WorldWideScience

Sample records for gloveboxes

  1. Glovebox decontamination technology comparison

    International Nuclear Information System (INIS)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-01-01

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented

  2. Glovebox and Experiment Safety

    Science.gov (United States)

    Maas, Gerard

    2005-12-01

    Human spaceflight hardware and operations must comply with NSTS 1700.7. This paper discusses how a glovebox can help.A short layout is given on the process according NSTS/ISS 13830, explaining the responsibility of the payload organization, the approval authority of the PSRP and the defined review phases (0 till III).Amongst others, the following requirement has to be met:"200.1 Design to Tolerate Failures. Failure tolerance is the basic safety requirement that shall be used to control most payload hazards. The payload must tolerate a minimum number of credible failures and/or operator errors determined by the hazard level. This criterion applies when the loss of a function or the inadvertent occurrence of a function results in a hazardous event.200.1a Critical Hazards. Critical hazards shall be controlled such that no single failure or operator error can result in damage to STS/ISS equipment, a nondisabling personnel injury, or the use of unscheduled safing procedures that affect operations of the Orbiter/ISS or another payload.200.1b Catastrophic Hazards. Catastrophic hazards shall be controlled such that no combination of two failures or operator errors can result in the potential for a disabling or fatal personnel injury or loss of the Orbiter/ISS, ground facilities or STS/ISS equipment."For experiments in material science, biological science and life science that require real time operator manipulation, the above requirement may be hard or impossible to meet. Especially if the experiment contains substances that are considered hazardous when released into the habitable environment. In this case operation of the experiment in a glovebox can help to comply.A glovebox provides containment of the experiment and at the same time allows manipulation and visibility to the experiment.The containment inside the glovebox provides failure tolerance because the glovebox uses a negative pressure inside the working volume (WV). The level of failure tolerance is dependent of

  3. TRU waste characterization chamber gloveboxes

    International Nuclear Information System (INIS)

    Duncan, D. S.

    1998-01-01

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes

  4. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  5. Redefining design criteria for Pu-238 gloveboxes

    International Nuclear Information System (INIS)

    Acosta, S.V.

    1998-01-01

    Enclosures for confinement of special nuclear materials (SNM) have evolved into the design of gloveboxes. During the early stages of glovebox technology, established practices and process operation requirements defined design criteria. Proven boxes that performed and met or exceeded process requirements in one group or area, often could not be duplicated in other areas or processes, and till achieve the same success. Changes in materials, fabrication and installation methods often only met immediate design criteria. Standardization of design criteria took a big step during creation of ''Special-Nuclear Materials R and D Laboratory Project, Glovebox standards''. The standards defined design criteria for every type of process equipment in its most general form. Los Alamos National Laboratory (LANL) then and now has had great success with Pu-238 processing. However with ever changing Environment Safety and Health (ES and H) requirements and Ta-55 Facility Configuration Management, current design criteria are forced to explore alternative methods of glovebox design fabrication and installation. Pu-238 fuel processing operations in the Power Source Technologies Group have pushed the limitations of current design criteria. More than half of Pu-238 gloveboxes are being retrofitted or replaced to perform the specific fuel process operations. Pu-238 glovebox design criteria are headed toward process designed single use glovebox and supporting line gloveboxes. Gloveboxes that will house equipment and processes will support TA-55 Pu-238 fuel processing needs into the next century and extend glovebox expected design life

  6. Design criteria for plutonium gloveboxes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The standard defines criteria for the design of glovebox systems to be used for the handling of plutonium in any form or isotopic composition or when mixed with other elements or compounds. The glovebox system is a series of physical barriers provided with glove ports and gloves, through which process and maintenance operations may be performed, together with an operating ventilation system. The system minimizes the potential for release of radioactive material to the environment, protects operators from contamination, and mitigates the consequences of abnormal condiations. The standard covers confinement, construction, materials, windows, glove ports, gloves, equipment insertion and removal, lighting, ventilation, fire protection, criticality prevention, services and utilities, radiation shielding, waste systems, monitoring and alarm systems, safeguards, quality assurance, and decommissioning

  7. Hands-on glovebox decommissioning

    International Nuclear Information System (INIS)

    Smith, D.

    1997-01-01

    Over recent years, the United Kingdom Atomic Energy Authority (UKAEA) has undertaken the decommissioning of a large number of Plutonium glove boxes at Winfrith Technology Centre. UKAEA has managed this work on behalf of the DTI, who funded most of the work. Most of the planning and practical work was contracted to AEA Technology (AEAT), which, until 1996, was the commercial arm of UKAEA, but is now a private company. More than 70 gloveboxes, together with internal plant and equipment such as ball mills, presses and furnaces, have been successfully size reduced into drums for storage, leaving the area, in which they were situated, in a clean condition. (UK)

  8. Electrochemical decontamination system for actinide processing gloveboxes

    International Nuclear Information System (INIS)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL's Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused

  9. Glovebox

    International Nuclear Information System (INIS)

    Herrmann, F.

    1980-01-01

    On handling nitric solutions in the glove box nitrous gases are formed that are sucked off via a heated activated charcoal filter and a catalyst cartridge containing e.g. the FG 590 H catalist (Degussa). By the activated charcoal the nitrous gases are reduced to N 2 and CO gas; the catalyst will oxidize CO to CO 2 . The CO 2 obtained is discharged through an exhaust air filter in the glove box. (DG) [de

  10. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  11. 2014 AFCI Glovebox Event Executive Summary

    International Nuclear Information System (INIS)

    Campbell, Joseph Lenard

    2016-01-01

    One of the primary INL missions is to support development of advanced fuels with the goal of creating reactor fuels that produce less waste and are easier to store. The Advanced Fuel Cycle Initiative (AFCI) Glovebox in the Fuel Manufacturing Facility (FMF) is used for several fuel fabrication steps that involve transuranic elements, including americium. The AFCI glove box contains equipment used for fuel fabrication, including an arc melter - a small, laboratory-scale version of an electric arc furnace used to make new metal alloys for research - and an americium distillation apparatus. This overview summarizes key findings related to the investigation into the releases of airborne radioactivity that occurred in the AFCI glovebox room in late August and early September 2014. The full report (AFCI Glovebox Radiological Release - Evaluation, Corrective Actions and Testing, INL/INL-15-36996) provides details of the identified issues, corrective actions taken as well as lessons learned

  12. Scrap of gloveboxes No. 801-W and No. 802-W

    CERN Document Server

    Ohuchi, S; Kurosawa, M; Okane, S; Usui, T

    2002-01-01

    Both gloveboxes No. 801-W for measuring samples of uranium or plutonium and No. 802-W for analyzing the quantity of uranium or plutonium are established at twenty five years ago in the analyzing room No. 108 of Plutonium Fuel Research Facility. It was planned to scrap the gloveboxes and to establish new gloveboxes. This report describes the technical view of the scrapping works.

  13. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  14. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  15. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  16. Design considerations for heated wells in gloveboxes

    International Nuclear Information System (INIS)

    Frigo, A. A.; Preuss, D. E.

    1999-01-01

    Heated wells in gloveboxes have been used for many years by the Argonne National Laboratory Chemical Technology Division for nuclear-technology, waste-management, chemical-technology, and analytical-chemistry research. These wells allow experiments to be isolated from the main working volume of the glovebox. In addition, wells, when sealed, allow experiments to be conducted under pressurized or vacuum conditions. Until recently, typical maximum operational temperatures were about 500 C. However, more recent research is requiring operational temperatures approaching 900 C. These new requirements pose interesting design challenges that must be resolved. Some problem areas include temperature effects on material properties, maintaining a seal, cooling selected areas, and minimizing stresses. This paper discusses issues related to these design challenges and the ways in which these issues have been resolved

  17. Institutional glovebox safety committee (IGSC) annual report FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Roybal, Richard F [Los Alamos National Laboratory; Lee, Roy J [Los Alamos National Laboratory

    2011-01-04

    The Institutional Glovebox Safety Committee (IGSC) was chartered to minimize and/or prevent glovebox operational events. Highlights of the IGSC's third year are discussed. The focus of this working committee is to address glovebox operational and safety issues and to share Lessons Learned, best practices, training improvements, and glovebox glove breach and failure data. Highlights of the IGSC's third year are discussed. The results presented in this annual report are pivotal to the ultimate focus of the glovebox safety program, which is to minimize work-related injuries and illnesses. This effort contributes to the LANL Continuous Improvement Program by providing information that can be used to improve glovebox operational safety.

  18. Unique features in the ARIES glovebox line

    International Nuclear Information System (INIS)

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-01-01

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module's different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line

  19. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  20. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  1. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  2. Guidelines for gloveboxes. Section 5.14: Electrical

    International Nuclear Information System (INIS)

    Tollner, R.L.

    1995-07-01

    This is the electric portion of the design guidelines for gloveboxes developed by the American Glovebox Society. The topics include applicable codes/industry standards, penetrations/feedthroughs, wireways, junction boxes, receptacles, derating factors, conductors, conductor insulation and grounding. References for the guidelines are provided

  3. Compatibility of selected elastomers with plutonium glovebox environment

    International Nuclear Information System (INIS)

    Burns, R.

    1994-06-01

    This illustrative test was undertaken as a result of on-going failure of elastomer components in plutonium gloveboxes. These failures represent one of the major sources of required maintenance to keep gloveboxes operational. In particular, it was observed that the introduction of high specific activity Pu-238 into a glovebox, otherwise contaminated with Pu-239, resulted in an inordinate failure of elastomer components. Desiring to keep replacement of elastomer components to a minimum, a decision to explore a few possible alternative elastomer candidates was undertaken and reported upon herewith. Sample specimens of Neoprene, Urethane, Viton, and Hypalon elastomeric formulations were obtained from the Bacter Rubber Company. Strips of the elastomer specimens were placed in a plutonium glovebox and outside of a glovebox, and were observed for a period of three years. Of the four types of elastomers, only Hypalon remained completely viable

  4. Inert atmosphere system for plutonium processing gloveboxes

    International Nuclear Information System (INIS)

    Bogard, C.F.; Calkins, K.W.; Rogers, R.F.

    1975-01-01

    Recent efforts to reduce fire hazards in plutonium processing operations are described. In such operations, the major environmental controls are developed through various kinds of glovebox systems. In evaluating the air-atmosphere glovebox systems, formerly in use at Rocky Flats and many other plants, a decision was made to convert to a recirculating ''inert'' atmosphere. The inert atmosphere consists of nitrogen, supplied from an on-site generating plant, diluting oxygen content to one to 5 percent by volume. Problems encountered during the change over included: determination of all factors influencing air leakage into the system, and reducing leakage to the practical minimum; meeting all fire and safety standards on the filter plenum and exhaust systems; provision for converting portions of the system to an air atmosphere to conduct maintenance work; inclusion of oxygen analyzers throughout the system to check gas quality and monitor for leaks; and the use of automatic controls to protect against a variety of potential malfunctions. The current objectives to reduce fire hazards have been met and additional safeguards were added. The systems are operating satisfactorily. (U.S.)

  5. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  6. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  7. Low impact plutonium glovebox D ampersand D

    International Nuclear Information System (INIS)

    Rose, R.W.

    1995-01-01

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D ampersand D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D ampersand D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D ampersand D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D ampersand D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants

  8. Low impact plutonium glovebox D&D

    Energy Technology Data Exchange (ETDEWEB)

    Rose, R.W.

    1995-12-31

    A dilemma often encountered in decontamination and decommissioning operations is the lack of choice as to the location where the work is to be performed. Facility siting, laboratory location, and adjacent support areas were often determined based on criteria, which while appropriate at the time, are not always the most conducive to a D&D project. One must learn to adapt and cope with as found conditions. High priority research activities, which cannot be interrupted, may be occurring in adjacent non-radiological facilities in the immediate vicinity where highly contaminated materials must be handled in the course of a D&D operation. The execution of a project within such an environment involves a high level of coordination, cooperation, professionalism and flexibility among the project, the work force and the surrounding occupants. Simply moving occupants from the potentially affected area is not always an option and much consideration must be given in the selection of the D&D methodology to be employed and the processes to be implemented. Determining project boundaries and the ensuring that adjacent occupants are included in the planning/scheduling of specific operations which impact their work area are important in the development of the safety envelope. Such was the case in the recent D&D of 61 gloveboxes contaminated with plutonium and other transuranic nuclides at the Argonne National Laboratory-East site. The gloveboxes, which were used in Department of Energy research and development program activities over the past 30 years, were decontaminated to below transuranic waste criteria, size reduced, packaged and removed from Building 212 by Argonne National Laboratory personnel in conjunction with Nuclear Fuel Services, Inc. with essentially no impact to adjacent occupants.

  9. W-026, transuranic waste (TRU) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report

  10. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  11. Macro and Micro Remote Viewing of Objects in Sealed Gloveboxes

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2004-01-01

    The Savannah River Site uses sophisticated glovebox facilities to process and analyze material that is radiologically contaminated or that must be protected from contamination by atmospheric gases. The analysis can be visual, non destructive measurement, or destructive measurement, and allows for the gathering of information that would otherwise not be obtainable. Macro and Micro systems that cover a range of 2X to 400X magnifications with a robust system compatible with the harsh glovebox environment were installed. Remote video inspection systems were developed and deployed in Savannah River Site glovebox facilities that provide high quality or mega-pixel quality remote views, for remote inspections. The specialized video systems that are the subject of this report exhibited specialized field application of remote video/viewing techniques by expanding remote viewing to high and very high quality viewing in gloveboxes. This technological enhancement will allow the gathering of precision information that is otherwise not available

  12. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  13. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  14. Issues for reuse of gloveboxes at LANL TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization.

  15. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lee, Michelle B.; Schreiber, Stephen B.

    2007-01-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  16. Ergonomic glovebox workspace layout tool and associated method of use

    Science.gov (United States)

    Roddy, Shannon Howard

    2018-02-20

    The present invention provides an elongate tool that aides in the placement of objects and machinery within a glovebox, such that the objects and machinery can be safely handled by a user. The tool includes a plurality of visual markings (in English units, metric units, other units, grooves, ridges, varying widths, etc.) that indicate distance from the user within the glovebox, optionally broken into placement preference zones that are color coded, grayscale coded, or the like.

  17. Issues for reuse of gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization

  18. Computer modeling for optimal placement of gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  19. Computer modeling for optimal placement of gloveboxes

    International Nuclear Information System (INIS)

    Hench, K.W.; Olivas, J.D.; Finch, P.R.

    1997-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units

  20. Determining the Radiation Damage Effect on Glovebox Glove Material

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Balkey, J.J.; Andrade, R.M.

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate 239 Pu and 238 Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  1. Determining the Radiation Damage Effect on Glovebox Glove Material.

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, M. E. (Michael E.); Balkey, J. J. (James J.); Andrade, R.M. (Rose M.)

    2005-01-01

    The Nuclear Material Technology (NMT) Division has the largest inventory of glove box gloves at Los Alamos National Laboratory. The minimization of unplanned breaches in the glovebox, e.g., glove failures, is a primary concern in the daily operations in NMT Division facilities, including the Plutonium Facility (PF-4) at TA-55 and Chemical and Metallurgy Research (CMR) Facility. Glovebox gloves in these facilities are exposed to elevated temperatures and exceptionally aggressive radiation environments (particulate {sup 239}Pu and {sup 238}Pu). Predictive models are needed to estimate glovebox glove service lifetimes, i.e. change-out intervals. Towards this aim aging studies have been initiated that correlate changes in mechanical (physical) properties with degradation chemistry. This present work derives glovebox glove change intervals based on previously reported mechanical data of thermally aged hypalon glove samples. Specifications for 30 mil tri-layered hypalon/lead glovebox gloves (TLH) and 15 mil hypalon gloves (HYP) have already been established. The relevant mechanical properties are shown on Table 1. Tensile strength is defined as the maximum load applied in breaking a tensile test piece divided by the original cross-sectional area of the test piece (Also termed maximum stress and ultimate tensile stress). Ultimate elongation is the elongation at time of rupture (Also termed maximum strain). The specification for the tensile test and ultimate elongation are the minimum acceptable values. In addition, the ultimate elongation must not vary 20% from the original value. In order to establish a service lifetimes for glovebox gloves in a thermal environment, the mechanical properties of glovebox glove materials were studied.

  2. Develop and Manufacture an Ergonomically Sound Glovebox Glove Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causing unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specifications for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new

  3. Decrease the Number of Glovebox Glove Breaches and Failures

    Energy Technology Data Exchange (ETDEWEB)

    Hurtle, Jackie C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-24

    Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and June 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.

  4. Follow-On Vapor Containment Tests of the Rapid Response System Glovebox

    National Research Council Canada - National Science Library

    Arca, Victor

    1997-01-01

    ...) glovebox in April 1996. The tests were conducted by generating a cloud of the simulant methyl salicylate inside the glovebox and measuring the concentration of any simulant that permeated to the operator workspace...

  5. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  6. Rotator Cuff Strength Ratio and Injury in Glovebox Workers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Amelia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-30

    Rotator cuff integrity is critical to shoulder health. Due to the high workload imposed upon the shoulder while working in an industrial glovebox, this study investigated the strength ratio of the rotator cuff muscles in glovebox workers and compared this ratio to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forces produced in the motions of shoulder internal and external rotation. Results showed this population to have shoulder strength ratios that were significantly different from the healthy norm. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature of glovebox workers in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development.

  7. Seismic analysis of safety class 1 incinerator glovebox in building 232-Z 200 W Area

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1994-09-01

    This report documents the seismic evaluation for the existing safety class 1 incinerator glovebox in 232Z Building. The glovebox is no longer in use and most of the internal mechanical equipment have been removed. However, the insulation firebricks are still in the glovebox for proper disposal

  8. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  9. Applications of LabVIEW programming in a glovebox environment

    International Nuclear Information System (INIS)

    Evans, M.E.; Peralta, G.; Gray, D.

    1995-01-01

    When dealing with neutron radiation one of the keys to reducing worker exposure is to have as much distance and shielding between the radiation and the radiation worker as possible. Using a PC to control a process from a remote location allows the distance between the radiation worker and the radiation source to be increase. Increasing the distance at which radiation worker can control a process allows more shielding to be placed around the glovebox. There are many commercial packages that allow controlling remote processes with a PC. This paper shows how flexible the LabVIEW Graphical Programming Language can be in implementing the remote control of glovebox process

  10. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    Energy Technology Data Exchange (ETDEWEB)

    Christman, Marissa St John [Los Alamos National Laboratory

    2016-11-30

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  11. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    International Nuclear Information System (INIS)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-01-01

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost

  12. Constant depression fan system a novel glovebox ventilation system

    International Nuclear Information System (INIS)

    Milliner, W.V.

    1995-01-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE

  13. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    International Nuclear Information System (INIS)

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl 3 ) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report

  14. Glovebox characterization and barrier integrity testing using fluorescent powder

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents a method for characterizing the spread of contamination and testing the barrier integrity of a new glovebox during material transfer operations and glove change-outs using fluorescent powder. Argonne National Laboratory-West has performed this test on several new gloveboxes prior to putting them into service. The test is performed after the glovebox has been leak tested and all systems have been verified to be operational. The purpose of the test is to show that bag-in/bag-out operations and glove change-outs can be accomplished without spreading the actual contaminated material to non-contaminated areas. The characterization test also provides information as to where contamination might be expected to build-up during actual operations. The fluorescent powder is used because it is easily detectable using an ultra-violet light and disperses in a similar fashion to radioactive material. The characterization and barrier integrity test of a glovebox using fluorescent powder provides a visual method of determining areas of potential contamination accumulation and helps evaluate the ability to perform clean transfer operations and glove change-outs

  15. Determination of an Ergonomically Sound Glovebox Glove Port Center Line

    International Nuclear Information System (INIS)

    Christman, Marissa St; Land, Whitney Morgan

    2016-01-01

    Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.

  16. Constant depression fan system a novel glovebox ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Milliner, W.V. [AME plc., Aldermaston (United Kingdom)

    1995-02-01

    In a conventional glovebox ventilation system the depression within the glovebox under normal operation is controlled by instrumentation. In the event of a breach the pressure within the box rises to atmospheric pressure, this pressure rise is detected by instrumentation which in turn operates a quick opening damper in a high depression extract to achieve a 1 metre/sec (200 fpm) inflow through the breach, which can take up to 2 seconds to establish. This system, although widely used, suffers from two distinct drawbacks: It takes a finite time to achieve the containment velocity of 1 metre/sec. It relies upon instrumentation to achieve its objectives. A new glovebox ventilation system has been developed by AWE to overcome these drawbacks. This is the Constant Depression Fan System (CDFS) which is based on an extract fan with a flat characteristic. This achieves all the requirements for the ventilation of gloveboxes and has the advantages that: It has only one moving part - the extract fan. It requires NO INSTRUMENTATION to achieve its objectives. It achieves the containment velocity of 1 metre/sec in the shortest possible time - approximately 0.2 seconds - and tests have shown that containment is maintained under breach conditions. Thus the CDFS is SAFER, SIMPLER and MORE RELIABLE.

  17. Tritium stripping in a nitrogen glovebox using SAES St 198

    International Nuclear Information System (INIS)

    Klein, J.E.; Wermer, J.R.

    1994-01-01

    SAES metal getter material St 198 was chosen for glovebox stripper tests to evaluate its effectiveness of removing tritium from a nitrogen atmosphere. The St 198 material is unique from a number of other metal hydride-based getter materials in that it is relatively inert to nitrogen and can thus be used in nitrogen glovebox atmospheres. Six tritium stripper experiments which mock-up the use of a SAES St 198 stripper bed for a full-scale (10,500 liter) nitrogen glovebox have been completed. Experiments consisted of a release of small quantity of protium/deuterium spiked with tritium which were scaled to simulate tritium releases of 0.1 g., 1.0 g., and 10 g. into the glovebox. The tritium spike allows detection using tritium ion chambers. The St 198 stripper system produced a reduction in tritium activity of approximately two orders of magnitude in 24 hours (6--8 atmosphere turn-overs) of stripper operation

  18. Dexterity test data contribute to proper glovebox over-glove use

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Lawton, Cindy M.; Castro, Armanda M.; Costigan, Stephen A.; Apel, D.M.; Neal, G.E.; Castro, J.M.; Michelotti, R.A.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). The glovebox gloves are the weakest part of this engineering control. The Glovebox Glove Integrity Program, which controls glovebox gloves from procurement to disposal at TA-55, manages this vulnerability. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Proper selection of over-gloves is one of these measures. Line management owning glovebox processes have the responsibility to approve the appropriate personal protective equipment/glovebox glove/over-glove combination. As low as reasonably achievable (ALARA) considerations to prevent unplanned glovebox glove openings must be balanced with glove durability and worker dexterity, both of which affect the final overall risk to the worker. In this study, the causes of unplanned glovebox glove openings, the benefits of over-glove features, the effect of over-gloves on task performance using standard dexterity tests, the pollution prevention benefits, and the recommended over-gloves for a task are presented.

  19. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  20. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1998-01-01

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi)

  1. Standard guide for design criteria for plutonium gloveboxes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide defines criteria for the design of glovebox systems to be used for the handling of plutonium in any chemical or physical form or isotopic composition or when mixed with other elements or compounds. Not included in the criteria are systems auxiliary to the glovebox systems such as utilities, ventilation, alarm, and waste disposal. Also not addressed are hot cells or open-face hoods. The scope of this guide excludes specific license requirements relating to provisions for criticality prevention, hazards control, safeguards, packaging, and material handling. Observance of this guide does not relieve the user of the obligation to conform to all federal, state, and local regulations for design and construction of glovebox systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user...

  2. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    International Nuclear Information System (INIS)

    Morris, W.F.

    1986-01-01

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs

  3. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  4. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  5. Survey of Technologies to Support Reuse of Gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.

    1998-01-01

    This report is a summary of ideas and technologies available to support reuse of plutonium gloveboxes at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). This work is the second of two deliverables in the task to enhance glovebox design for longevity and reusability at TA-55. The report presents several design change suggestions to be evaluated for their feasibility by LANL glovebox designers. The report also describes some techniques to be evaluated by LANL for their usefulness in reducing glovebox waste

  6. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  7. Design/build/mockup of the Waste Isolation Pilot Plant gas generation experiment glovebox

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.

    1996-01-01

    A glovebox was designed, fabricated, and mocked-up for the WIPP Gas Generation Experiments (GGE) being conducted at ANL-W. GGE will determine the gas generation rates from materials in contact handled transuranic waste at likely long term repository temperature and pressure conditions. Since the customer's schedule did not permit time for performing R ampersand D of the support systems, designing the glovebox, and fabricating the glovebox in a serial fashion, a parallel approach was undertaken. As R ampersand D of the sampling system and other support systems was initiated, a specification was written concurrently for contracting a manufacturer to design and build the glovebox and support equipment. The contractor understood that the R ampersand D being performed at ANL-W would add additional functional requirements to the glovebox design. Initially, the contractor had sufficient information to design the glovebox shell. Once the shell design was approved, ANL-W built a full scale mockup of the shell out of plywood and metal framing; support systems were mocked up and resultant information was forwarded to the glovebox contractor to incorporate into the design. This approach resulted in a glovebox being delivered to ANL-W on schedule and within budget

  8. Process and device for extinguishing fires inside gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P

    1975-01-09

    The present invention relates to a process of extinguishing all types of fire inside gloveboxes. Said process prevents the inner part of the box to communicate with the room atmosphere: the glove that is the nearest to the hearth of fire is perforated with an edged tip mounted on the outlet of the extinguisher and the product contained inside said extinguisher is released until the fire extinction is achieved. A device for operating said process consists in an edged tubular tip, the end of which is bevelled and in means of dispersion and of connection to an extinguisher at the other end.

  9. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  10. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  11. Light transmission and air used for inspection of glovebox gloves

    International Nuclear Information System (INIS)

    Castro, Julio M.; Steckle, Warren P. Jr.; Macdonald, John M.

    2002-01-01

    Various materials used for manufacturing the glovebox gloves are translucent material such as hypalon, rubbers, and neoprene. This means that visible light can be transmitted through the inside of the material. Performing this test can help to increase visualization of the integrity of the glove. Certain flaws such as pockmarks, foreign material, pinholes, and scratches could be detected with increased accuracy. An analysis was conducted of the glovebox gloves obscure polymer material using a inspection light table. The fixture is equipped with a central light supply and small air pump to inflate the glove and test for leak and stability. A glove is affixed to the fixture for 360-degree inspection. Certain inspection processes can be performed: (1) Inspection for pockmarks and thin areas within the gloves; (2) Observation of foreign material within the polymer matrix; and (3) Measurements could be taken for gloves thickness using light measurements. This process could help reduce eyestrain when examining gloves and making a judgment call on the size of material thickness in some critical areas. Critical areas are fingertips and crotch of fingers.

  12. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Lawton, Cindy M [Los Alamos National Laboratory; Castro, Amanda M [Los Alamos National Laboratory

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions on which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.

  13. Requalification of the 235-F Metallograph Facility gloveboxes for use in the 773-A plutonium immobilization demonstration

    International Nuclear Information System (INIS)

    Hinds, S.S.; Hidlay, J.

    1997-01-01

    A concern has been identified regarding the viability of redesigning and requalifying existing glovebox lines for use as glovebox lines integral to future mission activities in the 773-A laboratory building at the Savannah River Site (SRS). The Bechtel Savannah River Inc. (BSRI) design engineering team has been requested to perform an evaluation which would investigate the reuse of these existing gloveboxes versus the procurement of completely new glovebox systems. The existing glovebox lines were manufactured for the Plutonium (Pu) Metallograph Facility, Project 3253, located in building 235-F at SRS. These gloveboxes were designed as independent, fully functional Pu 'metal' and Pu 'oxide' processing glovebox systems for this facility. These gloveboxes, although fully installed, have never processed radioactive material. The proposed use for these gloveboxes are: (1) to utilize the Pu 'metal' glovebox system for the primary containment associated with the Pre-Processing/Re-Processing Laboratory for obtaining radioactive glass compound viscometer analysis and (2) to utilize the Pu 'oxide' glovebox system for primary containment associated with the Pu 'Can in Can' Demonstration for proof of principle testing specific to long term Pu immobilization and storage technology. This report presents objective evidence that supports the engineering judgment indicating the existing gloveboxes can be requalified for the proposed uses indicated above. SRS has the ability to duplicate the test parameters, with site forces, that will meet or exceed the identical acceptance criteria established to qualify the existing gloveboxes. The qualification effort will be a documented procedure using the leak test criteria characteristic of the original glovebox purchase. Two equivalent tests will be performed, one for post modification leak test acceptance and one for post installation leak test acceptance. (Abstract Truncated)

  14. Object-oriented process dose modeling for glovebox operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts

  15. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  16. Design improvements for gloveboxes used [in] {sup 238}PuO{sub 2} process operations

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

    1997-09-01

    {sup 238}PuO{sub 2} process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for {sup 238}PuO{sub 2} processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the {sup 238}PuO{sub 2} processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of {sup 238}Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases.

  17. Design improvements for gloveboxes used [in] 238PuO2 process operations

    International Nuclear Information System (INIS)

    George, T.G.

    1997-01-01

    238 PuO 2 process operations are housed in a complex of 76 gloveboxes and introductory hoods connected by means of an overhead trolley housed in a tunnel. Because a significant number of the gloveboxes used for 238 PuO 2 processing were installed before the original startup of the facility in 1978, they have been in service for nearly 20 years. During a recent heat source production campaign, numerous contamination releases in the 238 PuO 2 processing area were traced to degraded elastomer gaskets used for glovebox connections, and attachment of feed-throughs, service panels, and windows. Evaluation of the degraded gaskets revealed that a combination of radiolytic degradation related to the high specific activity of 238 Pu, and extended service at high altitude in a low (to extremely low) humidity environment had resulted in accelerated gasket aging. However, it was also apparent that gasket design was the most important factor in actual contamination release. All of the contamination releases that were traced to degraded gaskets occurred in variations of a design that used a spline to expand an elastomeric gasket into the space between a connecting flange, window, or service panel, and a glovebox opening. No contamination releases were traced to the gasket design that employed bolted clamps to compress the gasket between a connecting flange, window, or panel, and the exterior surface of a glovebox opening. As a result of these findings, the Actinide Ceramics group at LANL (NMT-9) has initiated a routine replacement and upgrade program to replace aging gloveboxes. All of the new gloveboxes will utilize the preferred gasket design, which is expected to reduce the number and frequency of contamination releases

  18. Dexterity Test Data Contribute To Reduction in Leaded Glovebox Glove Use

    International Nuclear Information System (INIS)

    Cournoyer, M.E.; Lawton, C.M.; Castro, A.M.; Costigan, S.A.; Schreiber, S.

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions on which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon R were the primary glove for programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented. (authors)

  19. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  20. Building 773-A, Lab F003 Glovebox Project Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Gaul, W.C.

    2003-01-01

    Engineering Standards present the radiological design criteria and requirements, which must be satisfied for all SRS facility designs. The radiological design criteria and requirements specified in the standard are based on the Code of Federal Regulations, DOE Orders, Site manuals, other applicable standards, and various DOE guides and handbooks. This report contains top-level requirements for the various areas of radiological protection for workers. For the purposes of demonstrating compliance with these requirements, the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This document reports a radiological design review for the STREAK lab glovebox upgrades of inlet ventilation, additional mechanical and electrical services, new glovebox instrumentation and alarms. This report demonstrates that the gloveboxes meet the radiological design requirements of Engineering Standards

  1. A technique for the assessment of the masses of residual plutonium in gloveboxes using thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Day, B.; Godward, D.F.

