WorldWideScience

Sample records for globular cluster ngc

  1. Young globular clusters in NGC 1316

    Science.gov (United States)

    Sesto, Leandro A.; Faifer, Favio R.; Smith Castelli, Analía V.; Forte, Juan C.; Escudero, Carlos G.

    2018-05-01

    We present multi-object spectroscopy of the inner zone of the globular cluster (GC) system associated with the intermediate-age merger remnant NGC 1316. Using the multi-object mode of the GMOS camera, we obtained spectra for 35 GCs. We find pieces of evidence that the innermost GCs of NGC 1316 rotate almost perpendicular to the stellar component of the galaxy. In a second stage, we determined ages, metallicities and α-element abundances for each GC present in the sample, through the measurement of different Lick/IDS indices and their comparison with simple stellar population models. We confirmed the existence of multiple GC populations associated with NGC 1316, where the presence of a dominant subpopulation of very young GCs, with an average age of 2.1 Gyr, metallicities between -0.5 < [Z/H] < 0.5 dex and α-element abundances in the range -0.2 < [α/Fe] < 0.3 dex, stands out. Several objects in our sample present subsolar values of [α/Fe] and a large spread of [Z/H] and ages. Some of these objects could actually be stripped nuclei, possibly accreted during minor merger events. Finally, the results have been analyzed with the aim of describing the different episodes of star formation and thus provide a more complete picture about the evolutionary history of the galaxy. We conclude that these pieces of evidence could indicate that this galaxy has cannibalized one or more gas-rich galaxies, where the last fusion event occurred about 2 Gyr ago.

  2. Photoelectric UBVRI sequences in the Galactic globular clusters NGC 6752 and NGC 6864

    International Nuclear Information System (INIS)

    Alvarado, F.; Wenderoth, E.; Alcaino, G.; Liller, W.

    1990-01-01

    UBVRI photoelectric sequences for the Galactic globular clusters NGC 6752 and NGC 6864 are presented. Both of them include fields suitable for CCD exposures. From five UBV sequences in NGC 6572, only five stars are in common with the previous works. 15 refs

  3. BVRI CCD photometry of the globular cluster NGC 2808

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    As a part of a continuing program, CCD color-magnitude diagrams are presented for the bright globular cluster NGC 2808 in the four colors comprising BVRI. From a comparison of four different CMDs with theoretical isochrones, an age of 16 + or - 2 Gyr is obtained, assuming a value for Fe/H near -1.3. 28 refs

  4. The Age of the Inner Halo Globular Cluster NGC 6652

    Science.gov (United States)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  5. Chemical abundances of globular clusters in NGC 5128 (Centaurus A)

    Science.gov (United States)

    Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul

    2018-06-01

    We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.

  6. Blue straggler stars in the globular cluster NGC 5053

    International Nuclear Information System (INIS)

    Nemec, J.M.; Cohen, J.G.

    1989-01-01

    A study of the low central concentration globular cluster NGC 5053 based on photometry to 23 mag is reported. Deep C-M diagrams are presented, a mean metal abundance for the cluster is derived from the color of the RGB at the level of the horizontal branch, and theoretical isochrones are used to derive a distance modulus of (m - M0) = 16.05 + or - 0.14 mag and an age of 18 + or - 3 Gyr. A luminosity function based on subgiant and upper main-sequence stars is also constructed. A total of 24 blue stragglers in NGC 5053 are identified and their properties are studied. 65 references

  7. The Age of the Inner Halo Globular Cluster NGC 6652

    OpenAIRE

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    HST (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch. This cluster is located close to the Galactic center at a galactocentric distance of approximately 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately -0.85. Based upon Delta(V) between the point on the sub-giant branch which is 0.05 mag redder than the tu...

  8. SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397

    Science.gov (United States)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  9. Discovery of a ~205 Hz X-ray pulsar in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Strohmayer, T.E.; Heinke, C.O.; Markwardt, C.B.; Swank, J.H.; Pereira, D.; Smith, E.; Wijnands, R.; Linares, M.; Patruno, A.; Casella, P.; van der Klis, M.

    2009-01-01

    Discovery of a 205 Hz X-ray pulsar in the globular cluster NGC 6440 The globular cluster NGC 6440 was observed by the PCA instrument aboard RXTE on August 30, 2009 at 01:42 (UTC). The observation lasted for approximately 3000 seconds and the source was detected with an intensity of ~7 mCrab (2-10

  10. Color Gradient in the King Type Globular Cluster NGC 7089

    Directory of Open Access Journals (Sweden)

    Young-Jong Sohn

    1999-12-01

    Full Text Available We use BV CCD images to investigate the reality of the color gradient within a King type globular cluster NGC 7089. Surface photometry shows that there is a strong radial color gradient in the central region of the cluster in the sense of bluer center with the amplitude of -0.39 +/- 0.07 mag/arcsec2 in (B - V. In the outer region of the cluster, however, the radial color gradient shows a reverse case, i.e., redder toward the center. (B - V color profile which was derived from resolved stars in VGC 7089 field also shows a significant color gradient in the central region of the clusters, indicating that lights from the combination of red giant stars and blue horizontal branch stars cause the radial color gradient. Color gradient of the outer region of NGC 7089 may be due to the unresolved background of the cluster. Similar color gradients in the central area of clusters have been previously observed exserved exclusively in highly concentrated systems classified as post core collapse clusters. We caution, however, to confirm the reality of the color gradient from resolved stars, we need more accurate imaging data of the cluster with exceptional seeing condition because the effect of completeness correlates with local density of stars.

  11. Isolated ellipticals and their globular cluster systems. III. NGC 2271, NGC 2865, NGC 3962, NGC 4240, and IC 4889

    Science.gov (United States)

    Salinas, R.; Alabi, A.; Richtler, T.; Lane, R. R.

    2015-05-01

    As tracers of star formation, galaxy assembly, and mass distribution, globular clusters have provided important clues to our understanding of early-type galaxies. But their study has been mostly constrained to galaxy groups and clusters where early-type galaxies dominate, leaving the properties of the globular cluster systems (GCSs) of isolated ellipticals as a mostly uncharted territory. We present Gemini-South/GMOS g'i' observations of five isolated elliptical galaxies: NGC 3962, NGC 2865, IC 4889, NGC 2271, and NGC 4240. Photometry of their GCSs reveals clear color bimodality in three of them, but remains inconclusive for the other two. All the studied GCSs are rather poor with a mean specific frequency SN ~ 1.5, independently of the parent galaxy luminosity. Considering information from previous work as well, it is clear that bimodality and especially the presence of a significant, even dominant, population of blue clusters occurs at even the most isolated systems, which casts doubts on a possible accreted origin of metal-poor clusters, as suggested by some models. Additionally, we discuss the possible existence of ultra-compact dwarfs around the isolated elliptical NGC 3962. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Globular cluster photometry is available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A59Appendices are available in

