WorldWideScience

Sample records for glow discharge plasma

  1. Is the negative glow plasma of a direct current glow discharge negatively charged?

    International Nuclear Information System (INIS)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-01-01

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge

  2. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  3. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  4. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  5. Glow plasma jet - experimental study of a transferred atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Guerra-Mutis, Marlon H; U, Carlos V Pelaez; H, Rafael Cabanzo

    2003-01-01

    In this paper we present the experimental study of a glow plasma jet (GPJ) obtained from a transferred atmospheric pressure glow discharge (APGD) operating at 60 Hz. The characterization of the emission spectra for both electrical discharges is presented and the electrical circuit features for APGD generation are discussed. The potentiality of GPJ as a source of active species for depletion of contaminants in liquid hydrocarbon fractions is also established

  6. On the distribution of plasma parameters in RF glow discharge

    International Nuclear Information System (INIS)

    Ning Cheng; Liu Zuli; Liu Donghui; Han Caiyuan.

    1993-01-01

    A self-consistent numerical model based on the two-fluid equations for describing the transport of charged particles in the RF glow discharge is presented. For a plasma generator filled with low-pressure air and parallel-plate electrodes, the model is numerical solved. The space-time distribution of parameters and the spatial distribution of some time-averaged parameters in plasma, which show the physical picture of the RF glow discharge, are obtained

  7. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  8. Glow discharging device

    International Nuclear Information System (INIS)

    Maeno, Katsuki; Kawasaki, Kozo; Hiratsuka, Hajime; Kawashima, Shuichi.

    1989-01-01

    In a thermonuclear device, etc. impurities adsorbed to inner walls of a vacuum vessel by glow discharge are released to clean the vacuum vessel for preventing intrusion of the impurities into plasmas. The object of the present invention is to minimize the capacity of a power source equipment for the glow discharge device to the least extent. That is, a stabilization resistance is connected in series between each of a plurality of anodes which are inserted and arranged at the inside of a vacuum vessel as a cathode and a power source respectively. The resistance value R is selected so as to satisfy the relation: R < (Vi - Vm)/Ii, in which Vi: glow discharge starting voltage, Vm: glow discharge keeping voltage, Ii: glow discharge starting current. Accordingly, if a voltage is applied from a power source to a plurality of anodes, scattering of electric discharge between the anodes can be suppressed and the effect of voltage drop during discharge by the stabilization resistance can be eliminated. As a result, it is possible to provide an economically advantageous glow discharge device with the capacity for the power source facility being to the least extent. (K.M.)

  9. Research on the Plasma Anemometer Based on AC Glow Discharge

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-01-01

    Full Text Available A new plasma anemometer based on AC glow discharge is designed in this article. Firstly, theoretical analysis of plasma anemometer working principle is introduced to prove the feasibility of the experimental measurement method. Then the experiments are carried out to study the effects of different parameters on the static discharge characteristics of the plasma anemometer system, by which the system optimization methods are obtained. Finally, several groups of appropriate parameters are selected to build the plasma anemometer system based on resistance capacitance coupling negative feedback AC glow discharge, and different airflow speeds are applied to obtain the achievable velocity measurement range. The results show that there is a linear relationship between airflow velocity and discharge current in an allowable error range, which can be applied for airflow velocity measurement. Negative feedback coupling module, which is composed of the coupling resistance and the coupling capacitance, has good effects on improving the system stability. The measurement range of the airflow velocity is significantly increased when the electrode gap is 3 mm, coupling resistance is 470 Ω, and coupling capacitance is 220 pF.

  10. [Automatic adjustment control system for DC glow discharge plasma source].

    Science.gov (United States)

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  11. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  12. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  13. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  14. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  15. Comparison of macroscopic properties of electrons in plasmas of beam-plasma and glow discharges

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Starykh, V.V.

    1979-01-01

    The theoretical basis of the comparison are adequate Boltzmann equations for the electron component of the beam discharge plasma and the glow discharge plasma. We included the turbulent field or the direct electric field in the mentioned plasma types and all important binary collision processes as well as the Coulomb interaction between the charged particles. The comparison was performed in hydrogen under the condition of equal power input per volumen unit of both plasmas in dependence of the turbulence energy per one electron U, for the ionization degree (nsub(e)/N)sub(g) = 10 -6 and the pressure p 0 sup(g) = 1 Torr of the glow discharge plasma and for the ionization degrees (nsub(e)/N)sub(b) = 10 -3 , 10 -2 , 10 -1 and the pressure p 0 sup(b) = 10 -2 Torr of the beam discharge plasma which are typical for the existence of both plasma types. Based upon the numerical solutions of the Boltzmann equations under the mentioned additional conditions we compared the energy distribution functions of the electrons, the mean energy and the power losses of the electrons due to the different collision processes with the molecules and the ions. Especially a law for similarity of the electron kinetics of the two collision dominated plasma types was found and the main channels for the transfer of the field energy in both plasmas were determined. The results obtained were applied for assesing the perspectives of the beam discharged plasma as a plasmachemical reactor. (author)

  16. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  17. Dust acoustic waves in a dc glow-discharge plasma

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Nefedov, A.P.; Torchinskii, V.M.; Fortov, V.E.; Khrapak, A.G.

    1999-01-01

    The spontaneous excitation of low-frequency oscillations of the macroparticle density in ordered dust structures levitating in standing striations of a dc glow discharge is discovered. It is concluded on the basis of a simplified linear model of an ideal collisionless plasma that the observed instability is caused by the drift motion of ions relative to the dust, which leads to the excitation of dust acoustic oscillations of the plasma

  18. dc glow-discharge cleaning for accelerator

    International Nuclear Information System (INIS)

    Chou, T.S.; Hseuh, H.C.

    1982-01-01

    Average pressure of 1 x 10 -11 torr and vacuum stability are necessary for the successful operation of the proton storage rings such as ISABELLE. Vacuum degassing at high temperature and in situ bake-out will reduce the thermoout-gassing rate of the beam tubes to approx. 10 -13 Tl/cm 2 sec, therefore achieving the required static pressure. The vacuum instability caused by beam-induced ion desorption can be solved by dc glow discharge cleaning. With evidence from this study, the present understanding of glow discharge in a cylindrically symmetric geometry is reviewed. Argon and argon/oxygen mixture serve as plasmas in the glow. The role of oxygen in cleaning the beam tubes during the glow discharge is demonstrated experimentally. Glow discharge cleaning with and without bake-out is also studied

  19. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    Rocca, J.J.; Szapiro, B.; Murray, C.

    1989-01-01

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  20. Closed form analytic solutions describing glow discharge plasma

    International Nuclear Information System (INIS)

    Pai, S.T.; Guo, X.M.; Zhou, T.D.

    1996-01-01

    On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics

  1. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    Science.gov (United States)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  2. The role of magnetic energy on plasma localization during the glow discharge under reduced pressure

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-06-01

    Full Text Available In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case. In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction.

  3. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    Jackson, Glen P.; King, Fred L.

    2003-01-01

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  4. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  5. Target surface condition during reactive glow discharge sputtering of copper

    International Nuclear Information System (INIS)

    Depla, D; Haemers, J; Gryse, R De

    2002-01-01

    During reactive glow discharge sputtering of copper in an argon/nitrogen plasma, we noticed an abrupt change of the target voltage and the deposition rate when the nitrogen concentration in the plasma exceeds a critical value. To explain this behaviour, the target surface after reactive glow discharge sputtering was examined by x-ray photoelectron spectroscopy (XPS). An experimental arrangement was constructed that allows direct transfer of the glow discharge cathode to the XPS analysis chamber without air exposure. These XPS measurements revealed that several different chemical states of nitrogen are present in the layer that forms on the target surface. The relative concentration of these different states changes when the critical nitrogen concentration in the plasma is exceeded

  6. Spectroscopy and probe diagnostics of dc spherical glow discharge

    International Nuclear Information System (INIS)

    Zhovtyansky, V.A.; Nazarenko, V.G.; Syrotyuk, R.P.

    2016-01-01

    Probe and spectroscopic investigations of a spherical glow discharge (GD) were done in nitrogen and argon plasma. There were obtained the distributions of electron temperature and electron density in a discharge gap as well as plasma potential distribution. These results were compared with theoretical ones and the conclusion about their convergence was done in the present study. Particular attention was paid to the anode processes role in the formation of self-organized structure in a spherical glow discharge. It was shown the necessity of taking into account the possibility of the anode potential drop forming in this discharge region

  7. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  8. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  9. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    Science.gov (United States)

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical

  10. Determination of the plasma impedance of a glow discharge in carbon dioxide

    Science.gov (United States)

    Kiselev, A. S.; Smirnov, E. A.

    2017-07-01

    In this work an expression for the dynamic resistance of a glow discharge flowing in long tubes is obtained and analyzed. The expression describes the physical processes occurring in the positive column of a glow discharge. The frequency dependences of the active and reactive components as well as the dynamic resistance module for the discharge conditions corresponding to CO2-lasers have been calculated. Based on the simulation results developed a computer program in the C# programming language for modeling the dynamic resistance discharge of glow discharge lasers.

  11. Plasma actuators for active flow control based on a glow discharge

    International Nuclear Information System (INIS)

    Kühn, M.; Kühn-Kauffeldt, M.; Schein, J.; Belinger, A.

    2017-01-01

    In this work a glow discharge based active flow control for high flow velocities and low Reynolds numbers is presented. Unlike common plasma actuators such as dielectric barrier discharge (DBD) or spark jets, this actuator uses small impulse bits at frequencies. The actuator is optimized for frequencies up to 40 kHz to counter Tollmien Schlichting wave effects and so reduce overall air foil drag. Several measurements to prove the non-eroding effect of the actuator and the electrical properties were performed. It was found that the actuator is capable of operating at high frequencies without measurable erosion. (paper)

  12. Particle control in DIII-D with helium glow discharge conditioning

    International Nuclear Information System (INIS)

    Jackson, G.L.; Taylor, T.S.; Taylor, P.L.

    1990-01-01

    Helium glow discharge conditioning of DIII-D is routinely used before every tokamak discharge to desorb hydrogen from the graphite tiles, which are the plasma facing surfaces for the floor, inner wall and top of the vessel. In addition to reducing hydrogen fuelling of the plasma by the graphite surfaces, helium glow discharges are also effective in removing low-Z impurities, primarily in the form of carbon monoxide and hydrocarbons, and this has permitted higher current divertor operation and more rapid recovery from tokamak disruptions. Since the implementation of repetitive helium glow wall conditioning, the parameter space in which tokamak discharges in DIII-D can be obtained has been expanded to include the first observations of limiter H-mode confinement, the Ohmic H-mode with periods of up to 150 ms that are free of edge localized modes, more reliable low q operation with volume averaged beta of up to 9.3%, improved control over locked modes and plasma discharges at lower electron density. (author). 37 refs, 12 figs, 1 tab

  13. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  14. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    International Nuclear Information System (INIS)

    Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-01-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination

  15. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  16. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2011-01-01

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  17. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  18. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  19. Fuel hydrogen retention of tungsten and the reduction by inert gas glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T., E-mail: tomhino@qe.eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yamauchi, Y.; Kimura, Y. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu-ken 509-5292 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, Suita-shi 565-0872 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The performances of inert gas glow discharges for reduction of fuel hydrogen retention in tungsten were systematically investigated. Black-Right-Pointing-Pointer For the tungsten with rough surface structure, the reduction of fuel hydrogen retention by inert gas discharges is quite small. Black-Right-Pointing-Pointer The deuterium glow discharge is quite useful to reduce the tritium retention in plasma facing walls in fusion reactor. Black-Right-Pointing-Pointer The wall baking with temperature higher than 700-800 K is also useful to reduce the tritium retention in plasma facing walls. - Abstract: Polycrystalline tungsten was exposed to deuterium glow discharge followed by He, Ne or Ar glow discharge. The amount of retained deuterium in the tungsten was measured using residual gas analysis. The amount of desorbed deuterium during the inert gas glow discharge was also measured. The amount of retained deuterium was 2-3 times larger compared with a case of stainless steel. The ratios of desorbed amount of deuterium by He, Ne and Ar glow discharges were 4.6, 3.1 and 2.9%, respectively. These values were one order of magnitude smaller compared with the case of stainless steel. The inert gas glow discharge is not suitable to reduce the fuel hydrogen retention for tungsten walls. However, the wall baking with a temperature higher than 700 K is suitable to reduce the fuel hydrogen retention. It is also shown that the use of deuterium glow discharge is effective to reduce the in-vessel tritium inventory in fusion reactors through the hydrogen isotope exchange.

  20. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2017-01-15

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{sup 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.

  1. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  2. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  3. Studies on the Electrical Characteristics of a DC Glow Discharge by Using Langmuir Probe

    International Nuclear Information System (INIS)

    Safaai, S. S.; Yap, S. L.; Wong, C. S.; Muniandy, S. V.; Smith, P. W.

    2010-01-01

    Electrical characteristics of a DC glow discharge are studied with the aim of determining the suitable parameters for stable operation of the dusty plasma system. The presence of dust particles in plasma significantly alters the charged particle equilibrium in the plasma and leads to various phenomena. Argon plasma produced by DC glow discharge is investigated with a further goal of studying dusty plasma phenomena. The discharge system has two disc-shaped parallel plate electrodes. The electrodes are enclosed in a large cylindrical stainless steel chamber filled with argon gas. Two important physical parameters affecting the condition of the discharge are the gas pressure and the inter-electrode distance. A single Langmuir probe based on the Keithley source meter is used to determine the electron temperature of the positive column. A custom designed probe is employed to determine the potential distribution between the electrodes during the discharge. The I-V characteristic curve and the Langmuir probe measurement are then used to determine the electron energy distribution of the glow discharge plasma.

  4. Simulation Study of an Extended Density DC Glow Toroidal Plasma Source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.

    2006-01-01

    Conventional wisdom assigns the DC glow discharge regime to plasma currents below ∼500 mA values, beyond which the discharge falls into the anomalous glow and the turbulent arc regimes. However, we have found evidence that, during toroidal discharges, this barrier can be ostensibly extended up to 800 mA. Thus, a computer simulation has been applied to the evolution of the main electrical characteristics of such a glow discharge plasma in a toroidal vessel in order to design and construct a respective voltage/current controlled source. This should be able to generate a DC plasma in the glow regime with which currents in the range 10-3-100 A can be experimented and 109-1010 cm-3 plasma densities can be achieved to PIII optimization purposes. The plasma is modelled as a voltage-controlled current source able to be turned on whenever the breakdown voltage is reached across the gap between the anode and the vessel wall. The simulation outcome fits well our experimental measurements showing that the plasma current obeys power laws that are dependent on the power current and other control variables such as the gas pressure

  5. Development of soft ionization using direct current pulse glow discharge plasma source in mass spectrometry for volatile organic compounds analysis

    Science.gov (United States)

    Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki

    2018-01-01

    This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.

  6. Experimental study of spatial distribution of Ar glow discharge plasma

    International Nuclear Information System (INIS)

    Guo, X.M.; Zhou, T.D.; Pai, S.T.

    1996-01-01

    The characteristics of the spatial distribution of Ar glow discharge plasma were experimentally investigated. By means of direct comparisons between theory and experiment, the effects of the variation of gap separation, gas pressure, and electrode radius on the spatial distributions of electron density and electric field were studied. Results indicate that the maximum electron density moves toward the cathode as the gap separation or gas pressure increases while variation of electrode radius produces little effect. Predictions from a theoretical model have been experimentally verified. General agreements between theory and experiment were found to be reasonably good except in the cathode region, where discrepancy exists. copyright 1996 American Institute of Physics

  7. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, 13397 Marseille (France)

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  8. Space structure of the glow discharge with free side boundary

    International Nuclear Information System (INIS)

    Yatsenko, N.A.

    1995-01-01

    The main purpose of this work is to reveal physical reasons, which are responsible for the formation of space structure of glow type discharge with free side boundary, both in DC and in RF electric fields. By now extensive experimental material have been accumulated in discharge physics. Also many theoretical models have been proposed for describing separate parts of discharge with the cold electrodes (cathode and anode regions, positive column and transition zones - glow luminescence and Farraday's dark space of DC-discharge, electrode regions and plasma column of RF capacitive discharge). As this takes place, the majority of known works are devoted to some one part of gas discharge - positive column, electrode regions, transition zones and so on. At the same time just now we don't know anything about space structure of free, steady-state gas discharge of glow type, as a whole, especially when the pressure p much-gt 1 Torr

  9. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  10. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

    DEFF Research Database (Denmark)

    Canulescu, Stela; Molchan, Igor S.; Tauziede, C.

    2010-01-01

    A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime...... be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible...... for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed....

  11. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  12. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  13. Oxidation of 1020 steel in the abnormal glow discharge

    International Nuclear Information System (INIS)

    Zúñiga, J A García; Santos, A Sarmiento; Gómez, E Y Soto

    2017-01-01

    1020 steel is a material very used for surface treatment in the abnormal glow discharge. Because the composition of the gaseous atmosphere has an important influence on the results of plasma treatment, in this work the oxidation process of 1020 steel is verified on the abnormal glow discharge under different concentrations of air (20% to 100%) at temperatures of 600°C and 900°C. For each atmosphere used mass variation is measured during the process of surface oxidation, the structure and microstructure of the oxide film formed is observed and also its mechanical properties through its microhardness. (paper)

  14. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  15. Electrostatic analyzer for electron and ion energy in glow discharge tube

    International Nuclear Information System (INIS)

    Bong Kil Yeon.

    1984-01-01

    The project, the construction and use of an electrostatic energy analyser (Faraday Cup) are described explaining physically its working mechanism. The analyser was used in a glow discharge tube with air and an air-argon mixture. A chapter with the theory of the glow discharge is included. The ion and electron temperatures, the plasma potential and the distribution function for ions and electrons were measured. The electron temperature and plasma potential were also measured using a Langmuir probe and the results show reasonable agreement with the results of the analyser. Good fits of the experimental electron and ion distribution functions were obtained with Maxwellian distributions centered values near the plasma potential. Finally, we discuss the performance of the analyser compared to Langmuir probes. (author) [pt

  16. Glow discharge based device for solving mazes

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  17. Synthesis of nanoparticles in an atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Barankin, M.D.; Creyghton, Y.; Schmidt-Ott, A.

    2006-01-01

    Nanopowders are produced in a low temperature, non-equilibrium plasma jet (APPJ), which produces a glow discharge at atmospheric pressure, for the first time. Amorphous carbon and iron nanoparticles have been synthesized from Acetylene and Ferrocene/H 2 , respectively. High generation rates are achieved from the glow discharge at near-ambient temperature (40-80 deg. C), and rise with increasing plasma power and precursor concentration. Fairly narrow particle size distributions are measured with a differential mobility analyzer (DMA) and an aerosol electrometer (AEM), and are centered around 30-35 nm for carbon and 20-25 nm for iron. Particle characteristics analyzed by TEM and EDX reveal amorphous carbon and iron nanoparticles. The Fe particles are highly oxidized on exposure to air. Comparison of the mobility and micrograph diameters reveal that the particles are hardly agglomerated or unagglomerated. This is ascribed to the unipolar charge on particles in the plasma. The generated particle distributions are examined as a function of process parameters

  18. Application of Radio-Frequency Plasma Glow Discharge to Removal of Uranium Dioxide from Metal Surfaces

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2000-01-01

    Recent experiments have shown that radio-frequency (rf) plasma glow discharge using NF 3 gas is an effective technique for the removal of uranium oxide from metal surfaces. The results of these experiments are analyzed to explain the measured dependence of the UO 2 removal or etch rate on the NF 3 gas pressure and the absorbed power in the plasma. The NF 3 gas pressure in the experiments was varied from 10.8 to 40 Pa, and the deposited power in the plasma was varied from 25 to 210 W. The UO 2 etch rate was strongly dependent on the absorbed power and, to a lesser extent, on the NF 3 pressure and decreased exponentially with immersion time. At 210 W and 17 Pa, all detectable UO 2 in the samples (∼10.6 mg each) was removed at the endpoint, whereas the initial etch rate was ∼3.11 μm/min. When the absorbed power was ≤50 W, however, the etch rate was initially ∼0.5 μg/min and almost zero at the endpoint, with UO 2 only partially etched. This self-limiting etching of UO 2 at low power is attributed to the formation of nonvolatile intermediates UF 2 , UF 3 , UF 4 , UF 5 , UO 2 F, and UO 2 F 2 on the surface. Analysis indicated that the accumulation of UF 6 and, to a lesser extent, O 2 near the surface partially contributed to the exponential decrease in the UO 2 etch rate with immersion time. Unlike fluorination with F 2 gas, etching of UO 2 using rf glow discharge is possible below 663 K. The average etch rates of the amorphous UO 2 in the NF 3 experiments are comparable to the peak values reported in other studies for crystalline UO 2 using CF 4 /O 2 glow discharge performed at ∼150 to 250 K higher sample temperatures

  19. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. C.; Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal)

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  20. Study on the characteristics of hysteresis loop and resistance of glow discharge plasma using argon gas

    Science.gov (United States)

    Mathew, Prijil; Sajith Mathews, T.; Kurian, P. J.; Chattopadyay, P. K.

    2018-05-01

    Hysteresis in discharge current is produced in a low-pressure, magnetic field free, Glow discharge plasma by varying discharge voltage. The variation in area of the hysteresis loops with pressure, electrode distance and load resistor studied. To understand, the nonlinear behaviour of the I-V characteristics, the changes in gas resistance with electrode voltage, pressure and load resistor were studied. After many trials we propose the best suitable empirical equation for the exponential decrease of the gas resistance with electrode voltage as; R = Rmin + Ae-0.008V, which is a novel one and matches well with our experimental results.

  1. Study of plasma characteristics in the cathode regime of a nitrogen glow discharge

    International Nuclear Information System (INIS)

    Margulis, Alvaro

    1987-01-01

    This research thesis reports the study of the cathode region, cathodic sheath and negative glow, of a nitrogen glow discharge. The author first presents general data regarding glow discharges, a description of the experimental installation, and measurements of discharge balancing. In the next part, he precisely describes spectroscopic methods, and the implementation of diagnoses from an experimental point of view as well as in terms of space resolution. Results are then presented and interpreted. Measurements concern space distributions of excited species, the determination of axial and radial concentrations of nitrogen ions, axial variations of rotational temperatures of the different species and variations of nitrogen ion vibrational temperature. The laser optogalvanic effect on the nitrogen molecular ion is resolved in time, and compared with the result of a theoretical model based on the mobility difference between the different nitrogen ions. Finally, the author compares experimental results on ion profiles along the discharge axis with results obtained with theoretical models [fr

  2. V-I curves and plasma parameters in a high density DC glow discharge generated by a current-source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E E; Lopez-Callejas, R; Piedad-Beneitez, A de la; BenItez-Read, J S; Pacheco-Sotelo, J O; Pena-Eguiluz, R; A, R Valencia; Mercado-Cabrera, A; Barocio, S R

    2008-01-01

    Nitrogen DC glow discharges, conducted in a cylindrical geometry, have been characterized using a new current-source able to provide 10 -3 - 3 A for the sustainment of the discharge, instead of a conventional voltage-source. The V-I characteristic curves obtained from these discharges were found to fit the general form i(v) = A(p)v k(p) , whereby the plasma itself can be modeled as a voltage-controlled current-source. We conclude that the fitting parameters A and k, which mainly depend on the gas pressure p, are strongly related to the plasma characteristics, so much so that they can indicate the pressure interval in which the maximum plasma density is located, with values in the order of 10 16 m -3 at reduced discharge potential (300-600 V) and low working pressure (10 -1 - 10 1 Pa)

  3. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  4. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  5. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  6. Radio-frequency glow discharge spectrometry: A critical review

    International Nuclear Information System (INIS)

    Winchester, Michael R.; Payling, Richard

    2004-01-01

    This paper presents a critical review of analytical radio frequency glow discharge spectrometry (rf-GDS). The historical foundations of rf-GDS are described, and current knowledge of the fundamental physics of analytical rf glow discharges is discussed. Additionally, instrumentation, methodologies, and applications of rf glow discharge optical emission spectrometry (rf-GDOES) and mass spectrometry (rf-GDMS) are reviewed. Although other rf-GDS techniques have appeared [e.g. rf glow discharge atomic absorption spectrophotometry (rf-GDAAS)], the emphasis is placed upon rf-GDOES and rf-GDMS, because they have received by far the most interest from analytical chemical metrologists. This review also provides explanations of some developments that are needed for further progress in the field of analytical rf-GDS

  7. Variation of the Plasma Density in a Glow Discharge Upon the Application of A High Voltage

    International Nuclear Information System (INIS)

    Akman, S.

    2004-01-01

    It is emphasized and demonstrated that, during the formation of an ion-matrix sheath in a glow discharge upon the application of a high voltage pulse, the existing neutral plasma density should change as well. An explicit and practical expression for the neutral plasma density in terms of the gas pressure, secondary electron emission coefficient and the applied voltage is derived, so that the consequent sheath behavior can be formulated correctly. The theoretical result is compared with the data of an experiment, particularly designed and performed to test its validity, and found to be in good agreement with the latter

  8. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges

    International Nuclear Information System (INIS)

    Wang, Y. H.; Zhang, Y. T.; Wang, D. Z.; Kong, M. G.

    2007-01-01

    In this letter, evidence of temporal plasma nonlinearity in which atmospheric dielectric-barrier discharges undergo period multiplication and chaos using a one-dimensional fluid model is reported. Under the conditions conducive for chaotic states, several frequency windows are identified in which period multiplication and secondary bifurcations are observed. Such time-domain nonlinearity is important for controlling instabilities in atmospheric glow discharges

  9. Bidimensional characterization of the emission spectra in a direct current atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Orejas, Jaime; Pisonero, Jorge; Bordel, Nerea; Nelis, Thomas; Guillot, Philippe; Sanz-Medel, Alfredo

    2012-01-01

    An in-house atmospheric pressure glow discharge source, designed to be used as ionization/desorption source for ambient mass spectrometry, has been electrically characterized, and its optical emission spectra evaluated in detail. Electrical characterization showed that the plasma regime can vary from glow discharge to arc discharge depending on operating conditions (i.e. He flow rate and inter electrode distance). Furthermore, bidimensional images of the optical emission of some plasma species using filters as wavelength selectors, were registered from inside and outside the discharge chamber (inner region and afterglow region respectively), showing the spatial distribution of excited species (i.e. He*, N 2 + and O*). These distribution patterns are useful to study the chemistry of the discharge plasma, since different production pathways and different excitation energies affect the presence of these species in the plasma regions. - Highlights: ► An in-house APGD is characterized through electrical and OES measurements. ► Interelectrode distance had more effect on electric regime than He flow rate. ► Internal plume images showed differences on the production pathways for each species. ► Higher interelectrode distances and He flow rates showed better afterglow conditions.

  10. The experience with JET's combined dc/Rf glow discharge cleaning (GDC) system

    International Nuclear Information System (INIS)

    Pearce, R.J.H.; Andrew, P.; Bryan, S.