    1979-01-01

    A means of measuring the mass of residual plutonium in gloveboxes in the size range 1 to 10 m 3 has been developed using multiple thermoluminescent detectors. By optimising the location and the number of detectors, and by using suitable filtration, the mean response from them has been made insensitive to the distribution and the composition of the plutonium. It is possible to detect 10 g of plutonium in the largest glovebox considered. The measurement and mass estimation processes have been reduced to simple operations which can be carried out by skilled industrial staff. The routine application of the technique has been arranged to minimise disturbance to be production work going on in the gloveboxes by making unattended measurements during silent hours

  2. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  3. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  4. Report of working group for technical standard of cutting and melting works in Glovebox dismantling

    International Nuclear Information System (INIS)

    Asazuma, Shinichiroh; Takeda, Shinsoh; Tajima, Shoichi

    2004-11-01

    In order to prevent spread of contamination, glovebox dismantling activity is usually performed in a confined enclosure with personal radioactive protective equipment. Since large potion of these materials is made of vinyl acetate, there exist potential risks of fire, damage and injury to the environment and workers during the dismantling (cutting or melting) operation. It is therefore important to establish standard for proper use of equipment and hazard controls in such a specific environment. Working Group composed of Tokai Works and Oarai Works has examined and developed the operational standard for cutting work in glovebox dismantlement. The result is reflected to the Tokai Works Safety Operational Standard. (author)

  5. Preliminary evaluation of the electrapette for possible use in the glovebox for pipetting plutonium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hansbury, E.; Ortiz, B.; Roybal, C.

    1990-12-01

    At the Los Alamos Laboratory Plutonium Facility, Solution Assay Instruments (SAIs) are used to provide real-time information on the plutonium (Pu) content of the process stream at various stages in the process. Much of the solution analysis must be carried and as a glovebox to protect the operator from radiation. In order to overcome some of the difficulties usually encountered when working in a glovebox, an electronic solution-volume measuring device called an Electrapette was ordered from Matrix Technologies Corporation. It is said to be highly accurate, simple to use, and can handle the 25 ml of solution required for SAI analyses. It is microprocessor-controlled and comes in two components connected by a detachable cable so that the electronic part can be installed outside the box, while the nosepiece is inside. The two pieces are connected through a plug-in on the glovebox wall. The Electrapette was tested in three sets of experiments: a cold'' lab set, a set run is a hood in a production building, and a third set run in a glovebox using a process solution whose density had been predetermined. The accuracy of the determination could not be determined because the samples had been mixed with other feed before being sent for analysis by the Electrapette. 2 refs., 5 tabs.

  6. Modular glovebox connector and associated good practices for control of radioactive and chemically toxic materials

    International Nuclear Information System (INIS)

    Hoover, M.D.; Mewhinney, C.J.; Newton, G.J.

    1999-01-01

    Design and associated good practices are described for a modular glovebox connector to improve control of radioactive and chemically toxic materials. The connector consists of an anodized aluminum circular port with a mating spacer, gaskets, and retaining rings for joining two parallel ends of commercially available or custom-manufactured glovebox enclosures. Use of the connector allows multiple gloveboxes to be quickly assembled or reconfigured in functional units. Connector dimensions can be scaled to meet operational requirements for access between gloveboxes. Options for construction materials are discussed, along with recommendations for installation of the connector in new or retrofitted systems. Associated good practices include application of surface coatings and caulking, use of disposable glovebags, and proper selection and protection of gasket and glove materials. Use of the connector at an inhalation toxicology research facility has reduced the time and expense required to reconfigure equipment for changing operational requirements, the dispersion of contamination during reconfigurations, and the need for decommissioning and disposal of contaminated enclosures

  7. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  8. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  9. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ''Compliant''and One Trip Port DO-07402B is designated as ''Non Compliant''. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it's state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  10. Adaptation of a glow discharge mass spectrometer in a glove-box for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Hiernaut, T.; Koch, L.

    1994-01-01

    A VG9000 glow discharge mass spectrometer has been modified for the direct analysis of solid nuclear samples within a glove-box environment. Because containment is needed for the analysis of this kind of material, the glove-box encloses all parts of the instrument that come into contact with the sample, namely the ion source chamber, sample interlock and associated pumping system. External modifications eliminate outside contamination by the fitting of absolute filters on all source supplies. Internally the design of the ion source has been altered to minimize the number of operations performed inside the glove-box thereby simplifying operation and routine maintenance. These modifications retain the ion extraction and focusing properties of the instrument. The data presented show that there is no compromise in the analytical performance of the instrument when placed in the glove-box. Data representative of nuclear materials is also shown. (Author)

  11. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  12. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  13. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  14. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  15. HOLDUP MEASUREMENTS FOR VISUAL EXAMINATION GLOVEBOXES AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R

    2006-05-03

    Visual Examination (VE) gloveboxes are used at the Savannah River Site (SRS) to remediate transuranic waste (TRU) drums. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements are performed in order to confirm that these assumptions are conservative. High Cs-137 backgrounds in the VE glovebox areas preclude the use of a sodium iodide spectrometer, so a high-purity germanium (HPGe) detector, having superior resolution, is used. Plutonium-239 is usually the nuclide of interest; however, Pu-241, Np-237 (including its daughter Pa-233) and Pu-238 (if detected) are typically assayed. Cs-137 and Co-60 may also be detected but are not reported since they do not contribute to the Pu-239 Fissile Gram Equivalent or Pu-239 Equivalent Curies. HEPA filters, drums and waste boxes are also assayed by the same methodology. If--for example--the HEPA is contained in a stainless steel housing, attenuation corrections must be applied for both the filter and the housing. Dimensions, detector locations, materials and densities are provided as inputs to Ortec's ISOTOPIC software to estimate attenuation and geometry corrections for the measurement positions. This paper discusses the methodology, results and limitations of these measurements for different VE glovebox configurations.

  16. A new glove-box system for a high-pressure tritium pump

    International Nuclear Information System (INIS)

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-01-01

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs

  17. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    International Nuclear Information System (INIS)

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-01-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D and D process provides substantial dose reduction for the workers

  18. CSER 00-003: Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    International Nuclear Information System (INIS)

    LAN, J.S.

    2000-01-01

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material

  19. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  20. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  1. In-Situ Leak Testing And Replacement Of Glovebox Isolator, Or Containment Unit Gloves

    Science.gov (United States)

    Castro, Julio M.; Macdonald, John M.; Steckle, Jr., Warren P.

    2004-11-02

    A test plug for in-situ testing a glove installed in a glovebox is provided that uses a top plate and a base plate, and a diametrically expandable sealing mechanism fitting between the two plates. The sealing mechanism engages the base plate to diametrically expand when the variable distance between the top plate and the bottom plate is reduced. An inlet valve included on the top plate is used to introducing a pressurized gas to the interior of the glove, and a pressure gauge located on the top plate is used to monitor the interior glove pressure.

  2. Strategy for decommissioning of the glove-boxes in the Belgonucleaire Dessel MOX fuel fabrication plant

    International Nuclear Information System (INIS)

    Vandergheynst, Alain; Cuchet, Jean-Marie

    2007-01-01

    Available in abstract form only. Full text of publication follows: BELGONUCLEAIRE has been operating the Dessel plant from the mid-80's at industrial scale. In this period, over 35 metric tons of plutonium (HM) was processed into almost 100 reloads of MOX fuel for commercial West-European Light Water Reactors. In late 2005, the decision was made to stop the production because of the shortage of MOX fuel market remaining accessible to BELGONUCLEAIRE after the successive capacity increases of the MELOX plant (France) and the commissioning of the SMP plant (UK). As a significant part of the decommissioning project of this Dessel plant, about 170 medium-sized glove-boxes are planned for dismantling. In this paper, after having reviewed the different specifications of ±-contaminated waste in Belgium, the authors introduce the different options considered for cleaning, size reduction and packaging of the glove-boxes, and the main decision criteria (process, α-containment, mechanization and radiation protection, safety aspects, generation of secondary waste, etc) are analyzed. The selected strategy consists in using cold cutting techniques and manual operation in shielded disposable glove-tents, and packaging α-waste in 200-liter drums for off-site conditioning and intermediate disposal. (authors)

  3. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  4. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  5. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  6. CSER 00-008 use of PFP Glovebox HC-18BS for Storage and Transport of Fissionable Material

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2000-01-01

    This CSER addresses the feasibility of increasing the allowed number of open containers and permitting the transfer and storage of fissionable material in Glovebox HC-18BS without regard to form or density (metal, oxide having an H/X (le) 20, material having unrestricted moderation and plutonium hydroxide having a plutonium density of 0.2 g/cm 3 )

  7. A human factors approach towards the design of a new glovebox glove for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Jude M. [Los Alamos National Laboratory

    2012-08-06

    Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand is incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the

  8. Glovebox glove deterioration in the Hanford Engineering Development Laboratory fuel fabrication facility

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Smith, R.C.; Powell, D.L.

    1979-07-01

    Neoprene glovebox gloves have been found susceptible to periodic rapid deterioration under normal operating conditions in fuel fabrication facilities. Examinations of glove failure histories and measurements of the atmospheres in inert atmosphere dry-boxes indicated ozone at low concentrations of 100 to 500 ppB was probably the most important factor in rapid glove deterioration. Testing of a varity of new glove materials indicated that Hypalon and ethylene-propylene-diamine monomer (EDPM) gloves have greater than 30 times the longevity of neoprene in low-level ozone concentration atmospheres. comparative tests over a 30-month period have also confirmed that the two glove candidates have a significantly longer operative life. 14 figures

  9. Prediction of dose and field mapping around a shielded plutonium fuel fabrication glovebox

    International Nuclear Information System (INIS)

    Strode, J.N.; Soldat, K.L.; Brackenbush, L.W.

    1984-01-01

    Westinghouse Hanford Company, as the Department of Energy's (DOE) prime contractor for the operation of the Hanford Engineering Development Laboratory (HEDL), is responsible for the development of the Secure Automated Fabrication (SAF) Line which is to be installed in the recently constructed Fuels and Materials Examination Facility (FMEF). The SAF Line will fabricate mixed-oxide (MOX) fuel pins for the Fast Flux Test Facility (FFTF) at an annual throughput rate of six (6) metric tons (MT) of MOX. The SAF Line will also demonstrate the automated manufacture of fuel pins on a production-scale. This paper describes some of the techniques used to reduce personnel exposure on the SAF Line, as well as the prediction and field mapping of doses from a shielded fuel fabrication glovebox. Tables are also presented from which exposure rate estimates can be made for plutonium recovered from fuels having different isotopic compositions as a result of varied burnup

  10. Calculation note - Consequences of a fire in the sorting and repackaging glovebox in room 636 of bldg 2736-ZB - Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    JOHNSON, L.E.

    1999-01-01

    This Calculation Note provides a conservative estimate of the grams of plutonium released from Building 2736-ZB of the Plutonium Finishing Plant as a result of a fire within Glovebox 636, without consideration of mitigation

  11. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  12. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  13. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A.; Bruno, Hernan R.; Camacho, Esteban F.; Boero, Norma

    1999-01-01

    In the Uranium Powder Manufacturing Plant at CAC, U 3 O 8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  14. Glovebox-contained forty-millimeter gun system for the study of one-dimensional shock waves in toxic materials

    International Nuclear Information System (INIS)

    Honodel, C.A.

    1975-01-01

    A new gun system is being constructed at the Lawrence Livermore Laboratory for studies of the behavior of toxic materials under shock-loaded conditions. Due to the extreme toxicity of some materials, such as plutonium, the entire gun system must be enclosed in gloveboxes. Some of the experimental requirements that affected the design of the system, various diagnostic techniques that will be employed with the system, and some details of the final design that is presently under assembly are presented

  15. Automation of Command and Data Entry in a Glovebox Work Volume: An Evaluation of Data Entry Devices

    Science.gov (United States)

    Steele, Marianne K.; Nakamura, Gail; Havens, Cindy; LeMay, Moira

    1996-01-01

    The present study was designed to examine the human-computer interface for data entry while performing experimental procedures within a glovebox work volume in order to make a recommendation to the Space Station Biological Research Project for a data entry system to be used within the Life Sciences Glovebox. Test subjects entered data using either a manual keypad, similar to a standard computer numerical keypad located within the glovebox work volume, or a voice input system using a speech recognition program with a microphone headset. Numerical input and commands were programmed in an identical manner between the two systems. With both electronic systems, a small trackball was available within the work volume for cursor control. Data, such as sample vial identification numbers, sample tissue weights, and health check parameters of the specimen, were entered directly into procedures that were electronically displayed on a video monitor within the glovebox. A pen and paper system with a 'flip-chart' format for procedure display, similar to that currently in use on the Space Shuttle, was used as a baseline data entry condition. Procedures were performed by a single operator; eight test subjects were used in the study. The electronic systems were tested under both a 'nominal' or 'anomalous' condition. The anomalous condition was introduced into the experimental procedure to increase the probability of finding limitations or problems with human interactions with the electronic systems. Each subject performed five test runs during a test day: two procedures each with voice and keypad, one with and one without anomalies, and one pen and paper procedure. The data collected were both quantitative (times, errors) and qualitative (subjective ratings of the subjects).

  16. An open-walled ionization chamber appropriate to tritium monitoring for glovebox

    International Nuclear Information System (INIS)

    Chen Zhilin; Chang Ruiming; Mu Long; Song Guoyang; Wang Heyi; Wu Guanyin; Wei Xiye

    2010-01-01

    An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7x10 5 Bq/m 3 .

  17. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  18. Material handling systems for use in glovebox lines: A survey of Department of Energy facility experience

    International Nuclear Information System (INIS)

    Teese, G.D.; Randall, W.J.

    1992-01-01

    The Nuclear Weapons Complex Reconfiguration Study has recommended that a new manufacturing facility be constructed to replace the Rocky Flats Plant. In the new facility, use of an automated material handling system for movement of components would reduce both the cost and radiation exposure associated with production and maintenance operations. Contamination control would be improved between process steps through the use of airlocks and portals. Part damage associated with improper transport would be reduced, and accountability would be increased. In-process workpieces could be stored in a secure vault, awaiting a request for parts at a production station. However, all of these desirable features rely on the proper implementation of an automated material handling system. The Department of Energy Weapons Production Complex has experience with a variety of methods for transporting discrete parts in glovebox lines. The authors visited several sites to evaluate the existing technologies for their suitability for the application of plutonium manufacturing. Technologies reviewed were Linear motors, belt conveyors, roller conveyors, accumulating roller conveyors, pneumatic transport, and cart systems. The sites visited were The Idaho National Engineering laboratory, the Hanford Site, and the Rocky Flats Plant. Linear motors appear to be the most promising technology observed for the movement of discrete parts, and further investigation is recommended

  19. Implementation of dynamic cross-talk correction (DCTC) for MOX holdup assay measurements among multiple gloveboxes

    International Nuclear Information System (INIS)

    Nakamichi, Hideo; Nakamura, Hironobu; Mukai, Yasunobu; Kurita, Tsutomu; Beddingfield, David H.

    2012-01-01

    Plutonium holdup in gloveboxes (GBs) are measured by (passive neutron based NDA (HBAS) for the material control and accountancy (MC and A) at Plutonium Conversion Development Facility (PCDF). In the case that the GBs are installed close to one another, the cross-talk which means neutron double counting among GBs should be corrected properly. Though we used to use predetermined constants as the cross-talk correction, a new correction methodology for neutron cross-talk among the GBs with inventory changes is required for the improvement of MC and A. In order to address the issue of variable cross-talk contributions to holdup assay values, we applied a dynamic cross-talk correction (DCTC) method, based on the distributed source-term analysis approach, to obtain the actual doubles derived from the cross-talk between multiple GBs. As a result of introduction of DCTC for HBAS measurement, we could reduce source biases from the assay result by estimating the reliable doubles-counting derived from the cross-talk. Therefore, we could improve HBAS measurement uncertainty to a half of conventional system, and we are going to confirm the result. Since the DCTC methodology can be used to determine the cross-correlation among multiple inventories in small areas, it is expected that this methodology can be extended to the knowledge of safeguards by design. (author)

  20. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    International Nuclear Information System (INIS)

    Wall, Mark A.

    2016-01-01

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  1. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  2. Overview of the Life Science Glovebox (LSG) Facility and the Research Performed in the LSG

    Science.gov (United States)

    Cole, J. Michael; Young, Yancy

    2016-01-01

    The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson

  3. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    Science.gov (United States)

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  4. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmosphere of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as the

  5. Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG

    Science.gov (United States)

    Jordan, Lee

    2016-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility

  6. CSER 99-002: CSER for unrestricted moderation of sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

    International Nuclear Information System (INIS)

    LAN, J.S.

    1999-01-01

    This Criticality Safety Evaluation Report was prepared by Fluor Daniel Northwest under contract to BWHC. This document establishes the criticality safety parameters for unrestricted moderation of Sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

  7. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use

  8. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  9. In situ remediation of plutonium from glovebox exhaust ducts at the Department of Energy's Rocky Flats Plant

    International Nuclear Information System (INIS)

    Dugdale, J.S.; Humiston, T.J.; Omer, G.E.

    1993-01-01

    Plutonium and other miscellaneous hold-up materials have been accumulating in the glovebox exhaust ducts at the Rocky Flats Plant over the 40 years of weapons production at the site. The Duct Remediation Project was undertaken to assess the safety impacts of this material, and to remove it from the ductwork. The project necessitated the development of specialized tools, equipment and methods to remediate the material from continuously operating ventilation systems. Special engineered access locations were also required to provide access to the ductwork, and to ensure that safety and system operability were not degraded as a result of the remediation efforts. Operations personnel underwent significant training and development, and became an important asset to the success of the project. In total, the project succeeded in removing over 40 kilograms of plutonium-bearing material from one of the major weapons production buildings at the plant

  10. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2001-01-01

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Room 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible

  11. Use of simulation to examine operational scenarios in a lathe glovebox for the processing of nuclear materials

    International Nuclear Information System (INIS)

    McQueen, M.; Ashok, P.; Cox, D.J.; Pittman, P.C.; Turner, C.J.; Hollen, R.M.

    2001-01-01

    In the process of dispositioning nuclear materials into storage, the use of a robot eliminates the safety risks to humans and increases productivity. The current process of processing typically uses humans to handle the hazardous material using gloves through glove-ports. This process is not only dangerous, but also costly, because humans can only be subjected to limited exposure to nuclear materials due to the actual Occupational Radiation Exposure (ORE) and thus have a fixed amount of dedicated workload per unit time. Use of robotics reduces ORE to humans and increases productivity. The Robotics Research Group at the University of Texas at Austin has created a simulation model of a conceptual application that uses a robot inside the glovebox to handle hazardous materials for lathe machining process operations in cooperation with Los Alamos National Laboratories (LANL). The actions of the robot include preparing the parts for entry into the box, weighing the parts, positioning the parts into the headstock chuck of the lathe, handling the subsequent processed parts, changing and replacing the lathe tools and chuck assemblies are necessary to process the material. The full three-dimensional geometric model of the simulation demonstrates the normal expected operation from beginning to end and verifies the path plans for the robot. The emphasis of this paper is to report additional findings from the simulation model, which is currently being expanded to include failure mode analysis, error recovery, and other what-if scenarios involved in unexpected, or unplanned, operation of the robot and lathe process inside of the glovebox.

  12. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning; Zerlegungstechniken fuer Pu-kontaminierte Handschuhkaesten: Erfahrungsbericht nach einem Jahr Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Faber, P. [Siemens Power Generation, Decommissioning Projects, Hanau (Germany)

    2003-07-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  13. CSER 90-006, addendum 1: Criticality safety control for source term reduction project in the scrubber glovebox of Building 232-Z. Revision 1

    International Nuclear Information System (INIS)

    Hess, A.L.

    1995-01-01

    This Criticality Safety Evaluation Report addendum extends the coverage of the original CSER (90-006) about dismantling the ductwork in 232-Z to include cleanout of the Scrubber Glovebox, with an estimated residual Pu holdup of less than 200 grams. For conservatism and containment considerations, the provisions about waste packaging and water exclusion from the original work are retained, even though it is not credible for the Scrubber Pu content to be made critical with water added (NDA gives about 1/3 a minimum critical mass)

  14. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    Science.gov (United States)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  15. Laser dismantling of a glovebox

    International Nuclear Information System (INIS)

    Johnson, R.; Fender, M.

    1985-01-01

    A 5 kW laser has been used to cut up a 2.6 x 1 x 1 m glove box made of 5 mm mild steel with 12.5 mm perspex windows and 3 mm neoprene gaskets. The laser cut all components including the sandwich of perspex, neoprene and steel with ease. The production of fibrous filaments of perspex during the cutting process has been almost avoided by modifying the cutting variables. The combustion of material beyond that being cut has also been prevented by adopting the correct level of laser power. The problems encountered with loss of glove box rigidity with progressive dismantling are discussed, together with the relevance these problems have to possible cutting methods other than lasers. (author)

  16. Dismantling of a furnace and gloveboxes of a U{sub 3}O{sub 8} with 20% enrichment production line; Desmantelamiento de un horno y cajas de guantes de una linea de produccion de U{sub 3}O{sub 8} enriquecido al 20%

    Energy Technology Data Exchange (ETDEWEB)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A; Bruno, Hernan R; Camacho, Esteban F; Boero, Norma [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    In the Uranium Powder Manufacturing Plant at CAC, U{sub 3}O{sub 8} with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  17. Predicting Worker Exposure from a Glovebox Leak

    International Nuclear Information System (INIS)

    Jordan, H.; Gordon, D. J.; Whicker, J. J.; Wannigman, D. L.

    2001-01-01

    It is difficult to predict immediate worker radiological consequences from a hypothetical accident. This is recognized in DOE safety analysis guidance and the reason such guidance does not call for quantitative determinations of such consequences. However, it would be useful to at least have a means of systematically and formally quantifying worker dose to be able to identify the relative risks of various processes and to provide an order-of-magnitude impression of absolute consequences. In this report, we present such a means in the form of a simple calculation model that is easily applied and generates reasonable, qualitative dose predictions. The model contains a scaling parameter whose value was deduced from extensive laboratory ventilation flow rate measurements performed at Los Alamos National Laboratory (LANL) over the last several years and from recent indoor radioactive contamination dispersion measurements, also at LANL. Application of the model is illustrated with the aid of two example calculations

  18. Study of plutonium fire extinction in glove-boxes

    International Nuclear Information System (INIS)

    Boisson, H.; Chappellier, A.; Debiar, A.; Savornin, J.

    1965-01-01

    The report concerns attempts to extinguish fire in uranium - chosen as a basis for comparison - and in plutonium, these being contained in glove boxes. The extinguishing powders TEC and MG 10 were tried and compared. The operator used in plastic bags. The metal was dealt with respectively in the form of billets, compact chips and finally thin shavings. In each case fire control was without difficulty. One must allow a certain time for cooling. The powder MG 10 showed very good results. Moreover, the trials proved that densely packed shavings are a very real security factor. The interior lay-out of the glove boxes ought, in order to facilitate further manipulations, be such as to render extinction as easy as possible should the need arise. (authors) [fr

  19. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  20. Catalyst study for the decontamination of glove-box atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chobot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium cleanup system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  1. Developing glovebox robotics to meet the national robot safety standard and nuclear safety criteria

    International Nuclear Information System (INIS)

    McMahon, T.T.; Sievers, R.H.

    1991-09-01

    Development of a glove box based robotic system by the Lawrence Livermore National Laboratory (LLNL) is reported. Safety issues addressed include planning to meet the special constraints of operations within a hazardous material glove box and with hostile environments, compliance with the current and draft national robotic system safety standards, and eventual satisfaction of nuclear material handling requirements. Special attention has been required for the revision to the robot and control system models which antedate adoption of the present national safety standard. A robotic test bed, using non-radioactive surrogates is being activated at the Lawrence Livermore National Laboratory to develop the material handling system and the process interfaces for future special nuclear material processing applications. Part of this effort is to define, test, and revise adequate safety controls to ensure success when the system is eventually deployed at a DOE site. The current system is primarily for demonstration and testing, but will evolve into the baseline configuration from which the production system is to be derived. This results in special hazards associated with research activities which may not be present on a production line. Nuclear safety is of paramount importance and has been successfully addressed for 50 years in the DOE weapons production complex. It carries its particular requirements for robot systems and manual operations, as summarized below: Criticality must be avoided (materials cannot consolidate or accumulate to approach a critical mass). Radioactive materials must be confined. The public and workers must be protected from accountable radiation exposure. Nuclear material must be readily retrievable. Nuclear safety must be conclusively demonstrated through hazards analysis. 7 refs

  2. Object-oriented process dose modeling for glove-box operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory (LANL) supports several defense- and non-defense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of glove boxes connected to each other via trolley glove boxes. Each room may contain glove boxes dedicated to several different operations or functions. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. The immediate sources to which a worker is exposed provide the primary EDE. The secondary EDE results from operations and sources in the same vicinity or room as the worker. The background EDE results from all other sources of radiation, such as natural sources and sources outside of the room. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. An associated paper details the tool that they use to determine the primary and secondary EDEs for all processes of interest in a room containing glove boxes

  3. Applications of a glove-box ICP-MS for the analysis of nuclear materials

    International Nuclear Information System (INIS)

    Garcia Alonso, J.I.; Babelot, J.F.; Glatz, J.P.; Cromboom, O.; Koch, L.

    1993-01-01

    The relatively new analytical technique, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), has been used for the analysis of nuclear materials stemming from different parts of the nuclear fuel cycle. The original instrument has been modified in order to work with radioactive materials in a glove box. The plasma torch and vacuum interface are situated inside the glove box while the mass spectrometer and associated electronics are outside. Samples analysed include fresh nuclear fuels (natural impurities), spent fuels (fission products and actinides), reprocessing solutions (minor actinides) and leachates of spent fuel and high level waste glasses (natural elements, fission products and actinides). (orig.)

  4. Glovebox with purification and pressure control of the neutral gas atmosphere in closed circuit

    International Nuclear Information System (INIS)

    Cadrot, J.

    1990-01-01

    In the gas main are placed 2 series of specific gas purifiers in parallel. Pressure is controlled with a buffer tank two three way solenoid value upstream and down stream a compressor and a supercharger. A checking board allows continuous monitoring of circuit tightness [fr

  5. Corrosion studies and recommendation of alloys for an incinerator of glove-boxes wastes

    International Nuclear Information System (INIS)

    Devisme, F.; Garnier, M.H.

    1992-01-01

    In the framework of the development of an incineration process for high chlorinated wastes, commercial alloys have been investigated by means of parametric laboratory tests in HCl containing gas mixtures and also in field tests. Recommendations may be formulated for the three main components i.e. pyrolyser, calciner and cooler. In very low oxygen-potential atmospheres, the alloys Hastelloy C276 and Inconel 625 present the best behaviours. For the calciner, alloy Inconel 601 is more satisfactory than AISI 310 steel. As for the cooler, only the alloy Haynes 214 appears acceptable at 1100 deg C. Because of the very low stress level affecting the components, thermomechanical properties do not modify these recommendations based on corrosion behaviour

  6. Catalyst study for the decontamination of glove-boxe atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium clean-up system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  7. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  8. A permanently magnetized high gradient magnetic filter for glove-box cleaning and increasing HEPA filter life

    International Nuclear Information System (INIS)

    Watson, J.H.P.; Boorman, C.H.

    1991-01-01

    The purpose of this paper is to describe the structure and testing of a permanently magnetized magnetic filter on simulants for radioactive material. The experimental work was carried out at British Nuclear Fuels plc, Sellafield, England and in CEN/SCK, Mol, Belgium using Cr powder which is a good magnetic simulant for PuO 2 . The basis of the use of such a filter in the nuclear industry relies on the fact that much of the radioactive material is paramagnetic. In the last twenty years a separation technique has been developed which allows weakly paramagnetic particles of colloidal size to be separated from fluid which passes through the separator. This method is called high gradient magnetic separation (HGMS) and is accomplished by magnetizing a fine ferromagnetic wire matrix by an externally applied magnetic field. This paper describes a new approach to this problem, by using a magnetically hysteretic material to construct the ferromagnetic matrix, it has been possible to provide a magnetic field in the region of the matrix and also have a residual magnetization within the matrix. This provides extremely compact magnetic separation systems. There are some subtle differences between this separation system and conventional HGMS which makes the radial feed system, with all its advantages, almost mandatory for hysteretic HGMS

  9. Operating manual for the electrostatic glove-box prefilter installed inside the filter glove box No. 046 at Rocky Flats, Building 776

    International Nuclear Information System (INIS)

    Bergman, W.; Kaifer, R.C.; Hebard, H.D.; Taylor, R.D.; Lum, B.Y.; Boling, R.M.; Buttedahl, O.I.; Woodard, R.W.; Terada, K.

    1979-01-01

    Objective of the evaluation is to evaluate the effectiveness of the electrostatic prefilter in prolonging the life of HEPA (high-efficiency particulate-air) filters. The theory of the electrostatic filter is reviewed, and Glove Box Number 046 is described in detail, followed by a description of the electrostatic prefilter used in the present application. Engineering drawings of the electrostatic prefilter are included. The procedure for evaluating the electrostatic prefilter includes the steps for conducting five different tests: evaluating (1) the HEPA filter alone, (2 and 3) the HEPA filter with a standard prefilter treated both as disposable and reusable, and (4 and 5) the HEPA filter with the electrostatic prefilter, again treated as disposable and reusable. Procedures for flowmeter calibrations and measurements of particle-size distributions are also included. Long-term maintenence of the system during the evaluation program is outlined, and estimates of component durability are given. An electrical engineering safety note describes the high-voltage operational hazard of the electrostatic prefilter and the testing of safety devices

  10. Study of plutonium fire extinction in glove-boxes; Etude sur l'extinction des feux de plutonium en boites a gants

    Energy Technology Data Exchange (ETDEWEB)

    Boisson, H; Chappellier, A; Debiar, A; Savornin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The report concerns attempts to extinguish fire in uranium - chosen as a basis for comparison - and in plutonium, these being contained in glove boxes. The extinguishing powders TEC and MG 10 were tried and compared. The operator used in plastic bags. The metal was dealt with respectively in the form of billets, compact chips and finally thin shavings. In each case fire control was without difficulty. One must allow a certain time for cooling. The powder MG 10 showed very good results. Moreover, the trials proved that densely packed shavings are a very real security factor. The interior lay-out of the glove boxes ought, in order to facilitate further manipulations, be such as to render extinction as easy as possible should the need arise. (authors) [French] II s'agit d'un compte rendu d'essais d'extinction sur feux d'uranium - pris comme base de comparaison - et de plutonium, en boites a gants. Sont utilisees et comparees les poudres extinctrices TEC et MG 10. Elles sont employees par l'operateur en sachets de plastique. Le metal est pris successivement sous forme de billettes, de copeaux compactes, enfin de tournures fines. L'intervention est aisee dans tous les cas; il faut laisser un certain temps de refroidissement. La poudre MG 10 a donne de tres bons resultats, Les essais ont montre, de plus, que le compactage des copeaux est un facteur reel de securite. L'agencement interieur des boites a gants pour les manipulations a venir, devrait tenir compte de cette facilite d'extinction afin de la rendre la plus aisee possible en cas de besoin. (auteurs)

  11. Resuspension of uranium-plutonium oxide particles from burning Plexiglas

    International Nuclear Information System (INIS)

    Pickering, S.