  12. SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VII. NGC 6397, NGC 6626 (M28), AND NGC 6656 (M22)

    Energy Technology Data Exchange (ETDEWEB)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Jilkova, Lucie [Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno (Czech Republic); Podesta, Federico; Lopez, Carlos E., E-mail: dana.casetti@yale.edu, E-mail: terry.girard@yale.edu, E-mail: william.vanaltena@yale.edu, E-mail: jilkoval@physics.muni.cz [Universidad National de San Juan, Observatorio Astronomico ' ' Felix Aguilar' ' and Yale Southern Observatory, Chimbas, 5413 San Juan (Argentina)

    2013-08-01

    We have measured the absolute proper motions of globular clusters NGC 6397, NGC 6626 (M22), and NGC 6656 (M28) as part of our ongoing Southern Proper-Motion Program. The reference system is the ICRS via Hipparcos stars for these three low-Galactic-latitude clusters. Formal errors range between {approx}0.3 and 0.7 mas yr{sup -1}. Notable is the result for NGC 6397, which differs by 2.5 mas yr{sup -1} from two Hubble Space Telescope determinations while agreeing with previous ground-based ones. We determine orbits for all three clusters in an axisymmetric and barred model of the Galaxy and discuss these in the context of globular-cluster formation. M22 is a well-known cluster with an iron abundance spread; such clusters are now believed to have formed in massive parent systems that can retain ejecta of core-collapsed supernovae. We find that the five currently accepted globular clusters with iron/calcium abundance spread show orbits unrelated to each other, thus suggesting at least five independent, massive progenitors that have contributed to the build-up of the Milky-Way halo.

  13. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  14. VizieR Online Data Catalog: NGC3115 & NGC1399 VEGAS-SSS globular clusters (Cantiello+, 2018)

    Science.gov (United States)

    Cantiello, M.; D'Abrusco, R.; Spavone, M.; Paolillo, M.; Capaccioli, M.; Limatola, L.; Grado, A.; Iodice, E.; Raimondo, G.; Napolitano, N.; Blakeslee, J. P.; Brocato, E.; Forbes, D. A.; Hilker, M.; Mieske, S.; Peletier, R.; van de Ven, G.; Schipani, P.

    2017-11-01

    Photometric catalogs for globular cluster (GC) candidates over the the 1 sq. degree area around NGC3115 and NGC1399 (ngc3115.dat and ngc1399.dat). The catalogues are based on u-, g- and i- band images from the VST elliptical galaxies survey (VEGAS). Aperture magnitudes, corrected for aperture correction are reported. We also provide the full catalogs of matched sources, which also include the matched background and foreground sources in the frames (ngc3115_full.dat and ngc1399_full.dat). (4 data files).

  15. BVRI CCD photometry of the globular cluster NGC 6362

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1986-01-01

    We have obtained 78 BVRI CCD frames with the 1.54 m Danish telescope at ESO, La Silla, and have constructed V vs B-V, V vs V-R, V vs R-I, V vs V-I, and V vs B-I color-magnitude diagrams in a 4' x 2X5 field of the globular cluster NGC 6362. From these five CMDs we find that the main-sequence turnoffs are all close to the same magnitude, namely V/sub TO/ = 18.75 +- 0.1, and the color turn- offs at B-V = 0.50 +- 0.02, V-R = 0.31 +- 0.02, R-I = 0.35 +- 0.02, V-I = 0.68 +- 0.02, and B-I = 1.18 +- 0.03. The magnitude difference between the turnoff and the horizontal branch for the five diagrams is ΔM/sub V/ = 3.40 +- 0.15 in excellent agreement with the value given by Sandage (1982). Using Y = 0.2, Z = 0.001 ([Fe/H] = -1.27), α = 1.65, a distance modulus of (m-M)/sub V/ = 14.74, and E(B-V) = 0.10, we find that the VandenBerg and Bell isochrones (1985) yield a consistent age for NGC 6362 in all colors indexes of 16 +- 1.5 x 10 9 yr. The solar distance to the cluster is 7.7 kpc and the galactic distance is 5.6 kpc assuming R 0 = 9 kpc

  16. Metallicity Variations in the Type II Globular Cluster NGC 6934

    Science.gov (United States)

    Marino, A. F.; Yong, D.; Milone, A. P.; Piotto, G.; Lundquist, M.; Bedin, L. R.; Chené, A.-N.; Da Costa, G.; Asplund, M.; Jerjen, H.

    2018-06-01

    The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar “chromosome map” for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and Gemini Telescope at Canada–France–Hawaii Telescope.

  17. THE INTRIGUING STELLAR POPULATIONS IN THE GLOBULAR CLUSTERS NGC 6388 AND NGC 6441

    International Nuclear Information System (INIS)

    Bellini, A.; Anderson, J.; Piotto, G.; Nardiello, D.; Milone, A. P.; King, I. R.; Renzini, A.; Bedin, L. R.; Cassisi, S.; Pietrinferni, A.; Sarajedini, A.

    2013-01-01

    NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters that share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use Hubble Space Telescope's WFPC2, ACS, and WFC3 images and present a broad multicolor study of their stellar content, covering all main evolutionary branches. The color-magnitude diagrams (CMDs) give compelling evidence that both clusters host at least two stellar populations, which manifest themselves in different ways. NGC 6388 has a broadened main sequence (MS), a split sub-giant branch (SGB), and a split red giant branch (RGB) that becomes evident above the HB in our data set; its red HB is also split into two branches. NGC 6441 has a split MS, but only an indication of two SGB populations, while the RGB clearly splits in two from the SGB level upward, and no red HB structure. The multicolor analysis of the CMDs confirms that the He difference between the two main stellar populations in the two clusters must be similar. This is observationally supported by the HB morphology, but also confirmed by the color distribution of the stars in the MS optical band CMDs. However, a MS split becomes evident in NGC 6441 using UV colors, but not in NGC 6388, indicating that the chemical patterns of the different populations are different in the two clusters, with C, N, and O abundance differences likely playing a major role. We also analyze the radial distribution of the two populations.

  18. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    Science.gov (United States)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2018-03-01

    We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  19. The X-ray globular cluster NGC 1851

    CERN Document Server

    Alcaino, G

    1976-01-01

    A BV photometric investigation of the Southern Globular Cluster NGC 1851, was carried out using the 1 m telescope of Cerro La Silla (ESO) for the photoelectric work and the 1 m telescope of Cerro Las Campanas (CARSO) for the photographic work. Nineteen stars were observed photoelectrically, the limiting magnitude being V=16.18. Using this sequence, 156 stars were measured photographically. The derived apparent distance modulus is (m-M)/sub app/=15/sup m/.50. The reddening is E(B-V)=0/sup m/.10. The true distance modulus is (m-M) /sub 0/=15/sup m/.20. The distance is 11 kpc from the sun, 6 kpc from the galactic plane and 17 kpc from the galactic centre. The main features of the colour-magnitude diagram are: a well defined horizontal branch abundant in red stars and deficient in blue stars, a rich subgiant and asymptotic branch and a moderately populated red giant branch of medium steepness rising to Delta V=2/sup m/.5 at (B-V) /sub 0/=1.4. At the distance of 11 kpc the maximum observed luminosity of the X-ray ...

