat color scores. These effects were highly consistent considering the physiological relationship between these traits. Association analysis of SNP c.39A>C also revealed significant effects on closely connected meat quality traits. In addition, SNP c.55G>C showed association with carcass traits, mainly those related to muscle deposition. The molecular mechanism of action of both amino acid substitutions remains obscure because neither showed significant influence on transcriptional activity of GR. Our study emphasizes NR3C1 as an important candidate gene for muscle-related traits in pigs, but further work is necessary to clarify the molecular background of the identified associations. © 2013 Stichting International Foundation for Animal Genetics.

  18. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison's disease

    NARCIS (Netherlands)

    Smans, L.; Lentjes, E.G.W.M.; Hermus, A.R.; Zelissen, P.M.J.

    2013-01-01

    OBJECTIVE: Patients with Addison's disease require lifelong treatment with glucocorticoids. At present, no glucocorticoid replacement therapy (GRT) can exactly mimic normal physiology. As a consequence, under- and especially overtreatment can occur. Suboptimal GRT may lead to various side effects.

  19. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  20. Postreactivation glucocorticoids impair recall of established fear memory.

    Science.gov (United States)

    Cai, Wen-Hui; Blundell, Jacqueline; Han, Jie; Greene, Robert W; Powell, Craig M

    2006-09-13

    Pavlovian fear conditioning provides one of the best rodent models of acquired anxiety disorders, including posttraumatic stress disorder. Injection of a variety of drugs after training in fear-conditioning paradigms can impair consolidation of fear memories. Indeed, early clinical trials suggest that immediate administration of such drugs after a traumatic event may decrease the risk of developing posttraumatic stress disorder in humans (Pitman et al., 2002; Vaiva et al., 2003). The use of such a treatment is limited by the difficulty of treating every patient at risk and by the difficulty in predicting which patients will experience chronic adverse consequences. Recent clinical trials suggest that administration of glucocorticoids may have a beneficial effect on established posttraumatic stress disorder (Aerni et al., 2004) and specific phobia (Soravia et al., 2006). Conversely, glucocorticoid administration after training is known to enhance memory consolidation (McGaugh and Roozendaal, 2002; Roozendaal, 2002). From a clinical perspective, enhancement of a fear memory or a reactivated fear memory would not be desirable. We report here that when glucocorticoids are administered immediately after reactivation of a contextual fear memory, subsequent recall is significantly diminished. Additional experiments support the interpretation that glucocorticoids not only decrease fear memory retrieval but, in addition, augment consolidation of fear memory extinction rather than decreasing reconsolidation. These findings provide a rodent model for a potential treatment of established acquired anxiety disorders in humans, as suggested by others (Aerni et al., 2004; Schelling et al., 2004), based on a mechanism of enhanced extinction.

  1. Adrenocorticotropic Hormone Secreting Pheochromocytoma Underlying Glucocorticoid Induced Pheochromocytoma Crisis

    Directory of Open Access Journals (Sweden)

    Gil A. Geva

    2018-01-01

    Full Text Available Context. Pheochromocytomas are hormone secreting tumors of the medulla of the adrenal glands found in 0.1–0.5% of patients with hypertension. The vast majority of pheochromocytomas secrete catecholamines, but they have been occasionally shown to also secrete interleukins, calcitonin, testosterone, and in rare cases adrenocorticotropic hormone. Pheochromocytoma crisis is a life threatening event in which high levels of catecholamines cause a systemic reaction leading to organ failure. Case Description. A 70-year-old man was admitted with acute myocardial ischemia following glucocorticoid administration as part of an endocrine workup for an adrenal mass. Cardiac catheterization disclosed patent coronary arteries and he was discharged. A year later he returned with similar angina-like chest pain. During hospitalization, he suffered additional events of chest pain, shortness of breath, and palpitations following administration of glucocorticoids as preparation for intravenous contrast administration. Throughout his admission, the patient demonstrated both signs of Cushing’s syndrome and high catecholamine levels. Following stabilization of vital parameters and serum electrolytes, the adrenal mass was resected surgically and was found to harbor an adrenocorticotropic hormone secreting pheochromocytoma. This is the first documented case of adrenocorticotropic hormone secreting pheochromocytoma complicated by glucocorticoid induced pheochromocytoma crisis. Conclusion. Care should be taken when administering high doses of glucocorticoids to patients with suspected pheochromocytoma, even in a patient with concomitant Cushing’s syndrome.

  2. Alcohol dysregulates corticotropin-releasing-hormone (CRH promoter activity by interfering with the negative glucocorticoid response element (nGRE.

    Directory of Open Access Journals (Sweden)

    Magdalena M Przybycien-Szymanska

    Full Text Available EtOH exposure in male rats increases corticotropin-releasing hormone (CRH mRNA in the paraventricular nucleus of the hypothalamus (PVN, a brain region responsible for coordinating stress and anxiety responses. In this study we identified the molecular mechanisms involved in mediating these effects by examining the direct effects of EtOH on CRH promoter activity in a neuronal cell line derived from the PVN (IVB. In addition, we investigated the potential interactions of EtOH and glucocorticoids on the CRH promoter by concomitantly treating cells with EtOH and the glucocorticoid receptor (GR antagonist RU486, and by sequentially deleting GR binding sites within glucocorticoid response element (GRE on the CRH promoter. Cells were transiently transfected with a firefly luciferase reporter construct containing 2.5 kb of the rat wild type (WT or mutated CRH promoter. Our results showed that EtOH treatment induced a biphasic response in CRH promoter activity. EtOH exposure for 0.5 h significantly decreased promoter activity compared to vehicle treated controls, whereas promoter activity was significantly increased after 2.0 h of EtOH exposure. Treatment with RU486, or deletion of the GR binding sites 1 and 2 within the GRE, abolished the EtOH-induced increase in the promoter activity, however did not affect EtOH-induced decrease in CRH promoter activity at an earlier time point. Overall, our data suggest that alcohol exposure directly regulates CRH promoter activity by interfering with the normal feedback mechanisms of glucocorticoids mediated by GR signaling at the GRE site of the CRH promoter.

  3. Raised urinary glucocorticoid and adrenal androgen precursors in the urine of young hypertensive patients: possible evidence for partial glucocorticoid resistance

    Science.gov (United States)

    Shamim, W; Yousufuddin, M; Francis, D; Gualdiero, P; Honour, J; Anker, S; Coats, A

    2001-01-01

    OBJECTIVE—To evaluate urinary glucocorticoid excretion profiles in a cohort of recently diagnosed young hypertensive patients.
METHODS—After excluding patients with secondary causes, 60 individuals with premature hypertension were recruited (diagnosed by ambulatory blood pressure monitoring before the age of 36 years). In addition, 30 older hypertensive controls (age of onset > 36 years, "middle aged hypertensive controls"), and 30 normal controls (age matched to the young hypertensive group) were studied. All provided 24 hour urine collections for mass spectrometry for total cortisol metabolites and total androgen metabolites by gas chromatography.
RESULTS—Among male patients, those with premature hypertension had higher total urinary excretion of cortisol metabolites (mean (SD), 13 332 (6472) µg/day) than age matched normal controls (7270 (1788) µg/day; p = 0.00001) or middle aged hypertensive controls (8315 (3565) µg/day; p = 0.002). A similar increase was seen among the female patients, although the absolute concentrations were lower. There was no significant difference between middle aged hypertensive patients and normal controls. Urinary total androgen excretion profiles in female patients also showed an unusual increase in the premature hypertension group (2958 (1672) µg/day) compared with the other groups (middle aged hypertensive controls, 1373 (748) µg/day, p = 0.0003; normal controls, 1687 (636) µg/day, p = 0.002). In all subjects, serum sodium and creatinine concentrations were within the normal range; serum potassium concentrations were found to be low before the start of treatment.
CONCLUSIONS—Individuals presenting with premature hypertension have an abnormally high excretion of glucocorticoid metabolites in the urine. While the mechanism remains uncertain, these findings are compatible with partial resistance of the glucocorticoid receptors, with a compensatory increase in cortisol and androgen

  4. The study of lymphocytes glucocorticoid receptor in severe head injury

    International Nuclear Information System (INIS)

    Li Dapei; Wang Haodan; Zhao Qihuang

    1994-01-01

    Glucocorticoid receptors (GCR) of peripheral lymphocytes from 14 patients with severe head injury and 11 normal volunteers are studied by means of single point method of radioligand binding assay. All these patients receive surgical therapy and glucocorticoid of routine dosage. The results show that the GCR level of these patients is lower than that of the normal, while the plasma cortisol level is much higher. These changes correlate closely to the patients' clinical outcome. It is indicated that the GCR level can reflect the degree of stress of these patients and their response to glucocorticoid therapy. Using peripheral lymphocytes instead of the brain biopsy for the measurement of GCR can reflect the GCR changes of brain tissue, it's more convenient to get the sample and more acceptable to the patients

  5. The value of eutherian-marsupial comparisons for understanding the function of glucocorticoids in female mammal reproduction.

    Science.gov (United States)

    Fanson, Kerry V; Parrott, Marissa L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The effects of glucocorticoids on the inhibition of emotional information: A dose-response study.

    Science.gov (United States)

    Taylor, Véronique A; Ellenbogen, Mark A; Washburn, Dustin; Joober, Ridha

    2011-01-01

    There is evidence that cortisol influences cognitive and affective processes such as selective attention and memory for emotional events, yet the effects of glucocorticoids on attentional inhibition in humans remain unknown. Consequently, this double-blind study examined dose-dependent effects of exogenous glucocorticoids on the inhibition of emotional information. Sixty-three university students (14 male, 49 female) ingested either a placebo pill or hydrocortisone (10mg or 40mg), and completed a negative priming task assessing the inhibition of pictures depicting angry, sad, and happy faces. The 10mg, but not the 40mg hydrocortisone dose elicited increased inhibition for angry faces relative to placebo. Thus, moderate glucocorticoid elevations may have adaptive effects on emotional information processing, whereas high glucocorticoid elevations appear to attenuate this effect, consistent with the view that there are dose-dependent effects of glucocorticoids on cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Glucocorticoid treatment and impaired mood, memory and metabolism in people with diabetes: the Edinburgh Type 2 Diabetes Study

    Science.gov (United States)

    Reynolds, Rebecca M; Labad, Javier; Sears, Alison V; Williamson, Rachel M; Strachan, Mark W J; Deary, Ian J; Lowe, Gordon D O; Price, Jackie F; Walker, Brian R

    2012-01-01

    Objective Both type 2 diabetes and glucocorticoid therapy are highly prevalent. Although people with type 2 diabetes may be more susceptible to adverse effects of glucocorticoids, and it is recommended that glucocorticoid therapy is avoided for fear of worsening glycaemic control, the extent to which this advice is followed and the consequences when glucocorticoids are prescribed are poorly documented. The aim was to assess the characteristics of people with type 2 diabetes prescribed glucocorticoids in a real-world setting and to quantify resulting adverse effects. Design Cross-sectional cohort study. Methods Cardiometabolic variables, body fat distribution, cognitive function and mood were studied in the 1066 participants of the Edinburgh Type 2 Diabetes Study, of whom 162 (15%) were taking systemic, topical or inhaled glucocorticoids. Results Glucocorticoid therapy was more common in women and in smokers but was not avoided in patients with diabetic complications or cardiovascular risk factors. People taking glucocorticoids were more centrally obese with slightly higher HbA1c and total serum cholesterol but were no more likely to have hepatic steatosis or hypertension. Glucocorticoid treatment was associated with substantially lower mood and greater anxiety. Women taking glucocorticoid therapy were twice as likely to report depressive symptoms compared with those not taking treatment. Glucocorticoid therapy was also associated with poorer cognitive function among those with subclinical atherosclerosis, as indicated by low ankle–brachial pressure index. Conclusions Glucocorticoids are prescribed commonly for people with type 2 diabetes despite being associated with adverse indices of glycaemic control, cardiovascular risk factors, mood and cognitive function. PMID:22408122

  8. Rapid Quantification of N-Methyl-2-pyrrolidone in Polymer Matrices by Thermal Desorption-GC/MS.

    Science.gov (United States)

    Kim, Young-Min; Kim, Jae Woo; Moon, Hye Mi; Lee, Min-Jin; Hosaka, Akihiko; Watanabe, Atsushi; Teramae, Norio; Park, Young-Kwon; Myung, Seung-Woon

    2017-01-01

    Analysis of a residual solvent in polymeric materials has become an important issue due to the increased regulations and standards for its use. N-Methyl-2-pyrrolidone (NMP) is a solvent widely used in many industries and restricted as one of the chemicals under EU REACH regulations due to its potential harmful effects. In this study, thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) is applied for the quantitative analysis of NMP with the use of a polymer-coated sample cup. By using the polymer-coated sample cup, the vaporization of NMP was prevented during waiting time before TD-GC/MS analysis. The calibration curve for the TD method showed good linearity (correlation coefficient, r 2 = 0.9998) and precision values (below 5.3% RSD). NMP recovery rates in different polymer matrices (PS, PMMA and PVC) were in the range of 98.8 to 106.6% with RSD values below 5.0%. The quantification result (600 mg NMP/kg PVC) for the blind NMP carrying sample in a PVC matrix by TD-GC/MS was higher than that (532 mg NMP/kg PVC) by solvent extraction-GC/MS method.