    1987-01-01

    Nuclear fuel materials such as Uranium-Plutonium oxide must be handled remotely in gloveboxes because of their radiotoxicity. These gloveboxes are frequently constructed largely of combustible Plexiglas sheet. To estimate the potential airborne spread of radioactive contamination in the event of a glovebox fire, the resuspension of particles from burning Plexiglas was investigated. (author)

  12. Ultracold Field Gradient Magnetometry and Transport to Study Correlated Topological Phases

    Science.gov (United States)

    2016-10-01

    MIT) 77 Massachusetts Ave. NE18-901 Cambridge , MA 02139 -4307 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published...group of the PI and the subfield of new correlated topological phases. List of Illustrations Figure 1 – View of MBE and Glovebox System Figure... Illustrations   Figure 1 – View of MBE and Glovebox System  Figure 2 – View of Glovebox, MBE, and Dilution Refrigerator System    Statement of Problems Studied  To

  13. Plutonium production in a remote cell

    International Nuclear Information System (INIS)

    Maddux, E.P.; Purcell, J.A.

    1987-01-01

    Production of 239 Pu metal has traditionally been carried out in glovebox enclosures for protection of operating personnel and the environment. With the advent of more stringent federal regulations for protecting personnel, the environment, and security of special nuclear materials, it is proposed that plutonium be processed in a totally remote environment using automated work stations and robotic materials transfer and equipment maintenance. At the Savannah River Plant, the existing plutonium production facility is a batch-type glovebox operation built in the 1950s. A viable alternative to restoration of the existing glovebox operation is to provide a facility that uses remote cell operation

  14. Duct Remediation Program: Engineered access research and construction

    International Nuclear Information System (INIS)

    Beckman, T.D.; Davis, M.M.; Karas, T.M.

    1992-01-01

    The Rocky Flats Plant, Duct Remediation mission concentrated on removing Plutonium Oxide from the process ductwork in the primary Plutonium processing facility. When possible, remediation took place from existing process gloveboxes. Fifteen locations were identified, however, that required accessing duct runs where no process gloveboxes existed. The building's second floor utility areas had many locations where long, inaccessible duct runs were prevalent. Consequently, an extensive program for design, procurement and construction was initiated to contain and isolate ducts for penetration when existing glovebox sites were not present

  15. W-026, acceptance test report manipulator system

    International Nuclear Information System (INIS)

    Watson, T.L.

    1997-01-01

    The purpose of the WRAP Manipulator System Acceptance Test Plan (ATP) is to verify that the 4 glovebox sets of WRAP manipulator components, including rail/carriage, slave arm, master controller and auxiliary equipment, meets the requirements of the functional segments of 14590 specification. The demonstration of performance elements of the ATP are performed as a part of the Assembly specifications. Manipulator integration is integrated in the performance testing of the gloveboxes. Each requirement of the Assembly specification will be carried out in conjunction with glovebox performance tests

  16. The radiological evaluation of a prototype posting-in hatch under conditions of high alpha activity

    International Nuclear Information System (INIS)

    Smith, D.I.; Hollick, R.C.

    1987-07-01

    A prototype posting-in hatch, mounted vertically in the top panel of a highly active glovebox has been radiologically evaluated in the Fuels Laboratory, AEEW. This simple, air-lock type system of 100 mm diameter has pneumatically operated and interlocked lids and a low velocity, inward purge, supplied by the glovebox depression. The hatch proved extremely reliable and very easy to operate. More than 1200 simulated posting movements were carried out and a > 8 order of magnitude reduction in aerosol concentration was recorded from the active glovebox to the monitoring environment. (author)

  17. Plutonium active operation of the Winfrith modular containment system

    International Nuclear Information System (INIS)

    Sanders, M.J.; Pengelly, M.G.A.; McSherry, K.

    1985-01-01

    Three gloveboxes contaminated with plutonium have been dismantled inside the Winfrith Modular Containment System. This system is a portable, demountable pressurised suit area with its own filters and shower entry tunnel. Details of the operation are given. (U.K.)

  18. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2012-02-24

    ... debris waste from the FB-Line at SRS. This waste was generated by glovebox operations, decontamination... summary category group solids (S3000) or soils and gravel (S4000) is characterized for WIPP disposal; and...

  19. Crystal Growth of New Radiation Detector Materials in Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RMD proposes to conduct a series of crystal growth experiments on the International Space Station in the SUBSA furnace inside the MSG glovebox to grow crystals of...

  20. Glove boxes. Dimensions and requirements. Draft

    International Nuclear Information System (INIS)

    1985-07-01

    The standard is to be applied to work done in glove-boxes, whereby either the personnel need to be protected from the damaging effects of the materials being handled, or the materials from the effects of the environment. It is to be applied to glove-boxes in which substances are handled which emit ionising radiation (radioactive substances). This norm is not restricted to glove-boxes in which processes are carried out on a technique scale. In accordance with this norm, only those pressures and temperatures are allowed to be present in the glove-boxes, that do not offer significantly from the work areas. Alongside the stipulations of this standard regard is also always to be taken of the regulations in the radiation protection ordinance. (orig./HP) [de

  1. Development history of crimp shear tools. Item D11 Decommissioning Group

    International Nuclear Information System (INIS)

    Farmer, A.K.

    1988-02-01

    This report gives information on the continuing development of a range of crimp/shear tools aimed at separating items of radioactive plant, eg, gloveboxes, from a variety of service pipelines which could also be internally contaminated. (author)

  2. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  3. CSER 99-001: PFP LAB Dentirating calciner

    International Nuclear Information System (INIS)

    MILLER, E.M.; DOBBIN, K.D.

    1999-01-01

    A criticality safety evaluation report was prepared for the Plutonium Finishing Plant (PFP) laboratory denigrating calciner, located in Glovebox 188-1, that converts Pu(NO 3 ) 4 solutions to the high fired stable oxide PuO 2 . Fissile mass limits and volume limits are set for the glovebox for testing operations and training operators using only nitric acid feed to a plutonium oxide bed in the calciner

  4. Safe handling of kilogram amounts of fuel-grade plutonium and of gram amounts of plutonium-238, americium-241 and curium-244

    International Nuclear Information System (INIS)

    Louwrier, K.P.; Richter, K.

    1976-01-01

    During the past 10 years about 600 glove-boxes have been installed at the Institute for Transuranium Elements at Karlsruhe. About 80% of these glove-boxes have been designed and equipped for handling 100-g to 1-kg amounts of 239 Pu containing 8-12% 240 Pu (low-exposure plutonium). A small proportion of the glove-boxes is equipped with additional shielding in the form of lead sheet or lead glass for work with recycled plutonium. In these glove-boxes gram-amounts of 241 Am have also been handled for preparation of Al-Am targets using tongs and additional shielding inside the glove-boxes themselves. Water- and lead-shielded glove-boxes equipped with telemanipulators have been installed for routine work with gram-amounts of 241 Am, 243 Am and 244 Cm. A prediction of the expected radiation dose for the personnel is difficult and only valid for a preparation procedure with well-defined preparation steps, owing to the fact that gamma dose-rates depend strongly upon proximity and source seize. Gamma radiation dose measurements during non-routine work for 241 Am target preparation showed that handling of gram amounts leads to a rather high irradiation dose for the personnel, despite lead or steel glove-box shielding and shielding within the glove-boxes. A direct glove-hand to americium contact must be avoided. For all glove-handling of materials with gamma radiation an irradiation control of the forearms of the personnel by, for example, thermoluminescence dosimeters is necessary. Routine handling of americium and curium should be executed with master-slave equipment behind neutron and gamma shielding. (author)

  5. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  6. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    International Nuclear Information System (INIS)

    JOHNSTON, D.C.

    2000-01-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed Loss on Ignition (LOI) equipment, including a model 1608FL CMTM Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform LOI testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an expected airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet G1 filter will be flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A

  7. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  8. Engineering study on conveyor system for HC-21C project

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1995-01-01

    The sludge stabilization process thermally stabilizes reactive plutonium bearing materials in a muffle furnace. This process is used to prepare the material for long term storage in the vaults. The process is conducted in Room 230A and 230B. The furnaces are located in glovebox HC-21C. Glovebox HC-21A is used for preparation of the charge and packaging of the high fired oxide. The feed for the process is located throughout the PRF and RMC-line gloveboxes, with over half of the feedstock currently being located in HA-23S. For readiness assessment, the sludge stabilization process at PFP was reviewed by the ALARA team to see how the process could be improved. One suggestion was made that the conveyor system be used to transfer items from HA-23S to the process glovebox (HA-21A) instead of sealing items in and out of the gloveboxes. The following discussion describes and compares past and current methods. In addition, actions are addressed that would need to be completed before the conveyor method could be used. The transportation of the feedstock to the process and all the different influencing factors will be examined to determine the best method. This assessment is being performed considering only the current campaign for HC-21C. However, there is a possibility that in the future, additional furnaces will be installed and further campaigns done

  9. Robotic requirements for plutonium handling automation

    International Nuclear Information System (INIS)

    Heywood, A.C.; Armantrout, G.A.

    1990-01-01

    While over 200,000 robots are in manufacturing service worldwide, only two are in use for the handling of plutonium in a glovebox. The difficulties of applying robotics to the glovebox environment include limited access for service and maintenance, radiation damage to electronics and insulators, and abrasion damage to bearings and sliding surfaces. The limited volume of the glovebox environment, and the need to handle heavy workloads, and the need to maximize work volume dictates the use of an overhead gantry system. This paper discusses how the application of such a system will require a robot with extensive safety features, a high degree of flexibility to perform a variety of tasks, and high reliability coupled with an easily serviced design. Substantial challenges exist in control system design, sensor and operator integration, and programming to achieve these goals

  10. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Asazuma, Shinichiro; Okada, Takashi; Kashiro, Kashio

    2004-01-01

    The glove-box dismantling facility in the Plutonium Fuel Production Facility is developed to dismantle after-service glove-boxes with remote-controlled devices such as an arm-type manipulator. An abrasive wheel cutter, which is used to size reduce the gloveboxes, generates sparks during operation. This dispersing spark was a problem from the fire prevention point of view. A suitable spark control measures for this operation were required. We developed panels to minimize spark dispersion, shields to prevent the income of sparks to the pre-filter, and incombustible pre-filters. The equipment was tested and effectiveness was confirmed. This report provides the results of these tests. (author)

  11. The Rocky Flats Decontamination and Decommissioning (D and D) Challenge

    International Nuclear Information System (INIS)

    Parker, A.M.; Mathis, B.W.; Stevens, J.L.

    1999-01-01

    At the Rocky Flats Environmental Technology Site (RFETS), the D and D task is enormous. Tons of plutonium has been processed over the years in approximately 1,000 gloveboxes, This represents nearly half of the gloveboxes in the DOE complex. In addition, more than a thousand tanks of various designs, with miles of associated piping, supported the processes. A wide variety of operations were performed at RFETS, including aqueous processing, pyrophoric processing, hydriding and dehydriding, metal casting, and machining of plutonium. Various materials have been handled at the facility, including plutonium, uranium, americium, tantalum, beryllium, chloride salts, and various acids and solvents. Significant amounts of plutonium residues remain in inaccessible equipment in the facilities, which create criticality safety issues. Some of the plutonium has been at RFETS for many years, and there is significant in-growth of americium, a decay product that emits gamma radiation, which potentially increases exposure to the workers. The size reduction portion of the D and D will be difficult and costly. The gloveboxes and tanks are constructed of stainless steel, frequently with lead shielding or double walls that hold water for neutron shielding. Window mountings, glove port rings, site gages, bolted flanges, and various penetrations reinforce the walls. Tanks may be filled with berated glass rings for criticality control, or double walled to hold the process fluid in the space between walls. The gloveboxes and tanks are generally tall enough to require workers to stand on scaffolding or platforms to perform D and D. Gloveboxes and tanks were individually constructed over a span of many years with evolving design specifications; therefore, most gloveboxes are unique and few tank designs are duplicated in more than pairs. This paper describes the cultural transition and technical approaches taken for D and D at RFETS to achieve 2006 closure. Specific emphasis is placed on

  12. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  13. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  14. Savannah River Site Bagless Transfer - What Have We Learned?

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    Conventional glovebox techniques for handling radioactive material include the use of plastic sleeving for ''bagging out'' material in order to remove it from the glovebox. This method has been used for many years, and has proven very effective when implemented by trained operators. One drawback to this method is that it is not suitable for removal of material for long-term storage, due to radiolytic decomposition of the plastic. In order to comply with long term storage criteria, engineers at the Savannah River Site developed an alternative process for removal of radioactive material known as ''bagless transfer''

  15. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    International Nuclear Information System (INIS)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with 65 Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor

  16. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  17. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  18. Simplification of an MCNP model designed for dose rate estimation

    Science.gov (United States)

    Laptev, Alexander; Perry, Robert

    2017-09-01

    A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  19. Simplification of an MCNP model designed for dose rate estimation

    Directory of Open Access Journals (Sweden)

    Laptev Alexander

    2017-01-01

    Full Text Available A study was made to investigate the methods of building a simplified MCNP model for radiological dose estimation. The research was done using an example of a complicated glovebox with extra shielding. The paper presents several different calculations for neutron and photon dose evaluations where glovebox elements were consecutively excluded from the MCNP model. The analysis indicated that to obtain a fast and reasonable estimation of dose, the model should be realistic in details that are close to the tally. Other details may be omitted.

  20. 19 mm ballistic range: a potpourri of techniques and recipes

    International Nuclear Information System (INIS)

    Carpluk, G.T.

    1975-01-01

    The expansion of ballistic gun range facilities at LLL has introduced state-of-the-art diagnostic techniques to glovebox-enclosed ballistic guns systems. These enclosed ballistic ranges are designed for the study of one-dimensional shock phenomena in extremely toxic material such as plutonium. The extension of state-of-the-art phtographic and interferometric diagnostic systems to glovebox-enclosed gun systems introduces new design boundaries and performance criteria on optical and mechanical components. A technique for experimentally evaluating design proposals is illustrated, and several specific examples (such as, target alignment, collateral shrapnel damage, and soft recovery) are discussed

  1. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  2. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-07-01

    The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc

  3. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc

  4. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  5. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  6. W-026 integrated engineering cold run operational test report for balance of plant (BOP)

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    This Cold Run test is designed to demonstrate the functionality of systems necessary to move waste drums throughout the plant using approved procedures, and the compatibility of these systems to function as an integrated process. This test excludes all internal functions of the gloveboxes. In the interest of efficiency and support of the facility schedule, the initial revision of the test (rev 0) was limited to the following: Receipt and storage of eight overpacked drums, four LLW and four TRU; Receipt, routing, and staging of eleven empty drums to the process area where they will be used later in this test; Receipt, processing, and shipping of two verification drums (Route 9); Receipt, processing, and shipping of two verification drums (Route 1). The above listed operations were tested using the rev 0 test document, through Section 5.4.25. The document was later revised to include movement of all staged drums to and from the LLW and TRU process and RWM gloveboxes. This testing was performed using Sections 5.5 though 5.11 of the rev 1 test document. The primary focus of this test is to prove the functionality of automatic operations for all mechanical and control processes listed. When necessary, the test demonstrates manual mode operations as well. Though the gloveboxes are listed, only waste and empty drum movement to, from, and between the gloveboxes was tested

  7. A sealed enclosure of the glove box type

    International Nuclear Information System (INIS)

    Moreels, Pierre.

    1974-01-01

    The invention relates to a sealed enclosure of the glove-box type. According to the invention, the box-frame comprises: angle-bars having a right-angled cross-section, sealing joints, tightening bars and fastening means [fr

  8. Evaluation of Need and Location for a Thermogravimetric Analyzer in the Plutonium Finishing Plant (PFP) Materials Stabilization

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    This plan provides an analysis for locating a TGA to support PFP Thermal Stabilization processes. The scope of this document is to evaluate the need for, and location for, installation of a TGA system as a supplement to the SFE equipment for moisture measurement in pure oxides. A location assessment for the SFE equipment was previously performed (HNF 1999). Based on that assessment, co-location of the TGA system with the SFE system is the preferred option. This would enable thermally stabilized material to be analyzed for residual moisture by either the TGA system or SFE system or both This evaluation considers glovebox locations in the PFP 234-52 Building Analytical Laboratory or operating areas for the installation of the TGA system and it's supporting equipment. This evaluation considers using existing gloveboxes along with an alternative of adding a new glovebox to existing process lines. The location evaluation criteria focuses mainly on glovebox size, with qualitative consideration of relative cost and schedule impacts associated with system implementation, radiological control, and interaction with other laboratory operations and processes. In addition, the possible co-location of a TGA furnace system with the SFE system was considered

  9. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    International Nuclear Information System (INIS)

    Pinson, Paul Arthur

    1998-01-01

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled ''TRU Waste Characterization Gloveboxes'', presented by Mr. David Duncan of ANL-W, describes these boxes

  10. Remote measurements of actinide species in aqueous solutions using an optical fiber photoacoustic spectrometer

    International Nuclear Information System (INIS)

    Russo, R.E.; Robouch, P.B.; Silva, R.J.

    1990-01-01

    A photoacoustic spectrometer, equipped with an 85 meter optical fiber, was used to perform absorption measurements of lanthanide and actinide samples, located in a glovebox. The spectrometer was tested using aqueous solutions of praseodymium and americium ions; the sensitivity for remote measurements was found to be similar to that achieved in the laboratory without the fiber. 14 refs., 3 figs

  11. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  12. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  13. WRAP Module 1 data management system (DMS) software design description (SDD)

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1996-01-01

    Revision 2 of the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS) Preliminary Software Design Description (PSDD) provides a high-level design description of the system. The WRAP 1 DMS is required to collect, store, and report data related to certification, tracking, packaging, repackaging, processing, and shipment of waste processed or stored at the WRAP 1 facility. The WRAP 1 DMS SDD is used as the primary medium for communication software design information. This release provides design descriptions for the following process modules produced under Phase 1 of the development effort: Receiving Drum or Box Containers Process Routing and Picklists; Waste Inventory by Location and/or Container Relationships; LLW Process Glovebox Facility Radiologic Material Inventory Check (partial); Shipping (partial production); Drum or Box NDE Operations; and Drum or Box NDA Operations Data Review (partial production). In addition, design descriptions are included for the following process modules scheduled for development under Phases 2 and 3: Activity Comment; LLW RWM Glovebox Sample Management; TRU Process Glovebox; TRU RWM Glovebox; and TRUPACT Processing. Detailed design descriptions for Reports and Facility Metrics have also been provided for in Revision 2 of this document

  14. Acceptance Test Report for the Modular Automation System (MAS) Manufactured by Honeywell Inc

    International Nuclear Information System (INIS)

    ANDERSON, D.L.

    2000-01-01

    This document details the performance of the acceptance test of the Honeywell MAS Control System for equipment to be installed in gloveboxes HA-20MB and HA-211 at a later date. Equipment that was anticipated included 6 stabilization furnaces, only three and their associated equipment were installed

  15. Process and device for leak rate measurement of an enclosure

    International Nuclear Information System (INIS)

    Giroux, J.

    1989-01-01

    The volume of a cavity, such as a cylinder and a piston, connected to the enclosure (glovebox or reactor containment shell) is varied to find back the previous pressure difference with the outside (positive or negative). Thermometers and a barometer are provided for eventual corrections [fr

  16. Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

    International Nuclear Information System (INIS)

    Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

    2005-07-01

    A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500degC. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests. (author)

  17. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  18. Fusion Canada issue 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig.

  19. Solid Freeform Fabrication Proceedings (9th) Held in Austin, Texas on August 10-12 1998

    Science.gov (United States)

    1998-08-01

    through a CaFl viewport in the LENS glovebox using a 12 bit digital camera equipped with a telephoto lens and 650nm broad band filter. A total of 2048 ...SLS of investment casting shells - rapidly to metal parts 5 References König, W. (1990) Fertigungsverfahren Band 4, Massivumformung, VDI -Verlag

  20. Preparation of uranium-plutonium mixed nitride pellets with high purity

    International Nuclear Information System (INIS)

    Arai, Yasuo; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1992-01-01

    Uranium-plutonium mixed nitride pellets have been prepared in the gloveboxes with high purity Ar gas atmosphere. Carbothermic reduction of the oxides in N 2 -H 2 mixed gas stream was adopted for synthesizing mixed nitride. Sintering was carried out in various conditions and the effect on the pellet characteristics was investigated. (author)

  1. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  2. Transuranic (TRU) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.; Dodge, Robert L.

    2011-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actinide Processing Group at TA-55 uses one-meter or longer glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glovebox as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste volume generation by almost 2½ times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  3. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  4. The Creative Application of Science, Technology and Work Force Innovations to the Decontamination and Decommissioning of the Plutonium Finishing Plant at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Charboneau, S.; Klos, B.; Heineman, R.; Skeels, B.; Hopkins, A.

    2006-01-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP

  5. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Dodge, Robert L.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  6. A facility to remotely assemble radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools

  7. Posting system

    International Nuclear Information System (INIS)

    Hackney, S.

    1983-01-01

    A system for posting hazardous materials into and out of an enclosure, such as a glovebox, through a port in a wall of the enclosure. The port is normally closed by a door which cooperates with a removable end closure, on a container or the like when the latter is presented to and secured at the port. The container is secured in position at the port by means of a rotatable coupling ring. A single interlock ensures that the door cannot be opened in the absence of a container at the port and also that the container cannot be removed from the port when the door is open. In place of the container, a glove secured to a rigid sleeve may be used to enable the operator to perform a work function within the glovebox. (author)

  8. Operation of the lithium pellet injector

    International Nuclear Information System (INIS)

    Khlopenkov, K.V.; Sudo, S.; Sergeev, V.Yu.

    1996-05-01

    A lithium pellet injection requires an accurate handling with lithium and special technique of loading the pellets. Thus, the technology for this has been developed based on the following conditions: 1) Because of chemical activity of lithium it is necessary to operate in a glove-box with the noble gas atmosphere (He, Ar, etc.). 2) A special procedure of replacing the glove-box atmosphere allows to achieve high purity of the noble gas. 3) When making the pellets it is better to keep the clean lithium in the liquid hexane so as to maintain lithium purity. 4) The pressure of the accelerating gas for Li pellets should be not less than 30 atm. (author)

  9. INERT Atmosphere confinement operability test procedure

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site

  10. Design integration of favorable geometry, structural support and containment

    International Nuclear Information System (INIS)

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment

  11. Guide to good practice: bagless transfer systems for use on radioactive facilities

    International Nuclear Information System (INIS)

    Lillyman, E.

    1988-09-01

    The development of the bagless posting system has improved the degree of safety possible during posting operations. It has provided the means of significantly reducing the large amounts of contaminated plastic waste created during bag posting and has provided the means of minimising personal exposure both in glovebox plutonium handling and in heavily shielded facilities. This report is intended to provide a guide to the types of bagless posting systems that are available both for glovebox and shielded facilities use. Included are references to developments which have utilised the bagless posting principle for sealing and utility change operations. Details of particular system types can be obtained from the identified design office or commercial organisation. (author)

  12. Tritiated ammonia formation

    International Nuclear Information System (INIS)

    Heung, L.K.

    1995-01-01

    When nitrogen was selected as the glovebox atmosphere for the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS), a concern was raised as to the possibility of tritiated ammonia formation in the gloveboxes. Experimental data were produced to study the tritiated ammonia formation rate in a tritium and nitrogen mixture. A rate equation that closely simulates the experimental data was developed. This rate equation can be used to calculate the formation of tritiated ammonia from different concentrations of tritium and nitrogen. The reaction of T 2 and N 2 to form NT 3 is a slow process, particularly when the tritium concentration is low. The reaction requires weeks or months to reach radiochemical equilibrium dependent on the concentrations of the reactants. 4 refs., 6 figs., 1 tab

  13. Contained x-ray diffraction goniometer for examination of radioactive materials

    International Nuclear Information System (INIS)

    Smith, P.K.; Osgood, B.C.; Blaser, D.E.; Howell, R.E.; Stuhler, H.; Stauver, J.

    1987-11-01

    Radioactive materials are being characterized for chemical form and certain physical properties with an x-ray diffraction goniometer customized for containment in a shielded alpha glovebox. A Siemens D500 goniometer was customized by Siemens to locate the associated electronics and x-ray generator outside the glovebox to minimize corrosion and facilitate maintenance. A graphite monochromator is used with a shielded scintillation detector to separate diffracted x-radiation from nuclear radiation. The diffraction system is computer automated for data acquisition and reduction. The facility is designed to handle primarily alpha- and beta-emitting samples with moderate neutron and gamma radiation. Samples containing plutonium, enriched uranium, and other transuranic elements are analyzed in support of site nuclear operations and development programs on nuclear waste, chemical separations, reactor fuels, and product forms

  14. Re-evaluation of Moisture Controls During ARIES Oxide Processing, Packaging and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Karmiol, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wayne, David Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-18

    DOE-STD-3013 [1] requires limiting the relative humidity (RH) in the glovebox during processing of the oxide product for specific types of plutonium oxides. This requirement is mandated in order to limit corrosion of the stainless steel containers by deliquescence of chloride salts if present in the PuO2. DOE-STD-3013 also specifies the need to limit and monitor internal pressure buildup in the 3013 containers due to the potential for the generation of free H2 and O2 gas from the radiolysis of surfaceadsorbed water. DOE-STD-3013 requires that the oxide sample taken for moisture content verification be representative of the stabilized material in the 3013 container. This is accomplished by either limiting the time between sampling and packaging, or by control of the glovebox relative humidity (%RH). This requirement ensures that the sample is not only representative, but also conservative from the standpoint of moisture content.

  15. A new waste minimization method for the determination of total nonhalogenated volatile organic compounds in TRU wastes

    International Nuclear Information System (INIS)

    Sandoval, W.; Quintana, B.D.; Ortega, L.

    1997-01-01

    As part of the technical support CST-12 provides for a wide variety of defense and nondefense programs within Los Alamos National Laboratory (LANL) and the Department of Energy (DOE) complex, new waste minimization technique is under development for radiological volatile organic analysis (Hot VOA). Currently all HOT VOA must be run in a glovebox. Several types of sample contain TRU radiological waste in the form of particulates. By prefiltering the samples through a 1.2 micron syringe and counting the radioactivity, it has been found that many of the samples can be analyzed outside a glovebox. In the present investigation, the types of Hot VOA samples that can take advantage of this new technique, the volume and types of waste reduced and the experimental parameters will be discussed. Overall, the radioactive waste generated is minimized

  16. System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference

    International Nuclear Information System (INIS)

    1996-01-01

    A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnacetrays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented

  17. Some recent changes in tritium handling and control at Mound Laboratory

    International Nuclear Information System (INIS)

    Rhinehammer, T.B.

    1976-01-01

    Significant reductions in tritium effluents and personnel exposures at Mound Laboratory have been made during the past 5 yr. Yearly effluents are less than 3 percent of former levels and personnel exposures have been reduced by a factor of 300. Several recent changes which have contributed to these reductions include lowered tritium levels in gloveboxes, and the efficiency and capacity of Mound's new effluent removal system. Personnel exposures have been reduced dramatically by changing to precious metal catalytic converters or oxidizers for use with the glovebox gas purification system. Unlike some former systems using hot copper or proprietary reactants for oxygen removal, a catalyst provides very effective removal of both oxygen and tritium. Both oxygen and tritium can be monitored and, if necessary, increments of hydrogen in argon can be added until the oxygen level is brought down to the desired value

  18. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    International Nuclear Information System (INIS)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented

  19. Decontamination of a plutonium laboratory after a contamination accident

    International Nuclear Information System (INIS)

    Francioni, W.M.; Haenni, F.

    1985-02-01

    On the 24th May 1983, a minor explosion occured in a glovebox at the hotlaboratories of the Swiss Federal Institute for Reactor Re-search (EIR). The incident occured during the evaporation of waste slurries associated with the Institute's mixed carbide fuel programme. It resulted in a breaching of the glovebox seals and in heavy contamination of the laboratory housing the box. In this report the problems of decontaminating the laboratory concerned are presented, especially those problems associated with re-contamination during the cleanup process. The experience gained from the decontamination exercise are discussed and details of the costs and resulting quantities of radwaste are also presented. The most important information concerning the incident are also related. (author)

  20. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  1. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    To facilitate disposal of transuranic (TRU) waste, Los Alamos National Laboratory designed and constructed the Size Reduction Facility (SRF) during the period 1977 to 1981. This report summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  2. JCSC_128_6_875_881_SI.doc

    Indian Academy of Sciences (India)

    A solution of primary or secondary amine (0.99 mmol) in toluene (1.0 mL) was added drop wise into the reaction mixure of carbodiimide (0.99 mmol) and DippBIAOZnCl2 (1) (0.276 mmol) to a 25 mL dry Schlenk flask inside the glovebox. The dark red reaction mixture was stirred for 12 h at 90˚C temperature. Solvent was ...

  3. Plutonium Finishing Plant (PFP) Generalized Geometry Holdup Calculations and Total Measurement Uncertainty

    International Nuclear Information System (INIS)

    Keele, B.D.

    2005-01-01

    A collimated portable gamma-ray detector will be used to quantify the plutonium content of items that can be approximated as a point, line, or area geometry with respect to the detector. These items can include ducts, piping, glove boxes, isolated equipment inside of gloveboxes, and HEPA filters. The Generalized Geometry Holdup (GGH) model is used for the reduction of counting data. This document specifies the calculations to reduce counting data into contained plutonium and the associated total measurement uncertainty.

  4. An X-ray diffractometer specimen holder for use with reactive and toxic materials

    International Nuclear Information System (INIS)

    Huyton, A.; Munden, A.B.

    1979-04-01

    An X-ray diffractometer specimen holder has been designed for analysis of reactive sodium compounds which will satisfactorily seal the sample from the atmosphere. The holder can be readily filled in a glove-box and is easily transported for mounting on a vertical Philips PW 1051 X-ray diffractometer. It is considered that this holder could also be applied to a wide range of other reactive and toxic materials, e.g. plutonium or its compounds. (author)

  5. A simple air-cooled reflux condenser for laboratory use

    International Nuclear Information System (INIS)

    Boult, K.A.

    1979-10-01

    This Memorandum describes the design of a simple compact air-cooled reflux condenser suitable for gloveboxes, cells or other locations where the provision of cooling water presents a problem. In a typical application the condenser functioned satisfactorily when used to condense water from a flask heated by a 100 watt mantle. There was no measurable loss of water from the boiling flask in 100 hours. (author)

  6. Device for cementing radioactive of toxic waste into barrels

    International Nuclear Information System (INIS)

    Hempelmann, W.; Waldenmeier, G.; Mathis, P.; Mathis, B.; Mathis, F.

    1987-01-01

    The plant consists of conventional means, such as through mixers and dosing and transport spirals, which are accommodated in a glovebox. The inactive additives cement and sand and the active materials evaporation concentrates and sludges are mixed by them, and are then filled into a waste barrel which is empty or already filled with solid waste. Liquid radioactive wastes are used to concrete over the solid waste. (DG) [de

  7. Development of a separatif microsystem for radionuclides analysis in nitric acid media

    OpenAIRE

    Losno , Marion

    2017-01-01

    Radionuclides analysis is a key point for nuclear waste management and nuclear material control. Several steps of sample modification have to be carried out before measurements in order to avoid any interferences and improve measurement precision. However those different steps are long, irradiant and difficult to achieve in gloveboxes. Moreover they produce liquid and solid waste. The goal of the study is to offer a new alternative to the use of solid phase extraction column for radionuclides...

  8. Tritium monitoring equipments for animal experiment facilities

    International Nuclear Information System (INIS)

    Sato, Hiroo

    1980-01-01

    Animal experiment facilities using tritium are described with reference to laws and regulations concerning radiological safety. Usual breeding facilities and surrounding conditions at non-radioactive animal experiments are summarized on feasible and effective designs of tritium monitors. Characteristics and desirable arrangements of various kinds of tritium monitors such as ionization chambers, proportional counters and liquid scintillation detectors are discussed from the standpoint of monitoring for room, glove-box, stack, liquid waste and personnel. (J.P.N.)