    1996-01-01

    The JET Tokamak was fitted with four new electrodes of novel design, each powered from individual computer controlled dc and RF supplies. Details of enhancements and problems from 15 months experience with the system are outlined. Experiments were performed to assess the effect of RF on the glow discharge characteristics, and to establish stable glow at low pressure and high voltage. JET combined RF/dc glow discharge cleaning (GDC) had no significant advantages over pure dc GDC, provided highly stable dc current control was obtained. In fact, the mechanically weak electrode inductor spiral required to allow RF posed a distinct disadvantage. The electrodes were converted to simple plates, following damage caused by halo currents during Tokamak plasma disruptions. The performance of these electrodes was assessed. Future developments in the JET GDC system are outlined. (Author)

  11. Formation and evolution of the glow-like dielectric barrier discharge at atmospheric pressure

    NARCIS (Netherlands)

    Starostin, S.A.; ElSabbagh, M.A.M.; Premkumar, P.A.; Vries, de H.W.; Paffen, R.M.J.; Creatore, M.; Sanden, van de M.C.M.

    2008-01-01

    Time resolved process of formation and evolution of the atmospheric pressure glow discharge was studied in the roll-to- roll plasma- enhanced chemical vapor deposition dielectric barrier discharge reactor operating in helium-free gas mixtures by means of fast ICCD imaging. It was observed that the

  12. Nitridation Of The A A 2024 T3 Aluminium By The Glow Discharge Plasma Technique

    International Nuclear Information System (INIS)

    Mudjiman, Supardjono; Sujitno, Tjipto; Sudjatmoko

    1996-01-01

    Nitridation of A A 2024 T3 aluminium by means of plasma glow discharge technique has been carried out. For this purpose, the experiments were carried out at the temperature 30 o C, 60 o C, 100 o C, 150 o C, 200 o C, and 250 o C whereas the nitridation time were varied at 5 minutes, 15 minutes, 40 minutes, 90 minutes and 180 minutes. The results showed that the optimum temperature and time of nitridation were 60 o C and 90 minutes respectively and the hardness increased from 115 to 166 KHN

  13. Glow discharge processing vs bakeout for aluminum storage ring vacuum chambers

    International Nuclear Information System (INIS)

    Dean, N.R.; Hoyt, E.W.; Palrang, M.T.; Walker, B.G.

    1977-11-01

    Experiments were carried out on laboratory and prototype scale systems in order to establish the feasibility of argon discharge processing the PEP storage ring aluminum vacuum chambers. Electron-induced desorption rates showed significant reductions following bakeout and/or argon glow discharge treatment (>10 19 ions cm -1 ). Data are presented and discussed in relation to advantages and problems associated with: water removal, argon trapping and subsequent release, electron energy dependence, discharge distribution, and surface plasma chemical effects

  14. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    International Nuclear Information System (INIS)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    2014-01-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T rot ), excitation temperature (T exc ), electron number density (n e ), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N 2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10 15 cm −3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source ( 3 volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary excitation source for laser-ablated (LA

  15. Spectroscopic characterisation of an atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Gomez, S.; Steen, P.G.; Morrow, T.; Graham, W.G.

    2001-01-01

    Recently there has been considerable interest in atmospheric discharges operating in a glow discharge mode i.e. with a spatial and sheath structure similar to that of low pressure glow discharges. Here spectroscopy has been used to characterise an atmospheric pressure glow discharge (APGD), operating with either dry air, argon or helium gas flowing through the inter-electrode space and with the inter-electrode gap either free or with woven polypropylene or polyester samples present. Emission spectroscopy is used to determine the rotational and vibrational temperature of the nitrogen gas, while electron temperatures are determined from the relative intensities of Ar emission lines. Ozone production is monitored by a simple absorption technique to evaluate its potential in process control

  16. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a 'Rydberg gas?'

    International Nuclear Information System (INIS)

    Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.

    2003-01-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma

  17. A novel synthesis method for large area metallic amorphous/nanocrystal films by the glow-discharge plasma technique

    International Nuclear Information System (INIS)

    Xu Jiang; Xu Zhong; Tao Jie; Liu Zili; Chen Zheyuan; Zhu Wenhui

    2007-01-01

    Two large-area metallic amorphous/nanocrystal films were prepared on AZ31 magnesium alloy and pure iron substrates by the double glow-discharge plasma technique. The formation mechanism of the novel amorphous films did not follow the established empirical rules for large glass-forming ability. The amorphous films were composed of binary alloys with a difference in the atomic diameter of alloying constituents of less than 12%, and an amorphous film of pure iron was successfully obtained

  18. Bidimensional characterization of the emission spectra in a direct current atmospheric pressure glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Orejas, Jaime [University of Oviedo, Department of Physics, C/ Gonzazlez Quiros S/N, Mieres (Spain); Pisonero, Jorge, E-mail: pisonerojorge@uniovi.es [University of Oviedo, Department of Physics, C/ Gonzazlez Quiros S/N, Mieres (Spain); Bordel, Nerea [University of Oviedo, Department of Physics, C/ Gonzazlez Quiros S/N, Mieres (Spain); Nelis, Thomas [Bern University of Applied Sciences, Quellgasse 21, 2501 Bienne (Switzerland); Guillot, Philippe [DPHE, CUFR J. F. Champollion, Universite de Toulouse, Place de Verdun, Albi (France); Sanz-Medel, Alfredo, E-mail: asm@uniovi.es [University of Oviedo, Department of Physical and Analytical Chemistry, C/ Julian Claveria 8, Oviedo (Spain)

    2012-10-15

    An in-house atmospheric pressure glow discharge source, designed to be used as ionization/desorption source for ambient mass spectrometry, has been electrically characterized, and its optical emission spectra evaluated in detail. Electrical characterization showed that the plasma regime can vary from glow discharge to arc discharge depending on operating conditions (i.e. He flow rate and inter electrode distance). Furthermore, bidimensional images of the optical emission of some plasma species using filters as wavelength selectors, were registered from inside and outside the discharge chamber (inner region and afterglow region respectively), showing the spatial distribution of excited species (i.e. He*, N{sub 2}{sup +} and O*). These distribution patterns are useful to study the chemistry of the discharge plasma, since different production pathways and different excitation energies affect the presence of these species in the plasma regions. - Highlights: Black-Right-Pointing-Pointer An in-house APGD is characterized through electrical and OES measurements. Black-Right-Pointing-Pointer Interelectrode distance had more effect on electric regime than He flow rate. Black-Right-Pointing-Pointer Internal plume images showed differences on the production pathways for each species. Black-Right-Pointing-Pointer Higher interelectrode distances and He flow rates showed better afterglow conditions.

  19. Glow discharge depth analysis of metallic elements in steels

    International Nuclear Information System (INIS)

    Berneron, R.

    The glow discharge lamp designed by Grimm gives new possibilities in the optical spectrometry. The plasma produced is a cool emissive source and its advantages are the following: low spectral background, no reabsorption, linear calibration, very stable emission, very high yield. The sputtering produced by ionic bombardment of the sample enables the depth repartition of several elements to be made in the same run [fr

  20. Analysis of the neutral drag force in a dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Williams, Jeremiah

    2005-01-01

    In this paper, the authors report on a series of experiments that use carefully applied perturbations to a dust cloud to reproducibly investigate the formation of the microparticle cloud and the formation of dust cloud-plasma interface. Here, one micron diameter alumina microparticles are suspended in an argon dc glow discharge plasma. A perturbing voltage pulse is applied to the cathode, causing a momentary disruption in the confinement of the dust cloud. After the perturbation, the cloud reforms, typically with a central 'mass' and two 'streams' of particles that are flowing into the cloud from both sides. Through the use of stereoscopic particle image velocimetry (stereo-PIV), the complete three-dimensional velocity of the microparticles can be measured. The particles in the streams are used as test particles to characterize the forces acting upon the microparticles. Analysis of the experimental measurements suggests that the effective neutral drag force may be lower than expected

  1. Radio frequency glow discharge source with integrated voltage and current probes used for evaluation of discharge parameters

    International Nuclear Information System (INIS)

    Wilken, L.; Hoffmann, V.; Wetzig, K.

    2006-01-01

    A radio frequency (rf) Grimm-type glow discharge source for the chemical analysis of solid samples, with integrated voltage and current probes, was developed. All elements of a plasma equivalent circuit are determined from the measured current-voltage characteristics. The procedure is based on the independent evaluation of the ion current and electron current region. The physical meaning of the parameters is investigated by comparisons with measurements from dc glow discharges. We found that the reduced rf current of the powered electrode is comparable to the reduced current in dc discharges. A formula is developed that corrects the reduced current due to gas heating. The sheath thickness at the powered rf electrode is evaluated and is between 75 and 1100 μm. The voltage of the bulk plasma is in the range 2-15 V, and the resistance is between 30 and 400 Ω. The bulk plasma consumes about 3% of the total power, and the reduced voltage is comparable to the reduced electrical field in the positive column of direct current discharges. The sheath voltage at the grounded electrode is in the range 25-100 V, the capacities are between 10 and 400 pF, and the resistances are in the range 100 Ω-5000 Ω. We also found invariants for the evaluated sheath parameters

  2. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions

    Science.gov (United States)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.

    2010-08-01

    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  3. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  4. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Li Jianhui; Kwok, Dixon T. K.; Chu, Paul K.; Wang Zhuo

    2009-01-01

    Based on the multiple-grid particle-in-cell code, an advanced simulation model is established to study the sheath physics and dose uniformity along the sample stage in order to provide the theoretical basis for further improvement of enhanced glow discharge plasma immersion ion implantation and deposition. At t=7.0 μs, the expansion of the sheath in the horizontal direction is hindered by the dielectric cage. The electron focusing effect is demonstrated by this model. Most of the ions at the inside wall of the cage are implanted into the edge of the sample stage and a relatively uniform ion fluence distribution with a large peak is observed at the end. Compared to the results obtained from the previous model, a higher implant fluence and larger area of uniformity are disclosed.

  5. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C 2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH 4 /H 2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH 4 /H 2 2: 8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C 2 hydrocarbon products. Therefore, the deposition of coke is restrained

  6. Use of glow discharge in measurement of diffusion profile

    International Nuclear Information System (INIS)

    Baudin, Guy

    1976-05-01

    The composition of a glow discharge plasma is a good image of the composition of the surface being erroded without fusion. The depth of metal eated away is a linear function of time in 10 to 60μ range, that is too say between 2 and 20 minutes after lightning of the lamp. So measuring the emission of the discharge is function of time gives the diffusion profile of elements either by measuring instantaneous signal or by integrating during short periods of time for weak concentration. Examples of application for diffusion of N 2 and C in steel will be given [fr

  7. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  8. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Manard, Benjamin T. [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sarkar, Arnab [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Marcus, R. Kenneth [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States)

    2014-04-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T{sub rot}), excitation temperature (T{sub exc}), electron number density (n{sub e}), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N{sub 2} and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10{sup 15} cm{sup −3} utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (< 1 mm{sup 3} volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary

  9. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-01-01

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm 2 , both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium

  10. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  11. Baking and helium glow discharge cleaning of SST-1 tokamak with graphite plasma facing components

    International Nuclear Information System (INIS)

    Semwal, Pratibha; Khan, Ziauddin; Raval, Dilip

    2015-01-01

    Graphite plasma facing components (PFCs) were installed inside SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 X 10 -5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium (He) glow discharge cleaning (GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nanometers from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.48. In this paper, the results of effect of baking and He-GDC experiments of SST-1 will be presented in detail. (author)

  12. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    Science.gov (United States)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  13. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-01-01

    Results are presented from experimental studies of decomposition of toluene (C 6 H 5 CH 3 ) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C 6 H 5 CH 3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N 2 : O 2 : H 2 O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C 6 H 5 CH 3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C 6 H 5 CH 3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  14. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  15. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu

    2007-01-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  16. A study on the equivalent electric circuit simulation model of DBD streamer and glow alternate discharge

    International Nuclear Information System (INIS)

    Yao, J; Zhang, Z T; Xu, S J; Yu, Q X; Yu, Z; Zhao, J S

    2013-01-01

    This paper presents a dynamic simulating model of the dielectric barrier discharge (DBD), structured as an equivalent electric circuit of the streamer and glow discharge generated alternately in DBD. The main parameters of DBD have been established by means of analysing the structural characteristics of a single discharge cell. An electrical comprehensive Simulink /MATLAB model was developed in order to reveal the interaction of the adjacent two discharge cell. A series of simulations was carried out in order to estimate the key structural parameters that affect the alternate streamer and glow discharge mode. The comparison results of experimental and simulate indicate that there exists a close similarity of the current waveforms graphic. Therefore, we can grasp a deep understanding mechanism of the dielectric barrier discharge and optimize the plasma reactor.

  17. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  18. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-01-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  19. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    Kortshagen, Uwe; Heberlein, Joachim; Girshick, Steven L.

    2009-01-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  20. [The glow discharge as an atomization and ionization source

    International Nuclear Information System (INIS)

    1990-01-01

    This is to summarize the research progress in this project at the University of Florida over the past 13 months. In keeping with the directions of the Federal Demonstration Project, the report will be brief, presenting an overview of the major findings. We have continued the study of the glow discharge, primarily as an ionization source for elemental analysis. Glow discharge interest continues to grow in the analytical chemistry community as evidenced by the number of special symposia at major conferences, by the new researchers entering the field, and by the introduction of new instrumentation. There is little doubt that glow discharge mass spectrometry, for example, is now a major technique in the elemental analysis of solids

  1. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  2. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    International Nuclear Information System (INIS)

    Sen Gupta, Susanta K

    2015-01-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma–liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining. (topical review)

  3. Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air

    Science.gov (United States)

    Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin

    2017-09-01

    During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.

  4. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    International Nuclear Information System (INIS)

    Semwal, P; Khan, Z; Raval, D C; Dhanani, K R; George, S; Paravastu, Y; Prakash, A; Thankey, P; Ramesh, G; Khan, M S; Saikia, P; Pradhan, S

    2017-01-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10 -5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail. (paper)

  5. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  6. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    Science.gov (United States)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  7. Surface Modification of Asymmetric Polysulfone/Polyethylene Glycol Membranes by DC Ar-Glow Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chalad Yuenyao

    2016-01-01

    Full Text Available Polysulfone/polyethylene glycol (PSF/PEG membranes were prepared by dry/wet phase inversion method. Effects of direct current glow discharge plasma using argon as working gas on morphological structures and gas separation properties of membranes were studied. Alteration of membrane characteristics were analyzed by various techniques like contact angle, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic mechanical thermal analysis. Gas separation properties were measured in terms of permeation and ideal O2/N2 selectivity. Results showed that hydrophilic and gas separation properties of PSF/PEG membranes increased by plasma surface modification. It was also shown that the dosage of PEG and plasma treatment affected the morphological structures and mechanical and gas separation properties. The macro voids and transmembrane structure disappeared with a little amount of PEG dosage. Pore size and mechanical strength tend to decrease with increasing PEG dosage up to 10 wt%. Glass transition temperature (Tg receded from 201.8 to 143.7°C for pure PSF and PSF/PEG with PEG dosage of 10 wt%. O2 and N2 gases permeation through the 10-minute plasma treated membranes tend to increase. However, the permeation strongly dispersed when treatment time was more extended.

  8. Product surface hardening in non-self-sustained glow discharge plasma before synthesis of superhard coatings

    International Nuclear Information System (INIS)

    Krasnov, P S; Metel, A S; Nay, H A

    2017-01-01

    Before the synthesis of superhard coating, the product surface is hardened by means of plasma nitriding, which prevents the surface deformations and the coating brittle rupture. The product heating by ions accelerated from plasma by applied to the product bias voltage leads to overheating and blunting of the product sharp edges. To prevent the blunting, it is proposed to heat the products with a broad beam of fast nitrogen molecules. The beam injection into a working vacuum chamber results in filling of the chamber with quite homogeneous plasma suitable for nitriding. Immersion in the plasma of the electrode and heightening of its potential up to 50–100 V initiate a non-self-sustained glow discharge between the electrode and the chamber. It enhances the plasma density by an order of magnitude and reduces its spatial nonuniformity down to 5–10%. When a cutting tool is isolated from the chamber, it is bombarded by plasma ions with an energy corresponding to its floating potential, which is lower than the sputtering threshold. Hence, the sharp edges are sputtered only by fast nitrogen molecules with the same rate as other parts of the tool surface. This leads to sharpening of the cutting tools instead of blunting. (paper)

  9. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    Science.gov (United States)

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  10. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Science.gov (United States)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  11. Etching of UO2 in NF3 RF Plasma Glow Discharge

    International Nuclear Information System (INIS)

    John M. Veilleux

    1999-01-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO 2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO 2 from stainless steel substrates. Experiments were conducted using NF 3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO 2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO 2 in the samples had a relatively low density of 4.8 gm/cm 3 . Counting of the depleted UO 2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234 Th and 234 Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO 2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO 2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 microm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO 2 etching was also noted below 50 W in which etching increased up to a maximum pressure, approximately23 Pa, then decreased with further increases in pressure

  12. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi [University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

    2016-08-22

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ∼30% and ∼300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  13. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  14. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    Science.gov (United States)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  15. Influence of an electric probe on the anode layer of a glow discharge in nitrogen

    Science.gov (United States)

    Taran, M. D.; Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.; Akishev, Yu S.

    2018-05-01

    A two-dimensional (2D) numerical model of a DC glow discharge in nitrogen is developed for the case when the electric probe is mounted in the discharge gap. Within this model, calculations are performed for the gas pressure of 50 Torr and discharge current densities of 22 and 90 mA cm‑2. A cylindrical probe 1 mm in diameter is located parallel to the anode at a distance of 5 or 10 mm. The probe potential is varied in a wide range relative to the floating potential. Numerical simulations predict the 2D plasma perturbation pattern induced by the electric probe and the influence of the probe on anode layer characteristics. In particular, conditions are determined under which a region with no glow forms in the anode layer.

  16. Multiplicity detector using a glow-discharge memory

    International Nuclear Information System (INIS)

    Mulera, T.; Elola, M.; Perez-Mendez, V.; Wiedenbeck, P.

    1981-04-01

    It has been proposed to eliminate the x-y cor relation ambiguities introduced by multiple tracks in a wire chamber by using the chamber itself as a memory. Hits in the chamber itself ignite glow discharges storing the x-y location of the hits in a correlated fashion. Glow ignition may be achieved by employing a multi-step avalanche chamber above a memory gap. Correlation is maintained during readout by successively pulsing each hit wire in one coordinate and sensing transmissions through glows in the other coordinate. Prototypes constructed by the authors are discussed along with the associated high voltage and readout systems

  17. Extension of spatiotemporal chaos in glow discharge-semiconductor systems.

    Science.gov (United States)

    Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur

    2014-12-01

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  18. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  19. Temporal evolution of the after glow plasma conductivity

    International Nuclear Information System (INIS)

    Surmeian, A.; Diplasu, C.; Musa, G.; Popescu, I-Iovitz

    2001-01-01

    Due to their exhibited advantages over continuous and RF glows, the pulsed discharges gain more attention in a wide variety of application fields, like film deposition, plasma chemistry, semiconductor processing, etc. For this reason, fast time-resolved experimental methods need to be developed in order to control the main parameters of the high voltage pulsed plasmas. It is well known that electric probes present major advantages over many other diagnostic techniques for studying plasma parameters, but the use of these probes in the high voltage pulsed plasmas encounters enormous difficulties. One of them is the issue of galvanic insulation of the probe during the high voltage pulse. Also, the plasma potential may change rapidly, inducing spurious currents in the probe. Other problems could arise in the afterglow when the probe can exert great influence over the plasma potential by the current that it draws from the plasma. In this paper, we proposed a new method for the determination of the electrical conductivity of the afterglow of the high voltage pulsed discharges, using a low frequency RF plane probe. The application of a small low frequency signal to the plane probe could successfully eliminate all the disadvantages mentioned above. (authors)

  20. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in [Department of Physics, National Institute of Technology Sikkim, Ravangla, Sikkim 737139 (India)

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  1. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  2. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    International Nuclear Information System (INIS)

    Akhmet, Marat; Fen, Mehmet Onur; Rafatov, Ismail

    2014-01-01

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).

  3. Charged particle emission effects on the characteristics of glow discharges with oscillating electrons

    CERN Document Server

    Nikulin, S P

    2001-01-01

    One discusses the effect of selection of charged particles on conditions to maintain and the characteristics of a glow discharge with oscillating electrons. It is shown that there is a pressure dependent optimal level of ion selection when the energy efficiency of ion source reaches its maximum value. It is determined that departure of fast ionizing electrons affects negatively the discharge maintenance wile emission of slow plasma electrons may promote maintenance of a discharge high current shape. It is shown that high efficient electron emission without violation of a discharge stability may take place in a magnetic field due to different nature of spatial distributions of fast and slow particles in discharges with electron oscillation

  4. Study of glow discharge positive column with cloud of disperse particles

    International Nuclear Information System (INIS)

    Polyakov, D.N.; Shumova, V.V.; Vasilyak, L.M.; Fortov, V.E.

    2011-01-01

    The study aims to describe plasma parameters changes induced by clouds of disperse micron size particles. Dust clouds were formed in the positive column of glow discharge in air at pressure 0.1-0.6 torr and current 0.1-3 mA. The simultaneous registration of discharge voltage and dust cloud parameters was carried out. Experimental results were simulated using diffusion model. The dust cloud is shown to smooth the radial electron concentration profile, increase electric field strength and electron temperature and stabilize the discharge. The cloud is demonstrated to be a trap for positive ions without increase of discharge current. -- Highlights: → 25% increase of longitudinal electric field strength in discharge with dust cloud. → The smoothing effect of dust cloud on radial electron and ion concentration profiles. → Dust cloud as a trap for positive ions without increase of discharge current. → Increase of electron temperature in discharge with dust cloud. → Increase of discharge stability in presence of dust cloud.

  5. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  6. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yek Peter Nai Yuh

    2018-01-01

    Full Text Available Submerged glow-discharge plasma (SGDP is relatively new among the various methods available for nanomaterials synthesis (NMs techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M and characterized by Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy (EDS. As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  7. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  8. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-11-01

    Full Text Available Glow discharge plasma (GDP treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP. The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.

  9. Propagation of ionizing waves in glow discharge

    International Nuclear Information System (INIS)

    Suzuki, T.

    1977-01-01

    Ionizing waves were produced along the positive column of a glow discharge in air by applying an impulse voltage to an electrode at one end of the column. Five photomultipliers and three current-sensing coils were used to observe how the waves were affected by the rise time and the magnitude of the applied impulses and by the electron density in the positive column of the glow discharge. It is shown that the speed of the ionizing waves increases with the slope of the applied impulses and with the preexisting electron density. The electron density is augmented about 100--200 times due to the buildup of ionization at the front of the waves. The theory was developed to explain the property of ionizing waves

  10. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  11. Electric probe data analysis for glow discharge diagnostics

    International Nuclear Information System (INIS)

    Cain, B.L.

    1987-01-01

    This report summarizes the development and application of digital computations for the analysis of data from an electric probe used for glow discharge diagnostics. The essential physics of the probe/discharge interaction is presented, along with formulations from modern electric probe theory. These results are then digitally implemented by a set of computer programs which both calculate discharge properties of electron temperature and density, and aid in the interpretation of these property estimates. The method of analysis, and the theories selected for implementation, are valid only for low pressure, collisionless sheath, and quiescent discharges where the single electric probe has a much smaller area than the discharge reference electrode. However, certain algorithms are included which, in some cases, can extend the analysis into intermediate pressure regimes. The digital programs' functional capabilities are demonstrated by the analysis of experimental probe data, collected using a laboratory glow discharge. Typical sources of error inherent in the electric probe method are discussed, along with an analysis of error induced by the computational methods of the programs. 27 refs., 49 figs., 20 tabs

  12. Easy to implement diagnostics of a glow dielectric barrier discharge

    International Nuclear Information System (INIS)

    Massines, F.; Segur, P.

    2001-01-01

    It is relatively easier to generate plasma at atmospheric pressure rather than low pressure. In retaliation, due to the short mean free path of different particles, the diagnostics giving microscopic characteristics are more difficult to implement. This, for example, is the case of Langmuir probe or mass spectrometry although solutions have been put forward. Likewise, the strong contribution of the excited state quenching can render optical characterization result interpretation difficult. Nevertheless, there are easy to implement basic diagnostics like optical emission spectroscopy, the ultra rapid photography or the discharge current measurement. A possible approach to get to the microscopic data consists in associating the experimental results with the results of a numerical model. This is the approach undertaken for the study of a glow dielectric barrier discharge (DBD) and is described in the following text in order to illustrate the possibilities of those easy to implement diagnostics supported by the analysis of surfaces having interacted with the plasma

  13. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  14. Boundary Effect of Planar Glow Dielectric Barrier Discharge and Its Influence on the Discharge Structure

    International Nuclear Information System (INIS)

    Xu Shaowei; Li Lulu; Ouyang Jiting

    2015-01-01

    The dielectric barrier discharge (DBD) in the glow regime in neon has been investigated by experiment and two-dimensional (2D) fluid modeling. The discharge was carried out in a planar DBD system with segmented-electrodes driven by square-wave voltage. The results show that the glow DBD originates in the center of the electrode and expands outward to the electrode edge during each half cycle of the voltage, forming a radial structure. The discharge decays firstly in the inner area but sustains longer in the edge area, showing a reversed discharge area. The discharge cannot completely cover the entire electrode surface, but remains a border of non- or weak discharge. The fluid modeling shows a similar result in agreement with the experiments. The simulations indicate that the electric field in the edge area is distorted due to the boundary effect so that the electric field and charge distribution are different from that in the inner part. The distorted field reduces the longitudinal component near the edge and causes the local field to be lower than that in the center, and hence makes the discharge behindhand. It also induces a transverse field that makes the discharge extend radially outward to the edge. The boundary effect plays an important role in the glow DBD structure. (paper)

  15. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  16. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    International Nuclear Information System (INIS)

    Walsh, J L; Liu, D X; Iza, F; Kong, M G; Rong, M Z

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O 2 by helium metastables is significantly more efficient than electron dissociative excitation of O 2 , electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O 2 plasmas for excited atomic oxygen based chemistry. (fast track communication)

  17. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Bengtson, Arne

    2008-01-01

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C 2 ). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  18. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson, Arne [Corrosion and Metals Research Institute, Dr. Kristinas vaeg 48, Stockholm (Sweden)], E-mail: arne.bengtson@kimab.com

    2008-09-15

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C{sub 2}). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.

  19. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow

    Science.gov (United States)

    Shneider, Mikhail

    2014-10-01

    Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.

  20. The breakdown and glow phases during the initiation of discharges for lamps

    International Nuclear Information System (INIS)

    Pitchford, L.C.; Peres, I.; Liland, K.B.; Boeuf, J.P.; Gielen, H.