  20. Chemical abundances in the globular clusters NGC6229 and NGC6779

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  1. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10 5 M ⊙ . The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M I (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H 0  = 77.9 ± 3.6 km s −1 Mpc −1 . We estimate the GC specific frequency of NGC 4921 to be S N  = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s

  2. Sulphur in the metal poor globular cluster NGC 6397

    Science.gov (United States)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Keck Spectroscopy of Globular Clusters in the Elliptical Galaxy NGC 3610

    OpenAIRE

    Strader, Jay; Brodie, Jean P.; Schweizer, Francois; Larsen, Soeren S.; Seitzer, Patrick

    2002-01-01

    We present moderate-resolution Keck spectra of nine candidate globular clusters in the possible merger-remnant elliptical galaxy NGC 3610. Eight of the objects appear to be bona fide globular clusters of NGC 3610. We find that two of the clusters belong to an old metal-poor population, five to an old metal-rich population, and only one to an intermediate-age metal-rich population. The estimated age of the intermediate-age cluster is 1-5 Gyr, which is in agreement with earlier estimates of the...

  4. The Luminosity Functions of Old and Intermediate-Age Globular Clusters in NGC 3610

    OpenAIRE

    Whitmore, B. C.; Schweizer, F.; Kundu, A.; Miller, B. W.

    2002-01-01

    The WFPC2 Camera on board HST has been used to obtain high-resolution images of NGC 3610, a dynamically young elliptical galaxy. These observations supersede shorter, undithered HST observations where an intermediate-age population of globular clusters was first discovered. The new observations show the bimodal color distribution of globular clusters more clearly, with peaks at (V-I)o = 0.95 and 1.17. The luminosity function (LF) of the blue, metal-poor population of clusters in NGC 3610 turn...

  5. THE HELIUM CONTENT OF GLOBULAR CLUSTERS: NGC 6121 (M4)

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.; Gratton, R. G.

    2012-01-01

    In the context of the multiple stellar population scenario in globular clusters, helium (He) has been proposed as a key element to interpret the observed multiple main sequences, subgiant branches, and red giant branches, as well as the complex horizontal branch (HB) morphology. In particular, second-generation stars belonging to the bluer part of the HB are thought to be more He-rich (ΔY = 0.03 or more) but also more Na-rich/O-poor than those located in the redder part that should have Y equal to the cosmological value. Up to now this hypothesis was only partially confirmed in NGC 6752, where stars of the redder zero-age HB showed an He content of Y = 0.25 ± 0.01, fully compatible with the primordial He content of the universe, and were all Na-poor/O-rich. Here we study hot blue horizontal branch (BHB) stars in the GC NGC 6121 (M4) to measure their He plus O/Na content. Our goal is to complete the partial results obtained for NGC 6752, focusing our attention on targets located on the bluer part of the HB of M4. We observed six BHB stars using the VLT2/UVES spectroscopic facility. Spectra of signal-to-noise ratio ∼ 150 were obtained and the very weak He line at 5875 Å measured for all our targets. We compared this feature with synthetic spectra to obtain He abundances. In addition O, Na, and Fe abundances were estimated. Stars turned out to be all Na-rich and O-poor and to have a homogeneous He content with a mean value of Y = 0.29 ± 0.01(random) ± 0.01(systematic), which is enhanced by ΔY ∼ 0.04 with respect to the most recent measurements of the primordial He content of the universe (Y ∼ 0.24/0.25). The high He content of blue HB stars in M4 is also confirmed by the fact that they are brighter than red HB stars (RHB). Theoretical models suggest the BHB stars are He-enhanced by Δ(Y) = 0.02/0.03 with respect to the RHB stars. The whole sample of stars has a metallicity of [Fe/H] = –1.06 ± 0.02 (internal error), in agreement with other studies

  6. The Helium Content of Globular Clusters: NGC 6121 (M4)

    Science.gov (United States)

    Villanova, S.; Geisler, D.; Piotto, G.; Gratton, R. G.

    2012-03-01

    In the context of the multiple stellar population scenario in globular clusters, helium (He) has been proposed as a key element to interpret the observed multiple main sequences, subgiant branches, and red giant branches, as well as the complex horizontal branch (HB) morphology. In particular, second-generation stars belonging to the bluer part of the HB are thought to be more He-rich (ΔY = 0.03 or more) but also more Na-rich/O-poor than those located in the redder part that should have Y equal to the cosmological value. Up to now this hypothesis was only partially confirmed in NGC 6752, where stars of the redder zero-age HB showed an He content of Y = 0.25 ± 0.01, fully compatible with the primordial He content of the universe, and were all Na-poor/O-rich. Here we study hot blue horizontal branch (BHB) stars in the GC NGC 6121 (M4) to measure their He plus O/Na content. Our goal is to complete the partial results obtained for NGC 6752, focusing our attention on targets located on the bluer part of the HB of M4. We observed six BHB stars using the VLT2/UVES spectroscopic facility. Spectra of signal-to-noise ratio ~ 150 were obtained and the very weak He line at 5875 Å measured for all our targets. We compared this feature with synthetic spectra to obtain He abundances. In addition O, Na, and Fe abundances were estimated. Stars turned out to be all Na-rich and O-poor and to have a homogeneous He content with a mean value of Y = 0.29 ± 0.01(random) ± 0.01(systematic), which is enhanced by ΔY ~ 0.04 with respect to the most recent measurements of the primordial He content of the universe (Y ~ 0.24/0.25). The high He content of blue HB stars in M4 is also confirmed by the fact that they are brighter than red HB stars (RHB). Theoretical models suggest the BHB stars are He-enhanced by Δ(Y) = 0.02/0.03 with respect to the RHB stars. The whole sample of stars has a metallicity of [Fe/H] = -1.06 ± 0.02 (internal error), in agreement with other studies available in

  7. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  8. Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoebeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Sigurdsson, S.

    2017-01-01

    We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of approximate to 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency

  9. Another non-segregated Blue Straggler population in a globular cluster: the case of NGC 2419.

    Science.gov (United States)

    Dalessandro, E.; Lanzoni, B.; Ferraro, F. R.; Vespe, F.; Bellazzini, M.; Rood, R. T.

    We have used a combination of ACS-HST high-resolution and wide-field SUBARU data in order to study the Blue Straggler Star (BSS) population over the entire extension of the remote Galactic globular cluster NGC 2419. The radial distribution of the selected BSS is the same as that of the other cluster stars. In this sense the BSS radial distribution is like that of omega Centauri and unlike that of all Galactic globular clusters studied to date, which have highly centrally segregated distributions and in most cases a pronounced upturn in the external regions. As in the case of omega Centauri, this evidence indicates that NGC 2419 is not yet relaxed even in the central regions. This observational fact is in agreement with estimated half-mass relaxation time, which is of the order of the cluster age.