  9. Solution In-Line Alpha Counter (SILAC) Instruction Manual-Version 4.00

    International Nuclear Information System (INIS)

    Alferink, Steven M.; Farnham, Joel E.; Fowler, Malcolm M.; Wong, Amy S.

    2002-01-01

    The Solution In-Line Alpha Counter (SILAC) provides near real-time alpha activity measurements of aqueous solutions in gloveboxes located in the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The SILAC detector and its interface software were first developed by Joel Farnham at LANL [1]. This instruction manual describes the features of the SILAC interface software and contains the schematic and fabrication instructions for the detector

  10. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  11. Resolution of USQ regarding source term in the 232-Z Waste Incinerator Building

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1995-09-01

    The 232-Z Waste Incinerator at the Hanford Plutonium Finishing Plant (PFP) was used to incinerate plutonium-bearing combustible materials generated during normal plant operations. Nondestructive (NDA) measurements performed after the incinerator ceased operations indicated high plutonium loadings in exhaust ductwork near the incinerator glovebox, while the incinerator was found to have only low quantities. Measurements, following a campaign to remove some of the ductwork, resulted in markedly higher assay value for the incinerator glovebox itself. Subsequent assays confirmed the most recent results and pointed to a potential further underestimation of the holdup, in part because of attenuation due to fire brick, which could not be seen easily and which had been reported to not be present. NaI detector based measurements were used to map the deposits. Extended count times, using high resolution Ge detectors helped estimate the isotopic composition of the plutonium and quantify the deposits. Experiments were performed using a Ge detector to obtain adequate corrections for the high attenuation of the incinerator glovebox. Several neutron detectors and detector configurations were employed to understand and quantify the neutron flux. Due to the disparity that was anticipated to occur between the gamma ray and neutron assay results, radiation modeling was used to try to reconcile the divergent results. This was a third aspect of the team's effort, utilizing computer modeling to resolve discrepancies between measurement methods

  12. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ueda, Masaya; Akasaka, Takayuki; Noura, Takeshi.

    1996-01-01

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  13. HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off

    International Nuclear Information System (INIS)

    Hallman, D.F.

    2003-01-01

    A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating

  14. Resolution of the 15N balance enigma?

    International Nuclear Information System (INIS)

    Clough, T.J.; Sherlock, R.R.; Cameron, K.C.; Stevens, R.J.; Laughlin, R.J.; Mueller, C.

    2001-01-01

    The enigma of soil nitrogen balance sheets has been discussed for over 40 years. Many reasons have been considered for the incomplete recovery of 15 N applied to soils, including sampling uncertainty, gaseous N losses from plants, and entrapment of soil gases. The entrapment of soil gases has been well documented for rice paddy and marshy soils but little or no work appears to have been done to determine entrapment in drained pasture soils. In this study 15 N-labelled nitrate was applied to a soil core in a gas-tight glovebox. Water was applied, inducing drainage, which was immediately collected. Dinitrogen and N -2 were determined in the flux through the soil surface, and in the gases released into the glovebox as a result of irrigation or physical destruction of the core. Other components of the N balance were also measured, including soil inorganic-N and organic-N. Quantitative recovery of the applied 15 N was achieved when the experiment was terminated 484 h after the 15 N-labelled material was applied. Nearly 23% of the 15 N was recovered in the glovebox atmosphere as N 2 and N 2 O due to diffusion from the base of the soil core, convective flow after irrigation, and destructive soil sampling. This 15 N would normally be unaccounted for using the sampling methodology typically employed in 15 N recovery experiments. Copyright (2001) CSIRO Publishing

  15. Pu abundances, concentrations, and isotopics by x- and gamma-ray spectrometry assay techniques

    International Nuclear Information System (INIS)

    Camp, D.C.; Gunnink, R.; Ruhter, W.D.; Prindle, A.L.; Gomes, R.J.

    1986-01-01

    Two x- and gamma-ray systems were recently installed at-line in gloveboxes and will measure Pu solution concentrations from 5 to 105 g/L. These NDA technique, developed and refined over the past decade, are now used domestically and internationally for nuclear material process monitoring and accountability needs. In off- and at-line installations, they can measure solution concentrations to 0.2%. The K-XRFA systems use a transmission source to correct for solution density. The gamma-ray systems use peaks from 59- to 208-keV to determine solution concentrations and relative isotopics. A Pu check source monitors system stability. These two NDA techniques can be combined to form a new, NDA measurement methodology. With the instrument located outside of a glovebox, both relative Pu isotopics and absolute Pu abundances of a sample located inside a glovebox can be measured. The new technique works with either single or dual source excitation; the former for a detector 6 to 20 cm away with no geometric corrections needed; the latter requires geometric corrections or source movement if the sample cannot be measured at the calibration distance. 4 refs., 7 figs., 2 tabs

  16. SEM facility for examination of reactive and radioactive materials

    International Nuclear Information System (INIS)

    Downs, G.L.; Tucker, P.A.

    1977-01-01

    A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. a glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate director and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive x-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu. (Auth.)

  17. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  18. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure

  19. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  20. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  1. Use of urethane foam in preparing for decontamination and decommissioning of radioactive facilities

    International Nuclear Information System (INIS)

    1981-01-01

    Portable urethane foam generating equipment has been in use for 15 to 20 years for a large number of applications, such as roof systems, tank insulation, and building insulation. Still another industrial application is its use in the decontamination and decommissioning of radioactive facilities at Mound Facility. The major problems encountered with urethane foams were with the packaging and stabilization procedures. The operation for spraying the foam on interior surfaces and equipment involved getting the gun inside without opening up the interior to the outside environment. A Gusmer FF proportioner and Model D spray gun was used for this operation. The gun was modified so that the trigger could be remotely located to facilitate its entry through a glovebox gloveport opening. The Model D gun has an air cap to blow foam off the tip of the gun. This cap was used to hold a plastic bag in place around the gun. The plastic bag is then put on a glove port and fastened securely. Urethane spray is applied on all exposed surfaces. This assures that all residual material is fixed for shipment. This simplifies cleaning operations as there is no need to remove the last trace of plutonium and results in a considerable shortening of the time required to prepare the gloveboxes. With the interior foamed, the gloveboxes are moved to the loading and packaging areas. Urethane foams are used to fill in the voids in our final shipping container. Radioactive waste materials are segregated according to the level of radioactive material present. One category is low level or low specific activity (LSA) and the other high level or Transuranic (TRU). Foam is used in TRU packages as packaging material to stabilize the loads and to help cushion against shock in transit on truck or railcar

  2. Decommissioning the Belgonucleaire Dessel MOX plant: presentation of the project and situation end august 2013

    Energy Technology Data Exchange (ETDEWEB)

    Cuchet, J.M. [TRACTEBEL ENGINEERING, Avenue Ariane, 7, B1200 Brussels (Belgium); Libon, H.; Verheyen, C. [BELGONUCLEAIRE S.A. / N.V. Europalaan, 20, B2480 Dessel (Belgium); Bily, J. [STUDSVIK GmbH, Karlsruher Strasse, 20, D75179 Pforzheim,(Germany); Boden, S. [SCK-CEN, Boeretang, 200, B2400 Mol (Belgium); Joffroy, F. [TECNUBEL N.V., Zandbergen, 1, B2480 Dessel (Belgium); Walthery, R. [BELGOPROCESS, Gravenstraat, 73, B2480 Dessel (Belgium)

    2013-07-01

    Belgonucleaire has been operating the Dessel MOX plant at an industrial scale between 1986 and 2006. During this period, 40 metric tons of plutonium (HM) have been processed into 90 reloads of MOX fuel for commercial light water reactors. The decision to stop the production in 2006 and to decommission the MOX plant was the result of the shrinkage of the MOX fuel market due to political and commercial factors. As a significant part of the decommissioning project of the Dessel MOX plant, about 170 medium-sized glove-boxes and about 1.200 metric tons of structure and equipment outside the glove-boxes are planned for dismantling. The license for the dismantling of the MOX plant was granted by Royal Decree in 2008 and the dismantling started in March 2009. The dismantling works are carried out by an integrated organization under leadership and responsibility of Belgonucleaire; this organization includes 3 main contractors, namely Tecnubel N.V., the THV ('Tijdelijke HandelsVereniging') Belgoprocess / SCK-CEN and Studsvik GmbH and Tractebel Engineering as project manager. In this paper, after having described the main characteristics of the project, the authors review the different organizational and technical options considered for the decommissioning of the glove-boxes; thereafter the main decision criteria (qualification of personnel and of processes, confinement, cutting techniques and radiation protection, safety aspects, alpha-bearing waste management) are analyzed as well. Finally the progress, the feedback and the lessons learned at the end of August 2013 are presented, giving the principal's and contractors point of view. (authors)

  3. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  4. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  5. Apparatus for posting materials into and out of enclosures

    International Nuclear Information System (INIS)

    Sperinck, W.A.; Ashcroft, K.C.

    1986-01-01

    The patent concerns an apparatus for posting toxic or radioactive materials into and out of a high integrity enclosure, such as a glovebox, through a port in a wall of the enclosure. The apparatus comprises a container for the materials, with a lid which is engageable with a door for the port, and the container is supported in a cradle. The door cannot be opened in the absence of a container in the cradle, and the container cannot be removed when the door and lid unit is away from the port. (UK)

  6. A view from the nuclear fuel reprocessing industry

    International Nuclear Information System (INIS)

    Smith, R.; Hartley, G.

    1982-01-01

    Radiological protection in UK nuclear industry is discussed, with special reference to British Nuclear Fuels Ltd. The following aspects are covered: historical introduction, relevant legislation and general principles; radioactive decay processes (fission, fission products, radio-isotopes, ionising radiations, neutrons); risk assessment (historical, biological radiation effects; ICRP recommendations, dose limits); cost effectiveness of protection; plant design principles; examples of containment (shielding, ventilation and contamination control required for various types of radioactive materials, e.g. fission products, plutonium, depleted uranium; fuel rod storage ponds and decanning caves; fission products at dissolution stage; glovebox handling of Pu operations; critical assembly of fissile materials; surface contamination control; monitoring radiation levels). (U.K.)

  7. MOX Fabrication Isolation Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Eric L. Shaber; Bradley J Schrader

    2005-08-01

    This document provides a technical position on the preferred level of isolation to fabricate demonstration quantities of mixed oxide transmutation fuels. The Advanced Fuel Cycle Initiative should design and construct automated glovebox fabrication lines for this purpose. This level of isolation adequately protects the health and safety of workers and the general public for all mixed oxide (and other transmutation fuel) manufacturing efforts while retaining flexibility, allowing parallel development and setup, and minimizing capital expense. The basis regulations, issues, and advantages/disadvantages of five potential forms of isolation are summarized here as justification for selection of the preferred technical position.

  8. Spectrochemical determination of tantalum in plutonium metal using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Fadeff, S.K.; Morris, W.F.

    1983-01-01

    Tantalum is determined by direct current plasma spectrometry after separation of plutonium from solution as PuF 3 . After centrifugation of the PuF 3 precipitate, a low level of plutonium remains in solution in sufficient quantity to cause spectral interferences. It is necessary to determine the plutonium by dc plasma spectrometry and apply a correction to determine low tantalum concentrations with good accuracy and precision. Tantalum can be determined down to 0.4 ppM in solution with a relative standard deviation of 10 percent. Better precision can be achieved at higher concentrations. The procedure is simple and convenient for glovebox work. 5 references, 1 figure, 1 table

  9. Protection, transfer, and maintenance of the MA23 bilateral servomanipulator

    International Nuclear Information System (INIS)

    Vertut, J.; Marchal, P.; Germond, J.C.; Francois, D.; Brossard, J.P.

    1978-01-01

    After a successful plasma torch cutting test, use of the MA23 in a large cell for maintenance in the new reprocessing plant is anticipated. A protective self-ventilated caisson with a boot is used. The arm is transferred into a decontamination-shielded box, then into a repair glove box. The caisson is repaired in a similar parallel line that has two connecting repair boxes. The recent two-operator glove-box recabling test showed the feasibility of this concept. Total labor was twice that of factory cabling labor. Arm improvement and tooling are being designed. A full, double-maintenance line mockup will be tested in mid-1979

  10. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  11. Overview of tritium systems for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Gruetzmacher, K.M.; Fleming, R.B.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is being designed at several laboratories to produce and study fully ignited plasma discharges. The tritium systems which will be needed for CIT include fueling systems and radiation monitoring and safety systems. Design of the tritium systems is the responsibility of the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Major new tritium systems for CIT include a pellet injector, an air detritiation system and a glovebox atmosphere detritiation system. The pellet injector is being developed at Oak Ridge National Laboratory. 7 refs., 2 figs

  12. System design description PFP thermal stabilization

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1998-01-01

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides

  13. STS-95 Day 02 Highlights

    Science.gov (United States)

    1998-01-01

    On this second day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen preparing a glovebox device in the middeck area of Discovery, an enclosed research facility that will support numerous science investigations throughout the mission. Payload Specialist John Glenn, activates the Microgravity Encapsulation Process experiment (MEPS). This experiment will study the formation of capsules containing two kinds of anti-tumor drugs that could be delivered directly to solid tumors with applications for future chemotherapy treatments and the pharmaceutical industry.

  14. Setting-up of a direct reading emission spectrometer and its adaptation for plutonium handling

    International Nuclear Information System (INIS)

    Page, A.G.; Godbole, S.V.; Kulkarni, M.J.; Porwal, N.K.; Thulasidas, S.K.; Sastry, M.D.; Srinivasan, P.S.

    1986-01-01

    A Jarrell-Ash 750 AtomComp 1100 series direct reading emission spectrometer was set up and its performance features were checked with regard to analysis of uranium-based samples using d.c. arc/inductively coupled argon plasma excitation techniques. The instrument has been subsequently modified to enable handling of plutonium-based samples. The modifications include building up of a specially designed glove-box around the excitation sources and consequent changes in the electro-mechanical controls associated with them. The modified system was extensively used for the trace metal assay of FBTR fuel sample. (author)

  15. A preview of a microgravity laser light scattering instrument

    Science.gov (United States)

    Meyer, W. V.; Ansari, R. R.

    1991-01-01

    The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.

  16. Field study of alpha characterization of a D ampersand D site using long-range alpha detectors

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Allander, K.S.; Bounds, J.A.; Koster, J.E.; MacArthur, D.W.; Sprouse, L.L.; Stout, D.; Vaccarella, J.A.; Vu, T.Q.

    1994-01-01

    A successful and cost-effective D ampersand D effort relies upon an accurate, real-time, in situ, and non-destructive method of characterization of contamination both before and after the decontamination process. Detector systems based on long-range alpha detection (LRAD) technology meet these criteria. Currently, LANL is in the process of investigating, designing, or building various surface monitors, various pipe monitors, and glove-box monitors. This paper describes the field studies conducted using detectors based on LRAD technology

  17. International Space Station Crew Restraint Design

    Science.gov (United States)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  18. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat

    2015-08-17

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  19. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  20. DYMAC digital electronic balance

    International Nuclear Information System (INIS)

    Stephens, M.M.

    1980-06-01

    The Dynamic Materials Accountability (DYMAC) System at LASL integrates nondestructive assay (NDA) instruments with interactive data-processing equipment to provide near-real-time accountability of the nuclear material in the LASL Plutonium Processing Facility. The most widely used NDA instrument in the system is the DYMAC digital electronic balance. The DYMAC balance is a commercial instrument that has been modified at LASL for weighing material in gloveboxes and for transmitting the weight data directly to a central computer. This manual describes the balance components, details the LASL modifications, reviews a DYMAC measurement control program that monitors balance performance, and provides instructions for balance operation and maintenance

  1. Analysis of tritium mission FMEF/FAA fuel handling accidents

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1997-11-18

    The Fuels Material Examination Facility/Fuel Assembly Area is proposed to be used for fabrication of mixed oxide fuel to support the Fast Flux Test Facility (FFTF) tritium/medical isotope mission. The plutonium isotope mix for the new mission is different than that analyzed in the FMEF safety analysis report. A reanalysis was performed of three representative accidents for the revised plutonium mix to determine the impact on the safety analysis. Current versions computer codes and meterology data files were used for the analysis. The revised accidents were a criticality, an explosion in a glovebox, and a tornado. The analysis concluded that risk guidelines were met with the revised plutonium mix.

  2. Methods to estimate equipment and materials that are candidates for removal during the decontamination of fuel processing facilities

    International Nuclear Information System (INIS)

    Duncan, D.R.; Valero, O.J.; Hyre, R.A.; Pottmeyer, J.A.; Millar, J.S.; Reddick, J.A.

    1995-02-01

    The methodology presented in this report provides a model for estimating the volume and types of waste expected from the removal of equipment and other materials during Decontamination and Decommissioning (D and D) of canyon-type fuel reprocessing facilities. This methodology offers a rough estimation technique based on a comparative analysis for a similar, previously studied, reprocessing facility. This approach is especially useful as a planning tool to save time and money while preparing for final D and D. The basic methodology described here can be extended for use at other types of facilities, such as glovebox or reactor facilities

  3. Decommissioning of a tritium-contaminated laboratory

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1982-01-01

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory, constructed in 1953, was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation

  4. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  5. High-temperature spectroscopy for nuclear waste applications

    International Nuclear Information System (INIS)

    Grant, P.M.; Robouch, P.; Torres, R.A.; Silva, R.J.

    1991-10-01

    Instrumentation has been developed to perform uv-vis-nir absorbance measurements remotely and at elevated temperatures and pressures. Fiber-optic spectroscopy permits the interrogation of radioactive species within a glovebox enclosure at temperatures ranging from ambient to >100 degree C. Spectral shifts as a function of metal- ligand coordination are used to compute thermodynamic free energies of reaction by matrix regression analysis. Pr 3+ serves as a convenient analog for trivalent actinides without attendant radioactivity hazards, and recent results obtained from 20 degree--95 degree C with the Pr-acetate complexation system are presented. Preliminary experimentation on Am(3) hydrolysis is also described. 16 refs., 1 tab

  6. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  7. CSER 00-001 Criticality Safety Evaluation Report for Cementation Operations at the PFP

    Energy Technology Data Exchange (ETDEWEB)

    DOBBIN, K.D.

    2000-04-18

    Glovebox HA-20MB is located in Room 235B of the 234-5Z Building at the Plutonium Finishing Plant. This enclosure contains mixers, mixer bowls, a crusher unit, an isolated inoperable conveyor unit, plutonium residue feed cans, cemented cans, and a feedwater container. Plutonium residue, not conducive to other forms of stabilization, is prepared for storage and ultimate disposal by cementation. The feed residue material cans can have plutonium contents of only a few grams or up to 200 grams. This evaluation accommodates this wide range of container fissile concentrations.

  8. The Institute of Radiochemistry, University of Liege, (Sart-Tilman), Belgium

    International Nuclear Information System (INIS)

    Duyckaerts, G.

    1977-01-01

    The Institute of Radiochemistry, erected in the new Sart-Tilman campus of the University of Liege has been especially planned and equipped for research on actinide chemistry. The two-floor building is well adapted for work in glove-boxes and well ventilated hoods with highly radioactive α-emitters. For the last ten years, research has been carried out in the following directions: synthesis and structural analysis of actinide compounds, thermodynamic evaluations on actinide compounds by microcalorimetry, electrochemistry of actinides in fused salts, redox properties of actinides in fused salts by absorption spectrophotometry, solution chemistry of actinides by solvent extraction, ion exchange and electrochemistry. (T.G.)

  9. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  10. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat; Parveen, Shehla; Emwas, Abdul-Hamid M.; Sioud, Salim; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2015-01-01

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  11. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  12. Transfer arrangement for sealable enclosure

    International Nuclear Information System (INIS)

    Broxup, K.H.

    1991-01-01

    An arrangement for transferring items to or from e.g. a glovebox, in a closed moveable container. The glovebox port has a door having a non-rotatable outer portion and a rotatable inner portion. The container has a lid having a non-rotatable outer portion and a rotatable inner portion, the outer portion having a thin lip. The port has a thin lip which can be aligned with the lip of the lid. The outer portion of the door retains a peripheral sealing ring and the rim of the container retains a similar ring which can sandwich and bridge the two lips. The container is attached to the port by a rotatable locking ring. Via an externally rotatable and slidable shaft, lined at its inner end to the inner portion of the door, the latter is rotatable to disengage the door from the port, couple this inner portion to that of the lid, disengage the lid from the container, and move the coupled door and lid back and laterally away from the port, and vice versa. (author)

  13. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  14. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  15. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  16. Key points for the design of Mox facilities

    International Nuclear Information System (INIS)

    Ducroux, R.; Gaiffe, L.; Dumond, S.; Cret, L.

    1998-01-01

    The design of a MOX fuel fabrication facility involves specific technical difficulties: - Process aspects: for example, its is necessary to meet the stringent requirements on the end products, while handling large quantities of powders and pellets; - Safety aspects: for example, containment of radioactive materials requires to use gloveboxes, to design process equipment so as to limit dispersion to the gloveboxes and to use systems for dust collection. - Technological aspects: for example, it is necessary to take into account maintenance early in the design, in order to lower the operation costs and lower the dose to the personnel. - Quality control and information systems: for example, it is necessary to be able to trace all the different products (powder lots, pellets, rods, assemblies). The design methods and organization set-up by COGEMA enables to master these technical difficulties during the different design steps and to obtain a MOX fabrication facility at the best performance versus cost compromise. These design methods rely mainly on: - taking into account all the different above mentioned constraints from the very beginning of the design process (by using the know-how resulting from experience feed-back, and also specific design tools developed by COGEMA and SGN); - launching a technical development and testing program at the beginning of the project and incorporating its results in the course of the design. (author)

  17. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000 degrees C (900 to 1800 degrees F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement

  18. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  19. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    Science.gov (United States)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  20. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  1. Task analysis: a detailed example of stepping up from JSA

    International Nuclear Information System (INIS)

    Banks, W.W.; Paramore, B.A.; Buys, J.R.

    1984-10-01

    This paper discusses a pilot task analysis of operations in a proposed facility for the cutting and packaging of radioactively contaminated gloveboxes, for long-term storage or burial. The objective was to demonstrate how task analysis may be used as a tool for planning and risk management. Two specific products were generated - preliminary operating procedures and training requirements. The task data base, procedures list and training requirements developed were intended as first order categorizations. The analysis was limited to tasks that will be performed within the boundaries of the operational facility and the associated load-out area. The analysis documents tasks to be performed by D and D (Decontamination and Decommissioning) Workers. However, the analysis included all tasks identified as an integral part of glovebox processing within the facility. Thus tasks involving Radiation Protection Technicians (RPTs) are included. Based on hazard assessments, it is planned that at least two RPTs will be assigned full-time to the facility, so they may be considered part of its crew. Similarly, supervisory/administrative tasks are included where they were determined to be directly part of process sequences, such as obtaining appropriate certification. 11 tables

  2. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  3. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  4. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  5. Demonstration and evaluation of the CORPEX trademark Nuclear Decontamination Process, Technical task plan No. SR152005. Final Report

    International Nuclear Information System (INIS)

    May, C.G.

    1997-01-01

    In June, 1995, the Decontamination and Decommissioning Focus Area funded a demonstration of the CORPEX Nuclear Decontamination Process in an Old Metallography Laboratory glovebox at the Savannah River Site. The objective of the demonstration was to prove the effectiveness of a new and innovative technology that would reduce the risks associated with future cleanups of plutonium-238 contaminated equipment in the DOE complex. After facility and vendor preparations in support of the demonstration, Westinghouse Savannah River Company (WSRC) was informed by the vendor that the chemistry proposed for use in the decontamination process was not effective on sintered plutonium, which was the form of plutonium in the selected glovebox. After further technical evaluation, the demonstration was canceled. This report describes the work performed in support of the demonstration and the present status of the project. The CORPEX chemical process is a nondestructive cleaning method that removes only the contaminant and the matrix that fixed the contaminant to the surface. It does not damage the substrate. The cleaning agent is destroyed by the addition of proprietary oxidizers, leaving water, carbon dioxide and nitrogen gases, and a sludge as waste

  6. Basis Document for Sludge Stabilization

    CERN Document Server

    Risenmay, H R

    2001-01-01

    DOE-RL recently issued Safety Evaluation Report (SER) amendments to the PFP Final Safety Analysis Report, HNF-SD-CP-SAR-021 Rev. 2. The Justification for Continued Operations for 2736-ZB and plutonium oxides in BTCs Safety Basis change (letter DOE-RL ABD-074) was approved by one of the SERs. Also approved by SER was the revised accident analysis for Magnesium Hydroxide Precipitation Process (MHPP) gloveboxes HC-230C-3 and HC-230C-5 containing increased glovebox inventories and corresponding increases in seismic release consequence. Numerous implementing documents require revision and issuance to implement the SER approvals. The SER plutonium oxides into BTCs specifically limited the SER scope to ''pure or clean oxides, i.e., 85 wt% or grater Pu, in this feed change'' (SER Section 3.0 Base Information paragraph 4 [page 11]). Comprehensive USQ Evaluation PFP-2001-12 addressed the packaging of Pu alloy metals into BTCs, and the packaging of Pu alloy oxides (powders) into food pack cans and determined that the ac...

  7. Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi

    2018-05-16

    High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

  8. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  9. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  10. Decommissioning of the Plutonium Purification and Residues Recovery Plant

    International Nuclear Information System (INIS)

    Hunt, J. G.

    2006-01-01

    British Nuclear Group is continuing to build on BNFL's successful record of decommissioning redundant nuclear facilities. Challenging radiological conditions and complex technical problems have been overcome to reduce the hazard associated with the UK's nuclear legacy. The former Plutonium Purification and Residues Recovery Plant at Sellafield operated from 1954 through to 1987. This is the only plant to have experienced an uncontrolled criticality incident in the UK, in August 1970 during operations. The plant comprised of two mirror image cells approximately 6.5 m x 13.5 m x 16 m, constructed of bare brick. The cell structure provided secondary containment, the process vessels and pipes within the cell providing primary containment. The plant utilized a solvent extraction process to purify the plutonium stream. Surrounding the two process cells to the north, east and south is an annulus area that housed the operational control panels, feed and sample glove-boxes, and ancillary equipment. The building was ventilated by an unfiltered extract on the process cells and a filtered extract from the vessels and glove-boxes. During the long operational lifetime of the plant, the primary containment deteriorated to such an extent that the process cells eventually became the main containment, with levels of radioactive contamination in excess of 14,256 pCi alpha. This led to significant aerial effluent discharges towards the end of the plant's operational life and onerous working conditions during decommissioning. Implementation of a phased decommissioning strategy from 1991 has led to: - A reduction of approximately 60% in the Sellafield site's aerial alpha discharges following installation of a new ventilation system, - Removal of 12 plutonium contaminated glove-boxes and sample cabinets from the building, - Disposal of the approximately 500 m 2 of asbestos building cladding, - Removal of over 90% of the active pipes and vessels from the highly contaminated process cells

  11. Integrated monitoring and surveillance system demonstration project: Phase I accomplishments

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Walters, B.G.; Crawford, D.C.

    1997-01-01

    The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables

  12. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  13. Bus bar electrical feedthrough for electrorefiner system

    Science.gov (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  14. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams, with DOE approval for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  15. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    International Nuclear Information System (INIS)

    Lewandowski, E.F.; Peterson, L.L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life

  16. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  17. Hydrothermal processing of radioactive combustible waste

    International Nuclear Information System (INIS)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-01-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO 2 and H 2 O, with 30 wt.% H 2 O 2 as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture

  18. Getting the most D and D ''know how'' before starting to plan your decommissioning project

    International Nuclear Information System (INIS)

    Boing, L. E.

    1999-01-01

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R and D program. Currently the D and D of the CP-5 research reactor is underway as is planning for several other future D and D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D and D technologies to ascertain their value for use in future D and D projects

  19. Study of the potential use of carburized niobium in plutonium processing

    International Nuclear Information System (INIS)

    Johnson, M.J.

    1998-01-01

    Carburized refractory metals, especially tantalum, have been shown to possess properties useful for application as hardware in the plutonium-processing environment. These applications are driven in part by a desire to minimize the production of radioactively contaminated waste. The current use of ceramics as containment materials for Pu processing are not ideal due to the short service life of the hardware, placing an additional burden on the contaminated waste stream. Carburized niobium has been examined for use as an improved hardware material. The Nb-C system is analogous to the previously studied Ta-C system. The low density of niobium relative to tantalum will improve the ergonomics of the glovebox environment. The choice of the Nb-C system will be supported by a thermodynamic and kinetic analysis. Preliminary results of the processing investigation also will be presented

  20. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  1. Phase Equilibria in the Bi-In-Sn-Zn System. Thermal Analysis vs. Calculations

    Directory of Open Access Journals (Sweden)

    Dębski A.

    2017-12-01

    Full Text Available With the use of the differential thermal analysis (DTA, studies of the phase transitions were conducted for 90 of alloys from the quaternary Bi-In-Sn-Zn system and for the constant ratio of Bi:In and Bi:Sn. The studies were conducted for the alloys prepared from the purity metals (Bi, In, Sn, Zn = 99.999 mas. % by way of melting in a graphite crucible in a glove-box filled with Ar, in which the impurities level was less than 0.1 ppm. After melting and thorough mixing, the liquid alloys were poured out into a graphite test mold. The phase transition temperature data obtained from the DTA investigations were next confronted with those determined from the calculations based on the binary and ternary optimized thermodynamic parameters available in the literature. It was found that the experimental and the calculated phase transition temperatures were in good agreement.

  2. New Technologies Being Developed for the Thermophoretic Sampling of Smoke Particulates in Microgravity

    Science.gov (United States)

    Sheredy, William A.

    2003-01-01

    The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.

  3. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  4. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  5. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  6. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  7. Experience gained with the Synroc demonstration plant at ANSTO and its relevance to plutonium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Jostsons, A.; Ridal, A.; Mercer, D.J.; Vance, E.R.L. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1996-05-01

    The Synroc Demonstration Plant (SDP) was designed and constructed at Lucas Heights to demonstrate the feasibility of Synroc production on a commercial scale (10 kg/hr) with simulated Purex liquid HLW. Since commissioning of the SDP in 1987, over 6000 kg of Synroc has been fabricated with a range of feeds and waste loadings. The SDP utilises uniaxial hot-pressing to consolidate Synroc. Pressureless sintering and hot-isostatic pressing have also been studied at smaller scales. The results of this extensive process development have been incorporated in a conceptual design for a radioactive plant to condition HLW from a reprocessing plant with a capacity to treat 800 tpa of spent LWR fuel. Synroic containing TRU, including Pu, and fission products has been fabricated and characterised in a glove-box facility and hot cells, respectively. The extensive experience in processing of Synroc over the past 15 years is summarised and its relevance to immobilization of surplus plutonium is discussed.

  8. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  9. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  10. Separation of Gram-amounts of Lanthanides by Cation Exchange, using an aqueous Solution of α-Hydroxyisobutyric Acid as an Eluant. RCN Report

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Stigt, Ch.A. van; Zonderhuis, J.

    1970-09-01

    This report describes a procedure developed for the mutual separation of gram quantities of the lanthanides present in solutions of thermal fission products. A second aim was the purification of ''crude'' 147 Pm-sources. The method is based on column chromatography on Dowex - 50 W (50 - 100 mesh) with an aqueous solution of a-hydroxyisobutyric acid (AHIB) as an eluant. Due to the radioactivity of the samples, the process has to be performed in a shielded glove-box. Consequently, a considerably economy was exercised with respect to the volume of the apparatus. The process was successfully tested with labeled artificial mixtures of 20 grammes of the rare earths involved. The method has been applied to the purification of batches of ''crude'' 147 Pm. (author)

  11. ''FIXBOX'' - a new technique for the reliable conditioning of plutonium waste solutions

    International Nuclear Information System (INIS)

    Bruchertseifer, H.; Sommer, E.; Steinemann, M.; Bart, G.