    1997-01-01

    High intensity discharge (HID) lamps are often initiated by the application of one or more short, high-voltage, breakdown pulses superimposed on a 50 or 60 Hz generator voltage. A successful transition from the breakdown event to steady-state operating conditions in HID lamps requires that the lamp-circuit system be adequate to sustain the plasma created during breakdown until the electrodes are heated to thermionic temperatures. In this article, we use a one-dimensional (in the axial direction) transient discharge model to study the conditions needed to sustain the cold-cathode discharge after a breakdown event has occurred. While the application of our one-dimensional model to real lamps is approximate, we find that the model predictions are consistent with experimental results in HID lamps, a few of which are presented here. The main conclusion from this work is that, after breakdown, the voltage necessary to sustain a glow discharge is dependent on the source impedance, the gas composition, and on the plasma density created by the breakdown event. copyright 1997 American Institute of Physics

  1. Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen

    International Nuclear Information System (INIS)

    Waelbroeck, F.; Winter, J.; Ali-Khan, I.; Wienhold, P.; Dietz, K.J.

    1980-12-01

    The influence of a number of parameters on the cleaning and preconditioning efficiency of a combined rf and glow (RG) discharge is studied experimentally. The emphasis is laid on problems of oxygen removal from the surface. The important parameters are the wall temperature Tsub(W), the pump speed SP, the current Isub(G)D of the glow discharge and the hydrogen pressure P 2 . In a device with a ratio SP/S = 0,1 ms -1 (S: inner area), a rapid deoxidation is achieved when T-W >= 200 0 C. At room temperature, the oxide layer is reduced from a (carbon-free) surface when 1 to 2% of methane is added to the hydrogen: carbon monoxide is formed and evacuated. Admixture of other gases such as He, Ne do not increase the cleaning efficiency. An equation derived from a simplified model describes semi-quantitatively the observed parametric dependances. The tendency for arc spots to occur during the initial phases of the discharge depends on the preconditioning of the wall: a prolonged bake-out at 200 0 C leads to the non-appearance of arcs in all cases examined. Problems arise when a quadrupole residual gas analyser is used to measure the partial pressure of water in hydrogen. These are analysed and a conditioning technique is described which has proven to be appropriate in our measurements. (orig.)

  2. Low-pressure glow discharges with oscillating electrons in different electrode systems

    International Nuclear Information System (INIS)

    Bersenev, V.V.; Gavriolv, N.V.; Nikulin, S.P.

    1995-01-01

    One of the main applications of low - pressure glow discharges is the development on their basis of charged - particle beam sources. The use of glow discharges with oscillating electrons, which can operate stably in the voltage and pressure range to the left of the left branch of Pashen's curve, shows promise, because the decrease in critical pressure p 0 , below which the discharge operation becomes impossible, in the discharge system of a source promotes an increase in the electrical strength of its accelerating system. This, in its turn, makes possible the expansion of the operation range of accelerating voltages. This experimental investigation of glow discharges in such well - known systems with oscillating electrons, as Hollow Cathode (HC), Penning's System (PS) and Inverse Magnetron (IM), is aimed at revealing the system operating at the lowest pressure. Besides, both common features and peculiarities of discharge operation in these systems are discussed. Though there is an extensive amount of published information covering all the specified discharges, the carrying out of such investigation is justified, since a comparative analysis of results obtained by different authors is hampered by various conditions of their experiments

  3. Experimental study of the negative glow and cathode sheath of an electron beam discharge

    International Nuclear Information System (INIS)

    Zeller, Philippe

    1988-01-01

    This research thesis reports the study of a middle-pressure (0.1-5 Torr) discharge in which a negative-glow-type plasma is created by a continuous electron beam (1 to 10 keV, 1 to 30 mA/cm 2 ). Such a discharge is characterised by a highly abnormal cathodic drop with a beam generation displaying an electric efficiency close to 1. In a first part, the author presents the main operation characteristics, discharge regimes and emission spectrum, and discusses bibliographical data related to cathode emission processes and to the distribution function of plasma electron velocities. The author then describes an original method of measurement of plasma conductivity. In the next part, he reports the study of the cathode region in which the electron beam generation occurs. The electric field has been measured in this region by using spatially resolved laser opto-galvanic spectroscopy. Results highlight an essentially linear spatial decay of the field. Besides, and based on these results, the author indicates scale laws leading to simple relationships between discharge parameters [fr

  4. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  5. Development of realtime monitoring technology for laser photoreaction product - Development of glow discharge-mass spectrometry (GD-MS) hybrid techniques for trace analysis of refractory elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chun [Kyungnam University, Masan (Korea); Kim, Ha Suck [Seoul National University, Seoul (Korea); Kim, Hyo Jin [Dongduk Women' s University, Seoul (Korea)

    2000-04-01

    This research is focusing on development of hybrid techniques of glow discharge-mass spectrometry for the trace analysis of refractory elements. At first, we developed a glow discharge(GD) ionization cell and its characteristics was investigated. The new GD cell was designed based on direct current hollow cathode glow discharge and it is used for quadrupole mass analyzer and time-of-flight mass analyzer. Currently, GD-quadrupole mass spectrometry is working for the analysis of refractory elements. The experimental results show relatively good for trace analysis. In addition, ion mobile spectrometry using plasma and liquid discharge technique were investigated for the analysis of refractory elements and both techniques need more investigation to deduce the their usefulness. 30 refs., 67 figs., 4 tabs. (Author)

  6. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    Science.gov (United States)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (Trot), excitation temperature (Texc), electron number density (ne), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ~ 1000 K and ~ 2700 K respectively. Electron number density was calculated to be on the order of ~ 3 × 1015 cm- 3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (laser ablation sample introduction.

  7. Thermal mechanism of prepeak formation in Pulsed Glow Discharge

    Science.gov (United States)

    Voronov, Maxim; Hoffmann, Volker; Steingrobe, Tobias; Buscher, Wolfgang; Engelhard, Carsten; Storey, Andrew; Ray, Steven; Hieftje, Gary

    2012-10-01

    A microsecond Pulsed Glow Discharge (μs PGD) in a Grimm-type source is characterized by the so-called ``prepeak,'' which is a spike in both electrical current and emission intensity at the leading edge of the discharge pulse. The prepeak is followed by synchronized vibrations of the current and the emission. To understand the nature of these phenomena, a microphone was inserted into the discharge chamber. Acoustical waves were detected and found to be in correlation with the measured vibrations. This points to a thermal mechanism for prepeak formation: the gas is heated in the leading edge of the discharge pulse and then expanded. To prove this suggestion, a Monte-Carlo based model was developed to simulate the evolution of Ar concentration, temperature, and flow in time and space. Potentially, the model could be used for gas simulations in a wide range of different applications. Here, the model is incorporated into an existing but modified model of the μs PGD in a Grimm-type plasma excitation source. Results of the simulations confirm that the thermal mechanism is responsible for the formation of the electrical prepeak and the pressure waves.

  8. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-01-01

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times

  9. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  10. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  11. Electron energy distribution function in a cathode fall region of DC-glow discharge

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Garamoon, A.A.; Hassouba, M.A.

    1997-01-01

    Recently a substantial effort has been devoted towards the development of a quantitative microscopic measurements in the cathode fall region of the DC-glow discharge magnetron sputtering unit. The electron energy distribution function (EEDF) has been measured using a single Langmuir probe at the edge of the cathode fall. Two groups of electrons are observed in helium and argon gas discharges. The two groups have no chance to be thermalized since they leave the cathode fall region fast. The electron temperature measurements have been compared with spectroscopic determination. Plasma density has been computed and compared with probe measurements. Sources of the two groups of electrons are also discussed. (author)

  12. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    Science.gov (United States)

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  13. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    International Nuclear Information System (INIS)

    Liu Xinkun; Xu Jinzhou; Cui Tongfei; Guo Ying; Zhang Jing; Shi Jianjun

    2013-01-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm −1 Torr −1 , which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap

  14. Computational study of plasma sustainability in radio frequency micro-discharges

    International Nuclear Information System (INIS)

    Zhang, Y.; Jiang, W.; Zhang, Q. Z.; Bogaerts, A.

    2014-01-01

    We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure

  15. Removal of the codeposited carbon layer using He-O glow discharge

    International Nuclear Information System (INIS)

    Kunz, C.L.; Causey, R.A.; Clift, M.; Wampler, W.R.; Cowgill, D.F.

    2007-01-01

    In this study we examine the combination of a He-O glow discharge with heating as a possible technique to remove deuterium from TFTR tiles. Samples were cut from a relatively large area containing a uniform codeposited layer of deuterium and carbon. Auger/SEM was used to generate micrographs of each of the samples. The samples were also examined using Rutherford backscattering to determine the near surface composition. Individual samples were then exposed to a He-O glow discharge while being heated. After the exposure, the samples were returned for Auger/SEM and RBS of the same areas examined prior to the exposure. Comparing the samples before and after exposure revealed that the amount of the codeposited layer removed was significantly less than 1 μm. Removal rates this low would suggest that He-O glow discharge with heating is insufficient to remove the thick layers predicted for ITER in a timely fashion

  16. Technological plasma source equipped with combined system of vacuum-arc discharge initiation

    International Nuclear Information System (INIS)

    Sysoev, Yu.O.

    2013-01-01

    The construction and the operation principle of erosion plasma source with a three-stage system of vacuum-arc discharge excitation is described. As first two step was used the modified contactless start system with plasma injector, which was widely used in standard plasma sources of the ''Bulat'' systems. The operation principle of the third stage was based on the transition of glow discharge to arc discharge. Coordinated operation of three stages during various stages of coating deposition provided significant increasing of service life and reliability of the system of vacuum-arc discharge initiation and extended the functionality of the plasma source

  17. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    International Nuclear Information System (INIS)

    Allagui, Anis; Abdelkareem, Mohammad Ali; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.

    2016-01-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as “random,” and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  18. Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis

    International Nuclear Information System (INIS)

    Li Yan; Yao Mengqi; Liao Ruirui; Yang Wu; Gao Jinzhang; Ren Jie

    2014-01-01

    A highly absorptive resin poly (butyl methacrylate (BMA)-co-butyl acrylate (BA)) was prepared by emulsion polymerization, which was initiated by glow discharge electrolysis plasma (GDEP). The effects of discharge voltage, discharge time, monomer ratio and the amounts of cross-linking agent were examined and discussed in detail. The chemical structure of the obtained resin was characterized by means of attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The optimal conditions were obtained as: discharge voltage was 600 V, discharge time was 8 min, the ratios of BMA:BA being 2:1 for chloroform and 3:1 for xylene, with 2% N, N'-methylenebis. Under optimal conditions, the oil absorbency was 70 g/g for chloroform and 46 g/g for xylene. Moreover, the absorptive dynamical behavior of the resulting resin was also investigated

  19. Spectroscopic Study of Electrical Glow Discharges in Gases

    Science.gov (United States)

    Reyes, P. G.; Evangelista, M.; Trujillo, C.; Castillo, F.; Rangel, J.

    2006-12-01

    The variation of the power of the light emitted in a Glow Discharge in Gases of low pressure (GDGLP) excited by a DC source was studied. A lack of dependency of the kind of gas used and the pressure it is located at was obtained. This is comparable to the potential drop which takes place in the discharge by inelastic collisions such as ionization, recombination, excitation, relaxation, etc.

  20. The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma

    Science.gov (United States)

    Ai, Xing; He, Xiao-Shan; Huang, Jing-Lin; He, Zhi-Bing; Du, Kai; Chen, Guo

    2018-03-01

    Glow discharge polymer (GDP) films were fabricated using plasma-enhanced chemical vapor deposition. The main purpose of this work was to explore the correlations of plasma parameters with the surface morphology and chemical structure of GDP films. The intensities of main positive ions and ion energy as functions of axial distances in T2B/H2 plasma were diagnosed using energy-resolved mass spectrometry. The surface morphology and chemical structure were characterized as functions of axial distances using a scanning electron microscope and Fourier transform infrared spectroscopy, respectively. As the axial distance increases, both the intensities of positive ions and high energy ions decreases, and dissociation weakens while polymerization enhances. This leads to the weakening of the cross-linking structure of GDP films and the formation of dome defects on films. Additionally, high energy ions could introduce a strong etching effect to form etching pits. Therefore, an axial distance of about 20 mm was found to be the optimal plasma parameter to prepare the defect-free GDP films. These results could help one to find the optimal plasma parameters for GDP film deposition.

  1. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  2. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  3. Transition rate diagrams - A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-02-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar-H2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given.

  4. Degradation of Anionic Dye Eosin by Glow Discharge Electrolysis Plasma

    International Nuclear Information System (INIS)

    Gao Jinzhang; Ma Dongping; Guo Xiao; Wang Aixiang; Fu Yan; Wu Jianlin; Yang Wu

    2008-01-01

    This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe 2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ. mol -1 and the pre-exponential factor ko of 2.065x10 -1 min -1 were obtained, too. The determination of hydroxyl radical was carried out by using N,N-dimethyl-p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.

  5. Degradation of Anionic Dye Eosin by Glow Discharge Electrolysis Plasma

    Science.gov (United States)

    Gao, Jinzhang; Ma, Dongping; Guo, Xiao; Wang, Aixiang; Fu, Yan; Wu, Jianlin; Yang, Wu

    2008-08-01

    This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ. mol-1 and the pre-exponential factor ko of 2.065×10-1 min-1 were obtained, too. The determination of hydroxyl radical was carried out by using N,N-dimethyl-p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.

  6. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge

    International Nuclear Information System (INIS)

    Metel, A. S.; Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V.

    2009-01-01

    Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ∼ 0.12 m 3 of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ∼ 1.5 m 2 . It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m 2 , as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex , which is in fact the discharge extinction pressure. At p ∼ p ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800 o C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a 1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.

  7. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  8. Transition rate diagrams — A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    International Nuclear Information System (INIS)

    Weiss, Zdeněk; Steers, Edward B.M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-01-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar–H 2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given. - Highlights: • We measured GD-OES spectra of Mn in Ar, Ar(H) and Ne discharges. • We determined transition rate diagrams of Mn I and Mn II in these discharges. • Using those diagrams, we identified major excitation processes involved

  9. Reduction of Cr(VI) in aqueous solution with DC diaphragm glow discharge

    International Nuclear Information System (INIS)

    Wang, Xiaoyan; Jin, Xinglong; Zhou, Minghua; Chen, Zhenhai; Deng, Kai

    2013-01-01

    This paper investigated the reduction of Cr(VI) in aqueous solution with direct current diaphragm glow discharge (DGD). The glow discharge sustained around the hole on a quartz tube which divided the electrolyte cell into two parts. The reduction efficiencies of Cr(VI) under different applied voltages, initial conductivities, hole diameters, hole numbers, initial pH values and initial concentrations were systematically studied. The results showed that the reduction efficiency of Cr(VI) increased with the increase of applied voltage, initial conductivity, hole diameter and hole number. The different initial pH values showed less effects on the reduction of Cr(VI). The reduction efficiency decreased with the increasing initial concentration. In addition, the simultaneous reduction of Cr(VI) and decolorization of acid orange (AO) with DGD were also fulfilled. Furthermore, the energy efficiency for Cr(VI) reduction with DGD was calculated and compared with those in photocatalysis and other glow discharge reactor

  10. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Ivan [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Britcher, Leanne G. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: Leanne.Britcher@unisa.edu.au; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)

    2008-01-30

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH{sup +}) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected.

  11. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Djordjevic, Ivan; Britcher, Leanne G.; Kumar, Sunil

    2008-01-01

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH + ) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  12. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  13. Is this an arc or a glow discharge?

    International Nuclear Information System (INIS)

    Puchkarev, V.F.; Bochkarev, M.B.

    1994-01-01

    A well known criterion for distinguishing an arc discharge from a glow discharge is a low voltage drop (10--30 V) and a high current density that varies from a few tens to 10 6 A/cm 2 depending on arc type. The high current density is an attribute of arcs with cathode spots. The authors report here a study of the mechanism of emission in cathode spot arc where they realized a spotless discharge with a low voltage drop (30--50 V) and a high mean current density (10 4 --10 6 A/cm 2 ). The discharge was initiated between a broad cathode and point anode. The cathode was a smooth tungsten sphere electrode of about 100 μm in diameter. The point anode was made of various materials (Mo, Cu, Cd) with initial radius 1 μm. Before the experiment the cathode was cleaned by heating at 2,000 K at high vacuum (10 -8 Torr). The discharge was initiated by self-breakdown when electrodes under the voltage 200--500 V were brought to close proximity with each other. The cathode-anode spacing d at the moment of breakdown was estimated to be < 1 μm. The discharge current was varied within 1--3 A by changing the applied voltage and impedance of coaxial cable generator. The discharge burned during 100--1,000 ns. After the single discharge the cathode and anode were examined with a scanning electron microscope. The cathode surface exposed to the discharge was smooth, i.e. no erosion pits similar to arc craters were found on the cathode surface. The anode was shortened after discharge by 5--50 μm depending on current, material and cone angle. A high current density and low voltage drop implies that this is an arc discharge, while the cold cathode and the absence f cathode spot trace are pertinent to a dense glow discharge. The mechanism of emission involving secondary electron emission is to be discussed

  14. Etching of uranium dioxide in nitrogen trifluoride RF plasma glow discharge

    Science.gov (United States)

    Veilleux, John Mark

    1999-10-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 mum/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ˜23 Pa, then decreased with further increases in pressure. A computer simulation, CHEMKIN, was applied to predict the NF3 plasma species in the experiments. The code was validated first by comparing its predictions of the NF3 plasma species with mass spectroscopy etching experiments of silicon. The code predictions were within +/-5% of the measured species concentrations. The F atom radicals were identified as the primary etchant species, diffusing from the bulk plasma to the UO2 surface and reacting to form a volatile UF6, which desorbed into the gas phase to be pumped away. Ions created in the plasma were too low in concentration to have a major effect on etching, but can enhance the etch rate by removing non-volatile reaction products blocking the reaction of F with UO2. The composition of these non-volatile products were determined based on thermodynamic analysis and the electronic structure of uranium. Analysis identified possible non-volatile products as the uranium fluorides, UF2-5, and certain uranium oxyfluorides UO2F, UO2F2, UOF3, and UOF 4 which form over the

  15. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongjun, E-mail: lyjglow@sohu.com [College of Environmental Science & Engineering, Dalian Maritime University, Dalian 116026 (China); Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Crittenden, John C. [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Wang, Lei [College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen 361024 (China); Liu, Panliang [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States)

    2016-05-05

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H{sub 2}O{sub 2} to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  16. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    International Nuclear Information System (INIS)

    Liu, Yongjun; Crittenden, John C.; Wang, Lei; Liu, Panliang

    2016-01-01

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H_2O_2 to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  17. Etching of UO2 in NF3 RF Plasma Glow Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, John M. [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO2 in the samples had a relatively low density of 4.8 gm/cm3. Counting of the depleted UO2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234Th and 234Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 μm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ~23 Pa, then decreased with further increases in pressure.

  18. New developments in glow discharge optical emission and mass spectrometry

    International Nuclear Information System (INIS)

    Hoffmann, Volker; Dorka, Roland; Wilken, Ludger; Wetzig, Klaus

    2000-01-01

    This paper describes new developments in flow discharge optical emission (GD-OES) and mass spectrometry (GD-MS) at IFW and presents corresponding new applications (analysis of microelectronic multi-layer system by radio frequency glow discharge optical emission spectrometry (RF-GD-OES) and analysis of pure iron by a new Grimm-type GD-MS source)

  19. Chemical corrosion by chlorides on ancient-like bronzes and treatment by hydrogen glow discharge plasma

    Science.gov (United States)

    Papadopoulou, O.; Novakovic, J.; Vassiliou, P.; Filippaki, E.; Bassiakos, Y.

    2013-12-01

    Three representative ancient-like bronzes are employed for the chemical synthesis of Cu2(OH)3Cl rich patinas in order to study the influence of the alloying elements in the evolution of the chloride attack and to further conduct stabilization treatment via Hydrogen Glow Discharge Plasma (HGDP) at low temperature and pressure. The corrosion behavior of specimens having Sn and Pb as main alloying elements is governed by a decuprification mechanism and by the formation of Sn-Pb-O enriched barrier layers. In the case of the Zn containing alloy, dezincification is more pronounced at the corrosion initial stages, and copper species predominate the corrosion products evolution. A three-hour HGDP treatment leads to Cu+ production and metallic Cu, Sn, Zn, and Pb redeposition, as a result of metal cation reduction. This process is accompanied by partial removal of Cl species, O diminution, and change in coloration. The further increase of the Cl/O atomic ratio measured on the post-treated surfaces leads to the formation of nantokite and thus to the conclusion that the stabilization of objects with extensive Cl attack is not feasible by HGDP without preliminary chemical treatment.

  20. Use of a glow discharge lamp as an excitation source in emission spectrometry. Application to concentration gradients

    International Nuclear Information System (INIS)

    Delarue, G.; Pichat, R.

    1978-01-01

    The principle of the method is to take the material studied as a cathode of a discharge tube of very small volume: it is etched without fusion by bombardment with the rare gas ions participating in the discharge. The atoms of the sputtered metal are excited in the plasma existing between the electrodes and by measurement of the intensity of spectral lines one can determine the concentration of the elements in the sample. The principal advantage of the glow discharge lamp is to obtain the profile of concentration gradients: indeed by means of ionic bombardment, there is a gradual erosion of the sample with a constant speed. At every moment the composition of the plasma corresponds to the composition of the level which is etched. This technique is used to study diffusion gradients of carbon in carburized and not carburized steels [fr

  1. Radiofrequency glow discharge time of flight mass spectrometry: pulsed vs. continuous mode

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Tempez, A.; Chapon, P.; Hohl, M.; Michler, J.

    2009-01-01

    Full text: Glow discharge (GD) is a well established tool for the direct analysis of solids. The application field of the original direct current GD, restricted to conductive samples, has been extended by radiofrequency powered GDs that can be applied for conductive and non-conductive samples. Moreover, the introduction of pulsed GD has opened the possibility of applying higher instantaneous powers that can improve the atomization-ionization processes and therefore the sensitivity. Furthermore, pulsed-GD may enable temporal separation of discharge gas species from the sample ions. In this work the analytical performances of radiofrequency and pulsed radiofrequency glow discharges are evaluated by using a time of flight mass analyzer (TOFMS). (author)

  2. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  3. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  4. Excitation mechanism for nickel and argon lines emitted by radio-frequency glow discharge plasma associated with bias current introduction

    International Nuclear Information System (INIS)

    Kodama, Kenji; Wagatsuma, Kazuaki

    2004-01-01

    The introduction of d.c. bias current to an r.f. glow discharge plasma led to enhancement in the intensity of particular emission lines. In order to investigate the excitation mechanism, a large number of nickel emission lines was measured with and without the bias-current introduction. Emission intensities of nickel atomic lines were predominantly elevated by conducting bias current, especially when the emission lines have an excitation energy of approximately 5 eV. This phenomenon could be explained from the additional excitation through collisions with the introduced electrons having kinetic energies favorable for the excitation of such nickel atomic lines. However, this additional excitation mechanism was less effective for excited states of nickel ion, argon atom and argon ion, because their excitation energies were fairly high compared with the excitation energies of Ni atomic lines

  5. Properties of the positive column of a glow discharge in flowing hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.; Rocca Serra, J.; Mabru, M.

    1981-01-01

    Results of a theoretical model for predicting the effects of gas flow on the properties of the positive column in a glow discharge are presented. A cylindrical discharge at low pressure ( 2 molecules and H atoms produced by the discharge are calculated. Comparison with available experimental data is made

  6. A kinetic model for low pressure glow discharges in the presence of dust particles

    International Nuclear Information System (INIS)

    Wang Dezhen; Dong, J.Q.; Mahajan, S.M.

    1996-05-01

    A kinetic model for electrons in dusty plasmas is developed. The Boltzmann and the dust charging balance equations are solved self-consistently. The dependence of the dust particle surface potential on plasma parameters and the effects of particulate contamination on electron energy distribution are investigated for direct-current argon glow discharges. It is shown that the dust particle surface potential obtained from this model is higher than that obtained for a Maxwellian electron distribution, and that the higher energy portion of the electron distribution is reduced in the presence of dust particles. Electron-dust collection and electron-atom inelastic collision are the main electron energy loss processes, and the electron energy loss due to electron-dust elastic collision is negligibly small for 10 -16 V cm 2 -15 V cm 2 under the discharge conditions considered in this work, where E is the externally applied electric field and N is the argon atom density. (author). 16 refs, 8 figs

  7. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  8. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  9. 2D DC Subnormal Glow Discharge in Argon

    International Nuclear Information System (INIS)

    Bouchikhi, A.; Hamid, A.

    2010-01-01

    A two-dimensional time-dependent fluid model was developed and used to describe a DC subnormal glow discharge in argon with Cartesian geometry. This configuration allows us to take into account the transverse expansion of the discharge. A hydrodynamic fluid model used in this paper is based on the moments of the Boltzmann transport equation. The resultant set of governing equations consists of continuity equations (fluxes and densities) for electrons and ions, an energy equation for electrons, and Poisson's equation. Simulation results are presented for the densities of charged particles, the electric voltage, the electric field, and the electron temperature of the discharge. The results were compared with those obtained in the literature.

  10. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    Science.gov (United States)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  11. CO2 Reforming of CH4 by Atmospheric Pressure Abnormal Glow Plasma

    International Nuclear Information System (INIS)

    Chen Qi; Dai Wei; Tao Xumei; Yu Hui; Dai Xiaoyan; Yin Yongxiang

    2006-01-01

    A novel plasma atmospheric pressure abnormal glow discharge was used to investigate synthesis gas production from reforming methane and carbon dioxide. Special attentions were paid to the discharge characteristics and CH 4 , CO 2 conversion, H 2 , CO selectivity, and ratio of H 2 /CO varied with the changing of discharging power, the total flux, and the ratio of CH 4 /CO 2 . Experiments were performed in wider operation variables, the discharging power of 240 to 600 W, the CH 4 /CO 2 of 0.2 to 1.0 and the total flux of 140 to 500 mL/min. The experiments showed that the conversion of CH 4 and CO 2 was up to 91.9% and 83.2%, the selectivity of CO and H 2 was also up to 80% and 90% and H 2 /CO mole ratio was 0.2 to 1.2, respectively. A brief analysis for discharge characteristics and the experimental results were given

  12. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    Tafalla, D.; Cal, E. de la; Tabares, F.L.

    1994-01-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, The density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength bandwidth and energy profile and Rayleigh scattering in N 2 was used for the optical system calibration. An absolute density of Cr atoms of n= 5x10''9 cm''-3 was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal US. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma

  13. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge; Puesta a punto del diagnstico de fluorescencia inducida por laser. Medidas de densidad de Cr en Glow discharg de Neon

    Energy Technology Data Exchange (ETDEWEB)

    Tafalla, D.; Cal, E. de la; Tabares, F. L.

    1994-07-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, the density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength, bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n {approx} 5x10 cm was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal us. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma. (Author) 19 refs.