  9. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action

    Science.gov (United States)

    Chapman, Karen; Holmes, Megan

    2013-01-01

    Glucocorticoid action on target tissues is determined by the density of “nuclear” receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental “programming.” The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues. PMID:23899562

  10. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  11. Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: cohort study

    Science.gov (United States)

    Petersen, Irene; Nazareth, Irwin

    2012-01-01

    Objective To investigate whether there is an increased risk of cardiovascular events in people who exhibit iatrogenic Cushing’s syndrome during treatment with glucocorticoids. Design Cohort study. Setting 424 UK general practices contributing to The Health Improvement Network database. Participants People prescribed systemic glucocorticoids and with a diagnosis of iatrogenic Cushing’s syndrome (n=547) and two comparison groups: those prescribed glucocorticoids and with no diagnosis of iatrogenic Cushing’s syndrome (n=3231) and those not prescribed systemic glucocorticoids (n=3282). Main outcome measures Incidence of cardiovascular events within a year after diagnosis of iatrogenic Cushing’s syndrome or after a randomly selected date, and association between iatrogenic Cushing’s syndrome and risk of cardiovascular events. Results 417 cardiovascular events occurred in 341 patients. Taking into account only the first event by patient (coronary heart disease n=177, heart failure n=101, ischaemic stroke n=63), the incidence rates of cardiovascular events per 100 person years at risk were 15.1 (95% confidence interval 11.8 to 18.4) in those prescribed glucocorticoids and with a diagnosis of iatrogenic Cushing’s syndrome, 6.4 (5.5 to 7.3) in those prescribed glucocorticoids without a diagnosis of iatrogenic Cushing’s syndrome, and 4.1 (3.4 to 4.8) in those not prescribed glucocorticoids. In multivariate analyses adjusted for sex, age, intensity of glucocorticoid use, underlying disease, smoking status, and use of aspirin, diabetes drugs, antihypertensive drugs, lipid lowering drugs, or oral anticoagulant drugs, the relation between iatrogenic Cushing’s syndrome and cardiovascular events was strong (adjusted hazard ratios 2.27 (95% confidence interval 1.48 to 3.47) for coronary heart disease, 3.77 (2.41 to 5.90) for heart failure, and 2.23 (0.96 to 5.17) for ischaemic cerebrovascular events). The adjusted hazard ratio for any cardiovascular event was 4

  12. Science review: Mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids

    OpenAIRE

    Prigent, Hélène; Maxime, Virginie; Annane, Djillali

    2004-01-01

    This review describes current knowledge on the mechanisms that underlie glucocorticoid insufficiency in sepsis and the molecular action of glucocorticoids. In patients with severe sepsis, numerous factors predispose to glucocorticoid insufficiency, including drugs, coagulation disorders and inflammatory mediators. These factors may compromise the hypothalamic–pituitary axis (i.e. secondary adrenal insufficiency) or the adrenal glands (i.e. primary adrenal failure), or may impair glucocorticoi...

  13. CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis.

    Science.gov (United States)

    Hill, Micah J; Suzuki, Shigeru; Segars, James H; Kino, Tomoshige

    2016-01-01

    Glucocorticoid hormones play essential roles in the regulation of gluconeogenesis in the liver, an adaptive response that is required for the maintenance of circulating glucose levels during fasting. Glucocorticoids do this by cooperating with glucagon, which is secreted from pancreatic islets to activate the cAMP-signaling pathway in hepatocytes. The cAMP-response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a coactivator known to be specific to CREB and plays a central role in the glucagon-mediated activation of gluconeogenesis in the early phase of fasting. We show here that CRTC2 also functions as a coactivator for the glucocorticoid receptor (GR). CRTC2 strongly enhances GR-induced transcriptional activity of glucocorticoid-responsive genes. CRTC2 physically interacts with the ligand-binding domain of the GR through a region spanning amino acids 561-693. Further, CRTC2 is required for the glucocorticoid-associated cooperative mRNA expression of the glucose-6-phosphatase, a rate-limiting enzyme for hepatic gluconeogenesis, by facilitating the attraction of GR and itself to its promoter region already occupied by CREB. CRTC2 is required for the maintenance of blood glucose levels during fasting in mice by enhancing the GR transcriptional activity on both the G6p and phosphoenolpyruvate carboxykinase (Pepck) genes. Finally, CRTC2 modulates the transcriptional activity of the progesterone receptor, indicating that it may influence the transcriptional activity of other steroid/nuclear receptors. Taken together, these results reveal that CRTC2 plays an essential role in the regulation of hepatic gluconeogenesis through coordinated regulation of the glucocorticoid/GR- and glucagon/CREB-signaling pathways on the key genes G6P and PEPCK.

  14. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice.

    Science.gov (United States)

    van der Geest, Rick; Ouweneel, Amber B; van der Sluis, Ronald J; Groen, Albert K; Van Eck, Miranda; Hoekstra, Menno

    2016-09-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18±5ng/ml vs 472±58ng/ml; Phypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Expression and function of nuclear receptor coregulators in brain : understanding the cell-specific effects of glucocorticoids

    NARCIS (Netherlands)

    Laan, Siem van der

    2008-01-01

    Currently, the raising awareness of the role of glucocorticoids in the onset of numerous (neuro)-pathologies constitutes the increasing necessity of understanding the mechanisms of action of glucocorticoids in bodily processes and brain functioning. Glucocorticoids mediate their effects by binding

  16. Augmented β-Cell Function and Mass in Glucocorticoid-Treated Rodents Are Associated with Increased Islet Ir-β/AKT/mTOR and Decreased AMPK/ACC and AS160 Signaling

    Directory of Open Access Journals (Sweden)

    André O. P. Protzek

    2014-01-01

    Full Text Available Glucocorticoid (GC therapies may adversely cause insulin resistance (IR that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT substrate with 160 kDa (AS160 as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX (1 mg/kg body weight for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

  17. Effects of chronic mild stress on behavioral and neurobiological parameters - Role of glucocorticoid.

    Science.gov (United States)

    Chen, Jiao; Wang, Zhen-zhen; Zuo, Wei; Zhang, Shuai; Chu, Shi-feng; Chen, Nai-hong

    2016-02-01

    Major depression is thought to originate from maladaptation to adverse events, particularly when impairments occur in mood-related brain regions. Hypothalamus-pituitary-adrenal (HPA) axis is one of the major systems involved in physiological stress response. HPA axis dysfunction and high glucocorticoid concentrations play an important role in the pathogenesis of depression. In addition, astrocytic disability and dysfunction of neurotrophin brain-derived neurotrophin factor (BDNF) greatly influence the development of depression and anxiety disorders. Therefore, we investigated whether depressive-like and anxiety-like behaviors manifest in the absence of glucocorticoid production and circulation in adrenalectomized (ADX) rats after chronic mild stress (CMS) exposure and its potential molecular mechanisms. The results demonstrate that glucocorticoid-controlled rats showed anxiety-like behaviors but not depression-like behaviors after CMS. Molecular and cellular changes included the decreased BDNF in the hippocampus, astrocytic dysfunction with connexin43 (cx43) decreasing and abnormality in gap junction in prefrontal cortex (PFC). Interestingly, we did not find any changes in glucocorticoid receptor (GR) or its chaperone protein FK506 binding protein 51 (FKBP5) expression in the hippocampus or PFC in ADX rats subjected to CMS. In conclusion, the production and circulation of glucocorticoids are one of the contributing factors in the development of depression-like behaviors in response to CMS. In contrast, the effects of CMS on anxiety-like behaviors are independent of the presence of circulating glucocorticoids. Meanwhile, stress decreased GR expression and enhanced FKBP5 expression via higher glucocorticoid exposure. Gap junction dysfunction and changes in BDNF may be associated with anxiety-like behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    International Nuclear Information System (INIS)

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. 3 H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse

  19. Impact des glucocorticoïdes plasmatiques sur la maturation et le fonctionnement de l'inhibition spinale GABAergique

    OpenAIRE

    Zell, Vivien

    2013-01-01

    Glucocorticoids (GC) such as corticosterone (CORT) in rats are synthetized following stress and HPA axis activation and are part of organisms response to homeostasis perturbations. Furthermore, GC can also alter pain perception. Les glucocorticoides (GC) sont des hormones stéroïdes synthétisées par les glandes surrénales suite à l’activation de l’axe hypothalamo-hypophysaire- surrénalien (ou axe HPA pour hypothalamic-pituitary-adrenal). Leur sécrétion pulsatile est sous le contrôle de l’ho...

  20. [Glucocorticoid therapy: what is the information sought by patients? Traffic analysis of the website cortisone-info.fr].

    Science.gov (United States)

    Poisson, J; Six, M; Morin, C; Fardet, L

    2013-05-01

    About 1% of the general population are receiving systemic glucocorticoids. The information about this treatment sought by patients is unknown. The website www.cortisone-info.fr aims to provide therapeutic information about glucocorticoids and glucocorticoid therapy. It was posted on January 16, 2012. The information available on the website is documented and based on the recent medical literature. The website is made of 43 pages divided into five main sections (generalities about glucocorticoids, adverse events, measures associated with glucocorticoid therapy, discontinuation of glucocorticoids and, situations requiring attention). The website traffic between February 1st, 2012 and January 4, 2013 was analyzed using Google Analytics. During the study period, the website was visited by 67,496 people (average number of visitors per day: 33 in February 2012, 326 in December 2012). The number of page views was 230,496 or an average of 3.5 pages per visitor. Of these 230,496 page views, 145,431 (63.1%) were related to adverse events and 37,722 (16.4%) were related to generalities about glucocorticoids (e.g., what is cortisone? For which disease? How does it work?). Information particularly sought by visitors was related to the diet to follow during glucocorticoid therapy (page accessed 11,946 times), data about what cortisone is (page accessed 11,829 times) and the effects of glucocorticoids on weight (page accessed 10,442 times). Knowledge of glucocorticoid-treated patients' expectations may help physicians to optimize information they give, thereby helping to reduce patients' concerns about glucocorticoids and to improve adherence to the treatment. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Piper sarmentosum Effects on 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme in Serum and Bone in Rat Model of Glucocorticoid-Induced Osteoporosis.

    Science.gov (United States)

    Mohamad Asri, Siti Fadziyah; Mohd Ramli, Elvy Suhana; Soelaiman, Ima Nirwana; Mat Noh, Muhamad Alfakry; Abdul Rashid, Abdul Hamid; Suhaimi, Farihah

    2016-11-15

    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum ( Ps ) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration ( p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.

  2. Fatigue and gene expression in human leukocytes: Increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue

    Science.gov (United States)

    Bower, Julienne E.; Ganz, Patricia A.; Irwin, Michael R.; Arevalo, Jesusa M.G.; Cole, Steve W.

    2013-01-01

    Fatigue is highly prevalent in the general population and is one of the most common side effects of cancer treatment. There is growing evidence that pro-inflammatory cytokines play a role in cancer-related fatigue, although the molecular mechanisms for chronic inflammation and fatigue have not been determined. The current study utilized genome-wide expression microarrays to identify differences in gene expression and associated alterations in transcriptional activity in leukocytes from breast cancer survivors with persistent fatigue (n = 11) and non-fatigued controls (n = 10). We focused on transcription of inflammation-related genes, particularly those responsive to the pro-inflammatory NF-κB transcription control pathway. Further, given the role of glucocorticoids as key regulators of inflammatory processes, we examined transcription of glucocorticoid-responsive genes indicative of potential glucocorticoid receptor (GR) desensitization. Plasma levels of cortisol were also assessed. Consistent with hypotheses, results showed increased expression of transcripts with response elements for NF-κB, and reduced expression of transcripts with response elements for glucocorticoids (p < .05) in fatigued breast cancer survivors. No differences in plasma levels of cortisol were observed. These data indicate that increased activity of pro-inflammatory transcription factors may contribute to persistent cancer-related fatigue and provide insight into potential mechanisms for tonic increases in NF-κB activity, specifically decreased expression of GR anti-inflammatory transcription factors. PMID:20854893

  3. Probing Dominant Negative Behavior of Glucocorticoid Receptor β through a Hybrid Structural and Biochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jungki; Perera, Lalith; Krahn, Juno M.; Jewell, Christine M.; Moon, Andrea F.; Cidlowski, John A.; Pedersen, Lars C.

    2018-02-05

    ABSTRACT

    Glucocorticoid receptor β (GRβ) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRβ functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRβ complexed with the antagonist RU-486. The structure reveals that GRβ binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRβ are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRβ do not contribute to RU-486 binding. Intriguingly, the GRβ/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRβ is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRβ could repress transcription.

  4. Glucocorticoid-induced leucine zipper expression is associated with response to treatment and immunoregulation in systemic lupus erythematosus.