  10. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs

  11. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    Science.gov (United States)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  12. VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Kunder, Andrea; Walker, Alistair R.; Stetson, Peter B.; Catelan, Márcio; Amigo, Pía

    2013-01-01

    The first calibrated broadband BVI time-series photometry is presented for the variable stars in NGC 2808, with observations spanning a range of 28 years. We have also redetermined the variability types and periods for the variable stars identified previously by Corwin et al., revising the number of probable fundamental-mode RR Lyrae variables (RR0) to 11 and the number of first-overtone variables (RR1) to five. Our observations were insufficient to discern the nature of the previously identified RR1 star, V24, and the tentatively identified RR1 star, V13. These two variables are ∼0.8 mag brighter than the RR Lyrae variables, appear to have somewhat erratic period and/or luminosity changes, and lie inside the RR Lyrae instability strip. Curiously, all but one of the RR Lyrae stars studied in this relatively metal-rich cluster exhibit the Blazhko phenomenon, an effect thought to occur with higher frequency in metal-poor environments. The mean periods of the RR0 and RR1 variables are (P) RR0 = 0.56 ± 0.01 d and RR1 = 0.30 ± 0.02 d, respectively, supporting an Oosterhoff I classification of the cluster. On the other hand, the number ratio of RR1-to-RR0-type variables is high, though not unprecedented, for an Oosterhoff I cluster. The RR Lyrae variables have no period shifts at a given amplitude compared to the M3 variables, making it unlikely that these variables are He enhanced. Using the recent recalibration of the RR Lyrae luminosity scale by Catelan and Cortés, a mean distance modulus of (m – M) V = 15.57 ± 0.13 mag for NGC 2808 is obtained, in good agreement with that determined here from its type II Cepheid and SX Phoenicis population. Our data have also allowed the discovery of two new candidate SX Phoenicis stars and an eclipsing binary in the blue straggler region of the NGC 2808 color-magnitude diagram.

  13. LOW-RESOLUTION SPECTROSCOPY FOR THE GLOBULAR CLUSTERS WITH SIGNS OF SUPERNOVA ENRICHMENT: M22, NGC 1851, AND NGC 288

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongwook; Han, Sang-Il; Lee, Young-Wook; Roh, Dong-Goo [Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Young-Jong [Department of Astronomy, Yonsei University, Seoul 120-749 (Korea, Republic of); Chun, Sang-Hyun [Yonsei University Observatory, Seoul 120-749 (Korea, Republic of); Lee, Jae-Woo [Department of Astronomy and Space Science, Sejong University, Seoul 143-747 (Korea, Republic of); Johnson, Christian I., E-mail: ywlee2@yonsei.ac.kr [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States)

    2015-01-01

    There is increasing evidence for the presence of multiple red giant branches (RGBs) in the color-magnitude diagrams of massive globular clusters (GCs). In order to investigate the origin of this split on the RGB, we have performed new narrow-band Ca photometry and low-resolution spectroscopy for M22, NGC 1851, and NGC 288. We find significant differences (more than 4σ) in calcium abundance from the spectroscopic HK' index for M22 and NGC 1851. We also find more than 8σ differences in CN-band strength between the Ca-strong and Ca-weak subpopulations for these GCs. For NGC 288, however, a large difference is detected only in the CN strength. The calcium abundances of RGB stars in this GC are identical to within the errors. This is consistent with the conclusion from our new Ca photometry where the RGB splits are confirmed in M22 and NGC 1851, but not in NGC 288. We also find interesting differences in the CN-CH correlations among these GCs. While CN and CH are anti-correlated in NGC 288, they show a positive correlation in M22. NGC 1851, however, shows no difference in CH between the two groups of stars with different CN strengths. We suggest that all of these systematic differences would be best explained by how strongly Type II supernovae enrichment has contributed to the chemical evolution of these GCs.

  14. NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?

    Science.gov (United States)

    Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.

    2016-01-01

    A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.

  15. X-Ray and optical study of low core density globular clusters NGC6144 and E3

    NARCIS (Netherlands)

    Lan, S.-H.; Kong, A.K.H.; Verbunt, F.W.M.; Lewin, W.H.G.; Bassa, C.G.; Anderson, S.F.; Pooley, D.

    2010-01-01

    We report on the Chandra X-ray Observatory and Hubble Space Telescope (HST) observations of two low coredensity globular clusters, NGC6144 and E3. By comparing the number of X-ray sources inside the half-mass radius to those outside, we found six X-ray sources within the half-mass radius of NGC6144,

  16. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  17. THE PECULIAR CHEMICAL INVENTORY OF NGC 2419: AN EXTREME OUTER HALO 'GLOBULAR CLUSTER'

    International Nuclear Information System (INIS)

    Cohen, Judith G.; Kirby, Evan N.; Huang Wenjin

    2011-01-01

    NGC 2419 is a massive outer halo Galactic globular cluster (GC) whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable signal-to-noise ratio. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic GCs, represented here by a sample of giants in the nearby GC M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo GCs.

  18. A SPECTROSCOPIC ANALYSIS OF THE GALACTIC GLOBULAR CLUSTER NGC 6273 (M19)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Caldwell, Nelson [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Pilachowski, Catherine A. [Astronomy Department, Indiana University Bloomington, Swain West 319, 727 East 3rd Street, Bloomington, IN 47405-7105 (United States); Mateo, Mario; Bailey, John I. III [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Crane, Jeffrey D., E-mail: cjohnson@cfa.harvard.edu, E-mail: ncaldwell@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: catyp@astro.indiana.edu, E-mail: mmateo@umich.edu, E-mail: baileyji@umich.edu, E-mail: crane@obs.carnegiescience.edu [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States)

    2015-08-15

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ∼ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan–Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s{sup −1} (σ = 9.64 km s{sup −1}) and an extended metallicity distribution ([Fe/H] = −1.80 to −1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories.

  19. Low-mass X-ray binaries and globular clusters streamers and arcs in NGC 4278

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Fabbiano, G. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Brassington, N. J. [Center for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertordshire, AL10 9AB (United Kingdom)

    2014-03-01

    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50'' in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D {sub 25} isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.

  20. CONSTRAINTS ON HELIUM ENHANCEMENT IN THE GLOBULAR CLUSTER M3 (NGC 5272): THE HORIZONTAL BRANCH TEST

    International Nuclear Information System (INIS)

    Catelan, M.; Valcarce, A. A. R.; Cortes, C.; Grundahl, F.; Sweigart, A. V.

    2009-01-01

    It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is the rule, rather than the exception, among globular star clusters. An important prediction of this helium enhancement scenario is that the helium-enhanced blue horizontal branch (HB) stars should be brighter than the red HB stars which are not helium enhanced. In this Letter, we test this prediction in the case of the Galactic globular cluster M3 (NGC 5272), for which the helium-enhancement scenario predicts helium enhancements of ∼>0.02 in virtually all blue HB stars. Using high-precision Stroemgren photometry and spectroscopic gravities for blue HB stars, we find that any helium enhancement among most of the cluster's blue HB stars is very likely less than 0.01, thus ruling out the much higher helium enhancements that have been proposed in the literature.

  1. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  2. Modeling and Analysis of a Spectrum of the Globular Cluster NGC 2419

    OpenAIRE

    Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2012-01-01

    NGC 2419 is the most distant massive globular cluster in the outer Galactic halo. It is unusual also due to the chemical peculiarities found in its red giant stars in recent years. We study the stellar population of this unusual object using spectra obtained at the 1.93-m telescope of the Haute-Provence Observatory. At variance with commonly used methods of high-resolution spectroscopy applicable only to bright stars, we employ spectroscopic information on the integrated light of the cluster....