  14. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    Science.gov (United States)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC, 1 - 3/IC, 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+, 391/IN2, 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  15. Time dependent argon glow discharge treatment of Al-alloy

    Indian Academy of Sciences (India)

    The energy dispersive microanalysis by X-rays (EDX) is used to determine ... surface preparation of vacum components and vacuum system of any size. ... In this work, samples of aluminium alloy are treated under dc glow discharge .... (ii) For ałuninium, iron and germanium, relative weight percentage decreases or in-.

  16. Self-organized criticality: An interplay between stable and turbulent regimes of multiple anodic double layers in glow discharge plasma

    Science.gov (United States)

    Alex, Prince; Carreras, Benjamin Andres; Arumugam, Saravanan; Sinha, Suraj Kumar

    2018-05-01

    The role of self-organized criticality (SOC) in the transformation of multiple anodic double layers (MADLs) from the stable to turbulent regime has been investigated experimentally as the system approaches towards critical behavior. The experiment was performed in a modified glow discharge plasma setup, and the initial stable state of MADL comprising three concentric perceptible layers was produced when the drift velocity of electrons towards the anode exceeds the electron thermal velocity (νd ≥ 1.3νte). The macroscopic arrangement of both positive and negative charges in opposite layers of MADL is attributed to the self-organization scenario. Beyond νd ≥ 3νte, MADL begins to collapse and approaches critical and supercritical states through layer reduction which continue till the last remaining layer of the double layer is transformed into a highly unstable radiant anode glow. The avalanche resulting from the collapse of MADL leads to the rise of turbulence in the system. Long-range correlations, a key signature of SOC, have been explored in the turbulent floating potential fluctuations using the rescaled-range analysis technique. The result shows that the existence of the self-similarity regime with self-similarity parameter H varies between 0.55 and 0.91 for time lags longer than the decorrelation time. The power law tail in the rank function, slowly decaying tail of the autocorrelation function, and 1/f behavior of the power spectra of the fluctuations are consistent with the fact that SOC plays a conclusive role in the transformation of MADL from the stable to turbulent regime. Since the existence of SOC gives a measure of complexity in the system, the result provides the condition under which complexity arises in cold plasma.

  17. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  18. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  19. Performances of helium, neon and argon glow discharges for reduction of fuel hydrogen retention in tungsten, stainless steel and graphite

    International Nuclear Information System (INIS)

    Hino, T.; Yamauchi, Y.; Kimura, Y.; Matsumoto, A.; Nishimura, K.; Ueda, Y.

    2012-11-01

    It is quite important to investigate the performance of glow discharge conditionings for controls of in-vessel tritium (T) inventory and hydrogen recycling. For this purpose, first, the deuterium (D) retentions in tungsten (W), graphite (C) and stainless steel (SS) were measured. The retention in W was not small as expected, several times larger than that of SS, although the retention in SS was one order smaller than that of C. Such the large retention in W is owing to the growth of rough surface structure produced by plasma irradiations. For reduction of deuterium retention in W, SS and C, second, inert gas (He, Ne, Ar) glow discharges were conducted under the same condition, and these performances were compared. The removal ratio of deuterium retention was highest in He discharge, and lowest in Ar discharge. These values are well explained by the numerical analyses using SRIM code. The removal ratios for SS and C were significantly large, but quite small for W. This reason is again owing to the rough surface structure in W. For W, thirdly, the hydrogen isotope exchange and the wall baking experiments were conducted. It is found that the wall backing with a temperature higher than 700 K can well reduce the retention, and the hydrogen isotope exchange using deuterium glow discharge is also useful to reduce the tritium retention in the wall. The present results significantly contribute to control the fuel hydrogen retention and to reduce the in-vessel tritium inventory in fusion reactors. (author)

  20. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  1. Study on out-gassing by baking and glow discharge during wall conditioning of vacuum chamber

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; Zhao Yuanqing; He Yanhe; Liao Yikui

    2007-01-01

    The model of out-gassing by baking and glow discharge cleaning (GDC) is set up. The properties of them are studied. Out-gassing by baking is from bulk and it obeys the diffusion equation. Out-gassing of glow discharge cleaning is mainly on surface, it is inducement out-gassing by sputtering. Thus the properties of out-gassing for baking and GDC on the HL-1M tokamak are analyzed. Some empirical formulas are given. (authors)

  2. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  3. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    Tafalla, D.; Cal, E. de la; Tabares, F. L.

    1994-01-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, the density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength, bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n ∼ 5x10 cm was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal us. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma. (Author) 19 refs

  4. Positive column of a glow discharge in neon with charged dust grains (a review)

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  5. Positive column of a glow discharge in neon with charged dust grains (a review)

    International Nuclear Information System (INIS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.

    2017-01-01

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  6. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  7. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  8. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs.

  9. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    International Nuclear Information System (INIS)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs

  10. Studies of reaction difference between γ-ray and glow discharge on hydrogenation of unsaturated fatty acid esters

    International Nuclear Information System (INIS)

    Sakoda, Tatsuya; Nieda, Hiroshi; Kitahara, Kazuta; Ando, Kiyomi

    2000-01-01

    Hydrogenation of unsaturated fatty acid esters using an inductively coupled plasma at low pressure was performed, and electron temperature and density were measured using a double-probe in order to investigate the reaction difference between γ-ray and glow discharge on hydrogenation. In this experiment, unsaturated fatty acid esters were partly hydrogenated by the hydrogen plasma that had electron temperature of 3.5 eV, which was more efficient than γ-ray irradiation method. As a result, it was found that the plasma can effectively supply electrons that had the optimum energy for hydrogenation at the interface of fatty acids as well as excited atoms and ions. Also, the plasma generated at low pressure would be possible to convert unsaturated fatty acids into saturated fatty acids without breaking the starting monomer. (author)

  11. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  12. Hydrogen retention studies on lithiated tungsten exposed to glow discharge plasmas under varying lithiation environments using Thermal Desorption Spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. de, E-mail: alfonso.decastro@ciemat.es [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain); Valson, P. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Tabarés, F.L. [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain)

    2017-04-15

    For the design of a Fusion Reactor based on a liquid lithium divertor target and a tungsten first wall at high temperature, the interaction of the wall material with plasmas of significant lithium content must be assessed, as issues like fuel retention, tungsten embrittlement and enhanced sputtering may represent a showstopper for the selection of the first wall material compatible with the presence of liquid metal divertor. In this work we address this topic for the first time at the laboratory level, hot W samples (100 °C) have been exposed to Glow Discharges of H{sub 2} or Li-seeded H{sub 2} followed by in situ thermal desorption studies (TDS) of the uptake of H{sub 2} on the samples. Pure and pre-lithiated tungsten was investigated in order to evaluate the differential effect of Li ion implantation on H retention. Global particle balance was also used for the determination of trapped H into the full W wall of the plasma chamber. A factor of 3-4 lower retention was deduced for samples and main W wall exposed to H/Li plasma than that measured on pre-lithiated W.

  13. Carbon dioxide reforming of methane by atmospheric pressure pulsed glow discharge: The effect of pulse compression

    International Nuclear Information System (INIS)

    Ghorbanzadeh, A.; Modarresi, H.

    2006-01-01

    Methane reforming by carbon dioxide in atmospheric pressure pulsed glow discharge was examined. The pulse duration of plasma was compressed to ∼50 ns or lower. This compression allowed working at higher frequencies, more than 3 k Hz, without glow to arc transition. The main outlet gases were synthetic gases (H 2 , CO) and C 2 (ethylene, ethane, and acetylene) products. At equal reactants proportion CO 2 /CH 4 =1, about 42 p ercent o f plasma energy went to chemical dissociation while reactant conversions were relatively high, i.e. near 55 p ercent % (CH 4 ) and 42 p ercent ( CO 2 ). At this point, the energy expenditure was less than 3.8 eV per each converted molecule. The reactor energy performance even gets better at higher CO 2 /CH 4 proportions. At CO 2 /CH 4 =5, The conversions of about 65 p ercent a nd 45 p ercent w ere obtained for methane and carbon dioxide respectively, while energy efficiency reached near 45 p ercent . It is discussed that high nonequilibrium state of vibrational energy at short pulses, especially in carbon dioxide, leads to this improvement.

  14. Elimination of inter-discharge helium glow discharge cleaning with lithium evaporation in NSTX

    Directory of Open Access Journals (Sweden)

    R. Maingi

    2017-08-01

    Full Text Available Operation in the National Spherical Torus Experiment (NSTX typically used either periodic boronization and inter-shot helium glow discharge cleaning (HeGDC, or inter-shot lithium evaporation without boronization, and initially with inter-shot HeGDC. To assess the viability of operation without HeGDC, dedicated experiments were conducted in which Li evaporation was used while systematically shrinking the HeGDC between shots from the standard 10min to zero (10→6.5→4→0. Good shot reproducibility without HeGDC was achieved with lithium evaporations of 100mg or higher; evaporations of 200–300mg typically resulted in very low ELM frequency or ELM-free operation, reduced wall fueling, and improved energy confinement. The use of HeGDC before lithium evaporation modestly reduced Dα in the outer scrape-off layer, but not at the strike point. Pedestal electron and ion temperature also improved modestly, suggesting that HeGDC prior to lithium evaporation is a useful tool for experiments that seek to maximize plasma performance.

  15. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10"–"8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m"2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H_2O) vapor by 95% and oxygen (O_2) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10"−"8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  16. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  17. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  18. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C. M.; Shaw, R. W.; Jennings, L. W.; Post-Zwicker, A.; Young, J. P.; Ramsey, J. M.

    1997-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining 235 U/( 235 U+ 238 U) isotope ratios in these samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of the measurement is discussed. Application of GD-OGS to other f-transition elements is also described

  19. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C.M.; Shaw, R.W.; Post-Zwicker, A., Young, J.P.; Ramsey, J.M.

    1996-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining isotopic ratios of 235 U/( 235 U + 238 U) in the above samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of he measurement is discussed. Application of the GD-OGS to other f-transition elements is also described

  20. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  1. Iron nitride films formed in a r. f. glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L.; O' Keefe, T.J.; James, W.J. (Depts. of Chemistry and Metallurgical Engineering and Graduate Center for Materials Research, Univ. of Missouri-Rolla (United States))

    1992-12-30

    Fe[sub 2]N and Fe[sub 3]N films were deposited on an r.f. glow discharge by introducing Fe(CO)[sub 5] and NH[sub 3] into the reactor. The iron nitride films thus formed exhibited sheet conductivities in the range of 10[sup 2]-10[sup 3] ohm[sup -1] cm[sup -1]. They exhibited microhardness ranging from 578 to 659 kg mm[sup -2] on glass slides. The effects of the deposition temperature and the nature of the substrate material on the structure and composition of the films were investigated. An Fe[sub 4]N layer was formed on iron substrates at 400degC in the plasma nitriding process using NH[sub 3] as the gas source. The Fe[sub 4]N layer exhibited a microhardness of 230 kg mm[sup -2]. The effect of the temperature on the formation of the nitrided layer is discussed. (orig.).

  2. One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process.

    Science.gov (United States)

    Khataee, Alireza; Sajjadi, Saeed; Hasanzadeh, Aliyeh; Vahid, Behrouz; Joo, Sang Woo

    2017-09-01

    Natural Martite ore particles and graphite were modified by alternating current (AC) glow discharge plasma to form nanostructured catalyst and cathode electrode for using in the heterogeneous-electro Fenton-like (Het-EF-like) process. The performance of the plasma-treated martite (PTM) and graphite electrode (PTGE) was studied for the treatment of paraquat herbicide in a batch system. 85.78% degradation efficiency for 20 mg L -1 paraquat was achieved in the modified process under desired operational conditions (i.e. current intensity of 300 mA, catalyst amount of 1 g L -1 , pH = 6, and background electrolyte (Na 2 SO 4 ) concentration of 0.05 mol L -1 ) which was higher than the 41.03% for the unmodified one after 150 min of treatment. The ecofriendly modification of the martite particles and the graphite electrode, no chemical needed, low leached iron and milder operational pH were the main privileges of plasma utilization. Moreover, the degradation efficiency through the process was not declined after five repeated cycles at the optimized conditions, which proved the stability of the nanostructured PTM and PTGE in the long-term usage. The archived results exhibit this method is the first example of high efficient, cost-effective, and environment-friendly method for generation of nanostructured samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge

    International Nuclear Information System (INIS)

    Martens, T; Bogaerts, A; Brok, W J M; Van Dijk, J

    2009-01-01

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature. If during the electrical current pulse a glow discharge is reached, then this pulse will last only a few microseconds in operating periods of sinusoidal voltage with lengths of about 10 to 100 μs. In this paper we demonstrate that right before a glow discharge is reached, the discharge very closely resembles the commonly assumed Townsend discharge structure, but actually contains some significant differing features and hence should not be considered as a Townsend discharge. In order to clarify this, we present calculation results of high time and space resolution of the pulse formation. The results indicate that indeed a maximum of ionization is formed at the anode, but that the level of ionization remains high and that the electric field at that time is significantly disturbed. Our results also show where this intermediate structure comes from. (fast track communication)

  4. Silicon solar cells made by ion implantation and glow discharge

    International Nuclear Information System (INIS)

    Ponpon, J.P.; Siffert, P.

    1975-01-01

    Three different methods of silicon solar cell preparation are considered and investigated: low energy implantation, glow discharge and prebombarded Schottky barriers. The properties of the contact layers realized by these processes are compared in terms of junction depth and sheet resistance. Preliminary results show the usefulness of these techniques for terrestrial solar cell realization [fr

  5. Diode laser excited optogalvanic spectroscopy of glow discharges

    International Nuclear Information System (INIS)

    Barshick, C.M.; Shaw, R.W.; Jennings, L.W.; Post-Zwicker, A.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The development of diode-laser-excited isotopically-selective optogalvanic spectroscopy (OGS) of uranium metal, oxide and fluoride in a glow discharge (GD) is presented. The technique is useful for determining 235 U/( 235 U+ 238 U) isotope ratios in these samples. The precision and accuracy of this determination is evaluated, and a study of experimental parameters pertaining to optimization of the measurement is discussed. Application of GD-OGS to other f-transition elements is also described. copyright 1997 American Institute of Physics

  6. Discharge cleaning on KSTAR 1st plasma events

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Wang, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. S.; Yang, H. L.; Kim, K. P.; Kim, K. M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A discharge cleaning of a vacuum vessel was conducted with a GDC (Glow discharge cleaning) and a ICRF-DC(ICRF assisted discharge cleaning) for the KSTAR first plasma event period. The base pressure of the vessel was kept below 10-7 mbar via a cool down of the cryo-vessel, a 100C baking, and a GDC. (Partial pressure of hydrogen and nitrogen is below 10-8 mbar). The diagnostics for a discharge cleaning is a differential pumped RGA attached to a pumping duct and a cold cathode and a hot cathode gauge attached to the vessel and the pumping duct respectively. To analyze the discharge characteristics, a microwave interferometer, Bremsstahlung, H-alphas and a TV camera were used. Two straps among the four straps of the ICRF antenna are used for the ICRF-DC and ICRF heating experiments. The phase difference between the adjacent straps was 0 degree and the operating frequency was 30-33MHz.

  7. Effects of easily ionizable elements on the liquid sampling-atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Venzie, Jacob L.; Marcus, R. Kenneth

    2006-01-01

    A series of studies has been undertaken to determine the susceptibility of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) atomic emission source to easily ionizable element (EIE) effects. The initial portions of the study involved monitoring the voltage drop across the plasma as a function of the pH to ascertain whether or not the conductivity of the liquid eluent alters the plasma energetics and subsequently the analyte signal strength. It was found that altering the pH (0.0 to 2.0) in the sample matrix did not significantly change the discharge voltage. The emission signal intensities for Cu(I) 327.4 nm, Mo(I) 344.7 nm, Sc(I) 326.9 nm and Hg(I) 253.6 nm were measured as a function of the easily ionizable element (sodium and calcium) concentration in the injection matrix. A range of 0.0 to 0.1% (w/v) EIE in the sample matrix did not cause a significant change in the Cu, Sc, and Mo signal-to-background ratios, with only a slight change noted for Hg. In addition to this test of analyte response, the plasma energetics as a function of EIE concentration are assessed using the ratio of Mg(II) to Mg(I) (280.2 nm and 285.2 nm, respectively) intensities. The Mg(II)/Mg(I) ratio showed that the plasma energetics did not change significantly over the same range of EIE addition. These results are best explained by the electrolytic nature of the eluent acting as an ionic (and perhaps spectrochemical) buffer

  8. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Hasan, Nusair; Farouk, Bakhtier; Antao, Dion S

    2014-01-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  9. Study on Characteristics of Constricted DC Plasma Using Particle-In-Cell Simulator

    International Nuclear Information System (INIS)

    Jo, Jong Gap; Park, Yeong Shin; Hwang, Yong Seok

    2010-01-01

    In dc glow discharge, when anode size is smaller than cathode, very small and bright plasma ball occurs in front of anode. This plasma is called constricted dc plasma and characterized by a high plasma density in positive glow, so called plasma ball, compared to the conventional dc plasma. For the reason, this plasma is utilized to ion or electron beam sources since the beam currents are enhanced by the dense anode glow. However, correlations between characteristics of the plasma (plasma density, electron temperature and space potential) and discharge conditions (anode size, discharge voltage, discharge current, pressure) have been a little investigated definitely clear in previous study because of the trouble of a diagnosis. The plasma ball which is the most essential part of the constricted plasma is too small to diagnose precisely without disturbing plasma. Therefore, we tried to analyze the constricted plasma through computer simulation with Particle-In-Cell (PIC) code. In this study, simulation result of constricted dc plasma as well as conventional dc glow discharge will be addressed and compared with each others

  10. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    Hempel, F; Roepcke, J; Miethke, F; Wagner, H-E

    2002-01-01

    The time and spatial dependence of the chemical conversion of CO 2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO 2 . After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO 2 to CO was estimated to be 1.2x10 13 molecules J -1 . Based on the experimental results, a plasma chemical modelling has been established

  11. The Influence Of Nitridation Temperature And Time On The Surface Hardness Of AISI 1010 Low Carbon Steels Nitrided By Means Of Plasma Glow Discharge Technique

    International Nuclear Information System (INIS)

    Sujitno, Tjipto; Mujiman, Supardjono

    1996-01-01

    The results of the influence of nitridation temperature and time on the surface hardness of AISI 1010 low carbon steels nitrided by means of plasma glow discharge technique are presented in this paper. The results are the changing of surface hardiness, the changing of surface microstructure and the penetration profile depth. The experiment has been carried out at the temperature 400 o C, 450 o C, 500 o C, 550 o C, 570 o C and 600 o C, whereas the time is 5 minutes, 15 minutes, 40 minutes, 90 minutes and 180 minutes. All the experiments have been carried out at the optimum plasma density condition. The optimum plasma density condition is achieved at the pressure of p = 0.2 torr, when thr gas flow of nitrogen is 0.6 liter/minute and the distance of electrode plate is 4.5 cm. It was found that the optimum hardness of the surface was achieved at the temperature of 570 o C and the time of nitridation was 90 minutes, i.e. 190 KHN

  12. Velocity persistence of Brownian particles generated in a glow discharge

    International Nuclear Information System (INIS)

    Hurd, A.J.; Ho, P.

    1989-01-01

    Quasielastic light scattering from Brownian particles in the rarefied environment of a glow discharge exhibits Gaussianlike intensity correlation functions owing to the long mean free paths of the particles. The shape of the correlation function depends on the particles' average thermal velocity and friction coefficient, which can be related to aggregate mass and structure, and indicates a crossover from kinetic to hydrodynamic behavior

  13. Glow discharge, its sensitivity to infra-red radiation. Observations made during the testing of multiwire proportional chambers

    International Nuclear Information System (INIS)

    Marsh, J.B.; Souten, K.H.; O'Hagan, B.

    1979-05-01

    It has been shown that under glow discharge conditions, multiwire proportional chambers are sensitive to infra-red radiation. Discharge current measurements and light change measurements have been made and the effect of the input window on the output signal and the importance of the finish of the anode and HT wires have been investigated. From these observations it would appear that a glow discharge in the form detailed in this report is sensitive to infra-red radiation though work is still required to optimise the parameters of such a device for IR detection or solar cell technology. (UK)

  14. Surface analysis of uranyl fluoride layers with a glow discharge lamp

    International Nuclear Information System (INIS)

    Nel, J.T.; Stander, C.M.; Boehmer, R.G.

    1991-01-01

    Surface analysis with a Grimm-type glow discharge lamp was used to analyse uranyl fluoride layers that had formed on a nickel substrate after exposure to UF 6 . Narrow-band optical filters were used to isolate the intensities of three fluorine emission lines. An in-depth profile of layer composition was obtained. (author)

  15. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  16. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  17. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    International Nuclear Information System (INIS)

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-01

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 μm. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10 15 cm -3 for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  18. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Pontiga, F [Dpt. Fisica Aplicada II, Universidad de Sevilla (Spain); Castellanos, A [Dpt. Electronica y Electromagnetismo, Universidad de Sevilla (Spain)

    2011-02-09

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  19. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Castellanos, A.

    2011-02-01

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  20. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    International Nuclear Information System (INIS)

    Yanallah, K; Pontiga, F; Castellanos, A

    2011-01-01

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  1. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  2. Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films

    Science.gov (United States)

    Harbison, J. P.; Williams, A. J.; Lang, D. V.

    1984-02-01

    Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.

  3. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N{sub 2}/H{sub 2} glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, F., E-mail: bonatto02@yahoo.com.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Rovani, S. [Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Kaufmann, I.R.; Soares, G.V. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Baumvol, I.J.R. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Krug, C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil)

    2012-02-15

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N{sub 2}/H{sub 2} ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C=N and N-C=O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  4. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  5. Fluid model of dc glow discharge with nonlocal ionization source term

    International Nuclear Information System (INIS)

    Rafatov, I R; Bogdanov, E A; Kudryavtsev, A A

    2012-01-01

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the fluid framework. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  6. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  7. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  8. Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Foerster, C.E.; Serbena, F.C.; Silva, S.L.R. da; Lepienski, C.M.; Siqueira, C.J. de M.; Ueda, M.

    2007-01-01

    Results about mechanical and tribological behavior of AISI 304 stainless steel nitrided by three different ion beam processes - glow discharge (GD), ion implantation (II) and plasma immersion ion implantation (PI3) are reported. Expanded austenite γ N and nitrides phases (Fe 2+x N, γ'-Fe 4 N and Cr-N) were identified as a function of nitriding conditions. Hardness (H) and elastic modulus (E) profiles were obtained by instrumented penetration. The hardness reached values as high as 21 GPa by PI3. Tribological behavior was studied by reciprocating sliding tests with a WC (Co) ball at room temperature (RT) in dry condition. Different wear regimes were identified in the friction coefficient profiles. The profile form and the running-in distance are strongly dependent on the nitriding process. Adhesive and abrasive wear components can be inferred from these friction profiles. Hardness and tribological performance, after the nitriding processes, are discussed in terms of surface microstructure

  9. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO{sub 2}/PET film for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Mahendiran, R. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Su, Pi-G [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Yassitepe, Emre; Shah, Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University (United Kingdom); Nadagouda, Mallikarjuna N., E-mail: Nadagouda.Mallikarjuna@epamail.epa.gov [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2014-03-01

    In this paper, a thin transparent titania (TiO{sub 2}) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol–gel method. The surface properties of the obtained TiO{sub 2}/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO{sub 2}/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO{sub 2}/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO{sub 2}/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO{sub 2}/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO{sub 2}/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti{sup 3+} on the surface of plasma treated TiO{sub 2}/PET films was due to the transformation of chemical states (Ti{sup 4+} → Ti{sup 3+}). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO{sub 2}/PET films. Furthermore, the plasma treated TiO{sub 2}/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. - Graphical abstract: Mechanism of plasma treatment on the surface of TiO{sub 2}/PET films. - Highlights: • Investigated the surface properties of TiO{sub 2}/PET films modified by O{sub 2} plasma • Studied the effect of operating parameters on surface properties of TiO{sub 2}/PET films • Mechanism of the plasma treatment on TiO{sub 2}/PET was clearly investigated.

  10. Determination of the working conditions of the system for ion extraction from glow discharge plasma

    International Nuclear Information System (INIS)

    Murlak-Stachura, H.; Pilat, M.

    1988-01-01

    The discharge plasma was formed in discharge tube 110 cm long and 5.5 cm in diameter. An extraction probe with a bore 0.2 mm in diameter was on the tube wall about 40 cm from the anode. The probe characteristic was measured at determined pressure and intensity of discharge current. 8 refs., 3 figs. (A.S.)

  11. Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes

    International Nuclear Information System (INIS)

    Bazhenov, V.Yu.; Tsiolko, V.V.; Piun, V.M.; Chaplinskiy, R.Yu.; Kuzmichev, A.I.

    2013-01-01

    Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent gamma modes are determined experimentally. It is shown that transition from α mode to gamma mode occurs through a phase of coexistence of both modes in different parts of the discharge gap.

  12. Plasma flow discharge researches at the PIRIT-2000 facility

    International Nuclear Information System (INIS)

    Popkov, N.F.; Ryaslov, E.A.; Kargin, V.I.; Pikar', A.S.; Vorontsov, V.I.; Kotel'nikov, D.V.; Melkozerov, A.V.

    1996-01-01

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs

  13. Plasma flow discharge researches at the PIRIT-2000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs.

  14. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    Science.gov (United States)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  15. Ball lightning as a spherical plasma configuration of relevance to industrial plasma engineering

    International Nuclear Information System (INIS)

    Roth, J.R.

    1992-01-01

    One of the most interesting spherical plasma configurations found in nature is ball lightning, which has been extensively observed in atmospheric air, usually in association with thunderstorms. If the physical processes responsible for ball lightning were understood, this knowledge would have very interesting implications not only for fusion research, but also for industrial plasma engineering. The ability to create a steady-state atmospheric glow discharge would allow many surface modification and other plasma processing applications to be carried out under atmospheric conditions, rather than in expensive vacuum systems which enforce batch processing operations. The existence of ball lightning offers encouragement for the belief that a steady-state atmospheric glow discharge may be possible. Much progress has been made in theoretical attempts to understand ball lightning, perhaps the most comprehensive of which is the Koloc model. This and related models have not satisfactorily dealt with the long plasma lifetimes in the face of electron scattering at atmospheric density. This leads to an unsatisfactory aspect of the Koloc model, the requirement of a shell of relativistic electrons with very low Coulomb scattering cross sections. This last major conceptual roadblock in understanding ball lightning may have been removed by the recent suggestion of Witalis who pointed out that atmospheric gases, or their products, can exhibit the Ramsauer effect, extremely low electron scattering cross sections at low electron kinetic temperatures, on the order of one eV. This recent progress in ball lightning models has stimulated research aimed at producing a steady state glow discharge in air at atmospheric pressure. Such a glow discharge in argon with a few ppm of acetone has been reported by Kanda, et al. At the UTK Plasma Science Laboratory, the authors have generated at 2.8 liter plasma in a steady-state atmospheric pressure glow discharge in helium and other gases

  16. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  17. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  18. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  19. Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges

    International Nuclear Information System (INIS)

    Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J

    2009-01-01

    Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.