    Science.gov (United States)

    Mohammadi, Saeed; Ebadpour, Mohammad Reza; Sedighi, Sima; Saeedi, Mohsen; Memarian, Ali

    2017-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder in which cytokine balance is disturbed. Glucocorticoids (GCs) are shown to balance immune response by transcriptional regulation of glucocorticoid receptor target genes such as Glucocorticoid-induced leucine zipper (GILZ) which has been introduced as an endogenous anti-inflammatory mediator. In the present study, we assessed the expression of GILZ in association with interferon-γ (IFN-γ), interleukine-10 (IL-10), and B lymphocyte stimulator (BLyS) plasma levels in SLE patients. A total of 40 female patients (18 under treatment and 22 newly diagnosed) were recruited in this study. Real-time RT PCR was conducted to quantify the mRNA expression of GILZ. The plasma levels of IFN-γ, IL-10, and BLyS were evaluated using ELISA method. GILZ was overexpressed among under treatment SLE patients. The mRNA expression of GILZ was significantly correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score. IFN-γ and BLyS were downregulated in response to therapies with negative correlations to GILZ. Moreover, IL-10 was upregulated among treated patients. The levels of IFN-γ and BLyS were correlated with the severity of disease, while IL-10 was negatively correlated with SLEDAI score. GILZ could be introduced as one of the acting molecules in mediating the regulatory effects of GCs on producing pro- and anti-inflammatory cytokines in SLE.

  5. Recent developments in comprehensive two-dimensional gas chromatography (GC X GC) I. Introduction and instrumental set-up

    NARCIS (Netherlands)

    Adahchour, M.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.T.

    2006-01-01

    We review the literature on comprehensive two-dimensional gas chromatography (GC × GC), emphasizing developments in the period 2003-2005. The review opens with a general introduction, the principles of the technique and the set-up of GC × GC systems. It also discusses theoretical aspects, trends in

  6. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  7. Glucocorticoids and laminitis in the horse.

    Science.gov (United States)

    Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M

    2002-08-01

    The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically

  8. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  9. Photosynthetic CO2 fixation in guard cells (GC)

    International Nuclear Information System (INIS)

    Gotow, K.; Taylor, S.; Zeiger, E.

    1987-01-01

    Recent studies indicate that carbon metabolism in GC is modulated by light quality. The fate of 14 CO 2 supplied to highly purified Vicia GC protoplasts irradiated with red light was investigated. The suspension was stirred at 25 0 C and dark-adapted for 5 min. After 5 min. in red light, 4.8 uCi of NaH 14 CO 3 was added (final concentration: 100 uM). Metabolism was quenched after 30 s with boiling ethanol. Anionic compounds were separated by 2D PC and TLC, and quantified. Rates of CO 2 fixation were 5- to 8-fold higher in the light. In the dark, malate and aspartate had 90% of the total label; in the light, 3-PGA, sugar monophosphates (SMP) and sugar diophosphates (SDP) had up to 60% of the label. Phosphates treatment and rechromatography of labelled SDP showed the presence of ribulose, a specific PCRP metabolite. In time-course experiments, labelled 3-PGA was detected within 5 s. With time, the percentage of label in 3-PGA decreased and that in SMP increased. The authors conclude that 3-PGA is a primary carboxylation product of the PCRP in GC and that the activity of the PCRP and PEP-carboxylase is metabolically regulated

  10. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    Science.gov (United States)

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  11. Preadmission Use of Glucocorticoids and 30-Day Mortality After Stroke.

    Science.gov (United States)

    Sundbøll, Jens; Horváth-Puhó, Erzsébet; Schmidt, Morten; Dekkers, Olaf M; Christiansen, Christian F; Pedersen, Lars; Bøtker, Hans Erik; Sørensen, Henrik T

    2016-03-01

    The prognostic impact of glucocorticoids on stroke mortality remains uncertain. We, therefore, examined whether preadmission use of glucocorticoids is associated with short-term mortality after ischemic stroke, intracerebral hemorrhage (ICH), or subarachnoid hemorrhage (SAH). We conducted a nationwide population-based cohort study using medical registries in Denmark. We identified all patients with a first-time inpatient diagnosis of stroke between 2004 and 2012. We categorized glucocorticoid use as current use (last prescription redemption ≤90 days before admission), former use, and nonuse. Current use was further classified as new or long-term use. We used Cox regression to compute 30-day mortality rate ratios with 95% confidence intervals (CIs), controlling for confounders. We identified 100 042 patients with a first-time stroke. Of these, 83 735 patients had ischemic stroke, 11 779 had ICH, and 4528 had SAH. Absolute mortality risk was higher for current users compared with nonusers for ischemic stroke (19.5% versus 10.2%), ICH (46.5% versus 34.4%), and SAH (35.0% versus 23.2%). For ischemic stroke, the adjusted 30-day mortality rate ratio was increased among current users compared with nonusers (1.58, 95% CI: 1.46-1.71), driven by the effect of glucocorticoids among new users (1.80, 95% CI: 1.62-1.99). Current users had a more modest increase in the adjusted 30-day mortality rate ratio for hemorrhagic stroke (1.26, 95% CI: 1.09-1.45 for ICH and 1.40, 95% CI: 1.01-1.93 for SAH) compared with nonusers. Former use was not substantially associated with mortality. Preadmission use of glucocorticoids was associated with increased 30-day mortality among patients with ischemic stroke, ICH, and SAH. © 2016 American Heart Association, Inc.

  12. The impact of age-class and social context on fecal glucocorticoid metabolite levels in free-ranging male giraffes.

    Science.gov (United States)

    Wolf, T E; Bennett, N C; Burroughs, R; Ganswindt, A

    2018-01-01

    One of the primary sources of perceived stress is the social environment of an animal and the interactions with conspecifics. An essential component of the response to a stressor is the activation of the hypothalamic-pituitary-adrenocortical axis, which results amongst others in a temporal increase in circulating glucocorticoid (GC) levels. Giraffes occur in a highly flexible fission-fusion social system and group compositions can change on a daily basis, with bulls establishing an age-related dominance hierarchy and showing a roaming strategy in the search for fertile females. The aim of this study was to non-invasively monitor the influence of different group compositions (mixed sex groups vs. all-male groups) on GC concentrations in free ranging giraffe bulls of different age classes. We collected fecal samples from free-ranging giraffe bulls for 12months in a South African Private Game Reserve to examine age- and social context-related patterns of fecal GC metabolite (fGCM) concentrations. We found that fGCM levels in giraffe bulls are age-class dependent, as well asassociated with changes in the social environment. Independently of the social setting, bulls of the youngest age class exhibited the highest fGCM levels compared to bulls of the other two older age-classes, with differences most pronounced when the bulls are associated in all-male groups. In contrast, an almost reversed picture appears when looking at the fGCM levels of sexually active individuals in mixed sex groups, where highest levels were found for the bulls in the oldest age-class, and the lowest for the bulls in the youngest age-class. The study stresses the importance to taking factors such asage-related status and social settings into account, when interpreting fGCM levels in free ranging giraffes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preadmission glucocorticoid use and anastomotic leakage after colon and rectal cancer resections: a Danish cohort study

    Science.gov (United States)

    Ostenfeld, Eva Bjerre; Erichsen, Rune; Baron, John A; Thorlacius-Ussing, Ole; Iversen, Lene Hjerrild; Riis, Anders H; Sørensen, Henrik Toft

    2015-01-01

    Objective To examine whether preadmission glucocorticoid use increases the risk of anastomotic leakage after colon and rectal cancer resections. Design A population-based cohort study. Setting Denmark (2001–2011). Participants We identified patients who had undergone a primary anastomosis after a colorectal cancer resection by linking medical registries. Participants who filled their most recent glucocorticoid prescription ≤90, 91–365 and >365 days before their surgery date were categorised as current, recent and former users, respectively. Main outcome measures We calculated 30-day absolute risk of anastomotic leakage and computed ORs using logistic regression models with adjustment for potential confounders. Results Of the 18 190 patients with colon cancer, anastomotic leakage occurred in 1184 (6.5%). Glucocorticoid use overall was not associated with an increased risk of leakage (6.4% vs 6.9% among never-users; OR 1.05; 95% CI 0.89 to 1.23). Categories of oral, inhaled or intestinal-acting glucocorticoids did not greatly affect risk of leakage. Anastomotic leakage occurred in 695 (13.2%) of 5284 patients with rectal cancer. Glucocorticoid use overall slightly increased risk of leakage (14.6% vs 12.8% among never-users; OR 1.36, 95% CI 1.08 to 1.72). Results did not differ significantly within glucocorticoid categories. Conclusions Preadmission glucocorticoids modestly increased the risk of anastomotic leakage mainly after rectal cancer resection. However, absolute risk differences were small and the clinical impact of glucocorticoid use may therefore be limited. PMID:26408282

  14. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  15. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  16. Low-dose glucocorticoids in hyperandrogenism Efecto de bajas dosis de glucocorticoides en el hiperandrogenismo

    Directory of Open Access Journals (Sweden)

    Leonardo Rizzo

    2007-06-01

    Full Text Available To investigate the effect of low-doses of glucocorticoids on androgen and cortisol secretion during the course of the day, we evaluated clinical signs of hyperandrogenism and total, free and bioavailable testosterone, SHBG, and cortisol following two different protocols: A fourteen patients received betamethasone 0.6 mg/day (n=8 or methylprednisolone 4 mg/day (n=6, as single daily oral dose at 11.00 PM, during 30 days, B fourteen patients were evaluated under betamethasone 0.3 mg in a single daily dose at 11.00 PM during six months, 11 out of whom were re-evaluated six months later. Twenty eight women with hyperandrogenism were included and seven normal females were used as control. Blood samples were taken in follicular phase at 8 AM and 7 PM to determine SHBG, cortisol, total, free and bioavailable testosterone. In both protocols, a significant morning and evening decrease in cortisol and testosterone (pCon el objetivo de investigar el efecto de bajas dosis de glucocorticoides sobre la secreción de andrógenos y cortisol en el curso del día, evaluamos signos de hiperandrogenismo, testosterona total, libre y biodisponible y cortisol según dos protocolos diferentes: A catorce pacientes recibieron betametasona 0.6 mg/día (n= 8 o metilprednisolona 4 mg/día (n= 6 en dosis única cotidiana, a las 23 h, durante 30 días, B catorce pacientes fueron evaluadas bajo betametasona 0.3 mg en dosis única cotidiana a la 23 h, administrada durante 6 meses; de ellas, 11 pacientes fueron re-evaluadas 6 meses más tarde. Se incluyeron 28 mujeres con hiperandrogenismo y 7 controles normales. Se obtuvieron muestras de sangre en fase folicular a las 08:00 y 9:00 h para determinar SHBG, cortisol, testosterona total, libre y biodisponible. En ambos protocolos se observó una disminución significativa de cortisol y testosterona (p<0.05 a <0.01, más importante con betametasona (p<0.05. En el protocolo B, los niveles matutinos de SHBG aumentaron

  17. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  18. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  20. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    Science.gov (United States)

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  1. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC3 profiling in snake

    Science.gov (United States)

    2012-01-01

    Background Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. Results Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). Conclusion Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution. PMID:23140509

  2. Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission.

    OpenAIRE

    Piazza, P V; Rougé-Pont, F; Deroche, V; Maccari, S; Simon, H; Le Moal, M

    1996-01-01

    An increase in the activity of mesencephalic dopaminergic neurons has been implicated in the appearance of pathological behaviors such as psychosis and drug abuse. Several observations suggest that glucocorticoids might contribute to such an increase in dopaminergic activity. The present experiments therefore analyzed the effects of corticosterone, the major glucocorticoid in the rat, both on dopamine release in the nucleus accumbens of freely moving animals by means of microdialysis, and on ...

  3. Membrane-initiated non-genomic signaling by estrogens in the hypothalamus: cross-talk with glucocorticoids with implications for behavior

    Directory of Open Access Journals (Sweden)

    Jennifer eRainville

    2015-02-01

    Full Text Available The estrogen receptor (ER and glucocorticoid receptor (GR are members of the nuclear receptor superfamily that can signal using both non-genomic and genomic transcriptional modes. Though genomic modes of signaling have been well characterized and several behaviors attributed to this signaling mechanism, the physiological significance of non-genomic modes of signaling has not been well understood. This has partly been due to the controversy regarding the identity of the membrane ER (mER or membrane GR (mGR that may mediate rapid, non-genomic signaling and the downstream signaling cascades that may result as a consequence of steroid ligands binding the mER or the mGR. Both estrogens and glucocorticoids exert a number of actions on the hypothalamus, including feedback. This review focuses on the various candidates for the mER or mGR in the hypothalamus and the contribution of non-genomic signaling to classical hypothalamically-driven behaviors and changes in neuronal morphology. It also attempts to categorize some of the possible functions of non-genomic signaling at both the cellular level and at the organismal level that are relevant for behavior, including some behaviors that are regulated by both estrogens and glucocorticoids in a potentially synergistic manner. Lastly, it attempts to show that steroid signaling via non-genomic modes may provide the organism with rapid behavioral responses to stimuli.

  4. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease.

    Science.gov (United States)

    Riebold, Mathias; Kozany, Christian; Freiburger, Lee; Sattler, Michael; Buchfelder, Michael; Hausch, Felix; Stalla, Günter K; Paez-Pereda, Marcelo

    2015-03-01

    One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.