    1994-01-01

    ''FIXBOX'' - A new technique and facility for the conditioning of plutonium waste solutions has been developed and brought into operation in the Hot-laboratory at PSI, for the solidification of the waste from the research programmes. The facility is situated in glove-boxes for handling alpha activity and gamma-shielded for conditioning of fission product-containing waste. This report gives a brief description of the FIXBOX facility, the procedure and the first results of the cementation of plutonium waste solutions. As a result of this solidification, the actinide waste is homogeneous and strongly bound in the cement. The presence of gluconic acid and other complexing agents in the waste solution will not disturb this process. (author) figs., tabs., refs

  12. Integrated Monitoring and Surveillance System demonstration project. Phase 2 accomplishments

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Walters, B.G.; Singleterry, R.C.

    1997-01-01

    The paper presents the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase 2 efforts. the rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include further development of the data acquisition system and procurement of necessary hardware/software, options and associated costs for plutonium canning systems and gloveboxes, initiation of facility modifications, determination of possibly affected facility documentation, results from sensor system trade study, and preliminary storage configuration designs. Resources invested during Phase 1 and Phase 2 are summarized and budgetary requirements for completion of Phase 3 presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase 2 deliverables

  13. Remote engineering progress report, January-December 1982

    International Nuclear Information System (INIS)

    Brown, C.M.

    1984-01-01

    Discussed briefly are the objectives, prior work (if any), present achievements, and future work in the following areas: an automated storage, transfer, and retrieval system for laboratory specimens; automation of molten salt button breakout operations; emission spectrometer automation, direct oxide reduction process support; hydride operations support; part serialization processes; contact handled waste container welding; automated sample cutting; filter probe positioner; Unimate robot replacement to handle uranium ingots in a hot pressing operation; development and testing of a device to automate compacting on site return nuclear weapons parts for pyrochemical operations; remote transfer system for gloveboxes (made from a modified radio-controlled toy tank); plutonium oxide/skull burn and reburn process; advanced size reduction facility; automation of the plutonium oxide pelletizing process for chemical analytical laboratory operations; automated assembly demonstration for a Mechanical Safe and Arm Detonator (MSAD); and a stacker-retriever remote vacuum cleaning system

  14. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM DECONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; JACKSON, G.W.; MINETTE, M.; EWALT, J.; COOPER, T.; SCOTT, P.; JONES, S.; SCHEELEY, R.

    2005-01-01

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for dccontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed

  15. Developments in the treatment of solid alpha-bearing wastes at the PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Ohtsuka, K.; Miyo, H.; Ohuchi, J.; Shiga, K.; Muto, T.

    1978-01-01

    Some results of experiments done in PNC are presented on volume reduction technics for alpha-bearing wastes. A pilot wood milling machine automatically mills the plywood frames of nipple connected HEPA filters, which result in fine sized wooden chips, two nipples and the filter components. The filter components are melted in an induction furnace to be homogeneous solids. These methods and incineration of wooden chips reduce the stored volume of HEPA filters to 1/50 -- 1/100. PVC and neoprene rubber are decomposed in concentrated sulfuric acid, followed by oxidation with nitric acid. The acid digestion process generates chlorine-rich gas, from which only chlorine is selectively absorbed in water. An alpha-bearing vessel and a glovebox are cut at their installed places without spread of plutonium contamination outside the greenhouses. (auth.)

  16. Tritium system for compact high field devices

    International Nuclear Information System (INIS)

    Roccella, M.; Bonizzoni, G.; Chiesa, P.; Ghezzi, F.; Nassi, M.; Pavesi, U.; Amedeo, P.; Boschetti, G.; Giffanti, F.; Moriggio, A.

    1988-01-01

    Some theoretical results and the current status of the work on a prototype plant for the Tritium cycle of compact high-field tokamaks (such as, Ignitor, CIT, etc.), using the SAES Getter St 707 getter material, are described in this report. The schematics and present status of the main subplants of the cycle are reported together with some experimental results demostrating the possibility of utilizing the St 707 material to purify the inert atmosphere of the glove-boxes and the secondary containment of the double-containment metal canalization which is to eventually house the various parts of the plant. Finally, as an example, the FTU machine, under construction at ENEA Frascati, has been taken as a reference, and theoretical evaluations are given for the inventory, permeation and release of the Tritium from the first wall and the thermal shieldes of such a tokamak

  17. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE DECOMMISSIONG AND DECONTAMINATION OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-01

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place

  18. Transoral tracheal intubation of rodents using a fiberoptic laryngoscope.

    Science.gov (United States)

    Costa, D L; Lehmann, J R; Harold, W M; Drew, R T

    1986-06-01

    A fiberoptic laryngoscope which allows direct visualization of the deep pharynx and epiglottis has been developed for transoral tracheal intubation of small laboratory mammals. The device has been employed in the intubation and instillation of a variety of substances into the lungs of rats, and with minor modification, has had similar application in mice, hamsters, and guinea pigs. The simplicity and ease of handling of the laryngoscope permits one person to intubate large numbers of enflurane anesthetized animals either on an open counter top or in a glove-box, as may be required for administration of carcinogenic materials. Instillation of 7Be-labeled carbon particles into the lungs of mice, hamsters, rats, and guinea pigs resulted in reasonably consistent interlobal distribution of particles for each test animal species with minimal tracheal deposition. However, actual lung tissue doses of carbon exhibited some species dependence.

  19. Development of a versatile laser light scattering instrument

    Science.gov (United States)

    Meyer, William V.; Ansari, Rafat R.

    1990-10-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  20. Handling of a glove box accident. Surgical treatment of a wound contaminated by a mixture of plutonium-239 and americium

    International Nuclear Information System (INIS)

    Lalu, P.

    1977-01-01

    An employee of the Valduc Centre (France) suffered an injury to his right thumb when working in a glove-box on a pipeline which had contained a solution of 239 Pu and Am. The lesion was slight but attempts at decontamination were fruitless. The contamination was deep-seated (activity of not less than 18nCi). DTPA was injected intravenously, and it was decided to excise the lesion surgically. Thanks to the quality of its physical facilities and the professional quality of its radiation medicine and surgery team, the Valduc Centre was able to carry out the operation successfully. The result was excellent, and the contamination was eliminated to the satisfaction of both the patient and the physician. (author)

  1. Ash Stabilization Campaign Blend Plan

    International Nuclear Information System (INIS)

    Winstead, M.L.

    1995-01-01

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed

  2. Tests of prototype salt stripper system for IFR fuel cycle

    International Nuclear Information System (INIS)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R.; Ogata, T.

    1993-01-01

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500 degree C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel

  3. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  4. Development of a new monitor for tritium in air model TAM-II

    International Nuclear Information System (INIS)

    Wu Bin; Yang Hailan; Wen Xuelian; Zhao Yi; Yang Huaiyuan

    2001-01-01

    The author introduces development of a real-time continuous tritium monitor model TAM-II. The detector of the instrument is comprised of four geometric-symmetry open wall ionization chamber with the effective volume of 2 L, which enables to minimize the remember effect of the ionization chamber due to contamination by the monitored tritium. It is γ background compensation rate is better than 97% in almost all direction. The detector is equipped with a FET static electrometer working in micro-current integration mode. The measurement process of the tritium monitor can be controlled automatically by a micro-processor sheet, such as automatic range changing, data displaying and storing, and data processing. The measuring range is 6 - 10 6 Bq/L. It is especially application for monitoring tritium in off-gas effluence from glove-box or stack of tritium facility and laboratory

  5. Design and evaluation of a microcomputer-controlled remote pipetter system

    International Nuclear Information System (INIS)

    Goeringer, D.E.; Klatt, L.N.

    1981-01-01

    A remote pipetter has been designed and evaluated. The system is suitable for use in either a hot-cell or a glove-box environment and, therefore, is applicable in any situation where operating personnel must be separated from hazardous materials. The principle of operation for the pipetter is the displacement of liquid via a calibrated, screw-driven plunger. Variably sized aliquots of 1 to 1000 μL can be delivered. A steppng motor is used to move the plunger, and its position is verified with a linear variable differential transformer. The unit is controlled by a microcomputer. Besides the required operation sequences and error checking, a self-calibration check has been designed into the software. Measured accuracies and precisions of aliquot delivery are 0.4 and 0.2%, respectively

  6. Virtual reality and telepresence control of robots used in hazardous environments

    International Nuclear Information System (INIS)

    Bronisz, L.E.; Pittman, P.C.

    1996-01-01

    The purpose of this project was to explore the application of teleoperation and telepresence control to robots in hazardous environments at Los Alamos. The primary use of this technology would be in a glove-box type operation potentially allowing operators to work on hazardous materials while being completely removed from the danger of exposure in situations that are difficult to completely automate due to the highly unstructured environments or off-normal conditions. This project focused on determining the most appropriate tools and methods that could be applied in the near future resulting in a reasonably inexpensive working teleoperation or telepresence control system for industrial robots used in the handling of hazardous materials. Several topics had to be addressed to perform this task including input devices, control systems, robot manipulators, and simulation techniques or packages. Much of the work is still in the developmental stage and hardware will follow -- providing a usable tool for glove box robot control

  7. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  8. Robot hand tackles jobs in hazardous areas

    International Nuclear Information System (INIS)

    Simms, Mark; Crowder, Richard.

    1989-01-01

    A robot hand and arm designed to mimic the operation of its human counterpart, developed at the University of Southampton for use in a standard industrial glovebox, is described. It was specifically designed for use in a radioactive environment moving high dosage components around. As dosage limits go down, there is a legal requirement to remove people from that environment. The nine-axis arm is for use in a glove designed for a human hand. Drive for the motors used to power the hand is from three-phase MOSFET inventor cards, the switching pattern controlled by the Hall effect communication sensors integral to each motor. The computer software for the arm allows the hand to be positioned using a joystick on a control box, with three levels of command for grip, pinch and touch. (author)

  9. Inactive trials on a shredder for PCM waste

    International Nuclear Information System (INIS)

    Chester, I.B.

    1985-07-01

    Future processing of plutonium contaminated waste will include shredding of all soft items - mainly plastics and paper tissues - from glovebox operations. This paper describes tests on a Metal Box Pulvermatic HS800, prior to its installation in an active area. Measurements were made of the throughput rate of material, temperature rise, hold-up, and the properties of the shredded product. Dust production is of some importance because of the possibility of dust explosions, but it is shown that the concentrations obtained below the cutters are less than those at which a deflagration can be propagated by a factor of at least 100. References to use of a particular manufacturer's product do not necessarily imply a preference for that product. (author)

  10. Optimization of air-sparged plutonium oxalate/hydroxide precipitators

    International Nuclear Information System (INIS)

    VanderHeyden, W.B.; Yarbro, S.L.; Fife, K.W.

    1997-04-01

    The high cost of waste management and experimental work makes numerical modeling an inexpensive and attractive tool for optimizing and understanding complex chemical processes. Multiphase open-quotes bubbleclose quotes columns are used extensively at the Los Alamos Plutonium Facility for a variety of different applications. No moving parts and efficient mixing characteristics allow them to be used in glovebox operations. Initially, a bubble column for oxalate precipitations is being modeled to identify the effect of various design parameters such as, draft tube location, air sparge rate and vessel geometry. Two-dimensional planar and axisymmetric models have been completed and successfully compared to literature data. Also, a preliminary three-dimensional model has been completed. These results are discussed in this report along with future work

  11. Hearing of Mrs Marie-Pierre Comets and Mr Marc Sanson, commissioners of the Nuclear Safety Authority (ASN), as well as Mrs Marie-Claude Dupuis, general manager of the National Agency for the management of radioactive wastes (ANDRA), on the nuclear events in Cadarache

    International Nuclear Information System (INIS)

    2009-01-01

    Representatives of the French Nuclear Safety Authority (ASN, Autorite de Surete Nucleaire) and of the French National Agency for the Management of Radioactive Wastes (ANDRA, Agence nationale pour la gestion des dechets radioactifs) answer questions about an incident which occurred in a workshop, where MOx fuel was produced and which is now being dismantled. It appeared that the amount of plutonium present in the gloveboxes has been largely under-assessed: 8 kg were expected, 22 kg of plutonium have already been recovered, and finally 39 kg might be recovered by the end the dismantling operations. Other issues are addressed like the ANDRA's projects of radioactive material geological storage, their technical and institutional aspects, and then again about the late declaration of the Cadarache incident

  12. Tips for the fabrication of temporary tritium experiments

    International Nuclear Information System (INIS)

    Binning, K.E.; Jenkins, E.M.

    1988-01-01

    The Tritium System Test Assembly (TSTA) is a facility built for the demonstration of tritium handling systems necessary for tritium-burning fusion reactors. The facility has been in operation handling tritium for four years. The current inventory of tritium is approximately one hundred grams with DOE approval exists for a maximum inventory of two hundred grams. Not all experiments performed at TSTA require the operation of the main process loop. During the last four years, many small scale experiments have been performed to test the compatibility and operation of tritium processing components in small self-contained experimental packages. These packages are fabricated inside secondary containment gloveboxes and can be operated for hours or months with little monitoring. Construction of these packages need to be tritium compatible, inexpensive, easy to build, and versatile. This paper discusses some of the problems and remedies encountered during the building of temporary experiments

  13. Digital processing method for monitoring the radioactivity of stack releases

    International Nuclear Information System (INIS)

    Vialettes, H.; Leblanc, P.; Perotin, J.P.; Lazou, J.P.

    1978-01-01

    The digital processing method proposed is adapted for data supplied by a fixed-filter detector normally used for analogue processing (integrator system). On the basis of the raw data (pulses) from the detector, the technique makes it possible to determine the rate of activity released whereas analogue processing gives only the released activity. Furthermore, the method can be used to develop alarm systems on the basis of a possible exposure rate at the point of fall-out, and by including in the program a coefficient which allows for atmospheric diffusion conditions at any given time one can improve the accuracy of the results. In order to test the digital processing method and demonstrate its advantages over analogue processing, various atmospheric contamination situations were simulated in a glove-box and analysed simultaneously, using both systems, from the pulses transmitted by the same sampling and fixed-filter detection unit. The experimental results confirm the advantages foreseen in the theoretical research. (author)

  14. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  15. Posting system

    International Nuclear Information System (INIS)

    Jones, E.L.

    1983-01-01

    A posting system for the movement of equipment, such as a manipulator, into and out of an enclosure e.g. a cell or glovebox, for toxic or radioactive materials has the manipulator arranged within a collapsible bellows-like container with an end of the container cooperating with a port entry to the enclosure. The collapsible container isolates the manipulator from the environment outside the enclosure and allows the manipulator to enter and leave the contaminated enclosure without breach of the containment. A particular construction of cell for use with radioactive material is described, having a thick wall of shielding material such as concrete provided with a door normally closed by a Pb shutter and having a cylindrical gamma shield block located over the shutter on the exterior of the wall. (author)

  16. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  17. High pressure apparatus for hydrogen isotopes to pressures of 345 MPa (50,000 psi) and temperatures of 12000C

    International Nuclear Information System (INIS)

    Lakner, J.F.

    1977-01-01

    A functional new high pressure, high temperature apparatus for hydrogen isotopes uses an internally heated pressure vessel within a larger pressure vessel. The pressure capability is 345 MPa (50 K psi) at 1200 0 C. The gas pressure inside the internal vessel is balanced with gas pressure in the external vessel. The internal vessel is attached to a closure and is also the sample container. Our design allows thin-walled internal vessel construction and keeps the sample from ''seeing'' the furnace or other extraneous environment. The sample container together with the closure can easily be removed and loaded under argon using standard glove-box procedures. The small volume of the inner vessel permits small volumes of gas to be used, thus increasing the sensitivity during pressure-volume-temperature (PVT) work

  18. Mound's decommissioning experience, tooling, and techniques

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Elswick, T.C.; Garner, J.M.; Geichman, J.R.

    1982-01-01

    Monsanto Research Corporation (MRC), which operates Mound for the Department of Energy (DOE), has been decommissioning radioactively contaminated facilities since 1949. We are currently decommissioning three plutonium-238 contaminated facilities (approximately 50,000 ft 2 ) that contained 1100 linear ft of gloveboxes; 900 linear ft of conveyor housing; 2650 linear ft of dual underground liquid waste lines; and associated contaminated piping, services, equipment, structures, and soil. As of June 1982, over 29,000 Ci of plutonium-238 have been removed in waste and scrap residues. As a result of the current and previous decommissioning projects, valuable experience has been gained in tooling and techniques. Special techniques have been developed in planning, exposure control, contamination control, equipment removal, structural decontamination, and waste packaging

  19. Device for contaminating laboratory animals by inhalation of radioactive aerosols

    International Nuclear Information System (INIS)

    Lutz, M.; Rouvroy, H.

    1966-01-01

    The contamination enclosure is made up of a sphere to which are attached an aerosol generator, containers adapted to the animals to be used, and the atmospheric sampling system. The sphere is placed in a protective glove-box, the latter being itself protected by an introduction chamber fitted with locking access lids. A detailed description is given of the working principle. As an example, some results are given concerning the contamination of rats by a plutonium oxide aerosol: characteristics of the powder (mean diameter 0.50 μ - standard deviation: 1.4), examination and evolution of the atmospheric activity as a function of time, evaluation of the retention by the lungs by means of histological and autoradiographic examinations. (authors) [fr

  20. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan

    2015-01-01

    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non-standard equipments providing an isolated room to operate radioactive material inside, while the operator outside with essential biological shield and protection. The hot cell is a typical one, which could handle high radioactive material with various operating means and tight enclosure. The dissertation is based on Vitrification Plant China, a cooperation project between China and Germany. For the sino-western difference in design philosophy, it was presented how to draft an acceptable design proposal of applicable huge hot cells by analysing the design requirements, such as radioprotection, observation, illumination, remote handling, transportation, maintenance and decontamination. The construction feasibility of hot cells was also approved. Thanks to 3D software Autodesk Inventor, digital hot cell was built to integrate all the interfaces inside, which validated the design by checking the mechanical interference. (author)

  1. EVALUATION OF STATE-OF-THE-ART MANIPULATORS AND REQUIREMENTS FOR DOE ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, DEREK; GRUPINSKI, STEPHEN

    1998-10-08

    This report provides an overview of applications within the DOE complex which could benefit from the use of modular robotics technology during remediation operations. Each application area contains one or more specific tasks which are presently conducted by humans under hazardous conditions or which are deemed highly impractical, or are altogether impossible without automation. Five major areas were investigated for specific needs with respect to automation. Information was collected on Mixed Waste Operations, Contaminant Automated Analysis, Tanks, Decontamination and Dismantlement and Automated Plutonium Processing. During this investigation, information was gathered from available literature, telephone interviews with informed personnel and on-site visits. This data serves to provide design requirements and guidelines for the design of a family of modular actuators, which will be used to construct manipulators suited to each task. In addition, a survey of existing modular manipulator designs is presented. This survey addresses modular manipulators developed inside government labs and in universities for such applications as space exploration or controls research. It also addresses efforts at commercially viable industrial manipulators which have been built. This survey of robotic systems provides the reader with a glimpse into what technology currently exists in the way of modular manipulator automation and, to a degree, where this technology may be applicable or, more often, where these systems are unsuited to EM applications. From the information gathered during this study, it is possible to sufficiently define the requirements of one manipulator system which can be used to conduct automated transfer operations within Plutonium gloveboxes. This manipulator will be constructed from ARM Automation actuator modules and will provide this application with a viable option for automation within these gloveboxes. The design issues surrounding this manipulator and its

  2. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  3. Plutonium assay of large waste burial containers at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Haggard, D.L.; Newman, D.F.

    1987-01-01

    As one phase of an upgrade program at one of the Battelle Pacific Northwest Laboratory facilities, two plutonium glovebox hoods were replaced. They were dismantled, packaged in plastic for contamination control, and loaded into waste burial boxes. All of the plutonium-contaminated waste material from the two glovebox hoods was placed into six stainless steel boxes with identification letters A through F. Boxes A through E have 104.8- x 196.2- x 119.4-cm i.d.'s. Box F has an i.d. of 154.9 x 266.7 x 192.4 cm. The loaded boxes were assayed for plutonium content using both neutron and gamma-ray techniques. The difference between the results were greater than anticipated. Because of the importance of accurate plutonium assay measurements, additional measurements of box contents were made using a variety of techniques and assumptions including downloading of boxes and measurement of individual packages. These measurements have shown that a far-field, gamma-ray assay of a loaded waste box usually provides adequate measurement of low-density plutonium content, such as that found in packages of plastic, cellulose, and clothing. Comparing the far-field assays of the loaded waste boxes to the quantities determined by the assays of the downloaded packages resulted in good agreement between the two methods for boxes with low attenuation. Based on these results, it was concluded that it was valid to use the far-field assay results for the boxes that were not downloaded

  4. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Lainetti, Paulo E.O.

    2009-01-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  5. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  6. A method for characterizing photon radiation fields

    International Nuclear Information System (INIS)

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-01-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers' torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed

  7. Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells

    Institute of Scientific and Technical Information of China (English)

    Nanaji Islavath; S Saroja; K Srinivas Reddy; P C Harikesh; G Veerappan; Shrikant V Joshi; Easwaramoorthi Ramasamy

    2017-01-01

    High-efficiency perovskite solar cells (PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere,which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology.In this work,we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance.It has been shown that phasepure crystalline tetragonal MAPbI3 perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process,undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au achieve opencircuit voltage (990 mV) and short-circuit current density (20.31 mA/cm2) comparable to those of best reported glove-box processed devices.Nevertheless,device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25.Dark current-voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMeTAD species,resulting in high seriesresistance and decreased fill-factor,The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor,copper thiocyanate,as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%.The present findings can have important implications in industrially viable fabrication of large-area PSCs.

  8. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  9. Ergonomic Evaluations of Microgravity Workstations

    Science.gov (United States)

    Whitmore, Mihriban; Berman, Andrea H.; Byerly, Diane

    1996-01-01

    Various gloveboxes (GBXs) have been used aboard the Shuttle and ISS. Though the overall technical specifications are similar, each GBX's crew interface is unique. JSC conducted a series of ergonomic evaluations of the various glovebox designs to identify human factors requirements for new designs to provide operator commonality across different designs. We conducted 2 0g evaluations aboard the Shuttle to evaluate the material sciences GBX and the General Purpose Workstation (GPWS), and a KC-135 evaluation to compare combinations of arm hole interfaces and foot restraints (flexible arm holes were better than rigid ports for repetitive fine manipulation tasks). Posture analysis revealed that the smallest and tallest subjects assumed similar postures at all four configurations, suggesting that problematic postures are not necessarily a function of the operator s height but a function of the task characteristics. There was concern that the subjects were using the restrictive nature of the GBX s cuffs as an upper-body restraint to achieve such high forces, which might lead to neck/shoulder discomfort. EMG data revealed more consistent muscle performance at the GBX; the variability in the EMG profiles observed at the GPWS was attributed to the subjects attempts to provide more stabilization for themselves in the loose, flexible gauntlets. Tests revealed that the GBX should be designed for a 95 percentile American male to accommodate a neutral working posture. In addition, the foot restraint with knee support appeared beneficial for GBX operations. Crew comments were to provide 2 foot restraint mechanical modes, loose and lock-down, to accommodate a wide range of tasks without egressing the restraint system. Thus far, we have developed preliminary design guidelines for GBXs and foot.

  10. Application of cryogenic grinding to achieve homogenization of transuranic wastes

    International Nuclear Information System (INIS)

    Atkins, W.H.; Hill, D.D.; Lucero, M.E.; Jaramillo, L.; Martinez, H.E.

    1996-08-01

    This paper describes work done at Los Alamos National Laboratory (LANL) in collaboration with the Department of Energy Rocky Flats Field Office (DOE/RFFO) and with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Researchers on this project have developed a method for cryogenic grinding of mixed wastes to homogenize and, thereby, to acquire a representative sample of the materials. There are approximately 220,000 waste drums owned by the Rocky Flats Environmental Technology Site (RFETS)-50,000 at RFETS and 170,000 at the Idaho National Engineering Laboratory. The cost of sampling the heterogeneous distribution of waste in each drum is prohibitive. In an attempt to produce a homogeneous mixture of waste that would reduce greatly the cost of sampling, researchers at NIST and RFETS are developing a cryogenic grinder. The Los Alamos work herein described addresses the implementation issues of the task. The first issue was to ascertain whether samples of the open-quotes small particleclose quotes mixtures of materials present in the waste drums at RFETS were representative of actual drum contents. Second, it was necessary to determine at what temperature the grinding operation must be performed in order to minimize or to eliminate the release of volatile organic compounds present in the waste. Last, it was essential to evaluate any effect the liquid cryogen might have on the structural integrity and ventilation capacity of the glovebox system. Results of this study showed that representative samples could be and had been obtained, that some release of organics occurred below freezing because of sublimation, and that operation of the cryogenic grinding equipment inside the glovebox was feasible

  11. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  12. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    International Nuclear Information System (INIS)

    Geisinger, Joseph W. Ph.D.

    2001-01-01

    ARM Automation, Inc. is developing a FR-amework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator FR-om these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC(trademark)s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost

  13. Onsite vibrational characterization of DCMIX2/3 experiments

    Science.gov (United States)

    Ollé, Judit; Dubert, Diana; Gavaldà, Josefina; Laverón-Simavilla, Ana; Ruiz, Xavier; Shevtsova, Valentina

    2017-11-01

    The SODI-DCMIX thermodiffusion series experiments are part of the fluid research program carried out by the European Space Agency on board of the International Space Station (ISS). In particular, DCIMIX2/3 were conducted in the past inside the Microgravity Science Glovebox in the US Laboratory. Due to the physical nature of the processes implied, these kind of runs were very long and particularly delicate because the low vibratory limit requirements must be maintained for hours. This restrictive condition not always is achieved, therefore, an accurate surveillance of the acceleration levels along the different experiments is necessary, to ensure a correct interpretation of the experimental results. This work analyzes onsite vibrational environment of DCMIX2/3 covering the periods in which the experiments were going on. To do so, acceleration signals only coming from the es03 sensor, nearest to the experimental equipment and located in the Glovebox, were downloaded from the PIMS NASA website. To be as precise as possible the signals have always been treated minute by minute. To detect the transient disturbances along the experiments, several warnings were considered. First, 1 min RMS values, for the three acceleration components were evaluated, in time and in frequency domain. Additional information was obtained by plotting the power spectral densities of the signals, PSD, and their spectrogram with the aim of characterizing long periods of acceleration data. Due to great influence of low frequencies in this type of experiments, the Frequency Factor Index, FFI, was evaluated each minute. Complementary, the spectral entropy evolution was proposed as a fast new indicator of external perturbations. It has been found a good correlation between the spectrogram, temporal RMS and spectral entropy. Finally, a graphic representation of the points associated to the 1-min RMS values in one-third-octave frequency intervals which exceed the ISS limit curve requirements, was

  14. Bi-Modal Model for Neutron Emissions from PuO2 and MOX Holdup

    International Nuclear Information System (INIS)

    Menlove, Howard; Lafleur, Adrienne

    2015-01-01

    The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup for the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of Pu

  15. Bi-Modal Model for Neutron Emissions from PuO{sub 2} and MOX Holdup

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard; Lafleur, Adrienne [Los Alamos National Laboratory, Safeguard Science and Technology Group, NEN-1, MS E540, Los Alamos, NM, 87545 (United States)

    2015-07-01

    The measurement of uranium and plutonium holdup in plants during process activity and for decommissioning is important for nuclear safeguards and material control. The amount of plutonium and uranium holdup in glove-boxes, pipes, ducts, and other containers has been measured for several decades using both neutron and gamma-ray techniques. For the larger containers such as hot cells and glove-boxes that contain processing equipment, the gamma-ray techniques are limited by self-shielding in the sample as well as gamma absorption in the equipment and associated shielding. The neutron emission is more penetrating and has been used extensively to measure the holdup for the large facilities such as the MOX processing and fabrication facilities in Japan and Europe. In some case the totals neutron emission rates are used to determine the holdup mass and in other cases the coincidence rates are used such as at the PFPF MOX fabrication plant in Japan. The neutron emission from plutonium and MOX has 3 primary source terms: 1) Spontaneous fission (SF) from the plutonium isotopes, 2) The (α,n) reactions from the plutonium alpha particle emission reacting with the oxygen and other impurities, and 3) Neutron multiplication (M) in the plutonium and uranium as a result of neutrons created by the first two sources. The spontaneous fission yield per gram is independent of thickness, whereas, the above sources 2) and 3) are very dependent on the thickness of the deposit. As the effective thickness of the deposit becomes thin relative to the alpha particle range, the (α,n) reactions and neutrons from multiplication (M) approach zero. In any glove-box, there will always be two primary modes of holdup accumulation, namely direct powder contact and non-contact by air dispersal. These regimes correspond to surfaces in the glove-box that have come into direct contact with the process MOX powder versus surface areas that have not had direct contact with the powder. The air dispersal of Pu

  16. Technology Development and Advanced Planning for Curation of Returned Mars Samples

    Science.gov (United States)

    Lindstrom, David J.; Allen, Carlton C.

    2002-01-01

    Safety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.

  17. Measurement of isotopic composition of lanthanides in reprocessing process solutions by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICP-MS)

    International Nuclear Information System (INIS)

    Okano, Masanori; Jitsukata, Shu; Kuno, Takehiko; Yamada, Keiji

    2011-01-01

    Isotopic compositions of fission products in process solutions and wastes in a reprocessing plant are valuable to proceed safety study of the solutions and research/development concerning treatment/disposal of the wastes. The amount of neodymium-148 is a reliable indication to evaluate irradiation history. The isotopic compositions of samarium and gadolinium in high radioactive wastes are referred to as essential data to evaluate environmental impact in geological repositories. However, pretreatment of analysis must be done with complicated chemical separation such as solvent extraction and ion exchange. The actual measurement data of isotopic compositions of lanthanides comparable to the one of actinides in spent fuel reprocessing process has not been obtained enough. Rapid and high sensitive analytical technique based on high-performance liquid chromatography (HPLC) with an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the measurement of isotopic compositions of lanthanides in spent fuel reprocessing solutions. HPLC/ICP-MS measurement system was customized for a glove-box to be applied to the radioactive solutions. The cation exchange chromatographic columns (Shim-pack IC-C1) and injection valve (20μL) were located inside of the glove-box except the chromatographic pump. The elements of lanthanide group were separated by a gradient program of HPLC with α-hydroxyisobutyric acid. Isotopic compositions of lanthanides in eluate was sequentially analyzed by a quadruple ICP-MS. Optimization of parameter of HPLC and ICP-MS measurement system was examined with standard solutions containing 14 lanthanide elements. The elements of lanthanides were separated by HPLC and detected by ICP-MS within 25 minutes. The detection limits of Nd-146, Sm-147 and Gd-157 were 0.37 μg L -1 , 0.69 μg L -1 and 0.47 μg L -1 , respectively. The analytical precision of the above three isotopes was better than 10% for standard solutions of 100 μg L -1 with

  18. Advanced Curation Protocols for Mars Returned Sample Handling

    Science.gov (United States)

    Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.

    Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this

  19. Crew Restraint Design for the International Space Station

    Science.gov (United States)

    Norris, Lena; Holden, Kritina; Whitmore, Mihriban

    2006-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. Another ISS task that requires special consideration with respect to restraints is robotic teleoperation. The Robot Systems Technology Branch at the NASA Johnson Space Center is developing a humanoid robot astronaut, or Robonaut. It is being designed to perform extravehicular activities (EVAs) in the hazardous environment of space. An astronaut located inside the ISS will remotely operate Robonaut through a telepresence control system. Essentially, the robot mimics every move the operator makes. This requires the

  20. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  1. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    Science.gov (United States)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample

  2. Investigating Astromaterials Curation Applications for Dexterous Robotic Arms

    Science.gov (United States)

    Snead, C. J.; Jang, J. H.; Cowden, T. R.; McCubbin, F. M.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center is currently investigating tools and methods that will enable the curation of future astromaterials collections. Size and temperature constraints for astromaterials to be collected by current and future proposed missions will require the development of new robotic sample and tool handling capabilities. NASA Curation has investigated the application of robot arms in the past, and robotic 3-axis micromanipulators are currently in use for small particle curation in the Stardust and Cosmic Dust laboratories. While 3-axis micromanipulators have been extremely successful for activities involving the transfer of isolated particles in the 5-20 micron range (e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other applications. For instance, curators removing particles from cosmic dust collectors by hand often employ scooping and rotating motions to successfully free trapped particles from the silicone oil coatings. Similar scooping and rotating motions are also employed when isolating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust curators have been remarkably successful with these kinds of particle manipulations using handheld tools, operator fatigue limits the number of particles that can be removed during a given extraction session. The challenges for curation of small particles will be exacerbated by mission requirements that samples be processed in N2 sample cabinets (i.e. gloveboxes). We have been investigating the use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot arms potentially have applications beyond small particle manipulation. For instance, future sample return missions may involve biologically sensitive astromaterials that can be easily compromised by physical interaction with

  3. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    Science.gov (United States)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  4. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  5. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    Science.gov (United States)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  6. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  7. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238 PuO 2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238 Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238 Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239 Pu ), makes disposal of 238 Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238 Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238 Pu-contaminated waste and recover kilogram quantities of 238 PuO 2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented

  8. Remote material handling in the Plutonium Immobilization Project. Revision 1

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports

  9. DEMOLITION OF HANFORD'S 232-Z WASTE INCINERATION FACILITY

    International Nuclear Information System (INIS)

    LLOYD, E.R.

    2006-01-01

    The 232-Z Plutonium Incinerator Facility was a small, highly alpha-contaminated, building situated between three active buildings located in an operating nuclear complex. Approximately 500 personnel worked within 250 meters (800 ft) of the structure and expectations were that the project would neither impact plant operations nor result in any restrictions when demolition was complete. Precision demolition and tight controls best describe the project. The team used standard open-air demolition techniques to take the facility to slab-on-grade. Several techniques were key to controlling contamination and confining it to the demolition area: spraying fixatives before demolition began; using misting systems, frequently applying fixatives, and using a methodical demolition sequence and debris load-out process. Detailed air modeling was done before demolition to determine necessary facility source-term levels, establish radiological boundaries, and confirm the adequacy of the proposed demolition approach. By only removing the major source term in equipment, HEPA filters, gloveboxes, and the like, and leaving fixed contamination on the walls, ceilings and floors, the project showed considerable savings and reduced worker hazards and exposure. The ability to perform this demolition safely and without the spread of contamination provides confidence that similar operations can be performed successfully. By removing the major source terms, fixing the remaining contamination in the building, and using controlled demolition and contamination control techniques, similar structures can be demolished cost effectively and safely

  10. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    Energy Technology Data Exchange (ETDEWEB)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1987-01-01

    Conceptual design of the Compact Ignition Tokamak (CIT) is near completion. This short-pulse ignition experiment is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The high neutron wall loadings, /approximately/4-5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components and personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility with a radius of /approximately/12 m. The most critical radiation concern in the CIT design process relates to the numerous penetrations in the device. This paper discusses the impact of a major penetration on the design and operations of the CIT pellet injection system. The pellet injector is a major component, which has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require personnel access. A nuclear analysis has been performed to determine the feasibility of hands-on access. Results indicate that personnel access to the pellet injector glovebox is possible. 10 refs., 3 figs., 3 tabs.

  11. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  12. Three example applications of optimization techniques to Department of Energy contractor radiation protection programs

    International Nuclear Information System (INIS)

    Merwin, S.E.; Martin, J.B.; Tawil, J.J.; Selby, J.M.

    1986-06-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of International Commission on Radiological Protection (ICRP) Publication 37 (ICRP83). In each case, the calculations are based on fairly well-defined parameters and assumptions that were well understood. In this paper, we have examined three different numerical examples that are based on empirical data and less certain assumptions. These examples are intended to represent typical applications of optimization principles to the evaluation of specific elements of a radiation protection program. In the first example, the optimum bioassay frequency for certain tritium workers was found to be once every 95 days, which compared well with the recommendations of ICRP Publication 10 (ICRP67). The second example showed that the optimum frequency for recalibrating a group of ''Cutie-Pie'' (CP)-type ionization chamber survey instruments was once every 102 days. In the third example, one continuous air monitor (CAM) was determined to be the optimum number in a workplace of a Department of Energy (DOE) plutonium facility. The optimum location of the CAM was determined from past glovebox release studies

  13. Three example applications of optimization techniques to Department of Energy contractor radiation protection programs

    International Nuclear Information System (INIS)

    Merwin, S.E.; Martin, J.B.; Tawil, J.J.; Selby, J.M.

    1989-01-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of International Commission on Radiological Protection (ICRP) Publication No. 37 (1983). In each case, the calculations were based on well-defined parameters and assumptions. In this paper, we examined three different numerical examples that were based on empirical data and less-certain assumptions. In the first example, the optimum sampling frequency for a typical 3H bioassay program was found to be once every 2 mo. However, this result depended on assumed values for several variables that were difficult to evaluate. The second example showed that the optimum frequency for recalibrating a group of cutie pie (CP) ionization chamber survey instruments was once every 85 d. This result depended largely on the assumption that an improperly operating CP instrument could lead to a serious overexposure. In the third example, one continuous air monitor (CAM) was determined to be the optimum number in a workplace at a Department of Energy (DOE) Pu facility. The optimum location of the CAM was determined from past glove-box release studies. These examples demonstrated that cost-benefit analysis of individual elements of radiation protection programs can be useful even if limited data are available

  14. Tritium control: October 1982-March 1983

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Rogers, M.L.

    1983-01-01

    Surveys in gloveboxes indicated surface activity on stainless steel and its apparent dependence on time and atmospheric tritium levels. Surveys in fumehoods were completed to investigate the extent of surface contamination on surfaces of various materials. Gas generation rates caused by radiolysis of tritiated waste materials were determined for polymer and nonpolymer-impregnated tritiated concrete and fixated and nonfixated tritiated waste vacuum pump oil. In addition, the pressure change of hydrogen cover gas over tritiated water on cement-plaster was determined. The test program to measure and compare the release of tritium from tritiated concrete with and without styrene impregnation continued. Tritium permeation data from small test blocks are given. The drum study monitoring the release of tritium from actual burial packages continued. The maximum fractional release rate for the three types of high activity, tritiated liquid waste generated is 5.1 x 10 -5 , and the maximum total permeation is 179 mCi after 8.5 yr. These two values represent a 13% increase for the past 6 months. Tritium release from the polymer-impregnated, tritiated concrete (PITC) and from the control (non-PITC) remains very low. The Emergency Containment System (ECS), an automatically actuated system developed at Mound to remove tritium from room air, has been modified and upgraded to support new applications. The leakage rate in the ECS area has been lowered, a fast-start system installed for greater conversion efficiency at startup, and the alumina beds regenerated

  15. Tank SY-102 remediation project: Flowsheet and conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  16. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  17. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  18. Human and organisational factors as key levers of performance in D and D project management - 59323

    International Nuclear Information System (INIS)

    Flament, Thierry; Willmann, Bertrand; Laval, Gregoire de; Lemarch, Jean-Louis; Cordoba, Alain

    2012-01-01

    Document available in abstract form only. Full text of publication follows: In a number pf D and D projects, the type of installations to be dismantled and the variety of their equipments (glove-boxes, tanks..) and the products present on site (plutonium, uranium) in the form of powder are making many operations manual ones. Key phases in HR and organisation management: - The first D and D experience, the learning curve ramp-up - To begin any project, you usually try to benefit from benchmark of similar projects to be able to build up the first scenario, by using the best practices. The first experimental team consisted of operators who already had experienced dismantling at least once in the course of their career. This first dismantling operation is preferably to be conducted on an installation relatively poorly contaminated. This was to implement the correct techniques thus reducing the consequences of a possible unforeseen event. The capitalisation on the return on experience The success of this first dismantling site operation allowed us to implement a process of experience feedback to build the scenarios and the operating procedures of the following sites. In particular, targeted safety-security stop points are positioned for validation on the operations by people responsible for safety and security

  19. Fiscal year 1996 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Waste Management Program, Decontamination and Decommissioning Projects Department

    International Nuclear Information System (INIS)

    1996-01-01

    The Photobriefing Book describes the Decontamination and Decommissioning (D and D) Program at the Argonne National Laboratory-East Site (ANL-E) near Lemont, Illinois. This book summarizes current D and D projects, reviews fiscal year (FY) 1996 accomplishments, and outlines FY 1997 goals. A section on D and D Technology Development provides insight on new technologies for D and D developed or demonstrated at ANL-E. Past projects are recapped and upcoming projects are described as Argonne works to accomplish its commitment to, ''Close the Circle on the Splitting of the Atom.'' Finally, a comprehensive review of the status and goals of the D and D Program is provided to give a snap-shot view of the program and the direction it's taking as it moves into FY 1997. The D and D projects completed to date include: Plutonium Fuel Fabrication Facility; East Area Surplus Facilities; Experimental Boiling Water Reactor; M-Wing Hot Cell Facilities; Plutonium Gloveboxes; and Fast Neutron Generator

  20. Acceptable knowledge summary report for combustible/noncombustible, metallic, and HEPA filter waste resulting from 238Pu fabrication activities

    International Nuclear Information System (INIS)

    Rogers, P.S.Z.; Foxx, C.L.

    1998-01-01

    All transuranic (TRU) waste must be sufficiently characterized and certified before it is shipped to the Waste Isolation Pilot Plant (WIPP). The US Environmental Protection Agency (EPA) allows use of acceptable knowledge (AK) for waste characterization. EPA uses the term AK in its guidance document and defines AK and provides guidelines on how acceptable knowledge should be obtained and documented. This AK package has been prepared in accordance with Acceptable Knowledge Documentation (TWCP-QP-1.1-021,R.2). This report covers acceptable knowledge information for five waste streams generated at TA-55 during operations to fabricate various heat sources using feedstock 238 Pu supplied by the Savannah River Site (SRS). The 238 Pu feedstock itself does not contain quantities of RCRA-regulated constituents above regulatory threshold limits, as known from process knowledge at SRS and as confirmed by chemical analysis. No RCRA-regulated chemicals were used during 238 Pu fabrication activities at TA-55, and all 238 Pu activities were physically separated from other plutonium processing activities. Most of the waste generated from the 238 Pu fabrication activities is thus nonmixed waste, including waste streams TA-55-43, 45, and 47. The exceptions are waste streams TA-55-44, which contains discarded lead-lined rubber gloves used in the gloveboxes that contained the 238 Pu material, and TA-55-46, which may contain pieces of discarded lead. These waste streams have been denoted as mixed because of the presence of the lead-containing material

  1. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  2. Decontamination of alpha-bearing solid wastes and plutonium recovery

    International Nuclear Information System (INIS)

    Koehly, G.; Madic, C.; Lecomte, M.; Bourges, J.; Saulze, J.L.; Broudic, J.C.

    1993-01-01

    Nuclear activities in the Radiochemistry building of Fontenay-aux-Roses Nuclear Research Center concern principally the study of fuel reprocessing and the production of transuranium isotopes. During these activities solid wastes are produced. In order to improve the management of these wastes, it has been decided to build new facilities: a group of three glove-boxes named ELISE for the treatment of α active solid waste and a hot-cell, PROLIXE, for the treatment of solid wastes. Leaching processes were developed in order to: decontaminate these wastes and recover actinide elements, particularly the highly valuable plutonium, from the leachates. The processes developed are sufficiently flexible to be able to accommodate solid wastes produced in other facilities. Laboratory studies were conducted to develop the leaching process based on the use of electrogenerated Ag(II) species which is particularly suitable to provoke the dissolution of PuO 2 . Successful exhaustive Pu decontaminations with DF(Pu) higher than 10 4 were achieved for the first time during the treatment of stainless steel PuO 2 cans (future MELOX plant) by electrogenerated Ag (II) in nitric acid medium

  3. Analysis of pressurization of plutonium oxide storage vials during a postulated fire

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Kesterson, M.; Hensel, S.

    2015-02-10

    The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporation of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.

  4. Analysis Of The Reactivity Of Radpro Solution With Cotton Rags

    International Nuclear Information System (INIS)

    Marusich, R.M.

    2009-01-01

    Rags containing RadPro(reg s ign) solution will be generated during the decontamination of the Plutonium Finishing Plant (PFP). Under normal conditions, the rags will be neutralized with sodium carbonate prior to placing in the drums. The concern with RadPro solutions and cotton rags is that some of the RadPro solutions contain nitric acid. Under the right conditions, nitric acid and cotton rags exothermically react. The concern is, will RadPro solutions react with cotton rags exothermically? The potential for a runaway reaction for any of the RadPro solutions used was studied in Section 5.2 of PNNL-15410, Thermal Stability Studies of Candidate Decontamination Agents for Hanford's Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes. This report shows the thermal behavior of cotton rags having been saturated in one of the various neutralized and non-neutralized RadPro solutions. The thermal analysis was performed using thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Accelerating Rate Calorimetry (ARC).

  5. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  6. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 3. Aerobiology.

    Science.gov (United States)

    Bohannon, J Kyle; Janosko, Krisztina; Holbrook, Michael R; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Coe, Linda; Hensley, Lisa E; Jahrling, Peter B; Wada, Jiro; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Aerosol or inhalational studies of high-consequence pathogens have recently been increasing in number due to the perceived threat of intentional aerosol releases or unexpected natural aerosol transmission. Specific laboratories designed to perform these experiments require tremendous engineering controls to provide a safe and secure working environment and constant systems maintenance to sustain functionality. Class III biosafety cabinets, also referred to as gloveboxes, are gas-tight enclosures with non-opening windows. These cabinets are maintained under negative pressure by double high-efficiency-particulate-air (HEPA)-filtered exhaust systems and are the ideal primary containment for housing aerosolization equipment. A well planned workflow between staff members within high containment from, for instance, an animal biosafety level-4 (ABSL-4) suit laboratory to the ABSL-4 cabinet laboratory is a crucial component for successful experimentation. For smooth study execution, establishing a communication network, moving equipment and subjects, and setting up and placing equipment, requires staff members to meticulously plan procedures prior to study initiation. Here, we provide an overview and a visual representation of how aerobiology research is conducted at the National Institutes of Health, National Institute of Allergy and Infectious Diseases Integrated Research Facility at Fort Detrick, Maryland, USA, within an ABSL-4 environment.

  7. A totally automatic density meter for radioactive solutions

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1987-02-01

    A totally automatic density meter for measuring the density of radioactive liquid (plutonium nitrate) samples was developed and built for use at the Savannah River Plant. The measurement cell (vibrating U-tube) and other wetted parts are glovebox-contained and are remoted from the electronics and control instrumentation. The only operator actions required are insertion of a sample vial into the system, starting the analysis, and removing the vial about 90 seconds later. The sample measurement takes about 3 to 4 minutes and uses 10 mL of sample; another 5 to 6 minutes is required for a water/air measurement-control check, which leaves the system ready for the next sample. No water bath is needed because a computer algorithm is applied to the measurement to correct it to a standard reference temperature. The system is normally operated under computer control, but a programmable logic controller is available for backup. The system may also be operated manually by means of a switchpanel. 5 refs., 3 figs

  8. GIOVE, a shallow laboratory Ge-spectrometer with 100 μBq/kg sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Denz, T.; Hakenmueller, J.; Hofacker, R.; Lackner, R.; Lindner, M.; Maneschg, W.; Reisfelder, M.; Simgen, H.; Schreiner, J.; Stolzenburg, D.; Strecker, H.; Westermann, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-08-08

    A new germanium gamma spectrometer called GIOVE (Germanium spectrometer with Inner and Outer Veto) has been set up at the underground/shallow laboratory (15 m w.e.) of MPI-K. Its double plastic scintillator veto system and neutron moderation interlayer lower the background by more than one order of magnitude compared to the other existing spectrometer at this facility. The integral (40-2700 keV) background rate of about 290 counts (day kg){sup −1} is just a factor 4 to 8 above that of the GeMPI spectrometers operated at LNGS (3800 m w.e.) and thus proves that even under shallow overburden sub mBq/kg sensitivities are achievable. Extended material screening and neutron attenuation studies preceded the final design of the spectrometer. The technical realization of the spectrometer is described in detail with special emphasis on the inner veto system. For its optimisation a simulation model was developed for light collection on small low activity PMT’s under various geometrical conditions. Radon suppression is accomplished by employing a gas tight sample container and a nitrogen flushed glove-box system with an airlock. The active volume of the crystal was modelled by absorption scanning measurements and Monte Carlo simulations. The complete shield is implemented in a Geant4 based simulation framework.

  9. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  10. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Seo, B. K.

    2012-02-01

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  11. Immobilisation of shredded waste in a cement matrix

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-10-01

    The work covered in the period of this report was aimed at proving the infilling capabilities of waste packages containing shredded paper and plastic simulant waste material held in a basket. The programme required the production of 200 and 500 litre packages and a demonstration that infilling could be attained to give a minimum of voidage in the completed cemented product. The procurement, testing and fitting of level detectors was an important part of this work to demonstrate a means of controlling the process to prevent overfilling of the packages. Evaluation of full-scale cemented products was required to confirm previously reported properties of density and homogeneity in packages produced by the reference encapsulation process and to demonstrate package integrity under sea-disposal conditions. A standard feedstock for the continuity of a long-term programme was required. Such a product, based on an analysis of arisings from plutonium gloveboxes, was produced in bulk and characterised. The previously observed movement of waste during infilling, due to its low density compared with that of the infill grout, required further assessment. During the period, 200, 400 and 500 litre drums required for future active infilling trials were modified and despatched to AERE Harwell for waste loading. These drums were fitted with level detectors and with grout spreader troughs which had been identified during the development programme. A prototype automated Grout Infill Test Rig designed by BNF plc was delivered to Winfrith towards the end of the period for practical assessment trials. (author)

  12. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  13. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    Energy Technology Data Exchange (ETDEWEB)

    Raveu, Gaëlle, E-mail: gaelle.raveu@cea.fr [CEA, DEC, 13108 Saint-Paul-Lez-Durance (France); Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé [CEA, DEC, 13108 Saint-Paul-Lez-Durance (France); Bonnin, Anne [ESRF, 6, rue J. Horowitz, 38500 Grenoble Cedex (France); Khodja, Hicham [CEA, DEC, 13108 Saint-Paul-Lez-Durance (France); Raepsaet, Caroline [CEA, IRAMIS, LEEL, 91191 Gif-Sur-Yvette (France); Sauvage, Thierry; Barthe, Marie-France [CNRS – CEMHTI, 3a Rue de la Férolerie, 45071 Orleans (France)

    2014-12-15

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC{sub 2} is expected in these samples. The α-UC{sub 2} phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100–150 nm. UC{sub 2} inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  14. Radioactive Acid Digestion Test Unit (RADTU), 1980

    International Nuclear Information System (INIS)

    Allen, C.R.

    1980-01-01

    The Radioactive Acid Digestion Test Unit (RADTU) was constructed at the Hanford Site, Richland, WA to demonstrate application of the acid digestion process for treating combustible transuranic wastes and scrap materials. Using its original tray digester vessel, RADTU recently completed a six-month campaign of processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During the campaign, 2100 kg of largely cellulosic wastes were processed at an average sustained processing rate of 3 kg/h (limited by the acid-waste contact and the water boiloff rate from the acid feeds). On-line operating efficiency was nearly 50%, averaged over 12 hours/day, for five days/week. After shutdown, a new annular high-rate digester was installed for testing that demonstrated a sustained capacity of 8 kg/h to 10 kg/h with greatly improved contact between the digestion acid and the waste. The new unit began processing low-level waste from Hanford's z-Plant during June 1980. Plutonium levels in the waste processed will be increased gradually as operating experience has been gained. Processing recoverable scrap is expected to begin in the last quarter of CY 1980

  15. NASA Tech Briefs, February 2009

    Science.gov (United States)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: Measuring Low Concentrations of Liquid Water in Soil; The Mars Science Laboratory Touchdown Test Facility; Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials; Compact Microwave Fourier Spectrum Analyzer; InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz; Combinatorial Generation of Test Suites; In-Phase Power-Combined Frequency Tripler at 300 GHz; Electronic System for Preventing Airport Runway Incursions; Smaller but Fully Functional Backshell for Cable Connector; Glove-Box or Desktop Virtual-Reality System; Composite Layer Manufacturing with Fewer Interruptions; Improved Photoresist Coating for Making CNT Field Emitters; A Simplified Diagnostic Method for Elastomer Bond Durability; Complex Multifunctional Polymer/Carbon-Nanotube Composites; Very High Output Thermoelectric Devices Based on ITO Nanocomposites; Reducing Unsteady Loads on a Piggyback Miniature Submarine; Ultrasonic/Sonic Anchor; Grooved Fuel Rings for Nuclear Thermal Rocket Engines; Pulsed Operation of an Ion Accelerator; Autonomous Instrument Placement for Mars Exploration Rovers; Mission and Assets Database; TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP); Trajectory Calculator for Finite-Radius Cutter on a Lathe; Integrated System Health Management Development Toolkit.

  16. Low-speed shredder and waste shreddability tests

    International Nuclear Information System (INIS)

    Darnell, G.R.; Aldrich, W.C.

    1983-04-01

    Most waste drums and large crates in the nuclear industry are or will be opened by hand, in gloveboxes, or with manipulators. The Transuranic Waste Treatment Facility (TWTF), which was being designed for the Idaho National Engineering Laboratory (INEL), was no exception. The TWTF's manipulator concept required 4 to 6 hours to open and route a crate or drum for further processing; a costly operation. An alternative method was sought. Four of the relatively new low-speed shredders were tested on simulated transuranic waste packaged in 55-gal drums and 4- x 4- x 4-ft boxes. Three of the shredders were capable of shredding these containers and their contents in 1 to 15 minutes. Two were able to shred typical TWTF waste to acceptable particle size. The test waste included concrete, 1/4-in. steel plate (carbon and stainless), 1-in. rebar, rock, glass, plastic, paper, cloth, wood, steel cable, chain, etc. The two shredders were able to shred drums even with unshreddable items inside; the unshreddable items lay on top for later recovery by a manipulator while the other waste was being shredded

  17. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  18. Ceramification: A plutonium immobilization process

    Energy Technology Data Exchange (ETDEWEB)

    Rask, W.C. [Dept. of Energy, Golden, CO (United States); Phillips, A.G. [Rocky Flats Environmental Technology Site, Golden, CO (United States)

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  19. Quality engineering and control semiannual progress report, May--October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    A colorimetric method has been adapted to bulk metal samples of steels and plutonium silicon alloys. The decomposition of the silico-12-molybdate complex in solutions of aqueous hydrofluoric acid has been determined to follow a third-order rate expression. The optimum pH for the electrolytic removal of plutonium from synthetic process-waste-stream solutions was established. Ni, Cr, Ti, Mn, Cu, Si, Mo, P, and Al in steels are determined by a plasma-source optical emission spectrograph. Quality control analyses of reagent-grade acetone are performed by a standard-addition method. A method is described for solvent extraction of the plasticizer [bis(2-ethylhexyl)phthalate] from a membrane filter. Extraction of aqueous acid solutions with carbon tetrachloride and measurement of the C--H absorption permits the rapid determination of trace concentrations of tributyl phosphate. Determination of percent concentrations of the dihexyldiethylcarbamylmethylene phosphate (DHDECMP) in methanol is possible. Volume-percent quantities of this organic extractant (DHDECMP) can be rapidly determined by measuring its absorption maximum at 7.2 micrometers. A method for measuring traces of the organic phosphate (DHDECMP) is described. Noncontaminated gas samples are obtained from sample vials containing plutonium by means of a hypodermic needle attached to a vacuum manifold inside a glove box. Problems of storage, shipping, and disposal of relatively large volumes of laboratory waste have been solved by a distillation and delivery setup for reuse of the organic solvent without its removal from glove-box lines

  20. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  1. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  2. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Estochen, E.G. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)

  3. Thermal release of {sup 3}He from tritium aged LaNi{sub 4.25}Al{sub 0.75} hydride

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G.C.; Crowder, M.L.; Klein, J.E. [Savannah River National Laboratory, Aiken, SC (United States)

    2015-03-15

    The Savannah River Site Tritium Facilities (SRS-TF) utilizes LANA.75 (LaNi{sub 4.25}Al{sub 0.75})in the tritium process to store hydrogen isotopes. The vast majority of {sup 3}He born from the radioactive decay of tritium stored in LANA.75 is trapped in the hydride metal matrix. The SRS-TF has multiple LANA.75 tritium storage beds that have been retired from service with significant quantities of He-3 trapped in the metal. To support He-3 recovery, the Savannah River National Laboratory (SRNL) conducted thermogravimetric analysis coupled with mass spectrometry (TGA-MS) on a tritium aged LANA.75 sample. TGA-MS testing was performed in an argon environment. Prior to testing, the sample was isotopically exchanged with deuterium to reduce residual tritium and passivated with air to alleviate pyrophoric concerns associated with handling the material outside of an inert glovebox. Analyses indicated that gas release from this sample was bimodal, with peaks near 220 and 490 C. degrees. The first peak consisted of both {sup 3}He and residual hydrogen isotopes, the second was primarily {sup 3}He. The bulk of the gas was released by 600 Celsius degrees. (author)

  4. The LEAN Payload Integration Process

    Science.gov (United States)

    Jordan, Lee P.; Young, Yancy; Rice, Amanda

    2011-01-01

    It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.

  5. Flow sheet development for the remediation of tank SY-102 at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Ortiz, E.M.; Jarvinen, G.D.

    1994-01-01

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks at the Hanford Nuclear Reservation. A major task of TWRS is to separate tank wastes into high-level and low-level fractions. This separation is important because of the enormous costs associated with handling high-level waste and the limited repository space that is available. Due to their high activity, segregating the actinides and fission products from the bulk of the waste is required to achieve this goal. As a part of this program, personnel at the Los Alamos National Laboratory have developed and demonstrated a flow sheet to remediate tank SY-102 at the Hanford Site. This presentation documents the results of the flow sheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. Removal of the actinides from a high-salt, low-acid feed by ion exchange is the key unit operation. The flow sheet produces relatively low waste volumes, can be accomplished with conventional chemical processing equipment, and takes advantage of the components of the waste to increase the efficiency of the TRU elements recovery

  6. A novel device for processing radioactive combustibles

    International Nuclear Information System (INIS)

    Phelan, P.F.; Thompson, T.K.

    1991-01-01

    Los Alamos National Laboratory is assisting EG ampersand G Rocky Flats, Colorado, with the development of a special incinerator for wastes contaminated with plutonium, a radioactive element. This paper describes one conceptual design that was developed by T.K. Thompson, Inc., under contract to Los Alamos National Laboratory. The design is a tentative proposal that tries to address the many constraints that are peculiar to this project. It has not been endorsed or accepted by EG ampersand G Rocky Flats, and it is subject to revision. Nevertheless, it is noteworthy because of the novel concepts it embodies. Before examining the design itself, it is instructive to understand the constraints imposed by safety and operational concerns. There are three main requirements related to safety: There may be no emissions of radioactive material either to the atmosphere or into the building that houses the incinerator. The outer surfaces of the combustion chamber must be kept below 140oF so that the lead-lined rubber gloves will not melt if the operator reaches inside the glovebox while the incinerator is hot. The combustion chambers and other locations where plutonium-containing ash could accumulate must be designed in such a way that it would be impossible for a critically accident to occur. 3 figs

  7. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    International Nuclear Information System (INIS)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-01-01

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste

  8. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  9. Operational health physics training

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  10. Ames life science telescience testbed evaluation

    Science.gov (United States)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  11. ProTec Tear-Offs: A Preliminary Assessment

    International Nuclear Information System (INIS)

    Peeler, D

    2005-01-01

    The Savannah River National Laboratory (SRNL) has conducted a series of ''scoping'' tests (referred to as Phase 1) to assess the potential use of a Mylar(reg s ign) tear-off system as a primary or secondary protective barrier to minimize acid etching (''frosting''), accidental scratching, and/or radiation damage for shielded cells windows. Conceptually, thin, multi-layered sheets of Mylar (referred to as a ''tear-off'' system) could be directly applied to the Lexan(reg s ign) sheet or glovebox/hood sash window to serve as a secondary (or primary) barrier. Upon degradation of visual clarity due to accidental scratching, spills/splatters, and/or radiation damage, the outer layer (or sheet) of Mylar could be removed ''refreshing'' or restoring the view. Due to the multi-layer aspect, the remaining Mylar layers would provide continued protection for the window from potential reoccurrences (which could be immediate or after some extended time period). Although the concept of using a tear-off system as a protective barrier was conceptually enticing, potential technical issues were identified and addressed as part of this Phase 1 feasibility study. These included resistance to: (1) acid(s) (concentrated (28.9 M) HF, concentrated (15.9M) HNO 3 , 6M HCl, and 0.6M H 3 BO 3 ), (2) base (a simulated sludge with pH of 12.9), (3) gamma radiation (cumulative dose of ∼200,000 rad), and (4) scratch resistance (simulating accidental scratching with the manipulators). Not only can these four factors play a significant role in determining the visual clarity of the integrated system, they can also contribute to the mechanical integrity issues which could dictate the ability to remove the outer layer when visual clarity has degraded. The results of the Phase 1 study clearly indicate that the Mylar tear-off concept (as a primary or secondary protective barrier) is a potential technical solution to prevent or retard excessive damage that would result from acid etching, base damage (as a

  12. An approach for the reasonable TRU waste management in NUCEF

    International Nuclear Information System (INIS)

    Mineo, H.; Dojiri, S.; Takeshita, I.; Tsujino, T.; Matsumura, T.; Nishizawa, I.; Sugikawa, S.

    1995-01-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) has started its hot operation at the beginning of 1995, where TRU (transuranic) elements are used. The management of TRU waste arisen in the facility is very important issue. Liquid and solid wastes containing TRU elements are generated mainly from the Fuel Treatment System for critical experiments and from the researches of reprocessing process and TRU waste management for reprocessing plants using hot cells and glove-boxes. The TRU waste management in NUCEF is based on the classification of waste, and is to maximize the recycle of reagents and the reuse of TRU elements separated from the waste, as well as to reduce the waste volume and to lower the risk of waste by advanced separation and solidification. In the future, the separation and solidification of TRU elements in the tanks of liquid waste, and the classification and discrimination of solid wastes, will be carried out applying the outcomes of the development by the researches in NUCEF. (authors)

  13. Applicability of molten salt oxidation to the destruction of actinide-contaminated wastes

    International Nuclear Information System (INIS)

    West, M.H.; Garcia, E.; Griego, W.J.; Court, D.B.; Rodriguez, L.