  20. [Determination of electric field distribution in dielectric barrier surface glow discharge by spectroscopic method].

    Science.gov (United States)

    Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang

    2008-12-01

    In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.

  1. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  2. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    International Nuclear Information System (INIS)

    Mingolo, N.; Gonzalez, C.R.; Martinez, O.E.; Rocca, J.J.

    1997-01-01

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 μA was found to limit the shot to shot current variation to within 1.5%. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. copyright 1997 American Institute of Physics

  3. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mingolo, N.; Gonzalez, C.R. [Lab. de Haces Dirigidos, Depto. de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Martinez, O.E. [Lab. de Electronica Cuantica, Depto. de Fisica, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Rocca, J.J. [Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1997-10-01

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 {mu}A was found to limit the shot to shot current variation to within 1.5{percent}. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. {copyright} {ital 1997 American Institute of Physics.}

  4. Analysis of soils by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Duckworth, D.C.; Barshick, C.M.; Smith, D.H.

    1993-01-01

    The analysis of soils by conventional solution-based techniques, such as inductively coupled plasma and thermal ionization mass spectrometry, is complicated by the need for sample dissolution or the combination of a solids atomizer with an auxiliary ionization source. Since time is an important consideration in waste remediation, there exists a need for a method of rapidly analysing many soil samples with little sample preparation; glow discharge mass spectrometry (GDMS) has the potential to meet this need. Because GDMS is a bulk solids technique, sample preparation is simplified in comparison to other methods. Even with the most difficult samples (geological materials, such as soils and volcanic rock), all that is required is grinding, drying and mixing with a conducting host material prior to electrode formation. As a first test of GDMS for soil analysis, a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) was analysed by direct current GDMS. Fifty-one elements were quantified from a single cathode using ion beam ratios and ''standard'' relative elemental sensitivity factors (RSF). Average errors for the suite of elements were less than a factor of 4 and 1.4 for uncorrected and corrected values, respectively. User-generated RSF values were applied to the analysis of several elements in NIST SRM 2704 Buffalo River Sediment. In the absence of isobaric interferences, accuracies ranging from 0.6 to 73% were observed, demonstrating the potential of the technique for the determination of many elements. The presence of entrained water and inhomogeneity resulting from cathode preparation is thought to affect matrix-to-matrix reproducibility. While further success depends on developing means of circumventing mass spectral interferences and addressing factors affecting plasma chemistry, the immediate goal of developing a screening method for priority metals in soils was met. (Author)

  5. Control of discharge conditions to reduce hydrogen content in low Z films produced with DC glow

    International Nuclear Information System (INIS)

    Natsir, M.; Sagara, A.; Tsuzuki, K.; Tsuchiya, B.; Hasegawa, Y.; Motojima, O.

    1995-09-01

    Boronization at near room temperature has been performed in plasma processing teststand (PPT) by using a 5 % diborane gases B 2 H 6 in He on electrically floating or unfloating Al samples under various conditions on DC glow discharge power or total gas pressure. The hydrogen concentration was analyzed by using elastic recoil detection method (ERD) and a new modified normalizing technique with Rutherford back scattering (RBS). Results showed that a high growth rate of film formation and floating surface were effective in reducing hydrogen concentration in B films. This result was in good agreement with earlier measurements of H with flash filament (FF) desorption method. In particular the H/B ratio was reduced by decreasing ions but increasing radicals for B film formation. (author)

  6. Uncertainty of relative sensitivity factors in glow discharge mass spectrometry

    Science.gov (United States)

    Meija, Juris; Methven, Brad; Sturgeon, Ralph E.

    2017-10-01

    The concept of the relative sensitivity factors required for the correction of the measured ion beam ratios in pin-cell glow discharge mass spectrometry is examined in detail. We propose a data-driven model for predicting the relative response factors, which relies on a non-linear least squares adjustment and analyte/matrix interchangeability phenomena. The model provides a self-consistent set of response factors for any analyte/matrix combination of any element that appears as either an analyte or matrix in at least one known response factor.

  7. Compositional characterisation of rare earth magnet materials by glow discharge quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Reddy, M.A.; Shekhar, R.; Kumar, Sunil Jai

    2014-01-01

    In this paper, glow discharge quadrupole mass spectrometric (GD-QMS) studies on Sm-Pr-Co compound magnetic materials are reported. The composition of these magnetic materials produced from different manufacturing routes (imported, indigenous) was determined. The results are compared with the results obtained by an alternative analytic technique, inductively coupled plasma atomic emission spectrometry (ICP-AES), after complete dissolution of the material in the appropriate acids. For perfectly homogeneous material both the wet chemical method and direct solid analysis method should give the same result. A close examination of both the results indicates that for imported materials the values obtained by wet chemical method and direct solid method are in close agreement. This indicates that the imported (solid) material is highly homogeneous. For indigenous materials, it shows a large difference in the values of Co and Sm. This reveals that the solid material prepared is not as homogenous as the imported materials

  8. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    International Nuclear Information System (INIS)

    NIKROO, A.; PONTELANDOLFO, J.M.; CASTILLO, E.R.

    2002-01-01

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 (micro)m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 (micro)m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard

  9. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    International Nuclear Information System (INIS)

    Al-Hawat, Sh; Naddaf, M

    2005-01-01

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density j d = 4.45 mA cm -2 and normalized electric field strength E/p = 1.88 V cm -1 Torr -1

  10. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    Science.gov (United States)

    Al-Hawat, Sh; Naddaf, M.

    2005-04-01

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density jd = 4.45 mA cm-2 and normalized electric field strength E/p = 1.88 V cm-1 Torr-1.

  11. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  12. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    Science.gov (United States)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  13. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    Science.gov (United States)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  14. Study of the striated nature of a glow discharge

    International Nuclear Information System (INIS)

    Hernandez A, M.

    1995-01-01

    In an investigation in progress here, plasma diagnostics and detection of standing and moving striations is being made in a discharge in Argon at pressures of 2 x 10 -1 to 9 x 10 -1 mb and currents of 2 to 9 m-amp inside an discharge tube. Measurement of the temperature of the electrons, the concentration of electrons and the plasma potential are obtained in different places of the discharge by the double probe method, together with the computation system reported in [1]. In similar way an experimental work of the striated column in a discharge plasma to find the regimen of appearance of the standing and moving striations show some properties of moving striations (frequency and velocity) and standing striations. Two different oscilations are observed in motion in contrary directions along the discharge tube with a photomultiplier. (Author)

  15. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  16. A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    YongSheng Wang

    2017-09-01

    Full Text Available Atmospheric pressure glow discharge (APGD has been widely used in the industrial field. The industrial applications are based on achieving stable and diffusive APGD in a relatively large space. The existing sources only achieved stable and diffusive APGD between a short inter-electrode distance within 5 millimeters. In this paper, the effect of a transverse stationary magnetic field on the diffusion of filamentary APGD was studied in a pin-to-ring coaxial gap. The APGD was driven by a high-voltage resonant power supply, and the stationary magnetic field was supplied by a permanent magnet. The stable and diffusive APGD was achieved in the circular area, which diameter was 20 millimeters. The experimental results revealed that more collision ionization occurred and the plasma was distributed diffusively in the discharge gap by applying the external transverse magnetic field. Besides, it is likely to obtain more stable and diffusive APGD in the coaxial pin-to-ring discharge gap when adjusting the input voltage, transverse magnetic flux density and resonant frequency of the power supply.

  17. Generators of nonequilibrium low-temperature plasma

    International Nuclear Information System (INIS)

    Dautov, G.Yu.

    1988-01-01

    Results are described of a study and of the characteristics of sources of a non-equilibrium gas-discharge plasma. The plasma generators considered include glow, high frequency, and arc discharge generators. Thermodynamic, ionic, and electronic processes occurring in the plasmas are evaluated

  18. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus; Teichert, Gerd; Gemma, Ryota; Pundt, Astrid; Kirchheim, Reiner; Romanus, Henry; Schaaf, Peter

    2011-01-01

    overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings

  19. Electron energy distribution function in the positive column of a neon glow discharge using the black wall approximation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hawat, Sh; Naddaf, M [Physics Department, Atomic Energy Commission, PO Box 6091, Damascus (Syrian Arab Republic)

    2005-04-21

    The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density j{sub d} = 4.45 mA cm{sup -2} and normalized electric field strength E/p = 1.88 V cm{sup -1} Torr{sup -1}.

  20. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  1. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  2. True random bit generators based on current time series of contact glow discharge electrolysis

    Science.gov (United States)

    Rojas, Andrea Espinel; Allagui, Anis; Elwakil, Ahmed S.; Alawadhi, Hussain

    2018-05-01

    Random bit generators (RBGs) in today's digital information and communication systems employ a high rate physical entropy sources such as electronic, photonic, or thermal time series signals. However, the proper functioning of such physical systems is bound by specific constrains that make them in some cases weak and susceptible to external attacks. In this study, we show that the electrical current time series of contact glow discharge electrolysis, which is a dc voltage-powered micro-plasma in liquids, can be used for generating random bit sequences in a wide range of high dc voltages. The current signal is quantized into a binary stream by first using a simple moving average function which makes the distribution centered around zero, and then applying logical operations which enables the binarized data to pass all tests in industry-standard randomness test suite by the National Institute of Standard Technology. Furthermore, the robustness of this RBG against power supply attacks has been examined and verified.

  3. Hardening of alloys in glow discharge with the use of pulsed electric current

    International Nuclear Information System (INIS)

    Shipko, M.N.; Pomel'nikova, A.S.; Solunin, A.M.; Solunin, M.A.

    2002-01-01

    The effect of ex/ternal pulsed electric field on the thickness of a hardened surface layer of a Nd-Fe-B system alloy during chemical heat treatment in a glow discharge is studied. The relationship is established between the hardened layer thickness and the frequency of external electric field which is verified by derived equations for the relation between electron energy and pulsed electric field frequency [ru

  4. Auxiliary glow discharge in the trigger unit of a hollow-cathode thyratron

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.; Frants, O. B.; Shemyakin, I. A.; Nekhoroshev, V. O. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2016-08-15

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.

  5. An influence of ion and sputtered atom flows inhomogeneity on time evolution of the target surface relief in glow discharge

    International Nuclear Information System (INIS)

    Bondarenko, G G; Kristya, V I

    2008-01-01

    A mathematical model of ion and sputtered atom transport in the vicinity of the target with a periodical surface relief in glow discharge in pure gas is developed. Under the assumption that the relief amplitude is small, analytical expressions for their flows are found by the perturbation method and an equation describing the relief amplitude time evolution is derived. It is shown that intensity of sputtering exceeds intensity of sputtered material re-deposition at the relief tops, and relief smoothing always takes place in the process of homogeneous target treatment in glow discharge in pure gas

  6. Monte Carlo simulation of fast electrons and heavy particles in the CDS of nitrogen dc glow discharge

    International Nuclear Information System (INIS)

    Yu, W.; Zhang, L.Z.; Wang, J.L.; Han, L.; Fu, G.S.

    2001-01-01

    The characteristics of fast electrons (e - ) and heavy particles (N 2 + , N + , N 2f , N f ) in the cathode dark space (CDS) of nitrogen dc glow discharge are simultaneously studied by Monte Carlo simulation. The calculated energy and angular distributions of these particles at different positions from the cathode provide a clear picture of their transport behaviours within the CDS. The density and mean energy of these particles indicate that the electrons and the atomic ions (N + ) are the main high-energy species and the molecular ions (N 2 + ) are the major ions in the CDS. It can be seen from the energy distributions of the bombarding particles at the cathode surface that the molecular ions and the fast atoms (N f ) are the main active species participating in the cathode nitride material synthesis process. The influence of the backscattering of the electrons from the negative glow to the CDS is also investigated. All the calculated results provide good information on the spatial characteristics of the particles considered in this paper and also their internal connections in the CDS of nitrogen dc glow discharge. (author)

  7. Analysis of the different zones of glow discharge of ethyl alcohol (C2H6O)

    International Nuclear Information System (INIS)

    Torres, C; Reyes, P G; Mulia, J; Castillo, F; Martínez, H

    2014-01-01

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C 6 H 5 (483.02 nm), CHO (519.56 nm) and H 2 (560.47 nm), in the positive column CO 2 + (315.52 y 337.00 nm), O + (357.48 nm), CH + (380.61 nm) and CO + (399.73 nm); in the cathode region we observed O + (391.19 nm), CHOCHO (428.00 nm), CO + (471.12 nm) and H 2 (656.52 nm). C 6 H 5 , CHO y H 2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  8. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  9. Common Gamma-ray Glows above Thunderclouds

    Science.gov (United States)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  10. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    Science.gov (United States)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  11. Electric discharge during electrosurgery.

    Science.gov (United States)

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  12. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    Vishwanathan, K.S.; Srinivasan, V.; Nalini, S.; Mahalingam, T.R.

    1990-01-01

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  13. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  14. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reinsberg, K.-G.; Schumacher, C.; Tempez, A.; Nielsch, K.; Broekaert, J.A.C.

    2012-01-01

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS™)) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s −1 and 3 nm s −1 , respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi 2 Te 3 the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb 2 Te 3 the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: ► Depth resolution in sub micrometer size by glow discharge mass spectrometry. ► Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. ► Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  15. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  16. Preliminary fluid channel design and thermal-hydraulic analysis of glow discharge cleaning permanent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.

  17. Faraday space in a glow discharge with uniform cross section and one expanding from the cathode to the positive column

    International Nuclear Information System (INIS)

    Raizer, Y.P.; Shneider, M.N.

    1992-01-01

    A simplified asymptotic theory is used to find the distribution of the field and plasma density and to estimate the length of the Faraday dark space in a glow discharge in slab geometry and in one where the transverse cross section of the drift tube increases as a function of distance from the cathode. It is shown that the Faraday space is longer in the second case. The effects and behavior observed experimentally, including field reversal, are fully explained on the basis of the diffusive mechanism for charge transport in a very weak field without the inverse dependence of the electron mobility on the field that has been assumed in many treatments. 7 refs., 5 figs

  18. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  19. Electron-beam sustained glow discharge in a N{sub 2}+CO gas mixture at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azharonok, V V; Filatova, I I; Chubrik, N I; Shimanovich, V D [Belarussian Academy of Sciences, Minsk (Belarus). Inst. of Molecular and Atomic Physics; Gurashvili, V A; Kuzmin, V N; Turkin, N G; Vaselenok, A A [Troitsk Institute of Innovative and Fusion Research (Russian Federation)

    1997-12-31

    A quasi-continuum electron-beam sustained glow discharge in a flow of N{sub 2} + CO gas mixture at cryogenic temperature was studied by emission spectroscopy. The effective values of electron-ion recombination and rate of electron adhesion to electronegative molecules (Fe(CO){sub 5}, Ni(CO){sub 4}, H{sub 2}O) present in the discharge were determined in dependence on the reduced electric field strength E/N. (author). 1 tab., 2 figs., 5 refs.

  20. Cathode fall parameters of a self-sustained normal glow discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Arkhipenko, V.I.; Zgirovskii, S.M.; Kirillov, A.A.; Simonchik, L.V.

    2002-01-01

    Results from comprehensive studies of a high-current self-sustained glow discharge in atmospheric-pressure helium are presented. The main parameters of the cathode fall, namely, the electric field profile, cathode fall thickness, current density, gas temperature, and heat flux to the cathode are determined. The results obtained are discussed using one-dimensional models of the cathode fall with allowance for volumetric heat release

  1. Child-Langmuir law for cathode sheath of glow discharge in CO2

    International Nuclear Information System (INIS)

    Lisovskiy, V.A.; Krol, H.H.; Osmayev, R.O.; Yegorenkov, V.D.

    2016-01-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO 2 . To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions - one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in CO 2 have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility.

  2. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  3. Radiative lifetime and collisional quenching of carbon monochloride (A 2Δ) in an alternating current glow discharge

    International Nuclear Information System (INIS)

    Gottscho, R.A.; Burton, R.H.; Davis, G.P.

    1982-01-01

    Glow discharges are widely employed in semiconductor processing but are relatively poorly understood owing to, in part, a lack of reliable, quantitative diagnostics. Laser-induced fluorescence promises to be a useful in situ, nonintrusive probe for species concentrations and gas-phase temperatures, but requires the determination of fluoresence yields (i.e., radiative vs nonradiative decay rates) as a function of the plasma state and molecular rotational quantum number. In this work, carbon tetrachloride plasmas, which are used in the dry etching of such materials as Al, Si, GaAs, and InP, are examined using the laser-induced fluorescence technique. The quantum yield phi of CCl A 2 Δ→X 2 Pi fluorescence is determined as a function of pressure, flow-rate, power, electrode temperature, and feedstock composition. Total pressure and addition of Cl 2 to the feedstock are found to be most important in reducing the quantum yield; other plasma parameters and addition of O 2 , He, Ar, or N 2 are found to be of secondary importance. The radiative lifetime of carbon monochloride CCl, A 2 Δ (v = 0) is found to be 105 +- 3 ns and to be independent of rotational quantum number up to J = 45.5. The weak dependence of CCl laser-induced fluorescence on most plasma variables makes it nearly ideal as a simple, direct, and quantitative temperature and concentration diagnostic

  4. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  5. Inner surface modification of a tube by magnetic glow-arc plasma source ion implantation

    International Nuclear Information System (INIS)

    Zhang Guling; Chinese Academy of Sciences, Beijing; Wang Jiuli; Feng Wenran; Chen Guangliang; Gu Weichao; Niu Erwu; Fan Songhua; Liu Chizi; Yang Size; Wu Xingfang

    2006-01-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved. (authors)

  6. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  7. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  8. On OH production in water containing atmospheric pressure plasmas

    NARCIS (Netherlands)

    Bruggeman, P.J.; Schram, D.C.

    2010-01-01

    In this paper radical production in atmospheric pressure water containing plasmas is discussed. As OH is often an important radical in these discharges the paper focuses on OH production. Besides nanosecond pulsed coronas and diffusive glow discharges, several other atmospheric pressure plasmas

  9. Pulsed glow discharge mass spectrometry for molecular depth profiling of polymers

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Pisonero, J.; Licciardello, A.; Tuccitto, N.; Tempez, A.; Chapon, P.

    2009-01-01

    Full text: Nowadays thin films of polymeric materials involve a wide range of industrial applications, so techniques capable of providing in-depth profile information are required. Most of the techniques available for this purpose are based on the use of energetic particle beams which interact with polymers producing undesirable physicochemical modifications. Radiofrequency pulsed glow discharge (rf-pulsed-GD) coupled to time-of-flight mass spectrometry (TOFMS) could afford the possibility of acquiring both elemental and molecular information creating minimal damage to surfaces and thereby obtaining depth profiles. This work will evaluate rf-GDs coupled to an orthogonal TOFMS for direct analysis of polymers. (author)

  10. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  11. RAMAN spectra of amorphous silicon thin films deposited by glow discharges

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si x N 1-x :H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a ''cross field'' or a ''parallel field'' geometry. Gaseous mixtures of SiH 4 . N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of ''alloys'' including partially micro-crysttalized films. (author) [pt

  12. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  13. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  14. Status of plasma physics research activities in Egypt

    International Nuclear Information System (INIS)

    Masoud, M.M.

    1997-01-01

    The status of plasma physics research activities in Egypt is reviewed. There are nine institutes with plasma research activities. The largest is the Atomic energy Authority (AEA), which has activities in fundamental plasma studies, fusion technology, plasma and laser applications, and plasma simulation. The experiments include Theta Pinches, a Z Pinch, a coaxial discharge, a glow discharge, a CO 2 laser, and the EGYPTOR tokamak. (author)

  15. Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O

    NARCIS (Netherlands)

    Vasko, C.A.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2013-01-01

    The gas phase production of hydrogen peroxide (H2O2) in a RF atmospheric pressure glow discharge with helium and water vapour has been investigated as a function of the gas flow. It is shown that the production of H2O2 is through the recombination of two OH radicals in a three body collision and the

  16. Applicability of the Child-Langmuir laws versions for describing the glow discharge cathode sheath in CO2

    Science.gov (United States)

    Lisovskiy, Valeriy; Krol, Hennadii; Osmayev, Ruslan; Yegorenkov, Vladimir

    2016-09-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO2. To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions- one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in carbon oxide have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. The inter-electrode distance has been chosen such that the discharge consists only of the cathode sheath and a small portion of the negative glow, i.e. the experiments have been performed in short tubes. In this case the voltage drop across the cathode sheath is equal approximately to the voltage drop across the electrodes. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility. The reason for this phenomenon may be related with a significant conversion of carbon dioxide molecules.

  17. Characteristics of an atmospheric pressure argon glow discharge in a coaxial electrode geometry

    International Nuclear Information System (INIS)

    Li Xuechen; Zhao Na; Fang Tongzhen; Liu Zhihui; Li Lichun; Dong Lifang

    2008-01-01

    An atmospheric glow discharge controlled by a dielectric barrier is realized in a coaxial electrode geometry in argon. The discharge characteristics are studied by the electrical method and optical emission spectroscopy. The experimental results indicate that there is only one discharge pulse per half cycle when the applied voltage is very low, and the rise time of the discharge pulses at the positive half cycle is much shorter than that at the negative one. With an increase in applied voltage, the width of the discharge pulse increases, while the inception voltage at which breakdown occurs decreases. The rise time at positive half cycle almost equals that at negative half cycle when the applied voltage is high enough. The research results pertaining to gas gap voltage indicate that the critical electric field for breakdown decreases with increasing applied voltage. The electron temperature is estimated from the Einstein relation, and the result indicates that the electron temperature and the electron density are functions of the applied voltage and the gas flow rate. The electron temperature is also studied by emission spectroscopy and a similar result is obtained

  18. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reinsberg, K.-G. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Schumacher, C. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Tempez, A. [HORIBA Jobin Yvon, 16-18 rue du Canal, F-91160 Longjumeau (France); Nielsch, K. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2012-10-15

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS Trade-Mark-Sign )) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s{sup -1} and 3 nm s{sup -1}, respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi{sub 2}Te{sub 3} the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb{sub 2}Te{sub 3} the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: Black-Right-Pointing-Pointer Depth resolution in sub micrometer size by glow discharge mass spectrometry. Black-Right-Pointing-Pointer Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. Black-Right-Pointing-Pointer Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  19. Expansion of the cathode spot and generation of shock waves in the plasma of a volume discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Omarov, O. A.; Kurbanismailov, V. S.; Arslanbekov, M. A.; Gadzhiev, M. Kh.; Ragimkhanov, G. B.; Al-Shatravi, Ali J. G.

    2012-01-01

    The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.

  20. Integrated Computer Controlled Glow Discharge Tube

    Science.gov (United States)

    Kaiser, Erik; Post-Zwicker, Andrew

    2002-11-01

    An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).

  1. Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2018-06-01

    Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.

  2. Degradation of m-dihydroxybenzene by contact glow discharge electrolysis in aqueous

    International Nuclear Information System (INIS)

    Gai, Ke; Qi, Huili; Ma, Dongping; Wang, Chunlin

    2013-01-01

    This paper reported the degradation of m-dihydroxybenzene aqueous solution with contact Glow Discharge Electrolysis. The rate of degradation in different conditions such as pH, H 2 O 2 , Fe 2+ , methanol, and other affecting factors were studied. The results showed that there is faster removal rate when the solution is in a relatively higher acidity; H 2 O 2 can improve the efficiency rate. Fe 2+ can promote reaction, but radical elimination agent of methanol will decrease the rate of the reaction. On the basis of analyzing the ultraviolet (UV) spectra of the solution and the intermediate products from High Performance Liquid Chromatography-Mass Spectrum (HPLC-MS), reaction pathway was proposed.

  3. Raman spectra of amorphous silicon thin films deposited by glow discharge

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si sub(x) N 1 - sub(x):H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a 'cross field' or a 'parallel field' geometry. Gaseous mixtures of SiH 4 , N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of 'alloys' including partially micro-crystallized films. (Author) [pt

  4. In-situ reactive of x-ray optics by glow discharge

    International Nuclear Information System (INIS)

    Johnson, E.D.; Garrett, R.F.

    1987-01-01

    We have developed a method of in-situ reactive glow discharge cleaning of x-ray optical surfaces which is capable of complete removal of carbon contamination. Our work is the first to successfully clean an entire optical system in-situ and characterize its performance at short wavelengths (as low as 10 /angstrom/). The apparatus required is quite simple and can easily be fitted to most existing UHV (ultra high vacuum) mirror boxes of monochromators. The advantages of this technique over previously available methods include dramatic improvements in instrument performance and reductions in down time since the whole process typically takes a few days. This paper will briefly describe our results and detail the experimental considerations for application of the technique on different monochromator geometries. Possible improvements and extensions of the technique are also discussed

  5. Investigation and applications of a plasma generator

    International Nuclear Information System (INIS)

    Frere, Isabelle

    1992-01-01

    This work describes the experimental study of a plasma generator: a cylindrical or parallelepipedic rectangle cathode. A permanent magnet creates an axial magnetic field of a few hundred Gauss. A cold and abnormal glow discharge plasma is obtained. The experimental research on the correlation between the discharge parameters (electrode geometry, gas pressure, discharge voltage and current, magnetic field) of the discharge is presented. Another part of the text mentions some generator applications to surface treatment: evaporation, sputtering, surface modification of polymers by exposure to plasma. (author) [fr

  6. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  7. Electric field strength in a Xe-Ne glow discharge

    NARCIS (Netherlands)

    Visser, B.; Hayashi, D.; Kroesen, G.M.W.; Stoffels, W.W.

    2001-01-01

    Many applications of plasma physics are related to light generation. The applications range from TL-tubes until the latest flat displays. The size of discharges is decreasing further and further. At this moment the typical dimensions of a plasma display panel cell are in the order of 100 µm. A model

  8. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM

    2002-01-01

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  9. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  10. Sputtering in a glow discharge ion source - pressure dependence: theory and experiment

    International Nuclear Information System (INIS)

    Mason, R.S.; Pichilingi, Melanie

    1994-01-01

    A simplified theoretical expression has been developed for a glow discharge to show how the average cathode erosion rate (expressed as the number of atoms per ion of the total bombarding flux) varies with primary sputter yield, pressure, 'diffusion length' and sputtered atom 'stopping' cross section. An inverse pressure dependence is predicted which correlates well with experiment in the 2 and He, tend to converge. It is suggested that this could be due to a change in the mechanism to self-sputtering. Under constant conditions, the erosion rates of different cathode materials still correlate quite well with the differences in their primary sputter yields. (author)

  11. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  12. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2013-01-01

    Full Text Available To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g increased significantly than that of pure carbon nanotubes (6.7 F/g.