  3. VARIABLE STARS IN LARGE MAGELLANIC CLOUD GLOBULAR CLUSTERS. II. NGC 1786

    International Nuclear Information System (INIS)

    Kuehn, Charles A.; Smith, Horace A.; De Lee, Nathan; Catelan, Márcio; Pritzl, Barton J.; Borissova, Jura

    2012-01-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B–V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters.

  4. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    International Nuclear Information System (INIS)

    Di Criscienzo, M.; Greco, C.; Ripepi, V.; Dall' Ora, M.; Marconi, M.; Musella, I.; Clementini, G.; Federici, L.; Di Fabrizio, L.

    2011-01-01

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two δ Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistent with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is μ 0 (NGC 2419) = 19.71 ± 0.08 mag (D = 87.5 ± 3.3 kpc), with E(B - V) = 0.08 ± 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M V that sets μ 0 (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.

  5. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  6. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  7. CM diagram of the nearby globular cluster NGC 6397

    International Nuclear Information System (INIS)

    Alcaino, G.; Buonanno, R.; Corsi, C. E.; Caloi, V.; Castellani, V.; Osservatorio Astronomico di Monte Mario, Rome, Italy; CNR, Istituto di Astrofisica Spaziale, Frascati, Italy; Roma I Universita, Italy; European Southern Observatory, Garching, Germany, F.R.)

    1987-01-01

    CCD photometry for faint stars in NGC 6397, combined with a digital reinvestigation of the photographic plates originally used by Alcaino and Liller (1980), has been used to obtain statistically significant samples for the various evolutionary phases, down to V about 21 mag, i.e., more than 5 mag below the turnoff. Evidence is reported for a flattening of the luminosity function for MS stars fainter than 6 mag, in agreement with previous indications by other authors. It is found that suspected departures from theoretical expectations in the distributions of red giant-branch stars do not have strong statistical significance. 29 references

  8. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  9. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    Science.gov (United States)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  10. Testing modified gravity with globular clusters: the case of NGC 2419

    Science.gov (United States)

    Llinares, Claudio

    2018-05-01

    The dynamics of globular clusters has been studied in great detail in the context of general relativity as well as with modifications of gravity that strongly depart from the standard paradigm such as Modified Newtonian Dynamics. However, at present there are no studies that aim to test the impact that less extreme modifications of gravity (e.g. models constructed as alternatives to dark energy) have on the behaviour of globular clusters. This Letter presents fits to the velocity dispersion profile of the cluster NGC 2419 under the symmetron-modified gravity model. The data show an increase in the velocity dispersion towards the centre of the cluster which could be difficult to explain within general relativity. By finding the best-fitting solution associated with the symmetron model, we show that this tension does not exist in modified gravity. However, the best-fitting parameters give a model that is inconsistent with the dynamics of the Solar system. Exploration of different screening mechanisms should give us the chance to understand if it is possible to maintain the appealing properties of the symmetron model when it comes to globular clusters and at the same time recover the Solar system dynamics properly.

  11. BVI CCD photometry of the broad main-sequence globular cluster NGC 1851

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    Three-color CCD C-M diagrams are presented for the globular cluster NGC 1851, showing an extreme breadth of the main-sequence, similar to that of Omega Centauri. It is found that the main-sequence turnoff points are located at V(TO) = 19.44 + or - 0.10, with colors at B-V = 0.54 + or - 0.02, V-I = 0.61 + or - 0.02, and B-I = 1.15 + or - 0.03. The best fit to the VandenBerg and Bell (1985) isochrones is shown to be all C-M diagrams with Y = 0.20, Fe/H abundance ratio = -1.27, and (m-M)v = 15.45. It is concluded that NGC 1851 has a Delta V(TO - HB) = 3.34 + or - 0.10 and an age of 16 + or - 2 Gyr. 29 refs

  12. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    Science.gov (United States)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  13. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    Energy Technology Data Exchange (ETDEWEB)

    Lagioia, E. P.; Bono, G.; Buonanno, R. [Dipartimento di Fisica, Università degli Studi di Roma-Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Stetson, P. B. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Prada Moroni, P. G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); Dall' Ora, M. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Aparicio, A.; Monelli, M. [Instituto de Astrofìsica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain); Calamida, A.; Ferraro, I.; Iannicola, G. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00044 Monte Porzio Catone (Italy); Gilmozzi, R. [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching (Germany); Matsunaga, N. [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, 10762-30, Mitake, Kiso-machi, Kiso-gun, 3 Nagano 97-0101 (Japan); Walker, A., E-mail: eplagioia@roma2.infn.it [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  14. ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362

    Energy Technology Data Exchange (ETDEWEB)

    D’Orazi, Valentina; Gratton, Raffaele G.; Lucatello, Sara; Momany, Yazan [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Angelou, George C. [Max Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Bragaglia, Angela; Carretta, Eugenio; Sollima, Antonio [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna (Italy); Lattanzio, John C., E-mail: valentina.dorazi@oapd.inaf.it [Monash Centre for Astrophysics (MoCA), Monash University, Melbourne, VIC 3800 (Australia)

    2015-03-10

    We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li) = 2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star’s evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster, but is the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond, the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. While the star sits just above the cluster bump luminosity, its temperature places it toward the blue side of the giant branch in the color–magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre-zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesized Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.

  15. Short-term X-ray variability of the globular cluster source 4U 1820 - 30 (NGC 6624)

    Science.gov (United States)

    Stella, L.; Kahn, S. M.; Grindlay, J. E.

    1984-01-01

    Analytical techniques for improved identification of the temporal and spectral variability properties of globular cluster and galactic bulge X-ray sources are described in terms of their application to a large set of observations of the source 4U 1820 - 30 in the globular cluster NGC 6624. The autocorrelation function, cross-correlations, time skewness function, erratic periodicities, and pulse trains are examined. The results are discussed in terms of current models with particular emphasis on recent accretion disk models. It is concluded that the analyzed observations provide the first evidence for shot-noise variability in a globular cluster X-ray source.

  16. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); McDonald, Iain; Zijlstra, Albert A., E-mail: cjohnson@cfa.harvard.edu, E-mail: iain.mcdonald-2@manchester.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk [Jodrell Bank Centre for Astrophysics, Alan Turing Building, Manchester M13 9PL (United Kingdom); and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  17. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    DEFF Research Database (Denmark)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.

    2018-01-01

    approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive =0.589 {{d...

  18. ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624

    Energy Technology Data Exchange (ETDEWEB)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Miocchi, P. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Geisler, D.; Mauro, F.; Cohen, R. E.; Villanova, S. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Origlia, L. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bidin, C. Moni, E-mail: sara.saracino@unibo.it [Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile)

    2016-11-20

    We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {sub s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.