    1992-01-01

    A 1989 ban on incineration in the state of New Mexico caused cessation of actinide-contaminated cheesecloth, paper, and wood incineration within the Plutonium Facility (TA-55) at Los Alamos National Laboratory. Subsequently, plastic wipes were substituted for cheesecloth in the cleaning of glovebox interiors. However, waste minimization is not achieved by these measures since the wipes are discarded as Waste Isolation Pilot Plant certifiable wastes. After the ban was instituted, thermal decomposition of cheesecloth under argon at elevated temperature was examined and found satisfactory although scale of operation and speed were inferior to incineration. In 1991, the ban on incineration was lifted in New Mexico but Alamos has not chosen to pursue renewal of incineration at the Plutonium Facility. This paper reports that Los Alamos is looking from alternatives to incineration and thermal decomposition which are compatible with molten salt processing technology, historically a strength in actinide research at the Laboratory. Also, the technology must significantly reduce the volume of the waste upon treatment, i.e. waste minimization. Molten salt oxidation (MSO) has the promise of such a technology

  14. Process and equipment qualification of the ceramic and metal waste forms for spent fuel treatment

    International Nuclear Information System (INIS)

    Marsden, Ken; Knight, Collin; Bateman, Kenneth; Westphal, Brian; Lind, Paul

    2005-01-01

    The electrometallurgical process for treating sodium-bonded spent metallic fuel at the Materials and Fuels Complex of the Idaho National Laboratory separates actinides and partitions fission products into two waste forms. The first is the metal waste form, which is primarily composed of stainless steel from the fuel cladding. This stainless steel is alloyed with 15w% zirconium to produce a very corrosion-resistant metal which binds noble metal fission products and residual actinides. The second is the ceramic waste form which stabilizes fission product-loaded chloride salts in a sodalite and glass composite. These two waste forms will be packaged together for disposal at the Yucca Mountain repository. Two production-scale metal waste furnaces have been constructed. The first is in a large argon-atmosphere glovebox and has been used for equipment qualification, process development, and process qualification - the demonstration of process reliability for production of the DOE-qualified metal waste form. The second furnace will be transferred into a hot cell for production of metal waste. Prototype production-scale ceramic waste equipment has been constructed or procured; some equipment has been qualified with fission product-loaded salt in the hot cell. Qualification of the remaining equipment with surrogate materials is underway. (author)

  15. Performance and stability of P3HT/PCBM bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yumnam, Nivedita; Bom, Sidhant; Wagner, Veit [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2011-07-01

    Organic photovoltaic cells are promising candidates for large-area, low-cost production of solar cells. However, the low stability in conjunction with their medium performance is one of the major drawbacks in comparison to their inorganic counterparts. In this investigation environmental conditions for degradation of bulk heterojunction P3HT/PCBM solar cells are systematically analyzed over a period of one week. Devices were prepared by spin coating from different compositions of P3HT and PCBM in Chlorobenzene (C{sub 6}H{sub 5}Cl). Performance parameters, efficiency and I-V characteristics were determined in a N{sub 2} glove box showing optimized efficiency for a 1:1 ratio. Degradation behavior in N{sub 2} atmosphere, vacuum and solvent-enriched atmosphere (Chlorobenzene) showed best results for vacuum stored solar cells while for solvent-enriched atmosphere rapid degradation was observed. Remarkable degradation (open-circuit voltage and short-circuit current reduced to 90% and 60% after one week) was also found for N{sub 2} atmosphere of the glove box used for the solar cell production. Residual solvent vapor left dispersed in the atmosphere of the glovebox after the spin coating process is identified as an important parameter of this degradation.

  16. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  17. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Ams, Bridget Elaine [Los Alamos National Laboratory

    2017-05-09

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.

  18. Isotope Fuels Impact Tester (IFIT)

    International Nuclear Information System (INIS)

    Frantz, C.E.; Taylor, J.W.; Court, D.B.

    1975-07-01

    The Isotope Fuels Impact Tester (IFIT) is used for safely impacting 238 PuO 2 heat sources that have been heated to 2000 0 C. Impact velocities reach 300 m/s (1000 ft/s). A gas gun with a 178-mm (7-in.) bore is used to accelerate the heat source, which is heated by a furnace built into the projectile. Double containment of the impacted heat source is obtained by two vessels that are sealed directly to the gun muzzle. The impact occurs in the inner vessel, and parts of the projectile jam into and thereby close each vessel. The inner vessel, containing the impacted heat source, is removed from the gun and is placed inside a glovebox for disassembly and heat-source recovery. IFIT's modular structure makes it versatile and adaptable to many types of tests. Many applications have demonstrated its versatility and, more important, its capability for impacting 238 PuO 2 heat sources safely. An approximate theoretical relation is used to predict proper conditions for achieving desired impact velocities. Bore lubricants and projectile-seal design are also important for achieving proper impact velocities

  19. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    International Nuclear Information System (INIS)

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  20. Phase I decontamination of the J.C. Haynes site, Newark, Ohio. Final report

    International Nuclear Information System (INIS)

    Emswiler, T.R.

    1985-11-01

    Phase I consisted of the primary decontamination, packaging, and shipment of all 241 Am-contaminated gloveboxes, vent system, and miscellaneous waste items located in the laboratory restricted area in the J.C. Haynes house. The primary goals of Phase I were to locate and account for a major quantity of 241 Am which was unaccounted for and to remove all radioactive materials and contamination posing an imminent hazard to public health and safety. All Phase I operations were conducted under a Quality Assurance (QA) Program Plan and QA procedures written specifically for this program. In addition, certain generic Battelle QA procedures were used for routine tasks. All operations were conducted under strict health physics supervision and procedures. Cognizant ORAU and US Nuclear Regulatory Commission (NRC) personnel were on site during the entire Phase I operation and provided support and approval in the daily operations. All staff members had participated in previous decontamination and decommissioning programs involving transuranic waste and completed Phase I in a well controlled, timely, and safe manner

  1. The OTD Robotics Waste Minimization Program

    International Nuclear Information System (INIS)

    Couture, S.A.

    1992-04-01

    The danger to human health and safety posed by exposure to transuranic (TRU) and Pu contaminated materials necessitates remote processing in confined environments. Currently these operations are carried out in gloveboxes and hot-cells by human operators using lead- lined gloves or teleoperated manipulators. Protective clothing worn by operators during gloved operations has contributed significantly to the waste problems currently facing site remediators. The DOE Environmental Restoration and Waste Management (ER/WM) Program is in the process of developing and demonstrating technologies to assist in the remediation of sites that have accumulated wastes generated using these processes over the past five decades. Recognizing that continued use of existing production, recovery and waste treatment systems will compound the remediation problem, DOE has made a commitment to waste minimization. To reduce waste generation during weapons production and waste processing operations, automated processes are being developed and demonstrated for use in future DOE processing facilities as part of OTD's Robotics Technology Development Program. These technologies are currently being applied to pyrochemical processing systems to demonstrate conversion of plutonium oxide to metal. However, these technologies are expected to have applications in a variety of waste processing systems including those used to treat high-level tank wastes, buried wastes requiring remote processing, mixed wastes, and unknown hazardous materials. In addition to reducing the future waste burden of DOE, automated processes are an effective way to comply with existing and anticipated federal, state, and local regulations related to personal health and safety and the health of the environment

  2. Ultra-high tritium decontamination of simulated fusion fuel exhaust using a 2-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.; Wilhelm, R.C.

    1996-01-01

    A 2-stage cold (non-tritium) PMR system was tested with the ITER mix in61 days of continuous operation. No decrease in performance was observed over the duration of the test. Decontamination factor (DF) was found to increase with decreasing inlet rate. Decontamination factors in excess of 1.4 x 10 5 were obtained, but the exact value of the highest DF could not be determined because of analysis limitations. Results of the 61-day test were used to design a 2-stage PMR system for use in tritium testing. The PMR system was scaled up by a factor of 6 and built into a glovebox in the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory. This system is approximately 1/5th of the expected full ITER scale. The ITER mix was injected into the PMR system for 31 hours, during which 4.5 g of tritium were processed. The 1st stage had DF = 200 and the 2nd stage had DF = 2.9 x 10 6 . The overall DF = 5.8 x 10 8 , which is greater than ITER requirements

  3. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Betti, M.; Rasmussen, G.; Koch, L.

    1996-01-01

    A double-focusing glow discharge mass spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from thermal ionization mass spectrometry (TIMS). For boron and lithium at μg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques. (orig.). With 2 figs., 4 tabs

  4. Low-waste electrochemical decontamination of stainless-steel surface

    International Nuclear Information System (INIS)

    Babain, V.A.; Smirnov, I.V.; Shadrin, A.Yu.; Firsin, N.G.; Zakharchuk, G.A.; Pavlov, A.B.; Shilov, V.V.

    2002-01-01

    An electrochemical decontamination method using a formic acid-based recycling electrolyte was proposed to remove firmly fixed contaminants from stainless-steel surfaces. The following provisions make for minimisation of the amounts of waste: (i) use of specially designed electrodes with vacuum removal of spent electrolyte; (ii) inter-cycle removal of radionuclides from the electrolyte by using an inorganic sorbent; (iii) periodic regeneration of the spent electrolyte. the dissolved metals (Fe, Cr, Ni) being transformed into acidic phosphates; (iv) solidification of residues arising from the regeneration of the electrolyte and spent sorbent into iron-phosphate ceramics. The technology and equipment developed were used for decontamination of a plutonium glove-box. The level of surface contamination was reduced 100-fold in two decontamination cycles. The depth of metal skimming was 1.5 μ for the ceiling and walls and 4.5 μ for the table top. Each square meter of stainless-steel surface provides about 100 g of solid radioactive waste in the form of iron-phosphate ceramic blocks

  5. Thermal Stabilization FY 1999 blend plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    1999-02-23

    This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-Z vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met.

  6. Thermal Stabilization FY 1999 blend plan

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-Z vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met

  7. Thermal stabilization FY 1999 blend plan

    International Nuclear Information System (INIS)

    RISENMAY, H.R.

    1999-01-01

    This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-2 vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met

  8. Thermal stabilization FY 1999 blend plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    1999-06-01

    This Blend Plan documents the alternate feed material items for the thermal stabilization process that will be used in place of the metal items that were originally planned to be processed. Problems with resolution of the safety basis for the metal items resulted in the decision to run material that already had an established safety basis. Various in process and scrap recovery items stored in gloveboxes, plutonium oxide and plutonium oxide mixed with uranium oxide stored in 2736-2 vaults will be processed through the stabilization furnaces until the safety basis for the metal items has been resolved. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all volatile materials and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI). The stabilized material must meet LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-94 specifications. Out of specification material will be recycled through the furnaces until the LOI limits are met.

  9. Development of a chromatographic micro-system for radionuclides analysis in nitric acid media

    International Nuclear Information System (INIS)

    Losno, Marion

    2017-01-01

    Radionuclides analysis is a key point for nuclear waste management and nuclear material control. Several steps of sample modification have to be carried out before measurements in order to avoid any interferences and improve measurement precision. However those different steps are long, irradiating and difficult to achieve in gloveboxes. Moreover they produce liquid and solid waste. The goal of the study is to offer a new alternative to the use of solid phase extraction column for radionuclides separation in hard nitric acid medium. The system will decrease the amount of nuclear waste due to the analysis and automatize the different steps of the analysis. A plastic device made of COC containing a micro solid phase extraction column is first designed. Stationary phase is a poly(AMA-co-EDMA) monolith synthesized in situ. Its structure is adjustable and its functionalization versatile with a high resistance to nitric acid medium. Exchange capacity is 150 mg/g of monolith for TBP and TBP/CMPO column and up to 280 mg/g of monolith in case of DAAP. Exchange coefficients are determined for U(VI), Th(IV), Eu(III) and Nd(III) for 3 different extractants (and Pu(IV) in case of TBP column). Monolith synthesis is transferred in centrifugal device and hydrodynamic behavior studied. U,Th/Eu separation was finally carried out in both classic and centrifugal micro-system on TBP column. (author) [fr

  10. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  11. Nonradioactive demonstration of the Alpha D and D Pilot Facility

    International Nuclear Information System (INIS)

    Wobser, J.K.

    1983-01-01

    The Alpha-Contained Decontamination and Disassembly (AD and D) pilot facility was designed to demonstrate the process flowsheet under conditions typical to those expected in a production facility. To achieve this, nonradioactive waste items similar to those in retrievable storage at the Savannah River Plant burial ground (e.g. gloveboxes), were chemically sprayed and size reduced. During process runs, parameters such as feed rate, oxide removal, etching rate, and secondary waste generation were determined. The exhaust system was monitored during operation to ensure that exhaust from the facility was sufficiently filtered before release to the atmosphere. The strategy for decontamination techniques required development during the nonradioactive testing period. Under investigation during process runs were both once-through and recirculating washes, and their correlation to oxide removal and etching rates on the stainless steel feed items. Wash products of the decontamination process were analyzed for concentration of Ni, Cr, Fe, Mn, and Si, major components of stainless steel. Size reduction techniques were also developed during the nonradioactive testing period. An array of conventional power and pneumatic tools were tested and evaluated. Plasma arc torch operating parameters; standoff distance, ampere setting, and cutting angle were determined

  12. The future fuel cycle plants

    International Nuclear Information System (INIS)

    Paret, L.; Touron, E.

    2016-01-01

    The future fuel cycle plants will have to cope with both the fuel for PWR and the fuel for the new generation of fast reactors. Furthermore, the MOX fuel, that is not recycled in PWR reactors will have the possibility to be recycled in fast reactors of 4. generation. Recycling MOX fuels will imply to handle nuclear fuels with higher concentration of Pu than today. The design of the nuclear fuel for the future fast reactors will be similar to that of the Astrid prototype. In order to simplify the fabrication of UPuO_2 pellets, all the fabrication process will take place in a dedicated glove box. Enhanced reality and virtual reality technologies have been used to optimize the glove-box design in order to have a better recovery of radioactive dust and to ease routine operations and its future dismantling. As a fuel assembly will contain 120 kg of UPuO_2 fuel, it will no longer be possible to mount these assemblies by hand contrary to what was done for Superphenix reactor. A new shielded mounting line has to be designed. Another point is that additive manufacturing for the fabrication of very small parts with a complex design will be broadly used. (A.C.)

  13. Tank SY-102 remediation project: Flowsheet and conceptual design report

    International Nuclear Information System (INIS)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank's contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates

  14. Water containing deuterium electrolysis to obtain gaseous hydrogen isotope in a high state of purity

    International Nuclear Information System (INIS)

    Bellanger, Gilbert

    1992-01-01

    In this paper, the basic concept is to prepare hydrogen in a high state of purity by electrolysing water using a palladium cathode. During electrolysis, hydrogen is at first adsorbed at the palladium surface, and next it diffuses through it till opposite face of its entry where it is desorbed; thus permitting to regain it in a very pure state for storage. The method can be used from water containing deuterium. To improve hydrogen adsorption, surface effect of palladium must be studied. It was found that heat treatment of palladium improved the hydrogen permeation flux. The diffusivity of hydrogen is controlled by Fick and Sieverts equations in which temperature has a significant influence on permeation rates. Anyway, hydrogen desorption does not cause any difficulty. In a second part, we have studied the isotopic separation factor using water containing deuterium. We remarked in fact that it depends on current density, overpotential, diffusivity of hydrogen and deuterium and isotopic composition of electrolyte as expected. In the last part, we realized an original electrolysis model in a glove-box in which are taken into account the results given before and also the technology components employed in processes involving the use of tritium. (author) [fr

  15. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Sarah V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  16. Characterization of aerosols from industrial fabrication of mixed-oxide nuclear reactor fuels

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.

    1997-01-01

    Recycling plutonium into mixed-oxide (MOX) fuel for nuclear reactors is being given serious consideration as a safe and environmentally sound method of managing plutonium from weapons programs. Planning for the proper design and safe operation of the MOX fuel fabrication facilities can take advantage of studies done in the 1970s, when recycling of plutonium from nuclear fuel was under serious consideration. At that time, it was recognized that the recycle of plutonium and uranium in irradiated fuel could provide a significant energy source and that the use of 239 Pu in light water reactor fuel would reduce the requirements for enriched 235 U as a reactor fuel. It was also recognized that the fabrication of uranium and plutonium reactor fuels would not be risk-free. Despite engineered safety precautions such as the handling of uranium and plutonium in glove-box enclosures, accidental releases of radioactive aerosols from normal containment might occur. Workers might then be exposed to the released materials by inhalation

  17. Experiments to validate the assumptions on Pu release in an aircraft crash

    International Nuclear Information System (INIS)

    Seehars, H.D.; Hochrainer, D.

    1983-01-01

    This report describes simulation experiments with the substitute powder CeO 2 to study the release and dispersion of PuO 2 -powder induced by kerosene fires after an aeroplane crash on a Plutonium processing fuel element plant. The release rates of CeO 2 -powder were found to be a nonlinear function of te kerosene combustion rate. The release rates during a ''micro-scale'' fire inside the glovebox (pool area some 20 cm 2 ) were characterized by values of less than 10 μg/s, those during a conflagration (pool area some 200 m 2 ) by values of somewhat more than 25 mg/s. Because of the lack of other weather conditions the dispersion experiments were exclusively realized during weak to moderate winds. Small scale fire induced maximum inhalation hazards from PuO 2 -powder used in production essentially exceeded those of large scale conflagrations. Obviously the activity intake by inhalation exceeded to some extent the admissable threshold of the annual activity intake. (orig.) [de

  18. Dose-response study in F344 rats exposed to (U,Pu)O2 or PuO2

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Eidson, A.F.; Hahn, F.F.; Scott, B.R.; Seiler, F.A.; Boecker, B.B.

    1987-01-01

    The relationship of radiation dose to lung and the biological effect observed was investigated following inhalation of two types of plutonium-containing particulate materials in rats. Bulk powder samples of the two materials were obtained from within gloveboxes used in the routine manufacture of mixed plutonium and uranium oxide nuclear fuel. The materials were a solid solution of uranium and plutonium treated at 1750 0 C and a PuO 2 feedstock. Groups of rats received a single inhalation exposure to a material to achieve one of three levels of initial pulmonary burden. Rats were maintained for their lifespan to observe the biological effects produced. These effects were observed in the lungs of rats exposed to either type of particle. The same types of lung cancer were produced by both particulate materials. The incidences of cancers were also similar at comparable levels of initial pulmonary burden for the two materials. The crude incidence of lung cancers for rats exposed to these materials was not different than those reported for similar studies that used laboratory-produced aerosols of PuO 2 . Using a linear dose-effect model, the relative risk of lung cancer for rats exposed to these industrial materials was 2.3 +- 1.0 (SE) at a lung dose of 100 rad. The doubling dose for lung cancers was 78 +- 63 rad to lung to median life span. 21 refs., 9 figs., 10 tabs

  19. International Cooperation of Payload Operations on the International Space Station

    Science.gov (United States)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  20. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    Science.gov (United States)

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  1. Laser ablation of silicate glasses doped with transuranic actinides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1998-01-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2

  2. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish trademark. The surface contamination, as shown by swipe surveys, was reduced from 4x10 4 --10 6 disintegrations per minute (dpm)/cm 2 to 2x10 2 --4x10 4 dpm/cm 2 . Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  3. Contamination control using portable glove bags and containments

    International Nuclear Information System (INIS)

    Fink, C.

    1994-01-01

    Portable gloveboxes and containments have been used in the Navy Nuclear Power programs for many years. Their primary application has been to allow maintenance access to radioactive piping systems while limiting the spread of contamination to the immediate environment. The applications have spread to other areas of the nuclear industry and to other industries with similar contamination control problems. The general application is to keep the contaminants in, but other uses keep the contamination out. The devices can best be classified by material types and construction. They range from the relatively inexpensive polyethylene glove bags for asbestos removal to the semi-permanent aluminum and lexan hard-sided containment structures. There are free-standing open-quotes tentclose quotes structures, support ring devices and tube or bag designs. Only the cost seems to limit the size of these items. The key to the effective use of these devices lies in the planning and control of their application. Proper training of maintenance personnel will greatly facilitate their use, since the main objection seems to be in the exposure received during the rigging of these containments. When all of these considerations are accounted for, a program of contamination control can be quite successful. A brief description of the set-up and use of a specific application is described

  4. Acid-digestion treatment of plutonium-containing waste

    International Nuclear Information System (INIS)

    Wieczorek, H.; Kemmler, G.; Krause, H.

    1981-01-01

    The Radioactive Acid-Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the acid-digestion process for treating combustible transuranic wastes and scrap materials. The RADTU, with its original tray digestion vessel, has recently completed a six-month campaign processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the acid-waste contact and the water boil-off rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve-hour day, five-day week basis. Following this campaign, a new annular high-rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat-transfer surface, which is expected to provide at least twice the water boil-off rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form. (author)

  5. An automated system for the preparation of Large Size Dried (LSD) Spikes

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, A.; Bauwens, J.; Jakobsson, U.; Eykens, R.; Wellum, R.; Aregbe, Y. [European Commission - Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 211, B2440 Geel (Belgium); Van De Steene, N. [Nucomat, Mercatorstraat 206, B9100 Sint Niklaas (Belgium)

    2008-07-01

    Large size dried (LSD) spikes have been produced to fulfill the existing requirement for reliable and traceable isotopic reference materials for nuclear safeguards. A system to produce certified nuclear isotopic reference material as a U/Pu mixture in the form of large size dried spikes, comparable to those produced using traditional methods has been installed in collaboration with Nucomat, a company with a recognized reputation in design and development of integrated automated systems. The major components of the system are a robot, two balances, a dispenser and a drying unit fitted into a glove box. The robot is software driven and designed to control all movements inside the glove-box, to identify unambiguously the penicillin vials with a bar-code reader, to dispense the LSD batch solution into the vials and to weigh the amount dispensed. The system functionality has been evaluated and the performance validated by comparing the results from a series of samples dispensed and weighed by the automated system with the results by manual substitution weighing. After applying the proper correction factors to the data from the automated system balance no significant difference was observed between the two. However, an additional component of uncertainty of 3*10{sup -4} is introduced in the uncertainty budget for the certified weights provided by the automatic system. (authors)

  6. An automated system for the preparation of Large Size Dried (LSD) Spikes

    International Nuclear Information System (INIS)

    Verbruggen, A.; Bauwens, J.; Jakobsson, U.; Eykens, R.; Wellum, R.; Aregbe, Y.; Van De Steene, N.

    2008-01-01

    Large size dried (LSD) spikes have been produced to fulfill the existing requirement for reliable and traceable isotopic reference materials for nuclear safeguards. A system to produce certified nuclear isotopic reference material as a U/Pu mixture in the form of large size dried spikes, comparable to those produced using traditional methods has been installed in collaboration with Nucomat, a company with a recognized reputation in design and development of integrated automated systems. The major components of the system are a robot, two balances, a dispenser and a drying unit fitted into a glove box. The robot is software driven and designed to control all movements inside the glove-box, to identify unambiguously the penicillin vials with a bar-code reader, to dispense the LSD batch solution into the vials and to weigh the amount dispensed. The system functionality has been evaluated and the performance validated by comparing the results from a series of samples dispensed and weighed by the automated system with the results by manual substitution weighing. After applying the proper correction factors to the data from the automated system balance no significant difference was observed between the two. However, an additional component of uncertainty of 3*10 -4 is introduced in the uncertainty budget for the certified weights provided by the automatic system. (authors)

  7. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  8. TRU waste from the Superblock

    International Nuclear Information System (INIS)

    Coburn, T.T.

    1997-01-01

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a γ-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  9. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  10. Ventilation design modifications at Los Alamos Scientific Laboratory major plutonium operational areas

    International Nuclear Information System (INIS)

    Stafford, R.G.; Gallimore, J.C. Jr.; Mitchell, R.N.; Maraman, W.J.; McNeese, W.D.

    1975-01-01

    Major ventilation design modifications in plutonium operational areas at Los Alamos have occurred during the past two years. An additional stage of HEPA filters has been added to DP West glove-box process exhaust resulting in significant effluent reductions. The additional stage of HEPA filters is unique in that each filter may be individually DOP tested. Radiological filter efficiencies of each process exhaust stage is presented. DP West room air ventilation systems have been modified to incorporate a single stage of HEPA filters in contrast to a previous American Air Filter PL-24 filtration system. Plutonium effluent reductions of 10 2 to 10 3 have resulted in these new systems. Modified DOP testing procedures for room air filtration systems are discussed. Major plutonium areas of the CMR Building utilizing Aerosolve 95 process exhaust filtration systems have been upgraded with two stages of HEPA filters. Significant reductions in effluent are evident. A unique method of DOP testing each bank of HEPA filters is discussed. Radiological efficiencies of both single and two-stage filters are discussed. (U.S.)

  11. Pore water sampling in acid sulfate soils: a new peeper method.

    Science.gov (United States)

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  12. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs).

    Science.gov (United States)

    Pirela, Sandra V; Pyrgiotakis, Georgios; Bello, Dhimiter; Thomas, Treye; Castranova, Vincent; Demokritou, Philip

    2014-06-01

    An association between laser printer use and emissions of particulate matter (PM), ozone and volatile organic compounds has been reported in recent studies. However, the detailed physico-chemical, morphological and toxicological characterization of these printer-emitted particles (PEPs) and possible incorporation of engineered nanomaterials into toner formulations remain largely unknown. In this study, a printer exposure generation system suitable for the physico-chemical, morphological, and toxicological characterization of PEPs was developed and used to assess the properties of PEPs from the use of commercially available laser printers. The system consists of a glovebox type environmental chamber for uninterrupted printer operation, real-time and time-integrated particle sampling instrumentation for the size fractionation and sampling of PEPs and an exposure chamber for inhalation toxicological studies. Eleven commonly used laser printers were evaluated and ranked based on their PM emission profiles. Results show PM peak emissions are brand independent and varied between 3000 to 1 300 000 particles/cm³, with modal diameters ranging from 49 to 208 nm, with the majority of PEPs in the nanoscale (printer toner) raises questions about health implications to users. The presented PEGS platform will help in assessing the toxicological profile of PEPs and the link to the physico-chemical and morphological properties of emitted PM and toner formulations.

  13. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  14. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  15. Final hazard classification and auditable safety analysis for the 308 Building Complex during post-deactivation surveillance and maintenance mode

    International Nuclear Information System (INIS)

    Dexheimer, D.

    1996-11-01

    This document summarizes the inventories of radioactive and hazardous materials present within the 308 Building Complex, and presents the hazard evaluation methodology used to prepare the hazard classification for the Complex. The complex includes the 308 Building (process area and office facilities) and the 308 Building Annex, which includes the former Neutron Radiography Facility containing a shutdown (and partially decommissioned) reactor. This document applies to the post-deactivation surveillance and maintenance mode only, and provides an authorization basis limited to surveillance and maintenance activities. This document does not authorize decommissioning and decontamination activities, movement of fissile materials, modification to facility confinement structures, nor the introduction or storage of additional radionuclides in the 308 Building Complex. This document established a final hazard classification and identifies appropriate and adequate safety functions and controls to reduce or mitigate the risk associated with the surveillance and maintenance mode. The most consequential hazard event scenario is a postulated unmitigated release from an earthquake event involving the entire complex. That release is equivalent to 30% of the Nuclear Category 3 threshold adjusted as allowed by DOE-STD-1027-92 (DOE 1992). The dominant isotopes are 239 Pu, 240 Pu, and 241 Am in the gloveboxes

  16. Combustion of Solids in Microgravity: Results from the BASS-II Experiment

    Science.gov (United States)

    Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.

    2014-01-01

    The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).

  17. Electrochemical Methods for Reprocessing Defective Fuel Elements and for Decontaminating Equipment

    International Nuclear Information System (INIS)

    Mikheykin, S. V.; Rybakov, K. A.; Simonov, V. P.

    2002-01-01

    Reprocessing of fuel elements receives much consideration in nuclear engineering. Chemical and electrochemical methods are used for the purpose. For difficultly soluble materials based on zirconium alloys chemical methods are not suitable. Chemical reprocessing of defective or irradiated fuel elements requires special methods for their decladding because the dissolution of the clad material in nitric acid is either impossible (stainless steel, Zr alloys) or quite slow (aluminium). Fuel elements are cut in air-tight glove-boxes equipped with a dust collector and a feeder for crushed material. Chemical treatment is not free from limitations. For this reason we started a study of the feasibility of electrochemical methods for reprocessing defective and irradiated fuel elements. A simplified electrochemical technology developed makes it possible to recover expensive materials which were earlier wasted or required multi-step treatment. The method and an electrochemical cell are suitable for essentially complete dissolution of any fuel elements, specifically those made of materials which are difficultly soluble by chemical methods

  18. C.2 analysis of the environmental effects of the Nuclear Facilities Modernization project

    International Nuclear Information System (INIS)

    1991-04-01

    This analysis indicates that the potential impacts associated with the current/projected Mound tritium operations are adequately bounded by the existing environmental impacts analyzed in the FEIS. It also indicates that the incremental impacts of the NFM project will make a positive contribution to the overall impact of current/projected tritium operations. Except for minor and normal temporary conditions during the construction and demolition phases, the NFM project would measurably reduce the likelihood of adverse consequences to the environment. Relocation of the PE/PD laboratory operations from the SW/R Tritium Complex to the T Building will place these operations in a safer, state-of-the-art glovebox systems. Through the utilization of modern laboratory equipment and enhanced containment, the project will reduce the quantity of routine airborne tritium releases and volume of solid tritiated wastes resulting from routine PE/PD laboratory operations. The increased reliance placed on engineered safety aspects and stronger mitigative measures by the project will also reduce the risk associated with these operations by reducing both the probability and consequences of unusual occurrences involving uncontrolled tritium releases

  19. Plutonium solution analyzer. Revised February 1995

    International Nuclear Information System (INIS)

    Burns, D.A.

    1995-02-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%--0.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40--240 g/l: and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4--4.0 g/y. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 ml of each sample and standard, and generates waste at the rate of about 1.5 ml per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  20. Developing alternative oxidation processes for the treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Turc, H.A.; Broudic, J.Ch.; Joussot-Dubien, Ch.

    2000-01-01

    An electro-generated silver (II) mediated oxidation process is currently under development in the Atalante facility of the French Atomic Energy Commission, as an operation of the DELOS unit, with the aim to mineralize α-contaminated solvents with respect to the principles of nuclear safety. This process is a wet oxidation one involving a powerful mediator (Ag(II)/Ag(I): 1.92 V/NHE), but its throughput is mainly limited by technological constraints. Hydrothermal oxidation (HTO) has been investigated and proved by inactive studies as to be a versatile and powerful process, which could help destroying the contaminated solvents (dodecane, TBP, TLA...) produced by the spent nuclear fuel reprocessing research and industry. The current development aims to set up a continuous HTO pilot in a standard glovebox, in order to solve both technological and safety difficulties and to treat small volumes of contaminated solvents. This paper discusses the main results of the silver(II) oxidation and HTO process development works. (authors)

  1. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B.

    2008-01-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  2. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  3. Savannah River Site Bagless Transfer Technology Applied at Hanford

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing a system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container

  4. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    1999-01-01

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event

  5. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B. [Supercritical fluids and membranes Laboratory, CEA Valrho, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  6. Enhanced Crystallization by Methanol Additive in Anti-solvent for Achieving High-quality MAPbI3 Perovskite Films in Humid Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kamarudin, Muhammad Akmal; Zhang, PuTao; Kapil, Gaurav; Ma, Tingli; Hayase, Shuzi

    2018-05-04

    Perovskite solar cells have attracted considerable attention owing to easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside glovebox to avoid the moisture, as organometallic halide perovskite is easily dissolved in water. In this study, we propose one-step fabrication of high-quality MAPbI3 perovskite films in 50 % RH humid ambient air by using diethyl ether as an anti-solvent and methanol as an additive into this anti-solvent. Because of the existence of methanol, the water molecules can be efficiently removed from the gaps of perovskite precursors and the perovskite film formation can be slightly controlled leading to pinhole-free and low roughness film. Concurrently, methanol can modify a proper DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction has been suppressed when the device prepared with additive anti-solvent way. This method presents a new path for controlling the growth and morphology of perovskite films in the humid climates and uncontrolled laboratories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Operational health physics training

    International Nuclear Information System (INIS)

    1988-09-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of α, β, γ, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included

  8. Analysis of hydrogen, carbon, sulfur and volatile compounds in (U3Si2 - Al) nuclear fuel

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Redigolo, Marcelo M.; Amaral, Priscila O.; Leao, Claudio; Oliveira, Glaucia A.C. de; Bustillos, Oscar V.