  13. Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation

    International Nuclear Information System (INIS)

    Wang Wei-Long; Song Hui-Min; Li Jun; Jia Min; Wu Yun; Jin Di

    2016-01-01

    Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge–Voltage (Q–V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage–current waveforms, the area of Q–V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains unchanged when load power is between 40 W and 95 W. The relative intensity changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the relative intensity rises evidently. Additionally, the relative intensity is insensitive to the pressure, the duty cycle, and the load power. (paper)

  14. Child–Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Artushenko, K P; Yegorenkov, V D

    2016-01-01

    The present paper reveals that the Child-Langmuir law version with the constant ion mobility has to be applied for the cathode sheath description of the glow discharge in hydrogen. Using the analytical model we demonstrate that even in a high electric field the constant mobility law version rather than that for the constant ion mean free path has to hold in the case of impeded charge exchange and the dominant effect of polarization forces on the ion motion through the cathode sheath. (paper)

  15. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  16. Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wei-Wei; Chang Xi-Jiang; Liang Rong-Qing

    2011-01-01

    A dielectric barrier discharge (DBD) lamp is investigated by using sinusoidal power with a 10 kHz frequency in open air at atmospheric pressure. With increasing applied voltages, the different discharge phenomena appear. At relatively low voltages, the discharge states are general stochastic filamentary discharges with weak light. However, at relatively high voltages, the walls of quartz tubes are heated sharply by plasma, and then the dazzling light is emitted very quickly to form the DBD Lamp, corresponding to the low maintaining voltage that is lower than the ignited voltage. The discharge state or mode of the DBD lamp that corresponds to the glow discharge is deduced according to the wave form of the circuit current, which is evidently different from the filamentary discharges. Under these conditions, the spectrum of the DBD lamp is continuous in the range 400–932 nm, which is scanned in the range 300–932 nm. It is also shown that there is another discharge state or mode that is different from the traditional filamentary discharges. Therefore, it is concluded that the discharge state or mode of the DBD lamp is a glow discharge. (physics of gases, plasmas, and electric discharges)

  17. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    Energy Technology Data Exchange (ETDEWEB)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Inorganiche e dei Plasmi UOS Bari-c/o Dipartimento di Chimica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Colaianni, A [Dipartimento di Geologia e Geofisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Schiavulli, L, E-mail: paolofrancesco.ambrico@cnr.i [Dipartimento Interateneo di Fisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy)

    2010-08-18

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  18. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    International Nuclear Information System (INIS)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S; Colaianni, A; Schiavulli, L

    2010-01-01

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  19. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks

    International Nuclear Information System (INIS)

    Goodall, D.H.J.

    1982-01-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions. Several workers have filmed discharges in tokamaks including ASDEX, DITE, DIVA, ISX, JFT2, TFR and PLT. These films are discussed and examples given of the observed phenomena which include plasma limiter interactions, diverted discharges, disruptions, magnetic islands and moving glowing objects often known as 'UFOs'. Examples of plasma structures in ASDEX and DITE not previously published are also given. The paper also reports experiments in DITE to determine the origin of UFOs. (orig.)

  20. Anode spot patterns and fluctuations in an atmospheric-pressure glow discharge in helium

    International Nuclear Information System (INIS)

    Arkhipenko, V I; Safronau, Y A; Simonchik, L V; Tsuprik, I M; Callegari, Th

    2013-01-01

    Oscillations of the main parameters (voltage on electrodes, potential, light intensity and discharge current) in a dc atmospheric-pressure glow discharge in helium are investigated in a range of currents from milliamperes to several amperes. It is established that these oscillations are connected with the existence of anode spots. In the case of a single spot, fluctuations of discharge light intensity are observed when the supply voltage exceeds the breakdown voltage for the interelectrode gap. At the same time, voltage fluctuations have the form of relaxation oscillations with a frequency that depends on the electrical parameters of the external circuit. With an increase in discharge gap and current, the number of spots increases. They form a stable structure, and the fluctuations of current and voltage stay harmonic. The brightness of the spots seems to be determined by the frequency of their blinking. The amplitude of current fluctuation increases with the increase in discharge current and can be up to 15% of its average value. The frequency of current oscillations, which is about 0.75 MHz at a current of 0.5 A, depends weakly on the discharge gap (it varies within ±10% for the gap interval from 1 to 10 mm). The oscillation frequency is maximal (about 0.85 MHz) at a current of about 0.4 A. At higher currents (2–4 A, depending on the discharge gap), the fluctuations disappear when a contraction of the anode region into one anode spot occurs. (paper)

  1. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  2. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell.

    Science.gov (United States)

    Liu, Jun; Guo, Ting; Wang, Dong; Ying, Hanjie

    2015-01-01

    A Clostridium beijerinckii mutant M13 was derived from C. beijerinckii NCIMB 8052 by atmospheric pressure glow discharge. C. beijerinckii M13 generated a maximum output power density of 79.2 mW m(-2) and a maximum output voltage of 230 mV in a microbial fuel cell containing 1 g glucose l(-1) as carbon source and 0.15 g methyl viologen l(-1) as an electron carrier.

  3. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  4. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  5. Improvement of the detection limits in radio-frequency-powered glow discharge optical emission spectrometry associated with bias-current conduction method; Jiko bias denryu donyuho ni yoru koshuha glow hoden hakko bunseki ni okeru kenshutsu genkai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Wagatsuma, K. [Tohoku University, Sendai (Japan). Research Institute for Materials

    1999-01-01

    A d.c. bias current driven by the self-bias voltage which is conducted through the r.f.-powered glow discharge plasma varies the emission characteristics drastically, leading to improvement of the detection power in the optical emission spectrometry. By conducting the bias currents of 20-30 mA, the emission intensities of the atomic resonance lines were 10-20 times larger than those obtained with conventional r.t.- powered plasmas. The detection limits for determination of alloyed elements in the re-based binary alloy samples were estimated to be l.6 x 10{sup -3}% Cr for CrI 425.43nm, 7 x 10{sup -4}% Mn for MnI 403.10nm, 1.9>10{sup -3}% Cu for CuI 327.40nm, 1.1 x 10{sup -3}% Al for AlI 396.16nm, and 6.6 x 10{sup -3}% Ni for NiI 352.45 nm. (author)

  6. Two-dimensional electrodynamic structure of the normal glow discharge in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Surzhikov, S. T., E-mail: surg@ipmnet.ru [Russian Academy of Sciences, Institute for Problems in Mechanics (Russian Federation)

    2017-03-15

    Results are presented from numerical simulations of an axisymmetric normal glow discharge in molecular hydrogen and molecular nitrogen in an axial magnetic field. The charged particle densities and averaged azimuthal rotation velocities of electrons and ions are studied as functions of the gas pressure in the range of 1–5 Torr, electric field strength in the range of 100–600 V/cm, and magnetic field in the range of 0.01–0.3 T. It is found that the axial magnetic field does not disturb the normal current density law.

  7. Re-design of ITER Glow Discharge Cleaning system based on a fixed electrode concept

    International Nuclear Information System (INIS)

    Yang, Y.; Maruyama, S.; Kiss, G.; O’Connor, M.; Zhang, Y.; Pitts, R.A.; Shimada, M.; Fang, T.; Wang, Y.; Wang, M.; Pan, Y.; Li, B.; Li, L.

    2014-01-01

    Highlights: •This paper summarizes the approved new design of ITER GDC. •It is based on the fixed electrode design instead of the previous movable concept. •Estimates were made on the glow current density. •R and D topics on initiation, steady state and heat load were presented. •Other relevant considerations were listed in an exhaustive manner. -- Abstract: A new design of ITER Glow Discharge Cleaning (GDC) system based on a fixed electrode concept replaces the previous design which was based on a movable electrode integrated with the ITER In-Vessel-Viewing-System. Recently the conceptual design of the GDC system was reviewed successfully on the functions, safety, operation and maintenance. The design proposed was checked against the requirements and found to be feasible. This paper gives an overall description of the requirements from physics and operation viewpoints and introduces the design at the conceptual level. Main R and D activities are listed and summarized. Further detailed studies are to be performed in the following design stage

  8. A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges

    Energy Technology Data Exchange (ETDEWEB)

    Audronis, M., E-mail: m.audronis@yahoo.co.uk [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Hinder, S.J. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Mack, P. [ThermoFisher Scientific Ltd, Imberhorne Lane, East Grinstead, Sussex, RH19 1UB (United Kingdom); Bellido-Gonzalez, V. [Gencoa Ltd, Physics Road, Speke, Liverpool, L24 9HP (United Kingdom); Bussey, D.; Matthews, A. [Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Baker, M.A. [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2011-12-30

    PET web samples have been treated by magnetically enhanced glow discharges powered using either medium frequency pulse direct current (p-DC) or low frequency high power pulse (HIPIMS) sources. The plasma pre-treatment processes were carried out in an Ar-O{sub 2} atmosphere using either Cu or Ti sputter targets. XPS, AFM and sessile drop water contact angle measurements have been employed to examine changes in surface chemistry and morphology for different pre-treatment process parameters. Deposition of metal oxide onto the PET surface is observed as a result of the sputter magnetron-based glow discharge web treatment. Using the Cu target, both the p-DC and HIPIMS processes result in the formation of a thin CuO layer (with a thickness between 1 and 11 nm) being deposited onto the PET surface. Employing the Ti target, both p-DC and HIPIMS processes give rise to a much lower concentration of Ti (< 5 at.%), in the form of TiO{sub 2} on the PET treated surface. The TiO{sub 2} is probably distributed as an island-like distribution covering the PET surface. Presence of Cu and Ti oxide constituents on the treated PET is beneficial in aiding the adhesion but alone (i.e. without oxygen plasma activation) is not enough to provide very high levels of hydrophilicity as is clear from sessile drop water contact angle measurements on aged samples. Exposure to the plasma treatments leads to a small amount of roughening of the substrate surface, but the average surface roughness in all cases is below 2.5 nm. The PET structure at the interface with a coating is mostly or wholly preserved. The oxygen plasma treatment, metal oxide deposition and surface roughening resulting from the HIPIMS and p-DC treatments will promote adhesion to any subsequent thin film that is deposited immediately following the plasma treatment.

  9. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  10. EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS

    International Nuclear Information System (INIS)

    Podder, Nirmol K.

    2009-01-01

    In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  11. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-01-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40 Ar + with this new design were negligible, while maximum intensity was reached earlier in time for 41 (ArH) + than when using the PROTOTYPE GD. Moreover, while maximum 40 Ar + signals measured along the pulse period were similar in both sources, 41 (ArH) + and 80 (Ar 2 ) + signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41 (ArH) + . - Highlights: ► A new RF-pulsed GD ion source (UNIOVI GD) coupled to TOFMS has been characterized. ► Linear calibration graphs and LODs in the low ppm range are achieved. ► Craters with flat bottoms and vertical walls are obtained. ► UNIOVI source can be easily cleaned as it does not require flow tube. ► UNIOVI GD has a simple design and thus its manufacture is easy and cheap.

  12. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  13. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge

    International Nuclear Information System (INIS)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A.; Velazquez P, S.

    2008-01-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  14. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology ' Stankin,' (Russian Federation)

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  15. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Koch, L.

    1996-01-01

    A double-focusing glow discharge mass spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from thermal ionization mass spectrometry (TIMS). For boron and lithium at μg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. (orig.). With 2 figs., 4 tabs

  16. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  17. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    Science.gov (United States)

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  18. Study of stability of dc glow discharges with the use of Comsol Multiphysics software

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2011-10-19

    Stability of different axially symmetric modes of current transfer in dc glow discharges is investigated in the framework of the linear stability theory with the use of Comsol Multiphysics software. Conditions of current-controlled microdischarges in xenon are treated as an example. Both real and complex eigenvalues have been detected, meaning that perturbations can vary with time both monotonically and with oscillations. In general, results given by the linear stability theory confirm intuitive concepts developed in the literature and conform to the experiment. On the other hand, suggestions are provided for further experimental and theoretical work.

  19. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  20. Experimental and modelling investigations of a dielectric barrier discharge in low-pressure argon

    International Nuclear Information System (INIS)

    Wagenaars, E; Brandenburg, R; Brok, W J M; Bowden, M D; Wagner, H-E

    2006-01-01

    The discharge behaviour of a dielectric barrier discharge (DBD) in low-pressure argon gas was investigated by experiments and modelling. The electrical characteristics and light emission dynamics of the discharge were measured and compared with the results of a two-dimensional fluid model. Our investigations showed that the discharge consisted of a single, diffuse discharge per voltage half-cycle. The breakdown phase of the low-pressure DBD (LPDBD) was investigated to be similar to the ignition phase of a low-pressure glow discharge without dielectrics, described by Townsend breakdown theory. The stable discharge phase of the LPDBD also showed a plasma structure with features similar to those of a classical glow discharge. The presence of the dielectric in the discharge gap led to the discharge quenching and thus the decay of the plasma. Additionally, the argon metastable density was monitored by measuring light emission from nitrogen impurities. A metastable density of about 5 x 10 17 m -3 was present during the entire voltage cycle, with only a small (∼10%) increase during the discharge. Finally, a reduction of the applied voltage to the minimum required to sustain the discharge led to a further reduction of the role of the dielectric. The discharge was no longer quenched by the dielectrics only but also by a reduction of the applied voltage

  1. Comparative studies of high-frequency and direct current molecular gas discharges

    International Nuclear Information System (INIS)

    Goichman, V.H.; Goldfarb, V.M.; Tendler, M.B.

    1975-01-01

    Electron gas parameters, gas temperatures, ionization and thermal instability are found to be markedly different in direct current glow discharges from capactive electrodless high frequency discharge even when equal net power input is provided. It is reasonable to expect that the combined discharge containing both types of discharges mentioned above may be expected to improve significantly both the steady-state and transient characteristics of the plasma. The characteristics of different discharges in air, nitrogen air-CO 2 -He mixture have been compared. Because of the lack of the direct electrical methods for measurements of the hf plasma, exphasis in this investigation has been laid on both theoretical) based on the analytical expression for electron energy distribution function received previously and experimental spectroscopic evaluations of the plasma parameters. (Auth.)

  2. Numerical study on rectangular microhollow cathode discharge

    International Nuclear Information System (INIS)

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-01-01

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  3. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms

    International Nuclear Information System (INIS)

    Deng, X. T.; Shi, J. J.; Kong, M. G.

    2007-01-01

    Biological sterilization represents one of the most exciting applications of atmospheric pressure glow discharges (APGD). Despite the fact that surgical instruments are contaminated by both microorganisms and proteinaceous matters, sterilization effects of APGD have so far been studied almost exclusively for microbial inactivation. This work presents the results of a detailed investigation of the capability of a helium-oxygen APGD to inactivate proteins deposited on stainless-steel surfaces. Using a laser-induced fluorescence technique for surface protein measurement, a maximum protein reduction of 4.5 logs is achieved by varying the amount of the oxygen admixture into the background helium gas. This corresponds to a minimum surface protein of 0.36 femtomole/mm 2 . It is found that plasma reduction of surface-borne protein is through protein destruction and degradation, and that its typically biphasic reduction kinetics is influenced largely by the thickness profile of the surface protein. Also presented is a complementary study of possible APGD protein inactivation mechanisms. By interplaying the protein inactivation kinetics with optical emission spectroscopy, it is shown that the main protein-destructing agents are excited atomic oxygen (via the 777 and 844 nm emission channels) and excited nitride oxide (via the 226, 236, and 246 nm emission channels). It is also demonstrated that the most effective protein reduction is achieved possibly through a synergistic effect between atomic oxygen and nitride oxide. This study is a useful step toward a full confirmation of the efficacy of APGD as a sterilization technology for surgical instruments contaminated by prion proteins

  4. International symposium on high pressure low temperature plasma chemistry. Contributed papers

    International Nuclear Information System (INIS)

    1998-01-01

    The proceedings contain the texts of 77 contributions, of which 31 contributions fall within the scope of the INIS database. The latter deal with various aspects of plasma behavior in pulsed electric discharges of various types, with the spectroscopic and probe diagnostics of a discharge plasma, and with the computer simulation of ionization and breakdown processes in the glow, corona, and arc discharges at atmospheric pressure. (J.U.)

  5. International symposium on high pressure low temperature plasma chemistry. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The proceedings contain the texts of 77 contributions, of which 31 contributions fall within the scope of the INIS database. The latter deal with various aspects of plasma behavior in pulsed electric discharges of various types, with the spectroscopic and probe diagnostics of a discharge plasma, and with the computer simulation of ionization and breakdown processes in the glow, corona, and arc discharges at atmospheric pressure. (J.U.).

  6. Thermal degradation process of poly (alpha-methylstyrene) microspheres coated with glow discharge polymer

    International Nuclear Information System (INIS)

    Zhang Zhanwen; Huang Yong; Tang Yongjian; Li Bo; Chen Sufen; He Zhibing

    2009-01-01

    Glow discharge polymer (GDP) shell was made by the decomposable mandrel technique using poly(alpha-methylstyrene) (PAMS) mandrel. The PAMS degradation rate and the GDP shell surface morphology at different equilibrium temperatures were investigated. Degradation rate was calculated from weight variation of PAMS before and after pyrolysis process. Experiment results indicate that the degradation rate decreases at the fixed equilibrium temperature and graded temperature can improve the rate. The degradation process has an effect on the GDP shell properties. The PAMS doesn't molten to flow liquid during degradation. But the degradation can reduce surface finish of GDP coatings. The GDP shell deffects are the result of the PAMS degradiation process. (authors)

  7. Debinding of injected parts using an abnormal glow discharge

    International Nuclear Information System (INIS)

    Santos, M.A.; Maliska, A.M.; Klein, A.N.; Ristow, W.; Muzart, J.L.R.

    2005-01-01

    Results of binder removal of injected PM components using plasma technology are presented. The samples were injected with 55.18 vol.% of iron powder, 23.57 vol.% of paraffin and 21.25 vol.%. of polypropylene and treated in hydrogen and argon discharges at a pressure of 400 Pa (3 Torr), varying temperature and treatment times. The discharge was generated by a pulsed power source in a confined anode-cathode geometry. The outer electrode consisted of the cathode and was heated by the bombardment of ions accelerated in the cathode region. The sample was placed on an inner holder and heated by thermal radiation. Three different configurations of electrodes were used in order to evaluate the influence of electron bombardment on the sample surface, the interaction of the reactive species generated in the discharge with the binder and thermal effects on the dissociation of the organic molecules. Samples were characterized by mass loss and energy dispersive X-ray (EDX) analysis. The results show that the electron bombardment added to the interaction of reactive species on the sample surface significantly activated the binder removal. By using a laboratory scale plasma reactor, it was shown that the binder extraction and pre-sintering cycle could be performed in a single thermal cycle lasting approximately 200 min

  8. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    Science.gov (United States)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  9. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    International Nuclear Information System (INIS)

    Draghici, M.; Stamate, E.

    2010-01-01

    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF 6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive and negative ions are evaluated on silicon substrate for different Ar/SF 6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.

  10. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.......Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...

  11. Microstructural and optical properties of A-Si: H deposited by DC plasma glow discharge of electrode polarity

    International Nuclear Information System (INIS)

    Salam, R.; Danker, A.R.

    1993-01-01

    A method for deducing the density of valence electrons and the average atomic separation of Si atoms in a-Si:H are presented. Refractive index and optical absorption experimental data on a variety of dc glow discharge deposited a-Si:H samples are utilized to deduce the two parameters. The density of valence electrons depict values in the range (1.47-6.15)x10 22 cm -3 while the average atomic spacing varies within 3.13-4.61 A. The existence of microvoids and regions of rich silicon-hydride phase are proposed to account for this. Comparisons of the electrical conductivity, optical parameters and vibrational modes are done for cathode and anode deposited a-Si:H samples. Conductivity for both types of samples are the same at around 1.3x10 -9 (Ωcm) -1 , but significant differences are observed in the values of the refractive index n and the optical gap Eg of the cathode (4.06, 1.95 eV) and anode (3.13, 2.34 eV) samples. Observations on the infrared spectrum of the two a-Si:H samples suggests that the anode sample contain appreciable amount and a higher proportion of oxygen, as identified by the 2080cm -1 shift of the Si-H stretching mode, while a strong Si-H 3 symmetric deformation mode is proposed to occur in the cathode sample

  12. Wall conditioning and plasma surface interactions in DIII-D

    International Nuclear Information System (INIS)

    Jackson, G.L.; Petersen, P.I.; Schaffer, M.S.; Taylor, P.L.; Taylor, T.S.; Doyle, B.L.; Walsh, D.S.; Hill, D.N.; Hsu, W.L.; Winter, J.

    1990-09-01

    Wall conditioning is used in DIII-D for both reduction of impurity influxes and particle control. The methods used include: baking, pulsed discharge cleaning, hydrogen glow cleaning, helium and neon glow conditioning, and carbonization. Helium glow wall conditioning applied before every tokamak discharge has been effective in impurity removal and particle control and has significantly expanded the parameter space in which DIII-D operates to include limiter and ohmic H-mode discharges and higher β T at low q. The highest values of divertor plasma current (3.0 MA) and stored energy (3.6 MJ) and peaked density profiles in H-mode discharges have been observed after carbonization. Divertor physics studies in DIII-D include sweeping the X-point to reduce peak heat loads, measurement of particle and heat fluxes in the divertor region, and erosion studies. The DIII-D Advanced Divertor has been installed and bias and baffle experiments will begin in the fall of 1991. 15 refs., 4 figs

  13. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  14. A simple theoretical approach to determine relative ion yield (RIY) in glow discharge mass spectrometry (GDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Born, Sabine [Degussa AG, Hanau (Germany); Matsunami, Noriaki [Nagoya Univ. (Japan). Faculty of Engineering; Tawara, Hiroyuki [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-01-01

    Direct current glow discharge mass spectrometry (dc-GDMS) has been applied to detect impurities in metals. The aim of this study is to understand quantitatively the processes taking place in GDMS and establish a model to calculate the relative ion yield (RIY), which is inversely proportional to the relative sensitivity factor (RSF), in order to achieve better agreement between the calculated and the experimental RIYs. A comparison is made between the calculated RIY of the present model and the experimental RIY, and also with other models. (author)

  15. Electrical Characterization of an RF Glow Discharge at Room Pressure

    International Nuclear Information System (INIS)

    Perez-Martinez, J. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.

    2006-01-01

    A non-thermal atmospheric-like plasma source able to operate at room temperature represents, by its physical nature, a considerable potential for biological applications, given its highly accurate action and extremely controllable penetration on the surface of biological tissue. As we start up a research line into this technology, we report the electrical characterization of a room pressure plasma discharge by means of a coupling network model. The discharge is produced by a 13.56MHz commercial generator. As it is impossible to measure directly its state variables (voltage and current intensity) due to the considerable perturbation created by introducing a low impedance at the system output, then an indirect estimation of such variables is achieved from experimental diagnostics at the input, so to validate the proposed electrical model

  16. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  17. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    Science.gov (United States)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  18. Dynamics of excited nitrogen molecular states in glow- and afterglow phases of discharge: experiment and modeling

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu.S.; Dyatko, N.A.; Grushin, M.E.; Filippov, A.V.; Trushkin, N.I.

    2001-01-01

    Population dynamics for a number of levels from N2 ( A 3 Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) manifolds was studied spectroscopically in a long pulse glow discharge in pure nitrogen and in afterglow at pressure 50 Torr. Overshot in time behaviour of N 2 (A 3Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) levels populations was revealed. A rather complete kinetic model is developed for conditions of the experiments. Results of comparison are analyzed

  19. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution

    International Nuclear Information System (INIS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-01-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1 . In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1 , and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained

  20. Development of the plasma operational regime in the large helical device by the various wall conditioning methods

    International Nuclear Information System (INIS)

    Nishimura, K.; Ashikawa, N.; Masuzaki, S.; Miyazawa, J.; Sagara, A.; Goto, M.; Peterson, B.J.; Komori, A.; Noda, N.; Ida, K.; Kaneko, O.; Kawahata, K.; Kobuchi, T.; Kubo, S.; Morita, S.; Osakabe, M.; Sakakibara, S.; Sakamoto, R.; Sato, K.; Shimozuma, T.; Takeiri, Y.; Tanaka, K.; Motojima, O.

    2005-01-01

    Experiments in the large helical device have been developing since the first discharge in 1998. Baking at 95 deg C, electron cyclotron resonance discharge cleaning, glow discharge cleaning, titanium gettering and boronization were attempted for wall conditioning. Using these conditioning techniques, the partial pressures of the oxidized gases, such as H 2 O, CO and CO 2 , were reduced gradually and the plasma operational regime enlarged. The glow discharge cleaning with the various working gases, such as hydrogen, helium, neon and argon, was effective in increasing the plasma purity. By this method, we obtained a central ion temperature of 10 keV. Boronization, which was started from FY2001, was also effective in reducing the radiation losses from impurities and in enlarging the density operational regime. We obtained a plasma stored energy of 1.31 MJ and an electron density of 2.4 x 10 20 m -3

  1. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  2. Synthesis of Biodiesel from Crude Palm Oil by Using Contact Glow Discharge Electrolysis

    Science.gov (United States)

    Saksono, Nelson; Aditya Siswosoebrotho, Danar; Pranata, Jeremia J. C.; Bismo, Setijo

    2018-03-01

    This research has evaluated the use of Contact Glow Discharge Electrolysis method in the synthesis of biodiesel. The purpose of this research is to get the synthesis process and biodiesel product. The solution used is the mix of Crude Palm Oil and methanol with molar ratio of 1:24, and catalyst of NaOH and KOH with variation of concentration 0.5% - 1.5%-wt. The result shows that the biodiesel can be made from transesterification reaction that may be initiated by radical methoxide. The use of electrolyte KOH is better than NaOH based on the yield of biodiesel and the energy consumption. The optimum yield reaches 97%, at the synthesis for 30 minutes with the use of KOH 1%-wt with the energy consumption of 1.32 kJ/mL.

  3. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].