  19. Modeling and analysis of the spectrum of the globular cluster NGC 2419

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2013-06-01

    The properties of the stellar population of the unusual object NGC 2419 are studied; this is the most distant high-mass globular cluster of the Galaxy's outer halo, and a spectrum taken with the 1.93-m telescope of the Haute Provence Observatory displays elemental abundance anomalies. Since traditional high-resolution spectroscopicmethods are applicable to bright stars only, spectroscopic information for the cluster's stellar population as a whole, integrated along the spectrograph slit placed in various positions, is used. Population synthesis is carried out for the spectrum of NGC 2419 using synthetic spectra calculated from a grid of stellar model atmospheres, based on the theoretical isochrone from the literature that best fits the color-magnitude diagram of the cluster. The derived age (12.6 billion years), metallicity ([Fe/H] = -2.25 dex), and abundances of helium ( Y = 0.26) and other chemical elements (a total of 14) are in a good qualitative agreement with estimates from the literature made from high-resolution spectra of eight red giants in the cluster. The influence on the spectrum of deviations from local thermodynamic equilibrium is considered for several elements. The derived abundance of α-elements ([ α/Fe] = 0.13 dex, as the mean of [O/Fe], [Mg/Fe], and [Ca/Fe]) differs from the mean value in the literature ([ α/Fe] = 0.4 for the eight brightest red giants) and may be explained by recently discovered in NGC2419 large [a/Fe] dispersion. Further studies of the integrated properties of the stellar population in NGC 2419 using higher-resolution spectrographs in various wavelength ranges should help improve our understanding of the cluster's chemical anomalies.

  20. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    Science.gov (United States)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  1. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Judith G.; Kirby, Evan N., E-mail: jlc@astro.caltech.edu, E-mail: enk@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  2. Discovery of a 205.89 Hz accreting millisecond X-ray pulsar in the globular cluster NGC 6440

    NARCIS (Netherlands)

    Altamirano, D.; Patruno, A.; Heinke, C.O.; Markwardt, C.; Strohmayer, T.E.; Linares, M.; Wijnands, R.; van der Klis, M.; Swank, J.H.

    2010-01-01

    We report on the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with RXTE on 2009 August 30, October 1 and October 28, during the decays of less than or similar to 4 day outbursts of a newly

  3. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    Energy Technology Data Exchange (ETDEWEB)

    Valcarce, A. A. R.; De Medeiros, J. R. [Universidade Federal do Rio Grande do Norte, Departamento de Física, 59072-970 Natal, RN (Brazil); Catelan, M. [Pontificia Universidad Católica de Chile, Centro de Astroingeniería, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Alonso-García, J. [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Facultad de Física, Av. Vicuña Mackena 4860, 782-0436 Macul, Santiago (Chile); Cortés, C. [Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Física, Av. José Pedro Alessandri 774, Santiago (Chile)

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  4. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    International Nuclear Information System (INIS)

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-García, J.; Cortés, C.

    2014-01-01

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  5. The chemical composition of a regular halo globular cluster: NGC 5897

    Science.gov (United States)

    Koch, Andreas; McWilliam, Andrew

    2014-05-01

    We report for the first time on the chemical composition of the halo cluster NGC 5897 (R⊙ = 12.5 kpc), based on chemical abundance ratios for 27 α-, iron-peak, and neutron-capture elements in seven red giants. From our high-resolution, high signal-to-noise spectra obtained with the Magellan/MIKE spectrograph, we find a mean iron abundance from the neutral species of [Fe/H] = - 2.04 ± 0.01 (stat.) ± 0.15 (sys.), which is more metal-poor than implied by previous photometric and low-resolution spectroscopic studies. The cluster NGC 5897 is α-enhanced (to 0.34 ± 0.01 dex) and shows Fe-peak element ratios typical of other (metal-poor) halo globular clusters (GCs) with no overall, significant abundance spreads in iron or in any other heavy element. Like other GCs, NGC 5897 shows a clear Na-O anti-correlation, where we find a prominent primordial population of stars with enhanced O abundances and approximately solar Na/Fe ratios, while two stars are Na-rich, providing chemical proof of the presence of multiple populations in this cluster. Comparison of the heavy element abundances with the solar-scaled values and the metal-poor GC M15 from the literature confirms that NGC 5897 has experienced little contribution from s-process nucleosynthesis. One star of the first generation stands out in that it shows very low La and Eu abundances. Overall, NGC 5897 is a well behaved GC showing archetypical correlations and element-patterns, with little room for surprises in our data. We suggest that its lower metallicity could explain the unusually long periods of RR Lyr that were found in NGC 5897. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Table 5 is available in electronic form at http://www.aanda.orgFull Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A23

  6. REVERSED TREND OF RADIAL DISTRIBUTION OF SUBPOPULATIONS IN THE GLOBULAR CLUSTERS NGC 362 AND NGC 6723

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongwook; Lee, Young-Wook; Pasquato, Mario [Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 03722 (Korea, Republic of); Han, Sang-Il; Roh, Dong-Goo, E-mail: dwlim@galaxy.yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-12-01

    Most globular clusters (GCs) are now known to host multiple stellar populations with different abundances of light elements. Here we use narrow-band photometry and low-resolution spectroscopy for NGC 362 and NGC 6723 to investigate their chemical properties and radial distributions of subpopulations. We confirm that NGC 362 and NGC 6723 are among the GCs with multiple populations showing bimodal CN distribution and CN–CH anticorrelation without a significant spread in calcium abundance. These two GCs show more centrally concentrated CN-weak, earlier generation stars compared to the CN-strong, later generation stars. These trends are reversed with respect to those found in previous studies for many other GCs. Our findings, therefore, seem contradictory to the current scenario for the formation of multiple stellar populations, but mass segregation acting on the two subpopulations might be a possible solution to explain this reversed radial trend.

  7. Double blue straggler sequences in globular clusters: The case of NGC 362

    International Nuclear Information System (INIS)

    Dalessandro, E.; Ferraro, F. R.; Massari, D.; Lanzoni, B.; Miocchi, P.; Mucciarelli, A.; Lovisi, L.; Beccari, G.; Bellini, A.; Sills, A.; Sigurdsson, S.

    2013-01-01

    We used high-quality images acquired with the Wide Field Camera 3 on board the Hubble Space Telescope to probe the blue straggler star (BSS) population of the galactic globular cluster NGC 362. We have found two distinct sequences of BSSs: this is the second case, after M30, where such a feature has been observed. Indeed, the BSS location, their extension in magnitude and color, and their radial distribution within the cluster nicely resemble those observed in M30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass-transfer binaries, the blue one by collisions. The discovery of four new W UMa stars, three of which lie along the red BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power law (α ∼ –0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core-collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362; in fact, together with M30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the 'dynamical clock' classification proposed by Ferraro et al. The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.

  8. The CN–CH Positive Correlation in the Globular Cluster NGC 5286

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongwook; Hong, Seungsoo; Lee, Young-Wook, E-mail: dwlim@yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr [Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-07-20

    We performed low-resolution spectroscopy of the red giant stars in the Galactic globular cluster (GC) NGC 5286, which is known to show intrinsic heavy element abundance variations. We found that the observed stars in this GC are clearly divided into three subpopulations by CN index (CN-weak, CN-intermediate, and CN-strong). The CN-strong stars are also enhanced in the calcium HK′ (7.4 σ ) and CH (5.1 σ ) indices, while the CN-intermediate stars show no significant difference in the strength of the HK′ index from the CN-weak stars. From the comparison with high-resolution spectroscopic data, we found that the CN- and HK′-strong stars are also enhanced in the abundances of Fe and s -process elements. It appears, therefore, that these stars are later-generation stars affected by some supernova enrichment in addition to the asymptotic giant branch ejecta. In addition, unlike normal GCs, sample stars in NGC 5286 show the CN–CH positive correlation, strengthening our previous suggestion that this positive correlation is only discovered in GCs with heavy element abundance variations, such as M22 and NGC 6273.