  5. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  7. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  8. Determination of Glucocorticoids in UPLC-MS in Environmental Samples from an Occupational Setting

    Directory of Open Access Journals (Sweden)

    Enrico Oddone

    2015-01-01

    Full Text Available Occupational exposures to glucocorticoids are still a neglected issue in some work environments, including pharmaceutical plants. We developed an analytical method to quantify simultaneously 21 glucocorticoids using UPLC coupled with mass spectrometry to provide a basis to carry out environmental monitoring. Samples were taken from air, hand-washing tests, pad-tests and wipe-tests. This paper reports the contents of the analytical methodology, along with the results of this extensive environmental and personal monitoring of glucocorticoids. The method in UPLC-MS turned out to be suitable and effective for the aim of the study. Wipe-test and pad-test desorption was carried out using 50 mL syringes, a simple technique that saves time without adversely affecting analyte recovery. Results showed a widespread environmental pollution due to glucocorticoids. This is of particular concern. Evaluation of the dose absorbed by each worker and identification of a biomarker for occupational exposure will contribute to assessment and prevention of occupational exposure.

  9. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    Science.gov (United States)

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  10. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Yanjun Dong

    Full Text Available Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  11. Concanavalin a increases beta-adrenergic and glucocorticoid receptors in porcine splenocytes

    International Nuclear Information System (INIS)

    Kelley, K.N.; Westly, H.J.

    1986-01-01

    We identified specific glucocorticoid and beta-adrenergic receptors on porcine splenocytes. There are 2000 to 4000 glucocorticoid receptors per cell with a K /SUB D/ of 2 to 4 nM and 1000 beta-adrenergic receptors with a K /SUB D/ of 0.3 to 0.6 nM. When splenocytes were incubated with concanavalin A (Con A), there was an approximate 2-fold increase in both gluococorticoid and beta-adrenergic receptors with no change in binding affinity. Incubation of splenocytes with cortisol as low as 40 nM (13 ng/ml) inhibited proliferation in response to Con A. This inhibitory effect of cortisol was not due to cytotoxic effects of glucocorticoids. At maximal physiologic concentrations (400 nM; 135 ng/ml), cortisol caused reductions in Con A activation of thymocytes and peripheral blood mononuclear cells. When eight wk old pigs were restrained, there was an increase in plasma cortisol, atrophy of thymus and reduction in skin test responses to phytohemagglutinin. On the basis of the data, we suggest that physiologic concentrations of stress asociated hormones affect functional activities of porcine lymphoid cells. Since activated splenocytes display increased numbers of receptors for these hormones, perhaps glucocorticoids or catecholamines normally function in vivo to suppress clonal expansion of antigen activated and autoreactive T lymphocytes

  12. GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Oxana Bereshchenko

    2014-04-01

    Full Text Available Regulatory T (Treg cells expressing the transcription factor forkhead box P3 (FoxP3 control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ, a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg, associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production.

  13. Treatment of frozen shoulder with subcutaneous TNF-alpha blockade compared with local glucocorticoid injection

    DEFF Research Database (Denmark)

    Schydlowsky, Pierre; Szkudlarek, Marcin; Madsen, Ole Rintek

    2012-01-01

    We compared the effect of subcutaneous adalimumab injections with intraarticular glucocorticoid injections on frozen shoulder of 18 patients with unilateral joint involvement. Ten patients were randomised to subcutaneous injections with adalimumab and eight to intraarticular glucocorticoid inject...

  14. The modulation of corticosteroid metabolism by hydrocortisone therapy in patients with hypopituitarism increases tissue glucocorticoid exposure.

    Science.gov (United States)

    Sherlock, Mark; Behan, Lucy Ann; Hannon, Mark J; Alonso, Aurora Aragon; Thompson, Christopher J; Murray, Robert D; Crabtree, Nicola; Hughes, Beverly A; Arlt, Wiebke; Agha, Amar; Toogood, Andrew A; Stewart, Paul M

    2015-11-01

    Patients with hypopituitarism have increased morbidity and mortality. There is ongoing debate about the optimum glucocorticoid (GC) replacement therapy. To assess the effect of GC replacement in hypopituitarism on corticosteroid metabolism and its impact on body composition. We assessed the urinary corticosteroid metabolite profile (using gas chromatography/mass spectrometry) and body composition (clinical parameters and full body DXA) of 53 patients (19 female, median age 46 years) with hypopituitarism (33 ACTH-deficient/20 ACTH-replete) (study A). The corticosteroid metabolite profile of ten patients with ACTH deficiency was then assessed prospectively in a cross over study using three hydrocortisone (HC) dosing regimens (20/10 mg, 10/10 mg and 10/5 mg) (study B) each for 6 weeks. 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity was assessed by urinary THF+5α-THF/THE. Endocrine Centres within University Teaching Hospitals in the UK and Ireland. Urinary corticosteroid metabolite profile and body composition assessment. In study A, when patients were divided into three groups - patients not receiving HC and patients receiving HC≤20 mg/day or HC>20 mg/day - patients in the group receiving the highest daily dose of HC had significantly higher waist-to-hip ratio (WHR) than the ACTH replete group. They also had significantly elevated THF+5α-THF/THE (P=0.0002) and total cortisol metabolites (P=0.015). In study B, patients on the highest HC dose had significantly elevated total cortisol metabolites and all patients on HC had elevated THF+5α-THF/THE ratios when compared to controls. In ACTH-deficient patients daily HC doses of >20 mg/day have increased WHR, THF+5α-THF/THE ratios and total cortisol metabolites. GC metabolism and induction of 11β-HSD1 may play a pivitol role in the development of the metabolically adverse hypopituitary phenotype. © 2015 European Society of Endocrinology.

  15. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone

    Science.gov (United States)

    Michailidou, Zoi; Coll, Anthony P; Kenyon, Christopher J; Morton, Nicholas M; O'Rahilly, Stephen; Seckl, Jonathan R; Chapman, Karen E

    2007-01-01

    Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc−/− mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc−/− mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11β-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc−/− mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc−/− mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc−/− mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc−/− mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc−/− mice, independently of adipose or liver renin–angiotensin system activation. These data suggest that CORT-inducible 11β-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver. PMID:17592030

  16. Investigation of radioprotective properties of synthetic antagonist of glucocorticoids RU 38 486

    International Nuclear Information System (INIS)

    Sejliev, A.A.; Zvonareva, N.B.; Zhivotovskij, B.D.; Khanson, K.P.; Akademiya Meditsinskikh Nauk SSSR, Leningrad

    1992-01-01

    Radioprotective properties of synthetic antiglucocorticoid RU 38 486 were investigated. It was demonstrated that this antigonist of glucocorticoids possesses radioprotective effect in vitro and in vivo systems. Radioprotective properties at molecular level exhibited in inhibition of postirradiation endonuclease activation and in prevention of internucleosome chromatin degradation. Involvement of cytosol glucocorticoid receptors in initiation of radiation-induced programmed cell death is discussed

  17. The distorting effect of varying diets on fecal glucocorticoid measurements as indicators of stress

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Teilmann, A. Charlotte; Abelson, Klas S. P.

    2015-01-01

    The physiological stress response is frequently gauged in animals, non-invasively, through measuring glucocorticoids in excreta. A concern with this method is, however, the unknown effect of variations in diets on the measurements. With an energy dense diet, leading to reduced defecation, will low...... concentrations of glucocorticoids be artificially inflated? Can this effect be overcome by measuring the total output of glucocorticoids in excreta? In a controlled laboratory setting we explored the effect in mice. When standard mouse chow – high in dietary fiber – was replaced with a 17% more energy-dense diet...

  18. Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus

    Directory of Open Access Journals (Sweden)

    Zhitao Niu

    2017-11-01

    Full Text Available The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1 consistent GC content evolution trends and mutational biases in single-copy (SC and inverted repeats (IRs regions; and (2 that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus.

  19. Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus

    Science.gov (United States)

    Niu, Zhitao; Xue, Qingyun; Wang, Hui; Xie, Xuezhu; Zhu, Shuying; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC)—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1) consistent GC content evolution trends and mutational biases in single-copy (SC) and inverted repeats (IRs) regions; and (2) that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus. PMID:29099062

  20. Regulation of stem cell factor expression in inflammation and asthma

    Directory of Open Access Journals (Sweden)

    Carla A Da Silva

    2005-03-01

    Full Text Available Stem cell factor (SCF is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.

  1. β-Galactosidase treatment is a common first-stage modification of the three major subtypes of Gc protein to GcMAF.

    Science.gov (United States)

    Uto, Yoshihiro; Yamamoto, Syota; Mukai, Hirotaka; Ishiyama, Noriko; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Hori, Hitoshi

    2012-06-01

    The 1f1f subtype of the group-specific component (Gc) protein is converted into Gc protein-derived macrophage-activating factor (GcMAF) by enzymatic processing with β-galactosidase and sialidase. We previously demonstrated that preGc(1f1f)MAF, a full Gc(1f1f) protein otherwise lacking a galactosyl moiety, can be converted to GcMAF by treatment with mouse peritoneal fluid. Here, we investigated the effects of the β-galactosidase-treated 1s1s and 22 subtypes of Gc protein (preGc(1s1s)MAF and preGc₂₂MAF) on the phagocytic activation of mouse peritoneal macrophages. We demonstrated the presence of Gal-GalNAc disaccharide sugar structures in the Gc(1s1s) protein by western blotting using peanut agglutinin and Helix pomatia agglutinin lectin. We also found that preGc(1s1s)MAF and preGc₂₂MAF significantly enhanced the phagocytic activity of mouse peritoneal macrophages in the presence and absence of mouse peritoneal fluid. We demonstrate that preGc(1s1s)MAF and preGc₂₂MAF proteins can be used as effective macrophage activators.

  2. Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Ramenofsky, M; Wingfield, JC; Wingfield, John C.

    2004-01-01

    Plasma corticosterone increases in association with migratory flight in the red knot Calidris canutus islandica, suggesting that corticosterone may promote migratory activity and/or energy mobilization in this species. This hypothesis is supported by general effects of glucocorticoids, which include

  3. Current smoking is an independent risk factor for new-onset diabetes mellitus during highdose glucocorticoid treatment.

    Science.gov (United States)

    Sugiyama, Takao; Sugimoto, Toyohiko; Suzuki, Sawako; Sato, Yuta; Tanaka, Tomoaki; Tatsuno, Ichiro

    2015-08-01

    Although high-dose glucocorticoids have been reported to cause new-onset diabetes mellitus (glucocorticoid-induced diabetes mellitus), its risk factors have remained to be determined. We investigated the risk factors related to glucocorticoid-induced diabetes mellitus diagnosed within 2 months after the high-dose treatment (newly treated with an initial high dose of > 20 mg prednisolone (PSL) equivalent per day for at least more than 6 months) in collagen vascular diseases. A total of 2,631 patients with collagen vascular diseases was registered between 1986 and 2006 in the Chiba-Shimoshizu Rheumatic Cohort. We analyzed 681 patients newly treated with high-dose glucocorticoid who did not have diabetes mellitus and/or its previous diagnosis (age: 46.3 ± 16.7 years, PSL dose: 40.0 ± 14.1 mg/day). Glucocorticoid-induced diabetes mellitus was diagnosed by two or more glucose measurements in patients with fasting glycaemia ≥ 7 mmol/L and 120 minutes post-load glycaemia ≥ 11.1 mmol/L. Glucocorticoid-induced diabetes mellitus was observed in 26.3% of patients, and the glucocorticoid-induced diabetes mellitus group had higher age, higher BMI, lower rates of females and systemic lupus erythematosus, higher rates of smoking, alcohol use, and microscopic polyangiitis. Multivariate logistic regression analysis demonstrated that the risk of glucocorticoid-induced diabetes mellitus was independently higher in every 10-year increment of initial age with adjusted odds ratio (OR) 1.556 (95% confidence interval: 1.359 - 1.783), in every 1 kg/m2 increment of BMI with OR 1.062 (1.002 - 1.124), in current smoking with OR 1.664 (1.057 - 2.622), and in every 10 mg increment of initial dose of prednisolone with OR 1.250 (1.074 - 1.454). High-dose glucocorticoids caused diabetes mellitus with high prevalence within a short period, and current smokers should be considered at higher risk of glucocorticoidinduced diabetes mellitus in addition to age, BMI, and initial dose.

  4. Admission levels of serum Gc-globulin

    DEFF Research Database (Denmark)

    Schiødt, F V; Bondesen, S; Petersen, I

    1996-01-01

    Gc-globulin scavenges actin released from necrotic hepatocytes to the extracellular space. In 77 patients with fulminant hepatic failure (FHF) (excluding patients treated with liver transplantation), admission levels of serum Gc-globulin and degree of complexing with monomeric actin (complex ratio...... in the same range as the KCH criteria. An advantage of Gc-globulin is that it gives an estimate of the outcome already on admission. Acute liver transplantation should be considered in FHF patients with Gc-globulin less than 100 mg/L....

  5. Radiosequence analysis of the human progestin receptor charged with [3H]promegestone. A comparison with the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Stroemstedt, P.E.B.; Berkenstam, A.; Joernvall, H.G.; Gustafsson, J.A.; Carlstedt-Duke, J.