    Science.gov (United States)

    Wen, Ke; Li, Fenglan

    2015-12-01

    To study the electrochemical corrosion performance of a type of biomedical materials near beta titanium alloy(Ti-3Zr-2Sn-3Mo-25Nb, TLM) in artificial saliva before and after nitride changing, and to provide clinical basis for clinical application of titanium alloy TLM. The double glow plasma alloying technology was used to nitride the surface of titanium alloy TLM. The surface properties of the modified layer were observed and tested by optical microscope, scanning electron microscope, glow discharge spectrum analyzer, X-ray diffraction and micro hardness tester. Then, electrochemical measurement system was used to test and compare titanium alloy TLM's electrochemical corrosion in artificial saliva before and after its surface change. Finally, the surface morphology of the original titanium alloy and the modified layer was compared by scanning electron microscope. By the technology of double glow plasma nitriding, the surface of the titanium alloy TLM had been successfully nitrided with a modified layer of 4-5 µm in thickness, uniform and compact. Its main compositions were Ti and Ti(2)N. The Microhardness of modified layer also had been improved from (236.8 ± 5.4) to (871.8 ± 5.2) HV. The self-corrosion potential in electrochemical corrosion tests had been increased from -0.559 V to -0.540 V, while the self- corrosion current density had been reduced from 2.091 × 10(-7) A/cm(2) to 7.188 × 10(-8) A/cm(2). Besides, alternating-current impedance(AC Impedance) had also been increased. With the scanning electron microscope, it's obvious that the diameter of corrosion holes on modified layer were approximately 10 µm. As to the diameter and number of corrosion holes on modified layer, they had been decreased comparing with the original titanium alloy. The type of near beta titanium alloy TLM can construct a nitriding modified layer on its surface. Meanwhile, the performance of its anti- corrosion in artificial saliva has been improved, comparing to the original

  4. Role of cathode identity in liquid chromatography particle beam glow discharge mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, M.V. Balarama [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States); Marcus, R.K. [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States)], E-mail: marcusr@clemson.edu

    2008-06-15

    A detailed evaluation of the role of cathode identity on the analytical and spectral characteristics of various organic, organometallic and metal analytes using liquid chromatography-particle beam/glow discharge mass spectrometry (LC-PB/GDMS) has been carried out. A d.c. discharge, operating with argon as the support gas, was used throughout this work. In this study, Cu which has a relatively high sputtering rate, Ni which has moderate sputtering rate and Ta which has very low sputtering rate, are taken as cathode materials to study the ionization, fragmentation, and analytical characteristics of organic (caffeine, epigallocatechin gallate, peptide as representative compounds), organometallic (selenomethionine, triethyl lead chloride as representative compounds) and metal (Fe, La, Cs and Pb) species. A range of discharge gas pressures (26.6-106.4 Pa) and currents (0.2-1.5 mA) were investigated with the test cathodes to determine their influence on the spectral composition and overall analytical response for the various test species. Calibration plots were obtained for all of the species for each of the three cathodes to determine the respective limits of detection. Relative detection limits in the range of 0.02 to 15 ng mL{sup -1} (0.002-1.5 ng, absolute) for the test species were found to be in the order of Cu > Ni > Ta; which follows the order of the sputtering characteristics of the respective cathodes. These studies rendered information about the respective discharge parameters' role in choosing the most appropriate cathode identity in PB-GDMS for application in the areas of organic, organometallic and inorganic species analysis.

  5. The discharge characteristics in nitrogen helicon plasma

    Science.gov (United States)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  6. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  7. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjørn; Theodosiou, E.

    2010-01-01

    In this study we show how low temperature glow discharge plasma can be used to prepare bi-layered chromatography adsorbents with non-adsorptive exteriors. The commercial strong anion exchange expanded bed chromatography matrix, Q HyperZ, was treated with plasmas in one of two general ways. Using ...

  8. The influence of impurity and particle control on TMX-U [Tandem Mirror Experiment Upgrade] plasma operation

    International Nuclear Information System (INIS)

    Allen, S.L.; Yu, T.L.; Foote, J.H.; Pickles, W.L.

    1985-11-01

    A variety of techniques are used in TMX-U to control impurities and reflux: repeated plasma pulses, glow discharge cleaning (GDC), and gettering. A series of experiments under three different plasma-wall conditions was performed: no wall conditioning after a machine maintenance cycle, a glow-discharge-cleaned wall, and a gettered wall. Several plasma diagnostics to determine the effect of these procedures on TMX-U plasma parameters were used. Spectroscopic measurements indicated that GDC reduced impurities and increased the electron temperature, enabling full-duration beam-sustained plasma operation without a large number of repeated plasma pulses. Gettering further reduced the impurities and the neutral pressure, and this improved condition persisted for several shots after gettering was stopped. Measurements from residual gas analyzers and an end-loss ion spectrometer indicated that hydrogen is present in the plasma during the initial deuterium operation after pumpdown; the hydrogen level decreased after plasma operation with gettering, indicating reduced wall recycling

  9. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  10. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    Science.gov (United States)

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  11. Emitter depletion studies on electrodes of 50 Hz mercury/noble gas discharge lamps during ignition

    International Nuclear Information System (INIS)

    Hoek, W.J. van den; Thijssen, T.L.G.; Heijden, A.J.H. van der; Buijsse, B.; Haverlag, M.

    2002-01-01

    The depletion of emitter from the oxide cathodes during the glow switch starting of the discharge in 50 Hz operated low-pressure mercury/noble gas discharge lamps (fluorescent lamps) has been studied. It follows from pulse ignition studies and computer-controlled ignition experiments that two plasma modes exist during ignition: a glow discharge and a vapour-arc discharge. The occurrence of these modes depends on the point of interruption with respect to the phase of the 50 Hz preheat current. The vapour arc appears to be the dominant mechanism of emitter depletion. The average emitter loss per vapour-arc pulse has been quantified by radioactive Ba tracer experiments. The nature of the vapour arc has been studied by fast photography and SEM. The vapour arc involves dielectric breakdown over the non-conducting oxide mass and gives rise to explosive emitter vapourization. (author)

  12. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration

    Directory of Open Access Journals (Sweden)

    Bogdan Butoi

    2017-12-01

    Full Text Available This work is focused on the structural and morphological investigations of polyaniline and poly(o-anisidine polymers generated in a direct current glow discharge plasma, in the vapors of the monomers, without a buffer gas, using an oblique angle-positioned substrate configuration. By atomic force microscopy and scanning electron microscopy we identified the formation of worm-like interlinked structures on the surface of the polyaniline layers, the layers being compact in the bulk. The poly(o-anisidine layers are flat with no kind of structures on their surfaces. By Fourier transform infrared spectroscopy we identified the main IR bands characteristic of polyaniline and poly(o-anisidine, confirming that the polyaniline chemical structure is in the emeraldine form. The IR band from 1070 cm−1 was attributed to the emeraldine salt form of polyaniline as an indication of its doping with H+. The appearance of the IR band at 1155 cm−1 also indicates the conducting protonated of polyaniline. The X-ray diffraction revealed the formation of crystalline domains embedded in an amorphous matrix within the polyaniline layers. The interchain separation length of 3.59 Å is also an indicator of the conductive character of the polymers. The X-ray diffraction pattern of poly(o-anisidine highlights the semi-crystalline nature of the layers. The electrical conductivities of polyaniline and poly(o-anisidine layers and their dependence with temperature are also investigated.

  13. Quantitative determination of major and minor elements in alloys by emission spectroscopy using Grimm glow discharge lamps

    International Nuclear Information System (INIS)

    Fonseca, T.C.O. da.

    1987-01-01

    A rapid and simple analytical method for the determination of major, minor and trace elements in alloys, using the Grimm glow discharge lamp as spectroscopic excitation source is studied. Alloys of copper, aluminium, stainless and carbon steel, including the determination of the elements: Cu, Fe, Al, Ni, Cr, Mn, Nb, Si, Mo, Ti, V, Zn, Mg and Co are analyzed. Some parameters as optimal entrance slit position, pre-burning time and integration time of the analytical signal, current, argon pressure, tension pulse and applied power are studied. (M.J.C.) [pt

  14. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  15. Calorimetry of energy-efficient glow discharge apparatus design and calibration

    International Nuclear Information System (INIS)

    Benson, Thomas B.; Passell, Thomas O.

    2006-01-01

    This work aims to develop a 'family' or low-powered calorimetrically accurate glow discharge units, similar to that reported by Dardik et al. at lCCF-10, and to use these to test a wide range or cathode materials, electrode coatings, gas types, gas pressures, and power input levels. We will describe the design and calibration of these units. The strategy is to use a large number of very similar units so that the calorimetric response does not vary significantly for a given power level. The design is metal or sealed glass cylindrical tubes, charged with 0.4 - 50 Torr mixtures of deuterium, hydrogen, argon, or helium gases. Units operate from 0.2 to >2 W power input. The units have low mass ( 1.2 with more than 95% certainty. It provides a valuable new platform for large-scale exploration of excess heat effects in the gas phase, using low-power inputs in the 0-3 W range, This method proves to be inexpensive, quick, accurate, and easy to perform once the basics are mastered. The authors are interested in testing electrode materials from other sources, especially those that have already been successful in a liquid (electrolytic) environment

  16. Debromination and decomposition of bromoform by contact glow discharge electrolysis in an aqueous solution

    International Nuclear Information System (INIS)

    Wang, Lei; Liu, Panliang; Zhang, Songlin

    2015-01-01

    Bromoform (BF) is a stable and carcinogenic contaminant in water. In this study, efficient debromination and decomposition of BF induced by contact glow discharge electrolysis (CGDE) in a sodium sulfate solution were investigated. Intermediate byproducts were determined by ionic chromatography and gas chromatography, respectively. Experimental results showed that alkaline conditions and additions of organic additives to the solution were favorable for both the removal and the debromination of BF. Oxalic acid, formic acid, dibromomethane and bromate ion were determined as the major intermediate byproducts. Final products were inorganic carbon and bromide ion. Hydrated electrons may be the most likely active species responsible for the initiation of the debromination, and hydroxyl radicals may be the ones for the oxidation of the intermediate byproducts

  17. Characterization of a Low Intensity Plasma Jet

    International Nuclear Information System (INIS)

    Urruchi, W. I.; Maciel, H.S.; Petraconi, G.; Otani, C.

    1999-01-01

    A source of streaming plasma having charged particles energies in the range of tens of electron volts has been built and characterized. The source is based on a dc glow discharge in a cylindrical tube which is connected to a vacuum chamber through a small orifice. A streaming plasma of conical shape emerging from the orifice is formed when the discharge is run between the cathode located inside the tube and the anode located in the vacuum chamber. The strong constriction of the discharge leads to the formation of a plasma sac, in the orifice region, between the positive column and the plasma beam. Properties of these plasmas were investigated using a movable Langmuir probe and an electrostatic energy analyzer. A mechanism based on the formation of double-layers (DL) between the ''plasma sac'' and the adjacent plasmas is proposed to explain the acceleration of the plasma jet charged particles. (author)

  18. Characteristics and applications of diffuse discharge of water electrode in air

    Science.gov (United States)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  19. Taming Instabilities in Plasma Discharges

    International Nuclear Information System (INIS)

    Klinger, T.; Krahnstover, N. O.; Mausbach, T.; Piel, A.

    2000-01-01

    Recent experimental work on taming instabilities in plasma discharges is discussed. Instead of suppressing instabilities, it is desired to achieve control over their dynamics, done by perturbing appropriately the current flow in the external circuit of the discharge. Different discrete and continuous feedback as well as open-loop control schemes are applied. Chaotic oscillations in plasma diodes are controlled using the OGY discrete feedback scheme. This is demonstrated both in experiment and computer simulation. Weakly developed ionization wave turbulence is tamed by continuous feedback control. Open-loop control of stochastic fluctuations - stochastic resonance - is demonstrated in a thermionic plasma diode. (author)

  20. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    Science.gov (United States)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  1. Redeposition of sputtered material in a glow-discharge lamp measured by means of an ion microprobe mass analyser

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Bueger, P.A.

    1978-01-01

    The redeposition of sputtered material on the target in a Grimm-type glow-discharge lamp was studied by means of an ion microprobe mass analyser (IMMA) using 16 O 2 + ions as bombarding species. The target was an aluminium disc with a cylindrical copper insertion, one mm in diameter. The lamp was operated at currents of 50 mA and 100 mA and a voltage of 1200 V. It is estimated that 17% of the copper atoms sputtered are redeposited and may be resputtered. (orig.) [de

  2. Divertor target profiles and recycling studies in TCV single null lower standard discharges

    International Nuclear Information System (INIS)

    Pitts, R.A.; Nieswand, C.; Weisen, H.

    1996-05-01

    A 'standard', single null lower diverted discharge has been developed to enable continuous monitoring of the first wall conditions and to characterise the effectiveness and influence of wall conditioning in the TCV tokamak. Measurements over a period encompassing nearly 2000 ohmic discharges of varying configuration and input power show the global confinement time and main plasma impurity concentrations to be good general indicators of the first wall condition, whilst divertor target profiles demonstrate strikingly the short term beneficial effects of He glow. Good agreement, consistent with a reduction in recycling at the plates is found between the predictions of the fluid code UEDGE and the observed outer divertor profiles of T e and n e before and after He glow. (author) 5 figs., 7 refs

  3. Basic principles and applications of atmospheric-pressure discharge plasmas

    International Nuclear Information System (INIS)

    Becker, K.H.

    2002-01-01

    The principles that govern the generation and maintenance of atmospheric - pressure discharge plasmas are summarized. The properties and operating parameters of various types such as dielectric barrier discharge plasmas (DBDs), corona discharge plasmas (CDs), microhollow cathode discharge plasmas (MHCDs) , and dielectric capillary electrode discharge plasmas (CDEDs) are introduced. All of them are self sustained, non equilibrium gas discharges that can be operated at atmospheric pressure. CDs and DBDDs represent very similar types of discharges, while DBDs are characterized by insulating layers on one or both electrodes, CDs depend on inhomogeneous electric fields at least in some parts of the electrode configuration to restrict the primary ionization processes to a small fraction of the inter - electrode region. Their application to novel light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral region is described. (nevyjel)

  4. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  5. Study on the onset of DC diaphragm glow discharge

    International Nuclear Information System (INIS)

    Jin, Xinglong; Wang, Xiaoyan; Zhang, Hongmei; Ren, Hongxia

    2013-01-01

    In this paper, the DC diaphragm glow discharge (DGD) occurred around the small hole on quartz tube between two submersed graphite electrodes and the onset of DGD was systematically investigated. It was found that critical voltage (V D ) decreased with the increasing conductivity, and then maintained at about 620 V. When the hole diameter increased from 1.0 mm to 2.5 mm, H 2 O 2 formation and AO discoloration in anolyte increased with the increase of the hole diameter. In addition, the effect of electrolyte constituents on H 2 O 2 formation and AO discoloration in anolyte induced by DGD was also studied. The concentration of H 2 O 2 and AO discoloration in anolyte was close in inert electrolyte such as Na 2 SO 4 and Na 2 HPO 4 solution. The concentration of H 2 O 2 and AO discoloration rate in Na 2 CO 3 and NaAc solution was lower than those in Na 2 SO 4 and Na 2 HPO 4 solution, due to their capture ability for ·OH. However, NaCl showed enhancing effect on AO discoloration, although it consumed a certain amount of H 2 O 2 . The energy efficiencies of AO discoloration and H 2 O 2 formation were also compared with those of other DGD reactor.

  6. Study of the excitation mechanisms of the second positive system in the negative glow of a N2-Ar discharge

    International Nuclear Information System (INIS)

    Isola, L; Lopez, M; Gomez, B J

    2011-01-01

    In an Ar-N 2 discharge, the high excitation transfer from Ar( 3 P 2,0 ) to N 2 produces an overpopulation of the high rotational levels of the bands of the second positive system (SPS), and so the spectra interpretation is not straightforward. This paper presents a fit function for the SPS bands measured in Ar-N 2 , which allows us to study the excitation process contributions to the N 2 (C) level. The procedure was tested in the negative glow of a pulsed Ar-N 2 discharge at a pressure of 2.5 Torr, for different mixture concentrations. In this discharge, through the fitting, it was possible to calculate the variation of the N 2 (C) densities produced by different excitation processes as well as the variation of Ar metastable density.

  7. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  8. A Study of Electron Decay in Nitrogen Time After-glow

    International Nuclear Information System (INIS)

    Veis, P.; Coitout, H.; Magne, L.; Cernogora, G.

    1999-01-01

    This paper deals with electron density measurements in nitrogen time after-glow using hyper frequency resonant cavity. The studied pressures are from the range 9-530 Pa and discharge currents from 20 mA up to 500 mA. Electrons decreases up to the time of 1,4 ms in after-glow depending on pressure, pulse current and pulse duration (Authors)

  9. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  10. Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study

    International Nuclear Information System (INIS)

    Quarles, C. Derrick; Gonzalez, Jhanis; Choi, Inhee; Ruiz, Javier; Mao, Xianglei; Marcus, R. Kenneth; Russo, Richard E.

    2012-01-01

    The use of a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma source as an alternative to conventional inductively coupled plasma (ICP) detection of laser ablation (LA) produced particles using a Nd:YAG laser at 1064 nm is demonstrated. This configuration utilizes a 180° geometry, which is different from the 40° geometry that was used to ionize ablated particles followed by mass spectrometric detection. The use of a hollow counter electrode (nickel, 0.3 cm o.d., 0.1 cm i.d.) was implemented to introduce ablated particles directly into the APGD plasma with helium as a carrier gas. The LS-APGD source was optimized using ablated copper as the test sample (helium carrier gas flow rate (0.30 L min −1 He), discharge current (60 mA), laser power (44 mJ), and solution electrode sheath gas (0.2 L min −1 He) and solution flow rates (10 μL min −1 5% HNO 3 )). Standard brass samples having known Zn/Cu percentages were ablated and analyzed using the LS-APGD source. As a comparison, the established technique of laser-induced breakdown spectroscopy (LIBS) was used to analyze the same set of brass standards under similar ablation conditions to the LS-AGPD measurements, yielding comparable results. The Zn/Cu ratio results for the LS-APGD and LIBS measurements showed good similarity to previous measurements using ICP-MS detection. The performance of the LS-APGD–OES microplasma, comparable to well established methods, with lower capital and operational overhead expenses, suggests a great deal of promise as an analytical excitation source. - Highlights: ► Particles formed by laser ablation are readily introduced to the LS-APGD microplasma. ► The low power microplasma has sufficient energy to vaporize laser produced particles. ► Qualitative analysis of brass alloys is performed using a simple OES ratio method. ► The qualitative performance of the LS-APGD microplasma is on-par with LIBS analysis.

  11. Plasma nanocoating of thiophene onto MoS{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Türkaslan, Banu Esencan [Suleyman Demirel University, Faculty of Engineering, Department of Chemical Engineering, 32260 Isparta (Turkey); Dikmen, Sibel [Suleyman Demirel University, Faculty of Arts and Science, Department of Chemistry, 32260 Isparta (Turkey); Öksüz, Lütfi [Suleyman Demirel University, Faculty of Arts and Science, Department of Physics, 32260 Isparta (Turkey); Öksüz, Aysegul Uygun, E-mail: ayseguluygun@sdu.edu.tr [Suleyman Demirel University, Faculty of Arts and Science, Department of Chemistry, 32260 Isparta (Turkey)

    2015-12-01

    Highlights: • MoS{sub 2} nanotubes were coated with thiophene by atmospheric pressure radio-frequency (RF) glow discharge. • Among nanohybrid preparation methods, the plasma methods appear as new technology. • The effect of plasma power on PTh/MoS{sub 2} nanocomposite properties has been investigated. • When the discharge power is increased between 117 and 360 W the chemical structure of PTh is not changed and the structure of nanocomposites become more uniformly. - Abstract: MoS{sub 2} nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS{sub 2} nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS{sub 2} precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS{sub 2} nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS{sub 2} nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS{sub 2} nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS{sub 2} nanotube nanocomposites are changed and the structure become more uniformly.

  12. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Starostin, S A; Premkumar, P Antony; Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M; De Vries, H; Paffen, R M J

    2009-01-01

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N 2 /O 2 /hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm -2 ) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  13. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    Energy Technology Data Exchange (ETDEWEB)

    Starostin, S A; Premkumar, P Antony [Materials Innovation Institute (M2i), Mekelweg 2, 2600 GA Delft, The Netherland (Netherlands); Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); De Vries, H; Paffen, R M J [FUJIFILM Manufacturing Europe B.V, PO Box 90156, Tilburg (Netherlands)

    2009-11-15

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N{sub 2}/O{sub 2}/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density ({approx}0.7 A cm{sup -2}) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  14. Development of a discharge-heated plasma tube

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G.

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  15. Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves

    Science.gov (United States)

    Corke, Thomas; Matlis, Eric

    2016-11-01

    The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.

  16. Effects of the ion-solid interaction in glow discharge vapour deposition polymerization of pyromellitic dianhydride

    International Nuclear Information System (INIS)

    Maggioni, G.; Carturan, S.; Rigato, V.; Pieri, U.

    2000-01-01

    Low energy He ion bombardment of pyromellitic dianhydride monomer used in glow discharge vapour deposition polymerization (GDVDP) of polyimide coatings and its effects on the film deposition process have been studied. The sublimation of the monomer molecules and the simultaneous formation of a damaged, carbon-rich surface layer on the target are discussed from a theoretical point of view based on simulations of the ion-solid interaction. Optical emission and mass spectrometry have been used to analyse the species emitted from the target. In order to study the time evolution of the PMDA target damage, the deposition rate of monomer molecules has been monitored. FT-IR spectroscopy has been used to determine the molecular damaging of the target monomer and deposited films

  17. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-10-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each the campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  18. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-01-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  19. Behavior of plasma facing surface in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Nobuta, Y. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo, Hokkaido (Japan); Sagara, A. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2002-11-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  20. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    International Nuclear Information System (INIS)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  1. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    Science.gov (United States)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  2. Secondary electron emission and glow discharge properties of 12CaOcenterdot7Al2O3 electride for fluorescent lamp applications

    Directory of Open Access Journals (Sweden)

    Satoru Watanabe, Toshinari Watanabe, Kazuhiro Ito, Naomichi Miyakawa, Setsuro Ito, Hideo Hosono and Shigeo Mikoshiba

    2011-01-01

    Full Text Available 12CaOcenterdot7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaOcenterdot7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaOcenterdot7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaOcenterdot7Al2O3 were constructed and exhibited reasonable durability.

  3. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  4. Organic chemistry of NH3 and HCN induced by an atmospheric abnormal glow discharge in N2-CH4 mixtures

    OpenAIRE

    2010-01-01

    Abstract The formation of the chemical products produced in an atmospheric glow discharge fed by a N2-CH4 gas mixture has been studied using Fourier Transform InfraRed (FTIR) and Optical Emission Spectrometry (OES). The measurements were carried out in a flowing regime at ambient temperature and pressure with CH4 concentrations ranging from 0.5% to 2%. In the recorded emission spectra the lines of the second positive system CN system and the first negative s...

  5. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  6. Method of controlling plasma discharge in a thermonuclear device

    International Nuclear Information System (INIS)

    Kawasaki, Kozo; Ishida, Takayuki; Takemaru, Koichi; Kawasaki, Takahide.

    1982-01-01

    Purpose: To prolong the plasma discharging period by previously increasing the temperature at the thick portion of a vacuum container prior to the plasma discharge to thereby decrease the temperature difference caused by the plasma discharge between the thick portion and the bellows. Method: Temperature values at the outer surface of the thick portion and the bellows of a vacuum container detected by temperature sensors are applied to the input processing section of a temperature control device, and baking control is carried out by way of the output processing section so that each of the portions of the vacuum container may be maintained at the temperature set by the temperature setting section based on the calculation performed in the control processing section. By previously increasing the temperature β at the thick portion higher by about 100 0 C than the temperature α for the bellows in the baking treatment prior to the plasma discharge, the plasma discharge period during which the temperature levels at both of the portions are reversed after the plasma discharge and the temperature difference arrives at a predetermined level i.g., of 100 0 C can significantly be prolonged as compared with the case where the plasma discharge is started at the same temperature for both of the portions. (Yoshino, Y.)

  7. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  8. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  9. Plasma-liquid system with rotational gliding discharge with liquid electrode

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Solomenko, O.V; Martysh, E.V.; Fedirchuk, I.I.

    2014-01-01

    Plasma-liquid system based on rotational gliding discharge with one liquid electrode was developed. Emission spectra of plasma of rotational gliding discharge with one liquid electrode were investigated. Discovered effective mechanism of controlling non-isothermal level of plasma in dynamic plasma-liquid systems. Major mechanism of expulsion of metal anode material from plasma-liquid systems with rotational discharges was shown.

  10. Doppler spectroscopy of hydrogen Balmer lines in a hollow cathode glow discharge in ammonia and argon-ammonia mixture

    International Nuclear Information System (INIS)

    Sisovic, N. M.; Konjevic, N.

    2008-01-01

    The results of Doppler spectroscopy of hydrogen Balmer lines from a stainless steel (SS) and copper (Cu) hollow cathode (HC) glow discharge in ammonia and argon-ammonia mixture are reported. The experimental profiles in ammonia discharge are fitted well by superposing three Gaussian profiles. The half widths, in energy units, of narrow and medium Gaussians are in the ranges 0.3-0.4 eV and 3-4 eV, respectively, for both hollow cathodes what is expected on the basis of earlier electron beam→NH 3 experiments. The half widths of the largest Gaussian in ammonia are 46 and 55 eV for SS and Cu HC, respectively. In argon-ammonia discharge, three Gaussians are also required to fit experimental profiles. While half widths of narrow and medium Gaussians are similar to those in ammonia, the half widths of the largest Gaussians are 35 and 42 eV for SS and Cu HC, respectively. The half widths of the largest Gaussians in ammonia and in argon-ammonia mixture indicate the presence of excessive Doppler broadening.

  11. TOPICAL REVIEW: Plasma assisted ignition and combustion

    Science.gov (United States)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  12. Plasma deposition by discharge in powder

    International Nuclear Information System (INIS)

    El-Gamal, H.A.; El-Tayeb, H.A.; Abd El-Moniem, M.; Masoud, M.M.

    2000-01-01

    Different types of material powders have been fed to the breach of a coaxial discharge. The coaxial discharge is powered from a 46.26 mu F, 24 KV capacitor bank. When the discharge takes place at the breach, the powder is heated and ionized to form a sheath of its material. The plasma sheath is ejected from the discharge zone with high velocity. The plasma sheath material is deposited on a glass substrate. It has been found from scanning electron microscope (SEM) analysis that the deposited material is almost homogenous for ceramic and graphite powders. The grain size is estimated to be the order of few microns. To measure the deposited material thickness the microdensitometer and a suitable arrangement of a laser interferometer and an optical microscope are used. It has also been found that deposited material thickness depends on the discharge number of shots and the capacitor bank energy

  13. Generation of uniform atmospheric pressure argon glow plasma by ...

    Indian Academy of Sciences (India)

    The electron temperature and electron density of the plasma are determined ... Dielectric barrier discharge (DBD) and APGD are the subjects of research for the last ... The gap between the electrodes can be varied from 0.5 mm to 2 mm and Ar ...

  14. Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning

    International Nuclear Information System (INIS)

    Wauters, T.; Douai, D.; Lyssoivan, A.; Philipps, V.; Bremond, S.; Freisinger, M.; Kreter, A.; Lombard, G.; Marchuk, O.; Mollard, P.; Paul, M.K.; Pegourie, B.; Reimer, H.; Sergienko, G.; Tsitrone, E.; Vervier, M.; Van Wassenhove, G.; Wuenderlich, D.; Van Schoor, M.; Van Oost, G.

    2011-01-01

    This contribution reports on isotope exchange studies with both Ion Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) in TEXTOR and TORE SUPRA. The discharges have been carried out in H 2 , D 2 (ICWC and GDC) and He/H 2 mixtures (ICWC). The higher reionization probability in ICWC compared to GDC, following from the 3 to 4 orders of magnitude higher electron density, leads to a lower pumping efficiency of wall desorbed species. GDC has in this analysis (5-10) times higher removal rates of wall desorbed species than ICWC, although the wall release rate is 10 times higher in ICWC. Also the measured high retention during ICWC can be understood as an effect of the high reionization probability. The use of short RF pulses (∼1 s) followed by a larger pumping time significantly improves the ratio of implanted over recovered particles, without severely lowering the total amount of removed particles.