  9. The Peculiar Chemical Inventory of NGC 2419: An Extreme Outer Halo "Globular Cluster"

    Science.gov (United States)

    Cohen, Judith G.; Huang, Wenjin; Kirby, Evan N.

    2011-10-01

    NGC 2419 is a massive outer halo Galactic globular cluster (GC) whose stars have previously been shown to have somewhat peculiar abundance patterns. We have observed seven luminous giants that are members of NGC 2419 with Keck/HIRES at reasonable signal-to-noise ratio. One of these giants is very peculiar, with an extremely low [Mg/Fe] and high [K/Fe] but normal abundances of most other elements. The abundance pattern does not match the nucleosynthetic yields of any supernova model. The other six stars show abundance ratios typical of inner halo Galactic GCs, represented here by a sample of giants in the nearby GC M30. Although our measurements show that NGC 2419 is unusual in some respects, its bulk properties do not provide compelling evidence for a difference between inner and outer halo GCs. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  10. The globular cluster system of NGC 1316. II. The extraordinary object SH2

    Science.gov (United States)

    Richtler, T.; Kumar, B.; Bassino, L. P.; Dirsch, B.; Romanowsky, A. J.

    2012-07-01

    Context. SH2 has been described as an isolated HII-region, located about 6.5' south of the nucleus of NGC 1316 (Fornax A), a merger remnant in the the outskirts of the Fornax cluster of galaxies. Aims: We give a first, preliminary description of the stellar content and environment of this remarkable object. Methods: We used photometric data in the Washington system and HST photometry from the Hubble Legacy Archive for a morphological description and preliminary aperture photometry. Low-resolution spectroscopy provides radial velocities of the brightest star cluster in SH2 and a nearby intermediate-age cluster. Results: SH2 is not a normal HII-region, ionized by very young stars. It contains a multitude of star clusters with ages of approximately 108 yr. A ring-like morphology is striking. SH2 seems to be connected to an intermediate-age massive globular cluster with a similar radial velocity, which itself is the main object of a group of fainter clusters. Metallicity estimates from emission lines remain ambiguous. Conclusions: The present data do not yet allow firm conclusions about the nature or origin of SH2. It might be a dwarf galaxy that has experienced a burst of extremely clustered star formation. We may witness how globular clusters are donated to a parent galaxy. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under the programmes 082.B-0680, on observations taken at the Interamerican Observatory, Cerro Tololo, Chile. Furthermore based on observations made with the NASA/ESA Hubble Space Telescope (HST, PI: A. Sandage, Prop.ID: 7504), and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  11. High-resolution abundance analysis of red giants in the globular cluster NGC 6522

    Science.gov (United States)

    Barbuy, B.; Chiappini, C.; Cantelli, E.; Depagne, E.; Pignatari, M.; Hirschi, R.; Cescutti, G.; Ortolani, S.; Hill, V.; Zoccali, M.; Minniti, D.; Trevisan, M.; Bica, E.; Gómez, A.

    2014-10-01

    Context. The [Sr/Ba] and [Y/Ba] scatter observed in some galactic halo stars that are very metal-poor and in a few individual stars of the oldest known Milky Way globular cluster NGC 6522 have been interpreted as evidence of early enrichment by massive fast-rotating stars (spinstars). Because NGC 6522 is a bulge globular cluster, the suggestion was that not only the very-metal poor halo stars, but also bulge stars at [Fe/H] ~ -1 could be used as probes of the stellar nucleosynthesis signatures from the earlier generations of massive stars, but at much higher metallicity. For the bulge the suggestions were based on early spectra available for stars in NGC 6522, with a medium resolution of R ~ 22 000 and a moderate signal-to-noise ratio. Aims: The main purpose of this study is to re-analyse the NGC 6522 stars reported previously by using new high-resolution (R ~ 45 000) and high signal-to-noise spectra (S/N > 100). We aim at re-deriving their stellar parameters and elemental ratios, in particular the abundances of the neutron-capture s-process-dominated elements such as Sr, Y, Zr, La, and Ba, and of the r-element Eu. Methods: High-resolution spectra of four giants belonging to the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. Results: Our analysis confirms a metallicity [Fe/H] = -0.95 ± 0.15 for NGC 6522 and the overabundance of the studied stars in Eu (with +0.2 < [Eu/Fe] < + 0.4) and alpha-elements O and Mg. The neutron-capture s-element-dominated Sr, Y, Zr, Ba, and La now show less pronounced variations from star to star. Enhancements are in the range 0.0 < [Sr/Fe] < +0.4, +0.23 < [Y/Fe] < +0.43, 0.0 < [Zr/Fe] < +0.4, 0.0 < [La/Fe] < +0.35, and 0.05 < [Ba/Fe] < +0.55. Conclusions: The very high overabundances of [Y/Fe] previously reported for the four studied

  12. The galactic globular cluster NGC 1851: its dynamical and evolutionary properties

    Science.gov (United States)

    Saviane, I.; Piotto, G.; Fagotto, F.; Zaggia, S.; Capaccioli, M.; Aparicio, A.

    1998-05-01

    We have completely mapped the Galactic globular cluster NGC 1851 with large-field, ground-based VI CCD photometry and pre-repair HST/WFPC1 data for the central region. The photometric data set has allowed a V vs. (V-I) colour-magnitude diagram for ~ 20500 stars to be constructed. >From the apparent luminosity of the horizontal branch (HB) we derive a true distance modulus (m-M)_0 = 15.44 +/- 0.20. An accurate inspection of the cluster's bright and blue objects confirms the presence of seven ``supra-HB'' stars, six of which are identified as evolved descendants from HB progenitors. The HB morphology is found to be clearly bimodal, showing both a red clump and a blue tail, which are not compatible with standard evolutionary models. Synthetic Hertzsprung-Russell (HR) diagrams demonstrate that the problem could be solved by assuming a bimodal efficiency of the mass loss along the red giant branch (RGB). With the aid of Kolmogorov-Smirnov statistics we find evidence that the radial distribution of the blue HB stars is different from that of the red HB and sub-giant branch (SGB) stars. We give the first measurement of the mean absolute I magnitude for 22 known RR Lyr variables ( = 0.12 +/- 0.20 mag at a metallicity [Fe/H] = -1.28). The mean absolute V magnitude is = 0.58 +/- 0.20 mag, and we confirm that these stars are brighter than those of the zero-age HB (ZAHB). Moreover, we found seven new RR Lyr candidates (six ab type and one c type). With these additional variables the ratio of the two types is now N_c/Nab = 0.38. >From a sample of 25 globular clusters a new calibration for Delta V_bump() HB as a function of cluster metallicity is derived. NGC 1851 follows this general trend fairly well. From a comparison with the theoretical models, we also find some evidence for an age-metallicity relation among globular clusters. We identify 13 blue straggler stars, which do not show any sign of variability. The blue stragglers are less concentrated than the subgiant branch

  13. Ultra-deep GEMINI Near-infrared Observations of the Bulge Globular Cluster NGC 6624.

    Science.gov (United States)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.