    1990-01-01

    Partially purified preparations of the human progestin receptor and the human and rat glucocorticoid receptor proteins were covalently charged with the synthetic progestin, [ 3 H]promegestone, by photoaffinity labeling. After labeling, the denaturated protein was cleaved and the mixture of peptides subjected to radiosequence analysis as previously described for the rat glucocorticoid receptor protein. The radioactivity labels identified, corresponded to Met-759 and Met-909 after photoaffinity labeling of the human progestin receptor, and Met-622 and Cys-754 after labeling of the rat glucocorticoid receptor. The residues labeled in the glucocorticoid receptor are the same as those previously reported to bind triamcinolone actonide. The corresponding residues were also labeled in the human glucocorticoid receptor. Met-759 of the progestin receptor and Met-622 of the rat glucocorticoid receptor are positioned within a segment with an overall high degree of sequence similarity and are equivalent. However, Met-909 (progestin receptor) and Cys-754 (glucocorticoid receptor) do not occur within equivalent segments of the two proteins. Thus, although the two classes of steroid hormone share a common structure within the A-ring, there are subtle differences in their interaction with the two separate receptor proteins

  6. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.

    Science.gov (United States)

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Rader, Jeanne I

    2013-02-05

    The separation of fatty acid methyl esters (FAME) provided by a 200 m × 0.25 mm SLB-IL111 capillary column is enhanced by adding a second dimension of separation ((2)D) in a GC × GC design. Rather than employing two GC columns of different polarities or using different elution temperatures, the separation in the two-dimensional space is achieved by altering the chemical structure of selected analytes between the two dimensions of separation. A capillary tube coated with palladium is added between the first dimension of separation ((1)D) column and the cryogenic modulator, providing the reduction of unsaturated FAMEs to their fully saturated forms. The (2)D separation is achieved using a 2.5 m × 0.10 mm SLB-IL111 capillary column and separates FAMEs based solely on their carbon skeleton. The two-dimensional separation can be easily interpreted based on the principle that all the saturated FAMEs lie on a straight diagonal line bisecting the separation plane, while the FAMEs with the same carbon skeleton but differing in the number, geometric configuration or position of double bonds lie on lines parallel to the (1)D time axis. This technique allows the separation of trans fatty acids (FAs) and polyunsaturated FAs (PUFAs) in a single experiment and eliminates the overlap between PUFAs with different chain lengths. To our knowledge, this the first example of GC × GC in which a chemical change is instituted between the two dimensions to alter the relative retentions of components and identify unsaturated FAMEs.

  7. Gastroprotective role of glucocorticoids during NSAID-induced gastropathy.

    Science.gov (United States)

    Filaretova, Ludmila

    2013-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) make significant contributions to gastric ulcer disease which remains widespread. Although several factors have been postulated as pathogenic elements of the gastric injury induced by NSAIDs, it is, however believed that prostaglandin deficiency plays a critical role in the pathogenesis of this injury. During prostaglandin deficiency, other defensive mechanisms might operate to attenuate NSAID-induced gastropathy. According to our results, NSAIDs, similar to stress, induce an increase in glucocorticoid production that in turn helps the gastric mucosa to resist the harmful actions of these drugs. In this article, we review our experimental data suggesting that glucocorticoids may play a role as natural defensive factors in maintaining the integrity of the gastric mucosa during NSAID therapy and might operate to attenuate NSAID-induced gastropathy.

  8. The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer.

    Science.gov (United States)

    Nishikawa, Jun; Iizasa, Hisashi; Yoshiyama, Hironori; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao

    2017-07-25

    The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC.

  9. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    Science.gov (United States)

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  10. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages.

    Science.gov (United States)

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-04-17

    Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.

  11. Glucocorticoids Enhance Taste Aversion Memory via Actions in the Insular Cortex and Basolateral Amygdala

    Science.gov (United States)

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…

  12. Safety aspects of preoperative high-dose glucocorticoid in primary total knee replacement

    DEFF Research Database (Denmark)

    Jørgensen, C C; Pitter, F T; Kehlet, H

    2017-01-01

    Background: Preoperative single high-dose glucocorticoid may have early outcome benefits in total hip arthroplasty (THA) and knee arthroplasty (TKA), but long-term safety aspects have not been evaluated. Methods: From October 2013, the departments reporting to the prospective Lundbeck Foundation....... Conclusions: In this detailed prospective cohort study, preoperative high-dose glucocorticoid administration was not associated with LOS >4 days, readmissions or infectious complications in TKA patients without contraindications....

  13. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    Science.gov (United States)

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.

  14. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    Science.gov (United States)

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods.

    Science.gov (United States)

    Claflin, Dragana I; Schmidt, Kevin D; Vallandingham, Zachary D; Kraszpulski, Michal; Hennessy, Michael B

    2017-09-01

    Recent interest in the lasting effects of early-life stress has expanded to include effects on cognitive performance. An increase in circulating glucocorticoids is induced by stress exposure and glucocorticoid effects on the hippocampus likely underlie many of the cognitive consequences. Here we review studies showing that corticosterone administered to young rats at the conclusion of the stress-hyporesponsiveness period affects later performance in hippocampally-mediated trace eyeblink conditioning. The nature and even direction of these effects varies with the elevation patterns (level, duration, temporal fluctuation) achieved by different administration methods. We present new time course data indicating that constant glucocorticoid elevations generally corresponded with hippocampus-mediated learning deficits, whereas acute, cyclical elevations corresponded with improved initial acquisition. Sensitivity was greater for males than for females. Further, changes in hippocampal neurogenesis paralleled some but not all effects. The findings demonstrate that specific patterns of glucocorticoid elevation produced by different drug administration procedures can have markedly different, sex-specific consequences on basic cognitive performance and underlying hippocampal physiology. Implications of these findings for glucocorticoid medications prescribed in childhood are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Assessment of faecal glucocorticoid metabolite excretion in captive female fishing cats (Prionailurus viverinus) in Thailand.

    Science.gov (United States)

    Khonmee, Jaruwan; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Thitaram, Chatchote; Somgird, Chaleamchat; Punyapornwithaya, Veerasak; Brown, Janine L

    2016-01-01

    There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (∼60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1-2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P fishing cats, and we found that glucocorticoid metabolite production was influenced by seasonal factors, but not by age. We conclude that weather patterns should be taken into consideration in future studies of glucocorticoid activity in this endangered species, especially those studies aimed at improving captive management to create self-sustaining and healthy populations.

  17. Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation.

    Science.gov (United States)

    Choi, Gee Euhn; Lee, Sei-Jung; Lee, Hyun Jik; Ko, So Hee; Chae, Chang Woo; Han, Ho Jae

    2017-08-30

    Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation. SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid

  18. DOSAGEM DE METABÓLITOS DE GLUCOCORTICOIDES E PROGESTERONA EM FEZES DE PAPAGAIO-VERDADEIRO (AMAZONA AESTIVA

    Directory of Open Access Journals (Sweden)

    Caroline Junko Fujihara

    2014-09-01

    Full Text Available The objectives of the present study were to evaluate fecal concentrations of metabolites of glucocorticoids, measured by enzyme immunoassay with a cortisol antibody and by radioimmunoassay with a corticosterone antibody, and progesterone by radioimmunoassay with a progesterone antibody in blue-fronted parrot (Amazona aestiva after ACTH challenge. The adrenal stimulation with ACTH (25 UI/animal resulted in an increase of fecal glucocorticoids metabolites concentration, but it did not affect the concentrations of fecal progesterone metabolites. Although there were no synchronized peaks of glucocorticoid metabolites excretion measured by enzyme immunoassay and radioimmunoassay, there were two peaks of excretion, one at 2-4 hours and other at 8-10 hours. Despite the occurrence of peaks, the analysis of fecal glucocorticoids metabolites and progesterone metabolites showed no effect of group (control and treatment, moment (hours of sampling and sex.

  19. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  20. Glucocorticoides: paradigma de medicina traslacional. De lo molecular al uso clínico Glucocorticoids: examples of translational medicine; from molecular aspects to bedside

    Directory of Open Access Journals (Sweden)

    Héctor A. Serra

    2012-04-01

    Full Text Available Los glucocorticoides o corticosteroides son fármacos antiinflamatorios, antialérgicos e inmunosupresores derivados del cortisol o hidrocortisona, hormona producida por la corteza adrenal. Su uso terapéutico fuera de la endocrinología data de la observación hecha por el reumatólogo Philip Hench quien, suponiendo que los pacientes con artritis reumatoidea tenían un déficit adrenal, inyectó en algunos cortisona, molécula de reciente producción industrial. El resultado obtenido fue tan contundente que se toma como ejemplo de la medicina traslacional. En la actualidad, los glucocorticoides figuran entre las drogas más usadas y, paralelamente, más temidas. Así, el objetivo de esta revisión es señalar los aspectos destacados de su farmacología para su uso racional en la práctica clínica.Glucocorticoids are anti-inflammatory, immunosuppressant and anti-allergic drugs derived from hydrocortisone. Their widespread use was originated from Hench's observations in patients with rheumatoid arthritis. These drugs are examples of translational medicine and they can be envisaged as one of the most prescribed and feared drugs. The objective of this review is to highlight their pharmacological properties and thus, allow a more suitable prescription.

  1. Competitive inhibition of [3H]dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    International Nuclear Information System (INIS)

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-01-01

    The inhibitory effect of leupeptin on [ 3 H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [ 3 H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [ 3 H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S)

  2. Cellular and biochemical actions of adrenal glucocorticoid hormones on rat thymic lymphocytes.

    OpenAIRE

    Young, D A; Voris, B P; Nicholson, M L

    1981-01-01

    The molecular, biochemical, and cellular effects of adrenal glucocorticoid hormones on thymic lymphocytes are reviewed, with emphasis on their relationship to the growth suppressive and lethal actions that occur in lymphoid tissues when glucocorticoids are administered to the whole animal. The data support the hypothesis that the hormonal inhibition of growth and development is a consequence of its ability to suppress cellular energy production, causing the cells to behave as though they were...

  3. Hypersensitivity Reactions from Excipients in Systemic Glucocorticoid Formulations

    DEFF Research Database (Denmark)

    Calogiuri, Gianfranco; Garvey, Lene H; Romita, Paolo

    2016-01-01

    Glucocorticoids are the most widely used drugs for the treatment of hypersensitivity, however these drugs themselves and the excipients contained in commercial corticosteroid formulations are able to induce severe immediate-type hypersensitivity reactions. Reactions involving excipients have been...

  4. On-line LC-GC and comprehensive two-dimensional LCxGC-ToF MS for the analysis of complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Hans-Gerd [Central Analytical Science, Unilever Research and Development, P.O. Box 114, 3130 AC, Vlaardingen (Netherlands); Koning, Sjaak de [Separation Science Group, LECO Instrumente GmbH, Marie-Bernays-Ring 31, 41199, Moenchengladbach (Germany); Brinkman, Udo A.Th. [Department of Analytical Chemistry and Applied Spectroscopy, Free University, De Boelelaan 1083, 1081 HV, Amsterdam (Netherlands)

    2004-04-01

    LC x GC is a logical extension of LC-GC. Unlike LC-GC, which only allows detailed analysis of one group of analytes from a complex sample, LC x GC enables detailed mapping of the entire sample. Due to the high degree of orthogonality and the complementary nature of the two dimensions, the method has a very high resolving power. Comprehensive LC x GC chromatograms often show ordered structures which allow group-wise integration as well as detailed target compound analysis. Hyphenation with mass spectrometry is straightforward, which further widens the application range of the technique. (orig.)

  5. A glucocorticoid education group meeting: an effective strategy for improving self-management to prevent adrenal crisis.

    Science.gov (United States)

    Repping-Wuts, Han J W J; Stikkelbroeck, Nike M M L; Noordzij, Alida; Kerstens, Mies; Hermus, Ad R M M

    2013-07-01

    To assess self-management in patients receiving glucocorticoid replacement therapy for primary or secondary adrenal failure before and 6 months after a glucocorticoid education group meeting. All patients with primary or secondary adrenal insufficiency, treated at the Department of Medicine, Division of Endocrinology, were invited by their endocrinologist to participate in a 3-h glucocorticoid education group meeting, consisting of a lecture about the disease and glucocorticoid doses adjustments in case of stress, followed by an instruction on how to inject hydrocortisone i.m. Finally, all participants could practise the i.m. injection and discuss their experience with (imminent) adrenal crises with other patients and the health care providers. Two weeks before the meeting and 6 months after the meeting, patients were asked to fill out a questionnaire about how they would act in six different conditions (e.g. febrile illness or vomiting). Of the 405 patients who were invited, 246 patients (61%) participated. At baseline the response by the participants on the questionnaire was 100% (n=246) and at follow-up 74% (n=183). At follow-up, significantly more participants (P≤0.005) gave the correct answers to how to act in different situations (e.g. self-administration of a glucocorticoid injection and phone contact in case of vomiting/diarrhoea without fever). Moreover, the use of self-management tools, such as having a 'medicine passport (travel document with information about disease and medication) (P=0.007) or SOS medallion (P=0.0007)', increased. A glucocorticoid education group meeting for patients with adrenal failure seems helpful to improve self-management and proper use of stress-related glucocorticoid dose adjustment.

  6. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness.