  15. Pre-glow phenomenon origin and its scaling for ECRIS

    International Nuclear Information System (INIS)

    Izotov, I.; Sidorov, A.; Skalyga, V.; Zorin, V.

    2012-01-01

    Pre-glow is the multi-charged ion current burst that may occur at the beginning of the beam pulse. Pre-glow effect investigation is one of topical directions of ECR ion sources development at present. Pre-glow is of interest for efficient short-pulsed multicharged ion source creation. Particularly, such source of intense beams of short living radioactive isotopes multi-charged ions is one of key elements in 'Beta-Beam' European project. The use of Pre-glow-generating regime of an ECRIS operation is a promising way of pulsed high-intense multi-charged ion beams production with much shorter edges in comparison with usual operation regime. Numerical simulations made with the updated theoretical model allow authors to propose more physical and intuitive explanations of Pre-glow phenomenon origins. The obtained dependences of Pre-glow characteristics on experimental conditions offer a scaling for a wide range of ECRIS. The propose scaling demonstrates that an ECR source with plasma heating by radiation at frequency of 37 GHz and higher seems to be the most effective in terms of currents, pre-glow intensity and mean ion charge. The paper is followed by the slides of the presentation

  16. Study of the excitation mechanisms of the second positive system in the negative glow of a N{sub 2}-Ar discharge

    Energy Technology Data Exchange (ETDEWEB)

    Isola, L; Lopez, M; Gomez, B J, E-mail: isola@ifir-conicet.gov.ar [Instituto de Fisica Rosario (CONICET-UNR) 27 Febrero 210 Bis. (S2000EZP) Rosario (Argentina)

    2011-09-21

    In an Ar-N{sub 2} discharge, the high excitation transfer from Ar({sup 3}P{sub 2,0}) to N{sub 2} produces an overpopulation of the high rotational levels of the bands of the second positive system (SPS), and so the spectra interpretation is not straightforward. This paper presents a fit function for the SPS bands measured in Ar-N{sub 2}, which allows us to study the excitation process contributions to the N{sub 2}(C) level. The procedure was tested in the negative glow of a pulsed Ar-N{sub 2} discharge at a pressure of 2.5 Torr, for different mixture concentrations. In this discharge, through the fitting, it was possible to calculate the variation of the N{sub 2}(C) densities produced by different excitation processes as well as the variation of Ar metastable density.

  17. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    International Nuclear Information System (INIS)

    Usachev, A D; Zobnin, A V; Petrov, O F; Fortov, V E; Thoma, M H; Pustylnik, M Y; Fink, M A; Morfill, G E

    2016-01-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud. (paper)

  18. Nanofluids with plasma treated diamond nanoparticles

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma Hongbin

    2008-01-01

    In this study, diamond nanoparticles were plasma treated by glow discharges of methane and oxygen with an aim of improving their dispersion characteristics in a base fluid of water and enhancing the thermal conductivity of the resulting nanofluids. It was found that, after plasma treatment, stable nanofluids with improved thermal conductivity were obtained without using any stabilizing agents. With <0.15 vol % addition of plasma treated nanoparticles into water, a 20% increase in thermal conductivity was achieved and a 5%-10% increase in both fluid density and viscosity was observed

  19. Low-temperature plasma simulations with the LSP PIC code

    Science.gov (United States)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  20. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2004-01-01

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  1. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  2. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge; Diagnostico del equilibrio termico local por espectroscopia optica de emision en la evolucion de una descarga electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Velazquez P, S. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  3. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  4. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  5. A Study of a Striated Positive Column after Ethanol Impurity Injection in an Air DC Glow Discharge

    Science.gov (United States)

    Berzak, Laura; Post Zwicker, Andrew

    2003-04-01

    In a glow discharge when ethanol (CH3CH2OH) was injected, a series of atypical striations formed through the positive column. When the pressure decreased as the ethanol evaporated and was evacuated by the vacuum pump, this behavior decayed away until only an anode glow or normal discharge remained. Varying interelectrode spacings and quantities of ethanol yielded similar patterns. The typical evolution as the pressure decreased consisted of a visible traveling wave traveling from the anode to the cathode followed by numerous, thin ( 1.6 mm) striations evenly spaced down the entire length of the positive column. These, shifted back toward the anode and transformed into bent striations with the tip of the 'V' pointing toward the cathode, and finally, the 'V' striations grouped into fours and took on the appearance of beats. The unusual 'V' striations may be due in part to a contraction of the column, causing the equipotential surfaces to shift from smooth convex to the observed striation shape. The conditions for this contraction effect include a nonlinearly increasing dependence of electron production rate on electron density and a bulk recombination rate higher than that at the tube walls. Visible emission spectra indicated the presence of carbon monoxide (CO), signifying that the striations are due to not only vibrational excitation of the ethanol molecule but also to decomposition and subsequent excitation of the decomposition products as well. One possible mechanism of decomposition is the formation of a radical cation from the ethanol molecule and the ensuing loss of a proton to yield formaldehyde; this then would follow an analogous decomposition to produce carbon monoxide. Thus, there may exist additional charged species which can then contribute to the unique observations. Further analysis, if possible, will include higher temporal resolution spectroscopy and a detailed model of the positive column under these specific conditions.

  6. Behavior of plasma facing surfaces in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2003-01-01

    Material probes have been installed at the inner walls along the poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was thoroughly cleaned by helium glow discharge conditioning. For the 3rd and 4th campaigns, graphite tiles were installed over the entire divertor strike region, and then the wall condition was significantly changed compared to the case of a stainless steel wall. Graphite erosion took place during the main discharges and the eroded carbon was deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, the amount of retained discharge gases such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristic of the LHD wall is a large retention of helium gas since the wall temperature is limited to below 368 K. In order to reduce the recycling of discharge gas, wall heating before the experimental campaign and surface heating between the main discharge shots are planned. (author)

  7. Effect of explosion hardening on the properties of the near-surface layer of glow-discharged nitrided 33H3MF steel

    International Nuclear Information System (INIS)

    Rudnicki, J.; Fleszar, A.; Wierzchon, T.; Maranda, A.; Nowaczewski, J.

    1999-01-01

    The study was concerned with the effect of explosion hardening of 33H3MF steel, realized by the impact of the detonation products of a metallic plate driven by the detonation of an explosive plastic material, upon the microhardness and thickness of the nitrided layers forming during the glow discharge assisted nitridation process. Nitrided layers containing a compound zone, diffusion layers and layers with braunite content were formed on explosion-hardened steel surfaces. The corrosion resistance of the nitrided layers thus obtained was compared with that of the layers formed on non-hardened surfaces and on non-hardened and nitrided surfaces. The layers examined have a higher corrosion resistance than the starting material, but lower than the nitrided layers formed without the explosive load. The impact strength of the steel samples was examined before and after the explosion hardening and also after glow discharge assisted nitriding. It has been found that the explosion hardening followed by nitriding increases the impact strength, which is an advantageous effect. This also gives evidence that the changes in the hardness and structure of the samples examined, which are only observed in the layers whose thickness falls between 0.1 and 1.5 mm do not affect the notch present on the sample surface and thus have no influence upon the character of the sample fracture. (author)

  8. Computational study of plasma-solid interaction in DC glow discharge in argon plasma at medium pressures

    International Nuclear Information System (INIS)

    Havlickova, E; Bartos, P; Hrach, R

    2007-01-01

    In the presented contribution two groups of techniques of computational physics-fluid modelling and non self-consistent particle technique were used to study plasma-solid interaction in argon plasma. We focused both on the physical processes taking place in the sheath at various pressures and on the problems of computational physics. The attention was given to preparation of two-dimensional fluid models with realistic assumptions about physical processes taking place in plasma during the plasma-solid interaction, further to improvement of the non self-consistent technique of particle modelling, where the external electric field was obtained either from the fluid model or directly from the trajectories of charged particles and finally to efficiency of individual algorithms

  9. Electric discharges in air - Near infrared emission spectrum.

    Science.gov (United States)

    Benesch, W. M.; Saum, K. A.

    1972-01-01

    The emission from glow discharges in flowing air has been investigated in the 1- to 5-micron wavelength region with a vacuum spectrometer. Most of the spectral features observed in the pressure range of .5 to 10 torr are identified, including atomic lines of OI, NI, and HI and molecular bands of N2, NO, N2O, CO2, and CO. The spectra are presented as a function of pressure and a table compiled of the atomic lines. Of particular interest are the contrasts between the emission of the air discharge and that of the pure gases, nitrogen and oxygen. In addition, the results of studies of several discharge modes, employing steady voltages and pulsed, provide data on details of the energy flow within the plasma.

  10. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Run; Wu, Jie; Xue, Wenbin; Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying

    2014-01-01

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10 −5 –7.2 × 10 −3 , which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10 21  m −3 –2.6 × 10 22  m −3 . - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured

  11. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  12. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  13. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  14. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis.

    Science.gov (United States)

    Yang, Haiming; An, Baigang; Wang, Shaoyan; Li, Lixiang; Jin, Wenjie; Li, Lihua

    2013-06-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH.

  15. Beam--plasma instabilities and the beam--plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Boswell, R.W.

    1986-01-01

    Using a new electron gun, a number of measurements bearing on the generation of beam--plasma discharge (BPD) in WOMBAT (waves on magnetized beams and turbulence) [R. W. Boswell and P. J. Kellogg, Geophys. Res. Lett. 10, 565 (1983)] have been made. A beam--plasma discharge is an rf discharge in which the rf fields are provided by instabilities [W. D. Getty and L. D. Smullin, J. Appl. Phys. 34, 3421 (1963)]. The new gun has a narrower divergence angle than the old, and comparison of the BPD thresholds for the two guns verifies that the BPD ignition current is proportional to the cross-sectional area of the plasma. The high-frequency instabilities, precursors to the BPD, are identified with the two Trivelpiece--Gould modes [A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)]. Which frequency appears depends on the neutral pressure. The measured frequencies are not consistent with the simple interpretation of the lower frequency as a Cerenkov resonance with the low-Trivelpiece--Gould mode; it must be a cyclotron resonance. As is generally true in such beam--plasma interaction experiments, strong low-frequency waves appear at currents far below those necessary for BPD ignition. These low-frequency waves are shown to control the onset of the high-frequency precursors to the BPD. A mechanism for this control is suggested, which involves the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves. This process greatly reduces the current necessary for BPD ignition

  16. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...

  17. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  18. Laser-fusion target fabrication: application of organic coatings to metallic and nonmetallic micropellets by the glow-discharge polymerization of p-xylene

    International Nuclear Information System (INIS)

    Simonsic, G.A.

    1976-01-01

    Laser-fusion targets require thin, uniform organic-film coatings. A coating technique involving glow-discharge polymerization is described for applying highly adherent, extremely uniform, thin films of a high-temperature polymer to a variety of microsubstrates. Polymeric coatings as thick as 10 μm have been successfully deposited on hollow, spherical, 40- to 250-μm-diam micropellets of glass, metal-coated glass, and nickel/manganese alloy. Experimental yields of coatings of a quality acceptable for laser-fusion targets are typically greater than 90 percent

  19. In-situ characterisation of the dynamics of a growing dust particle cloud in a direct-current argon glow discharge

    International Nuclear Information System (INIS)

    Barbosa, S; Onofri, F R A; Couëdel, L; Arnas, C; Kumar, K Kishor; Pardanaud, C

    2016-01-01

    The growth and the dynamics of a tungsten nanoparticle cloud were investigated in a direct-current low pressure argon glow discharge. Real-time analyses of the dust particle size and number concentration were performed in-situ by light extinction spectrometry, while spatial dynamics of the cloud was investigated with the laser light-sheet scattering method. Additional off-line electron microscopy and Raman spectroscopy measurements were also performed for comparison purpose. This experimental work reveals the existence of an agglomeration phase followed by the appearance of a new dust particle generation. While growing, the dust cloud is pushed towards the anode and the discharge edge. Afterwards, a new dust particle generation can grow in the space freed by the first generation of nanoparticles. The continuous growth, below the light extinction spectrometry scanning positions, explains the apparent dissimilarities observed between the in-line optical and the off-line electron microscopy analyses. (paper)

  20. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    International Nuclear Information System (INIS)

    Aleksandrov, A. F.; Petrov, A. K.; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B.; Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya.

    2016-01-01

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  1. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B. [Moscow State University, Faculty of Physics (Russian Federation); Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya. [Research Institute of Precision Engineering (Russian Federation)

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  2. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  3. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  4. The impact of boundary plasma conditions on the plasma performance of the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Grigull, P; Behrisch, R; Brakel, R; Burhenn, R; Elsner, A; Hacker, H; Hartfuss, H J; Herre, G; Hildebrandt, D; Jaenicke, R; Kisslinger, J; Maassberg, H; Mahn, C; Niedermeyer, H; Pech, P; Renner, H; Ringler, H; Rau, F; Roth, J; Sardei, F; Schneider, U; Wagner, F; Weller, A; Wobig, H; Wolff, H [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); W7-AS Team; NBI Team; ECRH Group

    1992-12-01

    In the modular advanced stellarator W7-AS, the plasma performance and the main characteristics of the plasma-wall interaction are strongly affected by the three-dimensional edge topology. Both limiter- and separatrix-dominated configurations are possible. TiC and bulk-boronized limiter materials have been used. The impurity behaviour and the accessible plasma parameter ranges are compared for different limiter and wall conditions. With limiters, optimum plasma performance in currentless ECRF- or NBI-heated discharges was achieved with bulk-boronized graphite limiter material and boronized walls. Solid target sputter boronization, however, was found to be ineffective in comparison with boronization by He/B[sub 2]H[sub 6] glow discharge. For separatrix-dominated discharges, conditioning by wall coating has short-term effects only. Enhanced, localized plasma outflow to the wall due to islands at the boundary quickly erodes the layers. The possibility to develop a divertor concept is discussed. Basic properties of the plasma edge as derived from Langmuir probes and limiter calorimetry are described. Modeling is complicated by three-dimensionality. In a first approach, a 1D edge transport model on the basis of distinct flux bundles is applied. (orig.).

  5. Plasma kinetics of Ar/O2 magnetron discharge by two-dimensional multifluid modeling

    International Nuclear Information System (INIS)

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G.

    2010-01-01

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O 2 magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar + , O 2 + , and O + - and two negative species - e - and O - - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O 2 , O, O 3 , and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O 2 in Ar/O 2 mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O 2 ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  6. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  7. Study of the striated nature of a glow discharge.; Estudio de la naturaleza estratificada de una descarga de resplandor.

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, M

    1995-10-01

    In an investigation in progress here, plasma diagnostics and detection of standing and moving striations is being made in a discharge in Argon at pressures of 2 x 10{sup -1} to 9 x 10{sup -1} mb and currents of 2 to 9 m-amp inside an discharge tube. Measurement of the temperature of the electrons, the concentration of electrons and the plasma potential are obtained in different places of the discharge by the double probe method, together with the computation system reported in [1]. In similar way an experimental work of the striated column in a discharge plasma to find the regimen of appearance of the standing and moving striations show some properties of moving striations (frequency and velocity) and standing striations. Two different oscilations are observed in motion in contrary directions along the discharge tube with a photomultiplier. (Author).

  8. First results on plasma-surface interactions in the Tokamak de Varennes

    Energy Technology Data Exchange (ETDEWEB)

    Terreault, B; Boucher, C; Paynter, R W; Ross, G G; Theriault, D; Abel, G; Boivin, R; Chevalier, G; Dimoff, K; Gregory, B C

    1989-04-01

    Results of plasma-surface interaction studies made during the early phases of operation of the Tokamak de Varennes are summarized. It was found that the desorption of molecules from the internal walls by UV radiation can be used to reduce the base pressure. Auger depth profiling of stainless steel (SS) samples exposed to hydrogen discharge cleaning has been performed. Glow discharges at about 0.1 mbar etch the surface carbon and oxide at a rate of 0.5 nm/h. RF-glow discharges at 10/sup -3/ mbar result in a rapid reduction of the oxide and its replacement by a carbide layer (the graphite limiters being the source of the carbon). Long-term wall samples of SS and Si have been profiled by Auger and nuclear analysis. The SS sample has a similar composition to that exposed to the RF-glow conditioning. The Si sample is covered by a 3 nm deposit of metals, C and O, and contains 10/sup 16/ H/cm/sup 2/ within 30 nm of the surface; this dose and width are consistent with the history of the sample. (orig.).

  9. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  10. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  11. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  12. On copper diffusion in silicon measured by glow discharge mass spectrometry.

    Science.gov (United States)

    Modanese, Chiara; Gaspar, Guilherme; Arnberg, Lars; Di Sabatino, Marisa

    2014-11-01

    Copper contamination occurs frequently in silicon for photovoltaic applications due to its very fast diffusion coupled with a low solid solubility, especially at room temperature. The combination of these properties exerts a challenge on the direct analysis of Cu bulk concentration in Si by sputtering techniques like glow discharge mass spectrometry (GDMS). This work aims at addressing the challenges in quantitative analysis of fast diffusing elements in Si matrix by GDMS. N-type, monocrystalline (Czochralski) silicon samples were intentionally contaminated with Cu after solidification and consequently annealed at 900 °C to ensure a homogeneous distribution of Cu in the bulk. The samples were quenched after annealing to control the extent of the diffusion to the surface prior to the GDMS analyses, which were carried out at different time intervals from within few minutes after cooling onward. The Cu profiles were measured by high-resolution GDMS operating in a continuous direct current mode, where the integration step length was set to ∼0.5 μm over a total sputtered depth of 8-30 μm. The temperature of the samples during the GDMS analyses was also measured in order to evaluate the diffusion. The Cu contamination of n-type Si samples was observed to be highly material dependent. The practical impact of Cu out-diffusion on the calculation of the relative sensitivity factor (RSF) of Cu in Si is discussed.

  13. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  14. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    International Nuclear Information System (INIS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-01-01

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  15. Propagation characteristics of dust–acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mukherjee, S.; Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2016-08-15

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  16. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  17. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  18. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Moon, S. Y.; Choe, W.

    2006-01-01

    Controllability of small size atmospheric pressure plasma generated at low frequency in a pin to dielectric plane electrode configuration was studied. It was shown that the plasma characteristics could be controlled by geometrical and operational parameters of the experiment. Under most circumstances, continuous glow discharges were observed, but both the corona and/or the dielectric barrier discharge characteristics were observed depending on the position of the pin electrode. The plasma size and the rotational temperature were also varied by the parameters. The rotational temperature was between 300 and 490 K, being low enough to treat thermally sensitive materials

  19. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki [Tokyo Institute of Technology, Dept. of Energy Sciences, Yokohama, Kanagawa (Japan); Okino, Akitoshi [Tokyo Institute of Technology, Dept. of Electrical and Electronic Engineering, Tokyo (Japan)

    2001-09-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  20. Spectrum analysis of hydrogen plasma in spherically convergent beam fusion

    International Nuclear Information System (INIS)

    Ogasawara, Kazuki; Yamauchi, Kunihito; Watanabe, Masato; Sunaga, Yoshitaka; Hotta, Eiki; Okino, Akitoshi

    2001-01-01

    Spectroscopic analysis of spherical glow discharge fusion device was carried out using hydrogen gas. Effects of the discharge current and cathode voltage on spectrum profiles of hydrogen Balmar lines were measured. The profiles of all hydrogen lines were broadened with the cathode voltage. From the relationship between the maximum broadening width and the cathode voltage, it was indicated that the broadening was caused by the Doppler effect. From the spatial distribution of emission intensity, it was found that plasma core size became larger with discharge current and smaller with cathode voltage. (author)

  1. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  2. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  3. Diagnostic study of multiple double layer formation in expanding RF plasma

    Science.gov (United States)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  4. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  5. Ohmic discharges in Tore Supra - Marfes and detached plasmas

    International Nuclear Information System (INIS)

    Vallet, J.C.

    1990-01-01

    The Tore Supra plasma characteristics are given. The observed discharges are either leaning on the graphite inner first wall or limited by movable pump limiters located outboard and at the bottom of the vacuum chamber. The particular plasma conditions which lead to marfes and detached plasmas in ohmically heated He and D2 discharges limited by the inner wall are investigated. The results show that the ratio of radiated power to ohmic power increase linearly with M.g. As M.g rises, attached plasma, marfe and detached plasma are sequentially observed. Detached plasma with an effective radius as small as. 7 times the limiter radius was observed on Tore Supra

  6. Faraday space in a high-frequency γ discharge and the influence of pressure on the normal current density effect of an α discharge and the nature of the α-γ transition

    International Nuclear Information System (INIS)

    Raizer, Yu.P.; Shneider, M.N.

    1992-01-01

    The essential differences between high-frequency capacative discharges at intermediate and low pressures are considered. A theory is developed for the negative emission region and the Faraday dark space in a γ discharge. It is based on the kinetic equation for electrons in the highly nonuniform field of an electrode sheath, which is solved in the forward-backward approximation. If a uniform positive column is formed in the middle of the gap of a γ discharge of average pressure which is not too short, then at low pressures the hf plasma acts as the equivalent of the negative emission or Faraday space of a glow discharge with a typical weak field and low electron temperature. A region of reversed average field also appears, which is characteristic of a glow discharge. The question of the normal current density effect in an α discharge is discussed. This effect is observed at average pressures. At low pressures the effect disappears, and even weak current covers the entire electrode; the pressures at which this occurs and the reasons for it are demonstrated. The nature of the α-γ transition, which takes place discontinuously at average pressures but continuously at lower pressures, is discussed. The reason for this behavior is discussed and the pressure at which the discontinuous mechanism changes into continuous is estimated

  7. Analysis of radiofrequency discharges in plasma

    Science.gov (United States)

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  8. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  9. Electric field measurements in a hollow cathode discharge by two-photon polarization spectroscopy of atomic deuterium

    International Nuclear Information System (INIS)

    Rosa, M I de la; Perez, C; Gruetzmacher, K; Gonzalo, A B; Steiger, A

    2006-01-01

    The local electric field strength (E-field) is an important parameter to be known in low pressure plasmas such as glow discharges, RF and microwave discharges, plasma boundaries in tokamaks etc. In this paper, we demonstrate, for the first time, the potential of two-photon polarization spectroscopy measuring the E-field in the cathode fall region of a hollow cathode discharge, via Doppler-free spectra of the Stark splitting of the 2S level of atomic deuterium. Electric field strength is determined in the range from 2 to 5 kV cm -1 . Compared with LIF, this method has several advantages: it is not affected by background radiation, it can be applied without limitation at elevated pressure and it allows simultaneous measurement of absolute local atomic ground state densities of hydrogen isotopes

  10. Nonlocal electron kinetics and spectral line emission in the positive column of an argon glow discharge

    International Nuclear Information System (INIS)

    Golubovskii, Yu; Kalanov, D; Gorchakov, S; Uhrlandt, D

    2015-01-01

    Modern non-local electron kinetics theory predicts several interesting effects connected with spectral line emission from the positive column in the range of low and medium pressures and currents. Some theoretical works describe non-monotonic behavior of the radial profiles of line emission at intermediate pressures and currents between the validity ranges of the non-local and local approximation of the electron kinetics. Despite a great number of publications, there have been no systematic measurements attempting to confirm these theoretical predictions through experiments. In this work the radial profiles of the line emission from the positive column of an argon glow discharge have been measured with high spatial resolution and new effects caused by the narrowing and broadening of the spatial emission profiles with dependence on discharge conditions have been discovered. The effect of intensity maximum shift predicted by theory using a self-consistent model was not found in the experiment. The properties of the spectral line radiation are influenced by the peculiarities of the formation of the high-energy tail of the electron energy distribution function. An interpretation of the observed effects based on the non-local character of the electron kinetics in radially inhomogeneous fields is given. The obtained experimental data are compared with the results of calculations. (paper)

  11. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  12. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  13. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  14. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  15. Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2014-01-15

    Using a fast-gated intensified charge-coupled device, end- and side-view photographs were taken of columnar discharge between parallel dielectric barrier electrodes in atmospheric pressure helium. Based on three-dimensional images generated from end-view photographs, the number of discharge columns increased, whereas the diameter of each column decreased as the applied voltage was increased. Side-view photographs indicate that columnar discharges exhibited a mode transition ranging from Townsend to glow discharges generated by the same discharge physics as atmospheric pressure glow discharge.

  16. Self-organization in cathode boundary layer discharges in xenon

    International Nuclear Information System (INIS)

    Takano, Nobuhiko; Schoenbach, Karl H

    2006-01-01

    Self-organization of direct current xenon microdischarges in cathode boundary layer configuration has been studied for pressures in the range 30-140 Torr and for currents in the range 50 μA-1 mA. Side-on and end-on observations of the discharge have provided information on the structure and spatial arrangement of the plasma filaments. The regularly spaced filaments, which appear in the normal glow mode when the current is lowered, have a length which is determined by the cathode fall. It varies, dependent on pressure and current, between 50 and 70 μm. The minimum diameter is approximately 80 μm, as determined from the radiative emission in the visible. The filaments are sources of extensive excimer emission. Measurements of the cathode fall length have allowed us to determine the secondary emission coefficient for the discharge in the normal glow mode and to estimate the cathode fall voltage at the transition from normal glow mode to filamentary mode. It was found that the cathode fall voltage at this transition decreases, indicating the onset of additional electron gain processes at the cathode. The regular arrangement of the filaments, self-organization, is assumed to be due to Coulomb interactions between the positively charged cathode fall channels and positive space charges on the surface of the surrounding dielectric spacer. Calculations based on these assumptions showed good agreement with experimentally observed filament patterns

  17. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge; Enriquecimento superficial com cromo e nitretacao do aco IF em descarga eletrica em regime anormal

    Energy Technology Data Exchange (ETDEWEB)

    Meira, S.R.; Borges, P.C., E-mail: sabrina.r.meira@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Grupo de Materiais; Bernardelli, E.A. [Instituto Federal do Parana (IFPR), Paranagua, PR (Brazil). Laboratorio de Materiais

    2014-07-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  18. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  19. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  20. A small sized time-of-flight mass spectrometer for simultaneous measurement of neutral and ionic species effusing from plasma, 1

    International Nuclear Information System (INIS)

    Horiuchi, Yukihiko

    1986-01-01

    A principle for simultaneous and real time measurement of neutral and ionic species effusing from plasma by using a time-of-flight mass spectrometer is proposed. A simple, small sized time-of-flight mass spectrometer combined with a dc glow discharge tube and an ion sampling electrode system for the simultaneous measurement on the basis of the proposed plinciple, has been constructed and tested. Details of the experimental setup including the geometry and the electronic hardware are described. It is shown that mass spectra of neutrals and ions from the positive column of the argon dc glow discharge are successfully observed on a single oscilloscope display. (author)