    2015-01-01

    Uranium silicide U 3 Si 2 is used as nuclear fuel in the research nuclear reactor IEA-R1 at IPEN/CNEN, Sao Paulo, Brazil. The U 3 Si 2 is dispersed in aluminum reaching high densities of uranium in the nucleus of the fuel, up to 4.8 gU cm -3 . This nuclear fuel must comply with a quality control, which includes analysis of hydrogen, carbon and sulfur for the U 3 Si 2 and volatile compound for the aluminum. Hydrogen, carbon and sulfur are analyzed by the method of Radio Frequency gas extraction combustion coupled with Infrared detector. Volatile compounds are analyzed by the method of heated gas extraction coupled with gravimetric measurement. These methods are recommended by the American Society for Testing Materials (ASTM) for nuclear materials. The average carbon and sulfur measurements are 30 μg g -1 and 3 μg g -1 , respectively, and 40 μg g -1 for volatile compounds. The hydrogen analyzer is a TCHEN 600 LECO, carbon and sulfur analyzer is a CS 244 LECO and the volatile compounds analyzer is a home-made apparatus that use a resistant furnace, a gas pipe measurement and a glove-box with controlled atmosphere where an analytical balance has been installed, this analyzer was made at IPEN laboratory. (author)

  9. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  10. DYMAC demonstration program: Phase I experience

    International Nuclear Information System (INIS)

    Augustson, R.H.

    1978-02-01

    The DYnamic MAterials Control (DYMAC) project tested a prototype system at the DP Site LASL plutonium facility, which consisted of a computerized accounting system based on material balancing by unit process. Transactions were written to describe the movement of material from one unit process to another. In the DYMAC prototype a specially designed computer program handled transactions that operators entered into the system via a terminal in the processing area. The transactions contained the same information that is used in the present LASL paper accounting system to create an inventory. During a 6-week period the DYMAC system operated in parallel with the paper system. At the end of the period results showed the DYMAC system was able to keep an accurate and timely inventory. Concurrent with testing the transaction-handling program, the project operated several nondestructive assay instruments in a glovebox environment, specifically the electronic balance, solution assay instrument, and thermal-neutron coincidence counter. From the instrument operation logs, project personnel were able to identify operational problems and incorporate design changes in the instrumentation for the new facility

  11. Test plan for radioactive testing of a vertical direct denitration calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-31

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  12. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-31

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  13. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-08-13

    The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.

  14. SINGLE-FACED GRAYQB{trademark} - A RADIATION MAPPING DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.; Farfan, E.; Immel, D.; Phillips, M.; Bobbitt, J.; Plummer, J.

    2013-12-12

    GrayQb{trademark} is a novel technology that has the potential to characterize radioactively contaminated areas such as hot cells, gloveboxes, small and large rooms, hallways, and waste tanks. The goal of GrayQb{trademark} is to speed the process of decontaminating these areas, which reduces worker exposures and promotes ALARA considerations. The device employs Phosphorous Storage Plate (PSP) technology as its primary detector material. PSPs, commonly used for medical applications and non-destructive testing, can be read using a commercially available scanner. The goal of GrayQb{trademark} technology is to locate, quantify, and identify the sources of contamination. The purpose of the work documented in this report was to better characterize the performance of GrayQb{trademark} in its ability to present overlay images of the PSP image and the associated visual image of the location being surveyed. The results presented in this report are overlay images identifying the location of hot spots in both controlled and field environments. The GrayQb{trademark} technology has been mainly tested in a controlled environment with known distances and source characteristics such as specific known radionuclides, dose rates, and strength. The original concept for the GrayQb{trademark} device involved utilizing the six faces of a cube configuration and was designed to be positioned in the center of a contaminated area for 3D mapping. A smaller single-faced GrayQb{trademark}, dubbed GrayQb SF, was designed for the purpose of conducting the characterization testing documented in this report. This lighter 2D version is ideal for applications where entry ports are too small for a deployment of the original GrayQb™ version or where only a single surface is of interest. The shape, size, and weight of these two designs have been carefully modeled to account for most limitations encountered in hot cells, gloveboxes, and contaminated areas. GrayQb{trademark} and GrayQb{trademark} SF

  15. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    Science.gov (United States)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  16. MDD Status Letter Report (AFCI CETE Milestone)

    Energy Technology Data Exchange (ETDEWEB)

    Vedder, Raymond James [ORNL; Jubin, Robert Thomas [ORNL

    2009-09-01

    understanding of the chemistry of the uranium-ammonium double nitrate salt was developed. Later pilot-scale studies produced kilogram quantities of UO{sub 3} using engineering-scale (1 kg/hour), continuously-operated equipment, while establishing the reliability of the process and equipment. The current work was performed in support of the Advanced Fuel Cycle Initiative (AFCI), utilizing glove-box-contained equipment (100 g/hour) to produce UO{sub 3}, PuO{sub 2}, and mixed oxides of uranium, plutonium, neptunium, and americium from a nitrate solution of those actinides. Then the MDD glove-box system was utilized in the Coupled-End-To-End (CETE) project to convert the U-Pu-Np and uranium product solutions into oxide powders. As part of the CETE project, a powder characterization laboratory was established in gloveboxes with instruments required for the determination of: (1) surface area by the BET methodology; (2) tap density by using a Quantachrome AutoTap; (3) flow properties by using a Freeman technology powder rheometer; (4) material composition and crystalline structure by using a powder X-ray diffractometer; (5) particle size distribution by using a laser light-scattering analyzer; and (6) imaging of the powders with a stereomicroscope. These instruments can be used to characterize the products and to determine the effects of MDD operating parameters on product powder morphology. Ultimately, the powder characteristics necessary to produce high-density, sintered MOX pellets can be determined.

  17. MDD Status Letter Report (AFCI CETE Milestone)

    International Nuclear Information System (INIS)

    Vedder, Raymond James; Jubin, Robert Thomas

    2009-01-01

    uranium-ammonium double nitrate salt was developed. Later pilot-scale studies produced kilogram quantities of UO 3 using engineering-scale (1 kg/hour), continuously-operated equipment, while establishing the reliability of the process and equipment. The current work was performed in support of the Advanced Fuel Cycle Initiative (AFCI), utilizing glove-box-contained equipment (100 g/hour) to produce UO 3 , PuO 2 , and mixed oxides of uranium, plutonium, neptunium, and americium from a nitrate solution of those actinides. Then the MDD glove-box system was utilized in the Coupled-End-To-End (CETE) project to convert the U-Pu-Np and uranium product solutions into oxide powders. As part of the CETE project, a powder characterization laboratory was established in gloveboxes with instruments required for the determination of: (1) surface area by the BET methodology; (2) tap density by using a Quantachrome AutoTap; (3) flow properties by using a Freeman technology powder rheometer; (4) material composition and crystalline structure by using a powder X-ray diffractometer; (5) particle size distribution by using a laser light-scattering analyzer; and (6) imaging of the powders with a stereomicroscope. These instruments can be used to characterize the products and to determine the effects of MDD operating parameters on product powder morphology. Ultimately, the powder characteristics necessary to produce high-density, sintered MOX pellets can be determined.

  18. Hydrolysis constants of tetravalent neptunium by using solvent extraction method

    International Nuclear Information System (INIS)

    Fujiwara, K.; Kohara, Y.

    2008-01-01

    The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free 239 Np(V) was from 243 Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants (β m ) of the reactions, Np 4+ + mOH - = Np(OH) m (4-m)+ was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H 2 -N 2 atmosphere (below 1.0 ppm of O 2 ) in a glove-box at room temperature (23 ± 2 C) to avoid oxidation of Np(IV). The β m values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log β 1 = 13.91 ± 0.23, log β 2 = 27.13 ± 0.15, log β 3 = 37.70 ± 0.30 and log β 4 = 46.16 ± 0.30. The ion interaction coefficients were also evaluated to be ε(NpOH 3+ , ClO 4 - ) = 0.49 ± 0.15, ε(Np(OH) 2 2+ , ClO 4 - ) = 0.35 ± 0.11, and ε(Np(OH) 3 + , ClO 4 - ) = 0.29 ± 0.15. (orig.)

  19. SNM holdup assessment of Los Alamos exhaust ducts

    International Nuclear Information System (INIS)

    Marshall, R.S.

    1994-02-01

    Fissile material holdup in glovebox and fume hood exhaust ducting has been quantified for all Los Alamos duct systems. Gamma-based, nondestructive measurements were used to quantify holdup. The measurements were performed during three measurement campaigns. The first campaign, Phase I, provided foot-by-foot, semiquantitative measurement data on all ducting. These data were used to identify ducting that required more accurate (quantitative) measurement. Of the 280 duct systems receiving Phase I measurements, 262 indicated less than 50 g of fissile holdup and 19 indicated fissile holdup of 50 or more grams. Seven duct systems were measured in a second campaign, called Series 1, Phase II. Holdup estimates on these ducts ranged from 421 g of 235 U in a duct servicing a shut-down uranium-machining facility to 39 g of 239 Pu in a duct servicing an active plutonium-processing facility. Measurements performed in the second campaign proved excessively laborious, so a third campaign was initiated that used more efficient instrumentation at some sacrifice in measurement quality. Holdup estimates for the 12 duct systems measured during this third campaign ranged from 70 g of 235 U in a duct servicing analytical laboratories to 1 g of 235 U and 1 g of 239 Pu in a duct carrying exhaust air to a remote filter building. These quantitative holdup estimates support the conclusion made at the completion of the Phase I measurements that only ducts servicing shut-down uranium operations contain about 400 g of fissile holdup. No ventilation ducts at Los Alamos contain sufficient fissile material holdup to present a criticality safety concern

  20. Neutron Measurements At Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Conrady, Matthew M.; Berg, Randal K.; Scherpelz, Robert I.; Rathbone, Bruce A.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted neutron measurements at Hanford's Plutonium Finishing Plant (PFP). The measurements were performed to evaluate the performance of the Hanford Standard Dosimeter (HSD) and the 8816 TLD component of the Hanford Combination Neutron Dosimeter (HCND) in the neutron fields responsible for worker neutron exposures. For this study, TEPC detectors and multisphere spectrometers were used to measure neutron dose equivalent rate, and multispheres were used to measure average neutron energy. Water-filled phantoms holding Hanford dosimeters were positioned at each measurement location. The phantoms were positioned in the same location where a multisphere measurement was taken and TEPCs were also positioned there. Plant survey meters were also used to measure neutron dose rates at all locations. Three measurement locations were chose near the HC-9B glovebox in room 228A of Building 234-5. The multisphere spectrometers measured average neutron energies in the range of 337 to 555 keV at these locations. Personal dose equivalent, Hp(10)n, as measured by the multisphere and TEPC, ranged from 2.7 to 9.7 mrem/h in the three locations. Effective dose assuming a rotational geometry (EROT) was substantially lower than Hp(10), ranging from 1.3 to 3.6 mrem/h. These values were lower than the reported values from dosimeters exposed on a rotating phantom. Effective dose assuming an AP geometry (EAP) was also substantially lower than Hp(10), ranging from 2.3 to 6.5 mrem/h. These values were lower than the reported values from the dosimeters on slab phantoms. Since the effective dose values were lower than reported values from dosimeters, the dosimeters were shown to be conservative estimates of the protection quantities.

  1. Treatability study Number PDC-1-O-T. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream number-sign 1, Stream number-sign 3, Stream number-sign 6, and Stream number-sign 7. Stream number-sign 1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream number-sign 3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream number-sign 6 was packaged in three 30-gallon drums and a 100 ft 3 wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream number-sign 7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network's mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable limits

  2. ISS Microgravity Research Payload Training Methodology

    Science.gov (United States)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned

  3. Purex Process Improvements for Pu and NP Control in Total Actinide Recycle Flowsheets

    International Nuclear Information System (INIS)

    Birkett, J.E.; Carrott, M.J.; Crooks, G.; Fox, O.D.; Maher, C.J.; Taylor, R.J.; Woodhead, D.A.

    2006-01-01

    Significant improvements are required in the Purex process to optimise it for Advanced Fuel Cycles. Two key challenges we have identified are, firstly, developing more efficient methods for U/Pu separations especially at elevated Pu concentrations and, secondly, improving recovery, control and routing of Np in a modified Purex process. A series of Purex-like flowsheets for improved Pu separations based on hydroxamic acids and are reported. Purex-like flowsheets have been tested on a glovebox-housed 30-stage miniature centrifugal contactor train. A series of trials have been performed to demonstrate the processing of feeds with varying Pu contents ranging from 7 - 40% by weight. These flowsheets have demonstrated hydroxamic acids are excellent reagents for complexant stripping of Pu being able to achieve high decontamination factors (DF) on both the U and Pu product streams and co - recover Np with Pu. The advantages of a complexant-based approach are shown to be especially relevant when AFC scenarios are considered, where the Pu content of the fuel is expected to b e significantly higher. Recent results towards modifying the Purex process to improve recovery and control of Np in short residence time contactors are reported. Work on the development of chemical and process models to describe the complicated behaviour of Np under primary separation conditions (i.e. the HA extraction contactor) is described. To test the performance of the model a series of experiments were performed including testing of flowsheets on a fume-hood housed miniature centrifugal contactor train. The flowsheet was designed to emulate the conditions of a primar y separations contactor with the Np split between the U-solvent product and aqueous raffinate. In terms of Np routing the process model showed good agreement with flowsheet trial however much further work is required to fully understand this complex system. (authors)

  4. Burning Questions in Gravity-Dependent Combustion Science

    Science.gov (United States)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  5. Waste systems progress report, March 1983 through February 1984

    International Nuclear Information System (INIS)

    Hickle, G.L.

    1984-01-01

    Preliminary design engineering for a Beryllum Electrorefining Demonstration Process has been completed and final engineering for fabrication of the process will be completed by the fourth quarter of FY-84. A remotely operated Advanced Size Reduction Facility (ASRF) is under construction and, when completed, will be used for sectioning plutonium-contaminated gloveboxes for disposal. Modification and additions were made to the 82 kg/hr Fluidized Bed Incinerator (FBI) in preparation for turning the unit over to Production. Several types of cementation processes are being developed to treat various TRU and low-level waste streams to reduce the dispersibility of the wastes. Portland cement and Envirostone gypsum cement were investigated as immobilization media for wet precipitation sludges and organic liquid wastes. Transuranic contaminated waste is being retrieved from storage at the Idaho National Engineering Laboratory for examination at Rocky Flats Plant for compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria. The removal of unreacted calcium metal from the waste salt formed during the direct oxide reduction of plutonium oxide to plutonium metal is necessary in order to comply with regulations regarding the transportation and storage of waste material containing flammable substances. Chemical methods of denitrification of simulated low-level nitrate wastes were investigated on a laboratory scale. Methods of inserting the carbon composite filters into presently stored and currently generated radioactive waste drums have been investigated and their sealing efficiencies determined. Analyses of carbon tetrachloride (CCl 4 ) recovered from spent lathe coolant revealed contamination levels above usable limits. A handbook covering techniques and processes that have been successfully demonstrated to minimize generation of new transuranic waste is being prepared

  6. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  7. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  8. Progress on the Application of Metallic Fuels for Actinide Transmutation

    International Nuclear Information System (INIS)

    Kennedy, J. Rory; Fielding, Randall; Janney, Dawn; Mariani, Robert; Teague, Melissa; Egeland, Gerald

    2015-01-01

    Full text of publication follows: Idaho National Laboratory (INL) is developing actinide bearing alloy metallic fuels intended for effecting the transmutation of long-lived isotopes in fast reactor application as part of a partitioning and transmutation strategy. This presentation will report on progress in three areas of this effort: demonstration of the fabrication of fuels under remote (hot cell) conditions directly coupled to the product from the Pyro-processing of spent fuel as part of the Joint Fuel Cycle Studies (JFCS) collaboration with the Korean Atomic Energy Research Institute (KAERI); the chemical sequestration of lanthanide fission products to mitigate fuel-cladding-chemical-interaction (FCCI); and transmission electron microscopy (TEM) and atom probe tomography (APT) studies on the as-cast microstructure of the metallic fuel alloy. For the JFCS efforts, we report on the implementation of the Glove-box Advanced Casting System (GACS) as a prototype casting furnace for eventual installation into the INL Hot Fuel Examination Facility (HFEF) where the recycled fuel will be cast. Results from optimising process parameters with respect to fuel characteristics, americium volatility, materials interaction, and lanthanide fission product carry over distribution will be discussed. With respect to the lanthanide carry over from the Pyro-processing product, encouraging studies on concepts to chemically sequester the FCCI promoting lanthanides within the fuel matrix thus inhibiting migration and interaction with the cladding will be presented. Finally, in relation to advanced modelling and simulation efforts, detailed investigations and interpretation on the nano-scale as cast microstructure of possible recycle fuel composition containing U, Pu, Am, Np as well as carry-over lanthanide species will be discussed. These studies are important for establishing the initial conditions from which advanced physics based fuel performance codes will run. (authors)

  9. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R; Blin, J; Cherel, G; Duvaux, Y; Cherel, G; Mustelier, J P; Bussy, P; Gondal, G; Bloch, J; Faugeras, P; Raggenbass, A; Raggenbass, P; Fufresne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  10. Investigation of the UF6 aerosol behavior in air, (4)

    International Nuclear Information System (INIS)

    Ishida, Junichiro; Sakamoto, Genji; Takeda, Seiichi; Kato, Jinzo

    1979-01-01

    When gaseous uranium hexafluoride (UF 6 ) is released into air, it hydrolizes with moisture in air to produce HF gas and particulate UO 2 F 2 which is visible. The lowest visible concentration in air is about 5 x 10 -8 μCi/cm 3 in case of releasing UF 6 and about 10 -9 μCi/cm 3 in case of released UF 6 cloud. By watching the occurrence of released UF 6 cloud, it is possible to take necessary action without delay. But in the case that there is no one to watch or that the concentration is not high enough to be visible, an alarm monitor system has to be relied on. Therefore the characteristics of the alarm monitors which can detect UF 6 promptly were examined. As UF 6 is hydrolized into gaseous HF and particulate UO 2 F 2 , three monitoring methods are considered; (1) to detect the alpha radiation of uranium, (2) to detect HF gas and (3) to detect airborne particles (aerosol). Performance tests were conducted on an alpha dust monitor, an electrochemical HF monitor, a thin film electrolyte HF monitor and an ionized smoke detector. The relationship between radioactivity concentration and HF concentration was investigated especially regarding with the conditions of released UF 6 amount and the distance from a release point to the observation point. The experimental facilities containing a large glove-box made of SUS and acrylic resin walls, a dust monitor, an HF monitor, a smoke detector and a filter, and the experimental procedure are explained. As the experimental results, the response characteristics of the dust monitor and HF monitor, the relationship of radioactivity concentration to HF concentration in air and the relation of the distance from the release point to the concentration of U and HF are presented. (Nakai, Y.)

  11. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  12. Atlas of Atomic Spectral Lines of Neptunium Emitted by an Inductively Coupled Plasma

    International Nuclear Information System (INIS)

    DeKalb, E.L.; Edelson, M.C.

    1987-01-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred (1) and Haaland (2). Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  13. Actinide L-line ED-XRF and Hybrid K-edge Densitometer Spectra Processing

    International Nuclear Information System (INIS)

    Esbelin, E.

    2015-01-01

    The analysis laboratory in the CEA Atalante complex at Marcoule (France) performs numerous R and D studies carried out in glove-boxes or in hot cells. Most of the samples are measured in liquid phase, aqueous or organic. The concentration of the main actinides of interest (U, Np, Pu, Am and Cm) are determined by XRF in a hot cell via their L-line X-ray between 13 and 15 keV. In order to limit the counting rate of many radioactive emitters (X-ray and gamma emitters) in the analysis solution and the continuous spectrum, a graphite monochromator is placed between the sample and detector. Commercial or free, the software packages available for processing X-ray spectra are designed and dedicated to a specific instrument and/or do not take into account the specific feature of our system, in other words, the presence of a monochromator. Therefore, a new X-ray analysis software programme was developed for this particular system which takes into account matrix effects corrections. For sample with U and/or Pu in high concentrations, the hybrid K-edge densitometer is used. A new software programme was also developed. For K-edge densitometry spectra processing, no calibration process is used. Spectra processing is based on theoretical equation and uses XCOM database for mass attenuation coefficients. Measured spectra on K-edge densitometer of Rokkasho Safeguards Analytical Laboratory were processed with this software and a very good agreement was found with IDTIMS results. The new graphical user interface allows to manually correct the defined edge. For the XRF spectra processing, new algorithms are used to define the base line and to find/integrate peaks. With these two analytical devices in laboratory, U and Pu concentrations can be measured from 0.5 mg/l to several hundred of g/l. (author)

  14. Study of extraction-spectrophotometric micro-determination of boron with methylene blue and its application

    International Nuclear Information System (INIS)

    Zhu Daohong

    1990-08-01

    A sensitive extraction-spectrophotometric method for microdetermination of boron with methylene blue was investigated. The method was based on the extraction of a BF 4 - -methylene blue complex into dichloroethane. Boron was determined directly by measuring the absorbance at 658 nm. The calibration graph was linear over the range of 2.5 x 10 -9 to 8 x 10 -8 g/mL. The blank, mechanism of the reactions, interference of other ions and some optimum conditions of the method were studied in detail. The main source of the blank resulted from methylene blue and the complex of F - -methylene blue. In order to reduce the blank, the amounts of methylene blue, H 2 SO 4 and HF were used as less as possible. Only one to one complex BF 4 - -methylene blue was formed in the medium of H 2 SO 4 . About 90% of methylene blue and F - -methylene blue complex was removre with 5 ml of water and only a little amount of BF 4 -methylene blue complex was decomposed. The extraction-spectrophotometric method with methylene blue was first applied to the microdetermination of boron in sodium metal and UF 6 . The sample of sodium metal was taken and weighed in the glovebox filled with argon. Then sodium metal was oxidized, hydrolyzed, netralized and fluorizated with H 2 O, H 2 SO 4 and HF, respectively. The 0.5 ppm of boron in sodium metal was determined with a relative error about ±4%. This method can be applied to the determination of boron in sodium metal, sodium sulfate and sodium hydroxide at diffeent grades. The species of boron in the hydrolysate of UF 6 is BF 4 - anion, so the sample can be directly analyzed. Boron contents in the range of 0.1 to 0.5 ppm was determined with a relative error about ±3%. Six samples could be analysed in 2h

  15. Diffusive transport processes in microgravity: the DCMIX project and the path to DCMIX-3

    Science.gov (United States)

    Triller, Thomas; Köhler, Werner

    2016-07-01

    Thermodiffusion describes the demixing of a system under the influence of an external temperature gradient which drives diffusive mass fluxes. Over the years, several (ground based) optical techniques have been employed for measuring thermodiffusion: Thermal Diffusion Forced Rayleigh Scattering (TDFRS), Optical Digital Interferometry (ODI) or Optical Beam Deflection (OBD). Most of these experiments use the same mechanism for the detection of demixing: light passes through a thermodiffusion cell, in which a well defined temperature gradient is applied on the sample. Diffusive fluxes change the concentration profile across the cell, and therefore the refractive index profile. This refractive index change is detected and mapped to the concentration using proper optical contrast factors. In particular ternary and higher multicomponent systems can suffer from thermosolutal convective instabilities. Therefore, the DCMIX project, a collaboration between several international research teams, ESA and Roscosmos, spearheads a measurement campaign on the ISS, utilizing SODI (Selectable Optical Diagnostics Instrument), a Mach-Zehnder interferometer inside the Microgravity Science Glovebox. Several ternary mixtures have been selected for measurement, all exhibiting unique properties. DCMIX-1 consisted of tetralin/isobutylbenzene/dodecane, a good model for hydrocarbon mixtures. DCMIX-2 was the system toluene/methanol/cyclohexane, which has a miscibility gap and allows to study critical behavior. DCMIX-3 is planned for the end of 2016 and will be an aqueous mixture of water/ethanol/triethylene-glycol. After a setback in 2014, when DCMIX-3 samples were lost with the explosion of the unmanned Orb3 vehicle, the project is now underway and will be ready for analysis at the beginning of 2017. As preparation for this, the methodology developed for data analysis has been applied to the DCMIX-1 data, especially aiming for the identification of stable quantities, which allow utilization of

  16. Confirmation test of powder mixing process in J-MOX

    International Nuclear Information System (INIS)

    Ota, Hiroshi; Osaka, Shuichi; Kurita, Ichiro

    2009-01-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) MOX Fuel Fabrication Plant (hereafter, J-MOX) is what fabricates MOX fuel for domestic light water power plants. Development of design concept of J-MOX was started mid 90's and the frame of J-MOX process was clarified around 2000 including adoption of MIMAS process as apart of J-MOX powder process. JNFL requires to take an answer to any technical question that has not been clarified ever before by world's MOX and/or Uranium fabricators before it commissions equipment procurement. J-MOX is to be constructed adjacent to the Rokkasho Reprocessing Plant (RRP) and to utilize MH-MOX powder recovered at RRP. The combination of the MIMAS process and the MH-MOX powder is what has never tried in the world. Therefore JNFL started a series of confirmation tests of which the most important is the powder test to confirm the applicability of MH-MOX powder to the MIMAS process. The MH-MOX powder, consisting of 50% plutonium oxide and 50% uranium oxide, originates JAEA development utilizing microwave heating (MH) technology. The powder test started with laboratory scale small equipment utilizing both uranium and the MOX powder in 2000, left a solution to tough problem such as powder adhesion onto equipment, and then was followed by a large scale equipment test again with uranium and the MOX powder. For the MOX test, actual size equipment within glovebox was manufactured and installed in JAEA plutonium fuel center in 2005, and based on results taken so far an understanding that the MIMAS equipment, with the MH-MOX powder, can present almost same quality MOX pellet as what is introduced as fabricated in Europe was developed. The test was finished at the end of Japanese fiscal year (JFY) 2007, and it was confirmed that the MOX pellets fabricated in this test were almost satisfied with the targeted specifications set for domestic LWR MOX fuels. (author)

  17. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  18. High temperature microscope (1961); Microscopie a haute temperature (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-06-15

    The purpose of this work is the realization of an apparatus for observation of radioactive metallic samples at high temperature and low pressure. The operating conditions are as follows: to limit oxidation of the metal, pressure of about 10{sup -6} mm of Hg is maintained in the furnace. In case the oxidation of the sample would be too important, on ultra vacuum. device could be used; working temperatures range between room temperature and 1200 deg. C; furnace temperature is regulated; observation is done ever in polarized light or interference contrast; to insure protection of the operator, the apparatus is placed in a glove-box. With that apparatus, we have observed the {alpha}{yields}{beta}, {beta}{yields}{gamma} transformations of uranium. A movie has been done. (author) [French] Le but de ce travail est la realisation d'une appareillage permettant l'observation a chaud et sous vide d'echantillons metalliques radioactifs. Cet appareillage fonctionne dans les conditions suivantes: l'echantillon est chauffe sous une pression de l'ordre de 10{sup -6} mm de mercure afin de limiter l'oxydation du materiau examine. L'utilisation eventuelle d'un groupe de pompage pour ultra vide est prevue; l'echantillon peut etre porte a une temperature comprise entre quelques degres et 1200 deg. C; la temperature du four est regulee; l'observation s'effectue soit en lumiere polarisee soit en contraste interferentiel; l'appareil est dipose dans une boite a gants afin d'assurer la protection de l'operateur contre les poussieres radioactives; Les transformations {alpha}{yields}{beta}, {beta}{yields}{gamma} de l'uranium ont ete observees. Un film a ete realise. (auteur)

  19. Evaluation of Canisterized Foams and Evaluation of Radiation Hardened Foams for D&D Activities

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The introduction of polyurethane foams has previously been examined elsewhere within the DOE complex with regards to decontamination and decommissioning (D&D) activities, though its use has been prohibited as a result of excessive heat generation and flammability concerns per the safety basis. Should these foams be found compatible with respect to the facility safety basis requirements, D&D work involving large void containing structures such as gloveboxes could be eased through the fixation of residual contamination after decontamination efforts have concluded. To this end, SRNL embarked on a characterization of commercial epoxy foams to identify the characteristics that would be most important to safety basis requirements. Through SRNL’s efforts, the performance of commercial two-part epoxy foams was evaluated for their foaming characteristics, temperature profiles, loading capability with high-Z (high density) additives, and applicability for shielding gamma emission from isotopes including; Am-241, Cs-137, and Co-60. It was found that these foams are capable of encapsulation of a desired volume, though the ideal and experimental expansion coefficients were found to differ. While heat is generated during the reaction, no samples generated heat above 70 °C. Of the down–selected materials, heating was on the order of 40 °C for the flexible foam and 60 °C for the rigid foam. Both were found to return to room temperature after 20 minutes regardless of the volume of foam cast. It was also found that the direct introduction of high-Z additives were capable of attenuating 98% of Am-241 gamma signal, 16% of Cs-137 signal, and 9.5% of Co-60 signal at 1:1 loading capacities of total liquid constituent weight to additive weight. These efforts are currently being reviewed for the ASTM January 2017 subcommittee discussions to address the lack of test methods and standards regarding these materials with respect to D&D environments.

  20. Radiochemistry Division : annual progress report for 1978

    International Nuclear Information System (INIS)

    Subramanian, M.S.; Satya Prakash

    1981-01-01

    The research and development (R and D) activities of the Radiochemistry Division of the Bhabha Atomic Research Centre (BARC), Bombay, during 1978 are reported in the form of individual summaries under the headings: reactor chemistry, heavy element chemistry, process chemistry, radioanalytical chemistry and services, nuclear chemistry, and instrumentation. Some of the highlights of the R and D activities are: (1) preparation of microspheres of uranium oxide and uranium-thorium oxides by sol-gel process, (2) study of vaporization thermodynamics of Th and U by transpiration and boiling techniques, (3) preparation and characterisation of uranium(III) sulphates and double sulphates by X-ray, thermal and infra-red analysis, (4) extraction of trivalent actinides and lanthanides by long chain amines from chloride solutions, (5) study of radiation chemical behaviour of U(VI) in hydrochloric acid and sulphuric acid media, (6) purification and concentration of neptunium by the primary and secondary amines, (7) development of gamma spectroscopic method for determination of isotopic composition of plutonium using low energy gamma rays of plutonium isotopes, (8) standardisation of method of determination of isotopic abundances of uranium at nanogram level by thermal ionisation mass spectroscopy, (9) extraction photometric determination of Pu(IV) and Np(IV) present in mixtures, (10) study of various aspects of nuclear fission such as charge distribution, mass distribution and fragment angular momentum in low energy fission of actinides, and (11) fabrication of: (a) spark counting unit for counting fission tracks in their plastic films, (b) autoranging alpha monitor to be used with fractionating column, (c) remote pipetter for use in hot cells and (d) a thermoluminescence unit for glovebox operation. (M.G.B.)