    Science.gov (United States)

    Beehner, Jacinta C; Bergman, Thore J

    2017-05-01

    Glucocorticoids are hormones that mediate the energetic demands that accompany environmental challenges. It is therefore not surprising that these metabolic hormones have come to dominate endocrine research on the health and fitness of wild populations. Yet, several problems have been identified in the vertebrate research that also apply to the non-human primate research. First, glucocorticoids should not be used as a proxy for fitness (unless a link has previously been established between glucocorticoids and fitness for a particular population). Second, stress research in behavioral ecology has been overly focused on "chronic stress" despite little evidence that chronic stress hampers fitness in wild animals. Third, research effort has been disproportionately focused on the causes of glucocorticoid variation rather than the fitness consequences. With these problems in mind, we have three objectives for this review. We describe the conceptual framework behind the "stress concept", emphasizing that high glucocorticoids do not necessarily indicate a stress response, and that a stress response does not necessarily indicate an animal is in poor health. Then, we conduct a comprehensive review of all studies on "stress" in wild primates, including any study that examined environmental factors, the stress response, and/or fitness (or proxies for fitness). Remarkably, not a single primate study establishes a connection between all three. Finally, we provide several recommendations for future research in the field of primate behavioral endocrinology, primarily the need to move beyond identifying the factors that cause glucocorticoid secretion to additionally focus on the relationship between glucocorticoids and fitness. We believe that this is an important next step for research on stress physiology in primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor

    DEFF Research Database (Denmark)

    Presman, Diego M; Ogara, M Florencia; Stortz, Martín

    2014-01-01

    Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation wi...

  8. Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.

    Science.gov (United States)

    Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A

    2008-05-01

    Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.

  9. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  10. Assessment of faecal glucocorticoid metabolite excretion in captive female fishing cats (Prionailurus viverinus) in Thailand

    Science.gov (United States)

    Khonmee, Jaruwan; Vorawattanatham, Narathip; Pinyopummin, Anuchai; Thitaram, Chatchote; Somgird, Chaleamchat; Punyapornwithaya, Veerasak; Brown, Janine L.

    2016-01-01

    There is little information on the endocrinology of fishing cats (Prionailurus viverinus), an endangered species in Southeast Asia, especially that pertaining to adrenal function. This study characterized faecal glucocorticoid metabolites in female fishing cats housed at Chiang Mai Night Safari to investigate seasonal and age relationships in hormone patterns. Faecal samples were collected 3 days/week for 1 year from seven females ranging in age from 4.5 to 9.6 years. A corticosterone enzyme immunoassay was validated for fishing cats by showing increases (∼60%) in faecal glucocorticoid immunoactivity above pre-treatment baseline levels within 1–2 days after an adrenocorticotrophic hormone injection. Faecal glucocorticoid metabolite concentrations were not related to age (P > 0.05), but there was a seasonal effect, with concentrations being higher (P < 0.05) during the winter (1.54 ± 0.04 µg/g) and rainy season (1.43 ± 0.04 µg/g) compared with the summer (1.22 ± 0.05 µg/g). Significant relationships were found between faecal glucocorticoids and rainfall (positive) and day length (negative), but not a temperature–humidity index. This is the first study to assess adrenal steroidogenic activity in female fishing cats, and we found that glucocorticoid metabolite production was influenced by seasonal factors, but not by age. We conclude that weather patterns should be taken into consideration in future studies of glucocorticoid activity in this endangered species, especially those studies aimed at improving captive management to create self-sustaining and healthy populations. PMID:27293767

  11. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  12. Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity

    Science.gov (United States)

    Cha, Jiyoung Y.; Kim, Hyo Jung; Yu, Jung Hwan; Xu, Jing; Kim, Daham; Paul, Bindu D.; Choi, Hyeonjin; Kim, Seyun; Lee, Yoo Jeong; Ho, Gary P.; Rao, Feng; Snyder, Solomon H.; Kim, Jae-woo

    2013-01-01

    Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice. PMID:24297897

  13. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  14. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Modern methods of sample preparation for GC analysis

    NARCIS (Netherlands)

    de Koning, S.; Janssen, H.-G.; Brinkman, U.A.Th.

    2009-01-01

    Today, a wide variety of techniques is available for the preparation of (semi-) solid, liquid and gaseous samples, prior to their instrumental analysis by means of capillary gas chromatography (GC) or, increasingly, comprehensive two-dimensional GC (GC × GC). In the past two decades, a large number

  16. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0021 TITLE: A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...way it adapts is by upregulating another hormone receptor, the glucocorticoid receptor (GR), which may compensate for diminished AR activity. The

  17. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model.

    Science.gov (United States)

    Zhang, Yuelei; Yin, Junhui; Ding, Hao; Zhang, Changqing; Gao, You-Shui

    2016-01-01

    Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.

  18. Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line.

    Science.gov (United States)

    Klopčič, Ivana; Kolšek, Katra; Dolenc, Marija Sollner

    2015-01-22

    Endocrine-disrupting compounds can interfere with the endocrine organs or hormone system and cause tumors, birth defects and developmental disorders in humans. The estrogen-like activity of compounds has been widely studied but little is known concerning their possible modulation of the glucocorticoid receptor. Steroidal (synthetic and natural) and non-steroidal endocrine-active compounds commonly occur as complex mixtures in human environments. Identification of such molecular species, which are responsible for modulating the glucocorticoid receptor are necessary to fully assess their risk. We have used the MDA-kb2 cell line, which expresses endogenous glucocorticoid receptor and a stably transfected luciferase reporter gene construct, to quantify the glucocorticoid-like activity of four compounds present in products in everyday use - propylparaben (PP), butylparaben (BP), diethylhexyl phthalate (DEHP) and tetramethrin (TM). We tested all possible combinations of these compounds at two concentrations (1 μM and 10 nM) and compared their glucocorticoid-like activity. At the concentration of 1 μM seven mixtures were identified to have glucocorticoid-like activity except: DEHP+TM, BP+TM, DEHP+PP+TM, BP+PP+TM. At the concentration of 10 nM only three mixtures have glucocorticoid modulatory activity: DEHP+PP, BP+PP, DEHP+BP+PP+TM. Identified glucocorticoid-like activities were between 1.25 and 1.51 fold at the concentration of 1 μM and between 1.23 and 1.44 fold at the concentration of 10 nM in comparison with the solvent control. Individually BP, PP, and DEHP had glucocorticoid-like activity of 1.60, 1.57 and 1.50 fold over the solvent control at the concentration of 1 μM. On the other hand PP and DEHP, at the concentration of 10nM, showed no glucocorticoid-like activity, while BP showed 1.44 fold. The assertion that individual glucocorticoid-like compounds do not produce harm because they are present at low, ineffective levels in humans may be irrelevant when we

  19. Proteomics unveil corticoid-induced S100A11 shuttling in keratinocyte differentiation

    International Nuclear Information System (INIS)

    Dezitter, Xavier; Hammoudi, Fatma; Belverge, Nicolas; Deloulme, Jean-Christophe; Drobecq, Herve; Masselot, Bernadette; Formstecher, Pierre; Mendy, Denise; Idziorek, Thierry

    2007-01-01

    Unlike classical protein extraction techniques, proteomic mapping using a selective subcellular extraction kit revealed S100A11 as a new member of the S100 protein family modulated by glucocorticoids in keratinocytes. Glucocorticoids (GC)-induced S100A11 redistribution in the 'organelles and membranes' compartment. Microscopic examination indicated that glucocorticoids specifically routed cytoplasmic S100A11 toward perinuclear compartment. Calcium, a key component of skin terminal differentiation, directed S100A11 to the plasma membrane as previously reported. When calcium was added to glucocorticoids, minor change was observed at the proteomic level while confocal microscopy revealed a rapid and dramatic translocation of S100A11 toward plasma membrane. This effect was accompanied by strong nuclear condensation, loss of mitochondrial potential and DNA content, and increased high molecular weight S100A11 immunoreactivity, suggesting corticoids accelerate calcium-induced terminal differentiation. Finally, our results suggest GC-induced S100A11 relocalization could be a key step in both keratinocyte homeostasis and glucocorticoids side effects in human epidermis

  20. Influence of Interleukin-6 (174G/C Gene Polymorphism on Obesity in Egyptian Children

    Directory of Open Access Journals (Sweden)

    Ola M. Ibrahim

    2017-10-01

    CONCLUSION: Our study showed that carriers of the C allele for the IL-6 (174G/C polymorphism have higher BMI. As the G174C polymorphism is likely to affect IL-6 expression and its physiological regulation; consequently this polymorphism may affect adiposity.

  1. Behavioral neuroadaptation to alcohol : from glucocorticoids to histone acetylation

    Directory of Open Access Journals (Sweden)

    Daniel Beracochea

    2016-10-01

    Full Text Available A prime mechanism that contributes to the development and maintenance of alcoholism is the dysregulation of the hypothalamic-pituitary-adrenal (HPA axis activity and the release of glucocorticoids (cortisol in humans and primates, corticosterone in rodents from the adrenal glands. In the brain, sustained, local elevation of glucocorticoid concentration even long after cessation of chronic alcohol consumption compromises functional integrity of a circuit including the prefrontal cortex, the hippocampus and the amygdala. These structures are implicated in learning and memory processes as well as in orchestrating neuroadaptive responses to stress and anxiety responses. Thus, potentiation of anxiety-related neuroadaptation by alcohol is characterized by an abnormally amygdala hyperactivity coupled with a hypofunction of the prefrontal cortex and the hippocampus. This review describes research on molecular and epigenetic mechanisms by which alcohol causes distinct region-specific adaptive changes in gene expression patterns and ultimately, leads to a variety of cognitive and behavioral impairments on prefrontal- and hippocampal-based tasks. Alcohol-induced neuroadaptations involve the dysregulation of numerous signaling cascades, leading to long-term changes in transcriptional profiles of genes, through the actions of transcription factors such as CREB (cAMP response element binding protein and chromatin remodeling due to post-translational modifications of histone proteins. We describe the role of prefrontal-hippocampus-amygdala circuit in mediating the effects of acute and chronic alcohol on learning and memory, and region-specific molecular and epigenetic mechanisms involved in this process. This review first discusses the importance of brain region-specific dysregulation of glucocorticoid concentration in the development of alcohol dependence and describes on how persistently increased glucocorticoid levels in prefrontal cortex may be involved in

  2. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis

    Science.gov (United States)

    Flavor profiles of two Florida strawberry cultivars were determined using GC-olfactometry,GC-MS, odor activity values (OAVs) and sensory analysis. Thirty-six aroma active compounds were detected using GC-O. Thirty-four were identified. The major odor-active compounds in decreasing intensity were: me...

  3. At least two Fc Neu5Gc residues of monoclonal antibodies are required for binding to anti-Neu5Gc antibody.

    Science.gov (United States)

    Yu, Chuanfei; Gao, Kai; Zhu, Lei; Wang, Wenbo; Wang, Lan; Zhang, Feng; Liu, Chunyu; Li, Meng; Wormald, Mark R; Rudd, Pauline M; Wang, Junzhi

    2016-01-29

    Two non-human glycan epitopes, galactose-α-1,3-galactose (α-gal) and Neu5Gc-α-2-6-galactose (Neu5Gc) have been shown to be antigenic when attached to Fab oligosaccharides of monoclonal antibodies (mAbs) , while α-gal attached to Fc glycans was not. However, the antigenicity of Neu5Gc on the Fc glycans remains unclear in the context that most mAbs carry only Fc glycans. After studying two clinical mAbs carrying significant amounts of Fc Neu5Gc, we show that their binding activity with anti-Neu5Gc antibody resided in a small subset of mAbs carrying two or more Fc Neu5Gc, while mAbs harboring only one Neu5Gc showed no reactivity. Since most Neu5Gc epitopes were distributed singly on the Fc of mAbs, our results suggest that the potential antigenicity of Fc Neu5Gc is low. Our study could be referenced in the process design and optimization of mAb production in murine myeloma cells and in the quality control of mAbs for industries and regulatory authorities.

  4. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  5. Systems Biology of Glucocorticoids in Muscle Disease

    Science.gov (United States)

    2010-10-01

    Introduction Duchenne muscular dystrophy (DMD) is the most common and incurable muscular dystrophy of childhood. Muscle regeneration fails with...SUBJECT TERMS Duchenne Muscular dystrophy , Glucocorticoids, Systems biology, Drug mechanism 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION...better targeted and more effective therapies for Duchenne muscular dystrophy dynamically. This MDA grant proposal is led by Dr. Eric Hoffman, and it

  6. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    International Nuclear Information System (INIS)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-01-01

    Highlights: ► Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. ► GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-α production. ► The enhancement of the GC-induced actions was lost by TDAG8 deficiency. ► GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-α, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-α production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  7. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors.

    Science.gov (United States)

    Walker, Sophie E; Zanoletti, Olivia; Guillot de Suduiraut, Isabelle; Sandi, Carmen

    2017-10-01

    Glucocorticoids coordinate responses that enable an individual to cope with stressful challenges and, additionally, mediate adaptation following cessation of a stressor. There are important individual differences in the magnitude of glucocorticoid responsiveness to stressors. However, whether individual differences in glucocorticoid responsiveness to stress are linked to different behavioral strategies in coping with social and non-social challenges is not easily studied, owing to the lack of appropriate animal models. To address this, we generated three lines of Wistar rats selectively bred for the magnitude of their glucocorticoid responses following exposure to a variety of stressors over three consecutive days at juvenility. Here, we present findings following observations of a high level of variation in glucocorticoid responsiveness to stress in outbred Wistar rats, and the strong response to selection for this trait over a few generations. When challenged with different stressful challenges, rats from the three lines differed in their coping behaviors. Strikingly, the line with high glucocorticoid responsiveness to stress displayed enhanced aggression and anxiety-like behaviors. In addition, these rats also showed alterations in the expression of genes within both central and peripheral nodes of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced reactivity to acute stress exposure. Together, these findings strongly link differences in glucocorticoid responsiveness to stress with marked differences in coping styles. The developed rat lines are thus a promising model with which to examine the relationship between variation in reactivity of the HPA axis and stress-related pathophysiology and could be employed to assess the therapeutic potential of treatments modulating stress habituation to ameliorate psychopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  9. Identification (GC and GC-MS) of unsaturated acetates in Elasmopalpus lignosellus and their biological activity (GC-EAD and EAG).

    Science.gov (United States)

    Jham, Gulab N; da Silva, Alexsandro A; Lima, Eraldo R; Viana, Paulo

    2005-02-01

    Two insect colonies of Elasmopalpus lignosellus were reared in our laboratory, the first being initiated from pupae obtained from a cornfield in the region of Sete Lagoas, Minas Gerais and the second from a cornfield in the region of Goiânia, Goiás. From the two colonies, two extracts were prepared from the pheromone glands of virgin E. lignosellus females. The extract obtained from the first colony was designated as extract 1 while the extract obtained from the second colony was designated as extract 2. Extract 1 was analyzed by gas chromatography-mass spectrometry (GC-MS) with (Z)-9-hexadecenyl acetate [(Z)-9-HDA] and (Z)-11-hexadecenyl acetate [(Z)-11-HDA] being identified and confirmed by the formation of DMDS derivatives. In addition, a third acetate, which could be either (E)-8-hexadecenyl acetate [(E)-8-HDA] or (E)-9-hexadecenyl acetate [(E)-9-HDA] was detected by GC-MS. Extract 2 was analyzed by gas chromatography (GC) and gas chromatography-electroannetography (GC-EAD) revealing the presence of (Z)-11-HDA and (Z)-9-TDA. In addition, the same compounds elicited a response with the E. lignosellus male antenna obtained from the second insect colony. Electroantennography (EAG) screening with the male E. lignosellus antenna (obtained from the second insect colony) was conducted with the 23 possible tetradecenyl acetates (TDA) and 22 hexadecenyl acetates (HDA) as standards. Out of the 23 TDA isomers evaluated, only (Z)-9-TDA elicited a response and out of the 22 HDA [(Z) and (E) isomers gamma2 to delta13] evaluated only (Z)-11-HDA elicited a response. The acetate compositions of two extracts obtained from insects originating from the two states (Minas Gerais and Goiás) of Brazil were different from one another as well as from that obtained from insects in Tifton, GA, USA. The bioactivity data (GC-EAD) of the extract 2 differed from those reported for the Tifton, GA, USA population. These data suggest polymorphism in relation to the insect populations found in

  10. The GC-heterogeneity of teleost fishes

    Directory of Open Access Journals (Sweden)

    Gautier Christian

    2008-12-01

    Full Text Available Abstract Background One of the most striking features of mammalian and birds chromosomes is the variation in the guanine-cytosine (GC content that occurs over scales of hundreds of kilobases to megabases; this is known as the "isochore" structure. Among other vertebrates the presence of isochores depends upon the taxon; isochore are clearly present in Crocodiles and turtles but fish genome seems very homogeneous on GC content. This has suggested a unique isochore origin after the divergence between Sarcopterygii and Actinopterygii, but before that between Sauropsida and mammals. However during more than 30 years of analysis, isochore characteristics have been studied and many important biological properties have been associated with the isochore structure of human genomes. For instance, the genes are more compact and their density is highest in GC rich isochores. Results This paper shows in teleost fish genomes the existence of "GC segmentation" sharing some of the characteristics of isochores although teleost fish genomes presenting a particular homogeneity in CG content. The entire genomes of T nigroviridis and D rerio are now available, and this has made it possible to check whether a mosaic structure associated with isochore properties can be found in these fishes. In this study, hidden Markov models were trained on fish genes (T nigroviridis and D rerio which were classified by using the isochore class of their human orthologous. A clear segmentation of these genomes was detected. Conclusion The GC content is an excellent indicator of isochores in heterogeneous genomes as mammals. The segmentation we obtained were well correlated with GC content and other properties associated to GC content such as gene density, the number of exons per gene and the length of introns. Therefore, the GC content is the main property that allows the detection of isochore but more biological properties have to be taken into account. This method allows detecting

  11. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

    Science.gov (United States)

    Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick

    2015-01-01

    This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad.

    Science.gov (United States)

    Bekhbat, Mandakh; Rowson, Sydney A; Neigh, Gretchen N

    2017-07-01

    Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Familial glucocorticoid deficiency presenting with generalized hyperpigmentation in an Egyptian child: a case report

    Directory of Open Access Journals (Sweden)

    Metwalley Kotb A

    2012-04-01

    Full Text Available Abstract Introduction Familial glucocorticoid deficiency, or hereditary unresponsiveness to adrenocorticotropic hormone, is a rare autosomal recessive disease characterized by glucocorticoid deficiency in the absence of mineralocorticoid deficiency. It may present in infancy or early childhood with hyperpigmentation, failure to thrive, recurrent infections, hypoglycemic attacks and convulsions that may result in coma or death. Here, we report the case of an 18-month-old Egyptian boy with familial glucocorticoid deficiency. Case presentation An 18-month-old Egyptian boy was referred to our institution for evaluation of generalized hyperpigmentation of the body associated with recurrent convulsions; one of his siblings, who had died at the age of nine months, also had generalized hyperpigmentation of the body. The initial clinical examination revealed generalized symmetrical deep hyperpigmentation of the body as well as hypotonia, normal blood pressure and normal male genitalia. He had low blood glucose and cortisol levels, normal aldosterone and high adrenocorticotropic hormone levels. Based on the above mentioned data, a provisional diagnosis of familial glucocorticoid deficiency was made, which was confirmed by a molecular genetics study. Oral hydrocortisone treatment at a dose of 10 mg/m2/day was started. The child was followed up after two months of treatment; the hyperpigmentation has lessened in comparison with his initial presentation and his blood sugar and cortisol levels were normalized. Conclusion Familial glucocorticoid deficiency is a rare, treatable disease that can be easily missed due to nonspecific presentations. The consequences of delayed diagnosis and treatment are associated with high rates of morbidity and mortality.

  14. Uso de glucocorticoides en enfermedades alérgicas

    Directory of Open Access Journals (Sweden)

    M Rodríguez-González

    2017-01-01

    Full Text Available Los glucocorticoides son análogos sintéticos de las hormonas adrenocorticales, de uso común, de gran utilidad en la práctica clínica del pediatra y se consideran la piedra angular del tratamiento farmacológico de enfermedades alérgicas.

  15. Analysis of intra-genomic GC content homogeneity within prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J; Snipen, L; Hardy, S.P.

    2010-01-01

    the GC content varies within microbial genomes to assess whether this property can be associated with certain biological functions related to the organism's environment and phylogeny. We utilize a new quantity GCVAR, the intra-genomic GC content variability with respect to the average GC content......Bacterial genomes possess varying GC content (total guanines (Gs) and cytosines (Cs) per total of the four bases within the genome) but within a given genome, GC content can vary locally along the chromosome, with some regions significantly more or less GC rich than on average. We have examined how...... both aerobic and facultative microbes. Although an association has previously been found between mean genomic GC content and oxygen requirement, our analysis suggests that no such association exits when phylogenetic bias is accounted for. A significant association between GCVAR and mean GC content...

  16. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  17. Comparison of GC/MSD and GC/AED for the determination of organotin compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Staeb, J.A. (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Cofino, W.P. (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Hattum, B. van (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Brinkman, U.A.T. (Dept. of Analytical Chemistry, Free Univ., Amsterdam (Netherlands))

    Methods are described for the analysis of environmental samples like water, sediment and suspended matter for the determination of all organotin compounds (OTs) that are currently used as biocides: Tributyltin (TBT) triphenyltin (TPT), tricyclohexyltin (TCT) and fenbutatin oxide (FBTO). In water also five degradation products (di and mono substituted analogs) can be determined. Alkylation using a Grignard reagent was used to obtain OT derivatives amenable to gas chromatography (GC). Both methylation and pentylation have been employed for derivatization prior to GC analysis. The present results show that derivatization efficiencies for TPT, TCT and FBTO at trace levels are higher using methylation than pentylation. Detection limits for each type of sample matrix were determined using GC/Mass Selective Detection (GC/MSD) and GC/Atomic Emission Detection (AED). In sediment and suspended matter only tri-substituted OTs (i.e. the parent compounds) could be determined. Detection limits ranged from 0.2 to 10 ng/g dry weight. FBTO, not previously detected in environmental samples, was found at levels of 4 and 11 ng/g in a suspended matter sample and a sediment sample, respectively. In water the OTs and their degradation products were determined at levels of 1-10 ng/l (as tin) using 200 ml water samples. (orig.)

  18. Glucocorticoid Availability in Colonic Inflammation of Rat

    Czech Academy of Sciences Publication Activity Database

    Ergang, Peter; Leden, Pavel; Bryndová, Jana; Žbánková, Šárka; Mikšík, Ivan; Kment, M.; Pácha, Jiří

    2008-01-01

    Roč. 53, č. 8 (2008), s. 2160-2167 ISSN 0163-2116 R&D Projects: GA MZd(CZ) NR8576; GA ČR GA305/07/0328 Grant - others:Univerzita Karlova(CZ) 77/2006C Institutional research plan: CEZ:AV0Z50110509 Keywords : glucocorticoids * 11beta hydroxisteroid dehydrogenase 1 Subject RIV: ED - Physiology Impact factor: 1.583, year: 2008

  19. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC x GC): A powerful alternative for performing various standard analysis of middle-distillates.

    Science.gov (United States)

    Vendeuvre, Colombe; Ruiz-Guerrero, Rosario; Bertoncini, Fabrice; Duval, Laurent; Thiébaut, Didier; Hennion, Marie-Claire

    2005-09-09

    The detailed characterisation of middle distillates is essential for a better understanding of reactions involved in refining process. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GC x GC) is a powerful tool for improving characterisation of petroleum samples. The aim of this paper is to compare GC x GC and various ASTM methods -- gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) -- for group type separation and detailed hydrocarbon analysis. Best features of GC x GC are demonstrated and compared to these techniques in terms of cost, time consumption and accuracy. In particular, a new approach of simulated distillation (SimDis-GC x GC) is proposed: compared to the standard method ASTM D2887 it gives unequal information for better understanding of conversion process.

  20. Glucocorticoid Mechanisms of Functional Connectivity Changes in Stress-Related Neuropsychiatric Disorders.

    Science.gov (United States)

    Hall, Baila S; Moda, Rachel N; Liston, Conor

    2015-01-01

    Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

  1. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations

    Science.gov (United States)

    Williams, K. D.; Copsey, D.; Blockley, E. W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H. T.; Hill, R.; Hyder, P.; Ineson, S.; Johns, T. C.; Keen, A. B.; Lee, R. W.; Megann, A.; Milton, S. F.; Rae, J. G. L.; Roberts, M. J.; Scaife, A. A.; Schiemann, R.; Storkey, D.; Thorpe, L.; Watterson, I. G.; Walters, D. N.; West, A.; Wood, R. A.; Woollings, T.; Xavier, P. K.

    2018-02-01

    The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Among other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific descriptions of these components are in companion papers) and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictability on shorter time scales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5. In many respects, the performance of GC3 is comparable with GC2, however, there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extratropical variability and top-of-atmosphere and surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.

  2. Fecal estrogen, progestagen and glucocorticoid metabolites during the estrous cycle and pregnancy in the giant anteater (Myrmecophaga tridactyla): evidence for delayed implantation.

    Science.gov (United States)

    Knott, Katrina K; Roberts, Beth M; Maly, Morgan A; Vance, Carrie K; Debeachaump, Jennifer; Majors, Jackie; Riger, Peter; Decaluwe, Heather; Kouba, Andrew J

    2013-08-27

    Declining numbers of wild giant anteaters highlight the importance of sustainable captive populations. Unfortunately, captive reproductive management is limited by the lack of external physical indicators of female reproductive status and the aggressive behavior of males. We examined the endocrinology of the estrous cycle and pregnancy, and whether delayed implantation is a gestational strategy for giant anteaters as described for other xenarthrans. Feces were collected from seven captive females 3-5 times weekly and mating was recorded. Concentrations of estrogen (estrone-glucuronide, E1, and estradiol-17β, E2), progestagen (20-oxo-progestagens, P4), and glucocorticoid (GC) metabolites were examined in fecal extracts by enzyme immunoassay. Estrous cycles for nulliparous females (6 cycles, n = 2) compared to the multiparous female (6 cycles, n = 1) were shorter (47.3 +/- 4.3 days versus 62.5 +/- 2.6 days) with relatively lower luteal phase concentrations of P4 (49.4 +/- 2.9 ng/g versus 136.8 +/- 1.8 ng/g). The four remaining females had unclear ovarian activity: two females exhibited apparent luteal activity but unclear fluctuations in estrogens, while the other two females had parallel fecal P4 and estrogens concentrations. Pregnancy ranged 171-183 days with females returning to estrus post-partum as early as 60 days (n = 3, 1.8-4 years of age at mating). Delayed implantation was indicated by a biphasic elevation in fecal P4 metabolites: the initial 4-fold increase occurred for 81-105 days and was followed by a 26-fold secondary rise in P4 metabolites lasting 66-94 days prior to parturition. Fecal GC was correlated with fecal estrogens and greatest during estrus, late pregnancy, and six days prior to parturition (estrous cycle GC, 14.4-62.8 ng/g; pregnancy GC, 13.6-232.7 ng/g). Estrous cycles of giant anteaters occurred year-round, but were shorter and more intermittent in younger nulliparous animals compared to a multiparous female. A pronounced

  3. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China.

    Science.gov (United States)

    Zhou, Lei; Liu, Weibin; Li, Wei; Li, Haifeng; Zhang, Xu; Shang, Huifang; Zhang, Xu; Bu, Bitao; Deng, Hui; Fang, Qi; Li, Jimei; Zhang, Hua; Song, Zhi; Ou, Changyi; Yan, Chuanzhu; Liu, Tao; Zhou, Hongyu; Bao, Jianhong; Lu, Jiahong; Shi, Huawei; Zhao, Chongbo

    2017-09-01

    To determine the efficacy of low-dose, immediate-release tacrolimus in patients with myasthenia gravis (MG) with inadequate response to glucocorticoid therapy in a randomized, double-blind, placebo-controlled study. Eligible patients had inadequate response to glucocorticoids (GCs) after ⩾6 weeks of treatment with prednisone ⩾0.75 mg/kg/day or 60-100 mg/day. Patients were randomized to receive 3 mg tacrolimus or placebo daily (orally) for 24 weeks. Concomitant glucocorticoids and pyridostigmine were allowed. Patients continued GC therapy from weeks 1-4; from week 5, the dose was decreased at the discretion of the investigator. The primary efficacy outcome measure was a reduction, relative to baseline, in quantitative myasthenia gravis (QMG) score assessed using a generalized linear model; supportive analyses used alternative models. Of 138 patients screened, 83 [tacrolimus ( n = 45); placebo ( n = 38)] were enrolled and treated. The change in adjusted mean QMG score from baseline to week 24 was -4.9 for tacrolimus and -3.3 for placebo (least squares mean difference: -1.7, 95% confidence interval: -3.5, -0.1; p = 0.067). A post-hoc analysis demonstrated a statistically significant difference for QMG score reduction of ⩾4 points in the tacrolimus group (68.2%) versus the placebo group (44.7%; p = 0.044). Adverse event profiles were similar between treatment groups. Tacrolimus 3 mg treatment for patients with MG and inadequate response to GCs did not demonstrate a statistically significant improvement in the primary endpoint versus placebo over 24 weeks; however, a post-hoc analysis demonstrated a statistically significant difference for QMG score reduction of ⩾4 points in the tacrolimus group versus the placebo group. This study was limited by the low number of patients, the absence of testing for acetylcholine receptor antibody and the absence of stratification by disease duration (which led to a disparity between the two groups). Clinical

  4. Glucocorticoid receptor gene polymorphism and juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Scheplyagina Larisa A

    2011-01-01

    Full Text Available Abstract Background The glucocorticoid receptor gene (NR3C1 has been suggested as a candidate gene affecting juvenile idiopathic arthritis (JIA course and prognosis. The purpose of this study is to investigate the glucocorticoid receptor gene BclI polymorphism (rs41423247 in JIA patients, the gene's role in susceptibility to juvenile idiopathic arthritis, and its associations with JIA activity, course and bone mineralization. Methods One hundred twenty-two Caucasian children with JIA and 143 healthy ethnically matched controls were studied. We checked markers of clinical and laboratory activity: morning stiffness, Ritchie Articular Index (RAI, swollen joint count (SJC, tender joint count (TJC, physician's visual analog scale (VAS, hemoglobin level (Hb, leukocyte count (L, platelet count (Pl, Westergren erythrocyte sedimentation rate (ESR, C-reactive protein (CRP, albumin, DAS and DAS28. Bone mineralization was measured by dual-energy X-ray absorptiometry (DXA of lumbar spine L1-L4. Assessments of bone metabolism included osteocalcin, C-terminal telopeptide (CTT, parathyroid hormone (PTH, total and ionized calcium, inorganic phosphate and total alkaline phosphatase (TAP. BclI polymorphism was genotyped by polymerase chain reaction restriction fragment length polymorphism. Results No association was observed between glucocorticoid receptor gene polymorphism and the presence or absence of JIA. In girls with JIA, the presence of the G allele was associated with an unfavorable arthritis course, a younger age of onset of arthritis (p = 0.0017, and higher inflammatory activity. The higher inflammatory activity was demonstrated by the following: increased time of morning stiffness (p = 0.02, VAS (p = 0.014, RAI (p = 0.048, DAS (p = 0.035, DAS28 (p = 0.05, Pl (p = 0.003, L (p = 0.046, CRP (p = 0.01. In addition, these patients had bone metabolism disturbances as follows: decreased BA (p = 0.0001, BMC (p = 0.00007, BMD (0.005 and Z score (p = 0.002; and

  5. Volume overload cleanup: An approach for on-line SPE-GC, GPC-GC, and GPC-SPE-GC

    NARCIS (Netherlands)

    Kerkdijk, H.; Mol, H.G.J.; Nagel, B. van der

    2007-01-01

    A new concept for cleanup, based on volume overloading of the cleanup column, has been developed for on-line coupling of gel permeation chromatography (GPC), solid-phase extraction (SPE), or both, to gas chromatography (GC). The principle is outlined and the applicability demonstrated by the

  6. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  7. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  8. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    Science.gov (United States)

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  9. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  10. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  11. DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression

    International Nuclear Information System (INIS)

    Straehle, U.; Klock, G.; Schuetz, G.

    1987-01-01

    To define the recognition sequence of the glucocorticoid receptor and its relationship with that of the progesterone receptor, oligonucleotides derived from the glucocorticoid response element of the tyrosine aminotransferase gene were tested upstream of a heterologous promoter for their capacity to mediate effects of these two steroids. The authors show that a 15-base-pair sequence with partial symmetry is sufficient to confer glucocorticoid inducibility on the promoter of the herpes simplex virus thymidine kinase gene. The same 15-base-pair sequence mediates induction by progesterone. Point mutations in the recognition sequence affect inducibility by glucocorticoids and progesterone similarly. Together with the strong conservation of the sequence of the DNA-binding domain of the two receptors, these data suggest that both proteins recognize a sequence that is similar, if not the same

  12. Environmental Enrichment Effect on Fecal Glucocorticoid Metabolites and Captive Maned Wolf (Chrysocyon brachyurus) Behavior.

    Science.gov (United States)

    Coelho, Carlyle Mendes; de Azevedo, Cristiano Schetini; Guimarães, Marcelo Alcino de Barros Vaz; Young, Robert John

    2016-01-01

    Environmental enrichment is a technique that may reduce the stress of nonhuman animals in captivity. Stress may interfere with normal behavioral expression and affect cognitive decision making. Noninvasive hormonal studies can provide important information about the stress statuses of animals. This study evaluated the effectiveness of different environmental enrichment treatments in the diminution of fecal glucocorticoid metabolites (stress indicators) of three captive maned wolves (Chrysocyon brachyurus). Correlations of the fecal glucocorticoid metabolite levels with expressed behaviors were also determined. Results showed that environmental enrichment reduced fecal glucocorticoid metabolite levels. Furthermore, interspecific and foraging enrichment items were most effective in reducing stress in two of the three wolves. No definite pattern was found between behavioral and physiological responses to stress. In conclusion, these behavioral and physiological data showed that maned wolves responded positively from an animal well being perspective to the enrichment items presented.

  13. Non-invasive assessment of glucocorticoid and androgen metabolite levels in cooperatively breeding Damaraland mole-rats (Fukomys damarensis).

    Science.gov (United States)

    Medger, Katarina; Bennett, Nigel C; Lutermann, Heike; Ganswindt, Andre

    2018-05-18

    Dominant females of cooperative breeding species often use aggression to suppress reproduction of subordinate females, resulting in subordinates experiencing stress-related increases in glucocorticoid levels, which may cause reproductive down-regulation. This would suggest a general pattern with higher glucocorticoid levels in subordinate compared to dominant individuals; however, the opposite was found in a number of cooperatively breeding species. Furthermore, breeding females of the cooperatively breeding Damaraland mole-rats (Fukomys damarensis) exhibit very high androgen concentrations during the wet season, presumably to support their breeding monopoly. Hormone analysis in Damaraland mole-rats have typically been measured using plasma and urine, but faecal analysis offers additional advantages especially for field studies on this species. The present study examines the suitability of Damaraland mole-rat faecal samples for determining glucocorticoid metabolite (fGCM) and androgen metabolite (fAM) concentrations using enzyme immunoassays. Using these assays, we further evaluated the effects of breeding status on fGCM and fAM concentrations in wild-caught and captive Damaraland mole-rats. Wild-caught breeding and non-breeding males and females exhibited no differences in fAM concentrations. Immunoreactive fGCM concentrations were only high in male breeders and comparatively low in non-breeders and breeding females. Concentrations of fAMs and fGCMs were similar in captive males and females, but fAM concentrations were elevated in captive compared to wild-caught individuals, which may be related to a higher reproductive activity due to removal from the breeding female. The relatively uniform fAM and fGCM concentrations found in wild-caught mole-rats may be explained by a stable colony structure during the dry season during which this study was conducted. Limited dispersal opportunities result in lower aggression and stress levels within a colony and as a result

  14. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones

    OpenAIRE

    Hay, Colin W.; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J.; MacKenzie, Alasdair

    2014-01-01

    Summary Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Usi...

  15. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2011-07-01

    Full Text Available In various tissues, glucocorticoids (GCs are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR. Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1 are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR

  16. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Okajima, Fumikazu, E-mail: fokajima@showa.gunma-u.ac.jp [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  17. Effect of glucocorticoids and gamma radiation on epidermal Langerhans cells

    International Nuclear Information System (INIS)

    Belsito, D.V.; Baer, R.L.; Thorbecke, G.J.; Gigli, I.

    1984-01-01

    The effect of 750 rads of gamma radiation on the rate of return of epidermal Langerhans cells (LC) following suppressive doses of topical glucorticoids was studied in guinea pigs. Gamma radiation alone had no effect on the LC as assessed by staining for cell membrane ATPase activity and Ia antigen. It did, however, delay the expected return of Ia but not ATPase surface markers on the LC after perturbation with glucocorticoids. The delayed return of surface Ia antigen is possibly related to a radiation-induced defect in the production of a required lymphokine and/or in intracellular Ia transport. Although our data do not rule out a cytolytic effect of steroids on the LC, they do strongly suggest that, at least in part, glucocorticoids act on the LC by altering cell surface characteristics

  18. Covalent affinity labeling, radioautography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular Leydig cells

    International Nuclear Information System (INIS)

    Stalker, A.; Hermo, L.; Antakly, T.

    1989-01-01

    The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor

  19. Nelson`s syndrome associated with a somatic frame shift mutation in the glucocorticoid recepter gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Stratakis, C.A.; Chrousos, G.P.; Katz, D.A.; Ali, I.U.; Oldfield, E.H. [National Inst. of Neurological Disorders and Stroke, Bethesda, MD (United States)] [and others

    1996-01-01

    Nelson`s syndrome is the appearance and/or progression of ACTH-secreting pituitary macroadenomas in patients who had previously undergone bilateral adrenalectomy for Cushing`s disease. Extremely high plasma ACTH levels and aggressive neoplastic growth might be explained by the lack of appropriate glucocorticoid negative feedback due to defective glucocorticoid signal transduction. To study the glucocorticoid receptor (GR) gene in Nelson`s syndrome, DNA was extracted from pituitary adenomas and leukocytes of four patients with this condition and amplified by PCR for direct sequence analysis. In one of the tumors, a heterozygous mutation, consisting of an insertion of a thymine between complementary DNA nucleotides 1188 and 1189, was found in exon 2. This frame-shift mutation led to premature termination at amino acid residue 366 of the world-type coding sequence, excluding the expression of a functioning receptor protein from the defective allele. The mutation was not detected in the sequence of the GR gene in the patient`s leukocyte DNA, indicating a somatic origin. By lowering the receptor number in tumorous cells, this defect might have caused local resistance to negative glucocorticoid feedback similar to that caused by the presence of a null allele in a kindred with the generalized glucocorticoid resistance syndrome. P53 protein accumulation, previously reported in 60% of corticotropinomas, could not be detected in any of the four pituitary tumors examined by immunohistochemistry. We suggest that a somatic GR defect might have played a pathophysiological role in the tumorigenesis of the corticotropinoma bearing this mutation. 35 refs., 3 figs., 1 tab.

  20. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Baila S. Hall

    2015-01-01

    Full Text Available Stress—especially chronic, uncontrollable stress—is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.