    2016-11-01

    We used ultra-deep J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with ESO-VISTA telescope (program ID 179.B-2002).

  14. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    International Nuclear Information System (INIS)

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-01-01

    We present low-resolution (R ≅850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s -1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  15. Estimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry

    DEFF Research Database (Denmark)

    Kains, N.; Bramich, D.M.; Figuera Jaimes, R.

    2013-01-01

    Aims. We present the analysis of 26 nights of V and I time-series observations from 2011 and 2012 of the globular cluster M 30 (NGC 7099). We used our data to search for variable stars in this cluster and refine the periods of known variables; we then used our variable star light curves to derive...... values for the cluster's parameters. Methods. We used difference image analysis to reduce our data to obtain high-precision light curves of variable stars. We then estimated the cluster parameters by performing a Fourier decomposition of the light curves of RR Lyrae stars for which a good period estimate...... stars to derive cluster parameters using empirical relations. We find a cluster metallicity [Fe/H]ZW =-2.01 ± 0.04, or [Fe/H]UVES =-2.11 ± 0.06, and a distance of 8.32 ± 0.20 kpc (using RR0 variables), 8.10 kpc (using one RR1 variable), and 8.35 ± 0.42 kpc (using our SX Phoenicis star detection in M 30...

  16. Nonlinear Color–Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  17. A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Caldwell, Nelson [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Mateo, Mario [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Bailey, John I. III [Leiden Observatory, Leiden University, P.O. Box 9513, 2300RA Leiden (Netherlands); Clarkson, William I. [Department of Natural Sciences, University of Michigan–Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); Olszewski, Edward W. [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Walker, Matthew G., E-mail: cjohnson@cfa.harvard.edu, E-mail: ncaldwell@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: mmateo@umich.edu, E-mail: baileyji@strw.leidenuniv.nl, E-mail: wiclarks@umich.edu, E-mail: eolszewski@as.arizona.edu, E-mail: mgwalker@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2017-02-20

    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this “iron-complex” cluster class, and we provide here a chemical and kinematic analysis of >300 red giant branch and asymptotic giant branch member stars using high-resolution spectra obtained with the Magellan –M2FS and VLT–FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = −2 to −1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg–Al anti-correlation may only be present in stars with [Fe/H] ≳ −1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [ α /Fe] is identified and may have been accreted from a former surrounding field star population. The cluster’s large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to ω Cen and M54.

  18. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER NGC 362

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Whitney, Barbara; McDonald, Iain; Van Loon, Jacco Th.; Oliveira, Joana M.; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy

    2009-01-01

    We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the Infrared Array Camera and Multiband Imaging Photometer cameras onboard the Spitzer Space Telescope as part of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the red giant branch (RGB) that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the RGB. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0 +2.0 -1.2 x 10 -9 M sun yr -1 , corresponding to a gas mass-loss rate of 8.6 +5.6 -3.4 x 10 -6 M sun yr -1 , assuming [Fe/H] =-1.16. This mass loss is in addition to any dustless mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in ω Centauri.

  19. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  20. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    Science.gov (United States)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http

  1. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack of information about detailed abundances in field stars of the corresponding metallicities. We suggest that correlations such as [Na/Fe] versus [Ni/Fe] may prove useful for this purpose if an accuracy of 0.1 dex or better can be reached for integrated-light measurements. Tables A.1-A.15

  2. The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories, Santa Cruz, CA 95064 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, MI 48824 (United States); Lin, Dacheng; Irwin, Jimmy A.; Wong, Ka-Wah [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Sivakoff, Gregory R., E-mail: zgjennin@ucsc.edu [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-08-01

    We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased

  3. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Usher, Christopher; Forbes, Duncan A. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay, E-mail: brodie@ucolick.org [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  4. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  5. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    International Nuclear Information System (INIS)

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-01-01

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  6. Chemical study of the metal-rich globular cluster NGC 5927

    Science.gov (United States)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  7. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1980-01-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (Δm=3/sup m/.60), the CTIO 4-m telescope (Δm=6/sup m/.83), and the ESO 3.6-m telescope (Δm=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V) 0 =0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood [Astrophys. J. 159, 605 (1970)] and the isochrones of Demarque and McClure [(1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199], we deduce the cluster's age to be 14.5( +- 4.0) x 10 9 yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution

  8. TIME-SERIES PHOTOMETRY OF GLOBULAR CLUSTERS: M62 (NGC 6266), THE MOST RR LYRAE-RICH GLOBULAR CLUSTER IN THE GALAXY?

    International Nuclear Information System (INIS)

    Contreras, R.; Catelan, M.; Smith, H. A.; Kuehn, C. A.; Pritzl, B. J.; Borissova, J.

    2010-01-01

    We present new time-series CCD photometry, in the B and V bands, for the moderately metal-rich ([Fe/H] ≅ -1.3) Galactic globular cluster M62 (NGC 6266). The present data set is the largest obtained so far for this cluster and consists of 168 images per filter, obtained with the Warsaw 1.3 m telescope at the Las Campanas Observatory and the 1.3 m telescope of the Cerro Tololo Inter-American Observatory, in two separate runs over the time span of 3 months. The procedure adopted to detect the variable stars was the optimal image subtraction method (ISIS v2.2), as implemented by Alard. The photometry was performed using both ISIS and Stetson's DAOPHOT/ALLFRAME package. We have identified 245 variable stars in the cluster fields that have been analyzed so far, of which 179 are new discoveries. Of these variables, 133 are fundamental mode RR Lyrae stars (RRab), 76 are first overtone (RRc) pulsators, 4 are type II Cepheids, 25 are long-period variables (LPVs), 1 is an eclipsing binary, and 6 are not yet well classified. Such a large number of RR Lyrae stars places M62 among the top two most RR Lyrae-rich (in the sense of total number of RR Lyrae stars present) globular clusters known in the Galaxy, second only to M3 (NGC 5272) with a total of 230 known RR Lyrae stars. Since this study covers most but not all of the cluster area, it is not unlikely that M62 is in fact the most RR Lyrae-rich globular cluster in the Galaxy. In like vein, thanks to the time coverage of our data sets, we were also able to detect the largest sample of LPVs known so far in a Galactic globular cluster. We analyze a variety of Oosterhoff type indicators for the cluster, including mean periods, period distribution, Bailey diagrams, and Fourier decomposition parameters (as well as the physical parameters derived therefrom). All of these indicators clearly show that M62 is an Oosterhoff type I system. This is in good agreement with the moderately high metallicity of the cluster, in spite of its

  9. Galactic globular cluster NGC 6752 and its stellar population as inferred from multicolor photometry

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Valery [Instituto de Astronomía, Universidad Católica del Norte, Avenida Angamos 0610, Casilla 1280, Antofagasta (Chile); Alcaíno, Gonzalo [Isaac Newton Institute of Chile, Ministerio de Educación de Chile, Casilla 8-9, Correo 9, Santiago (Chile); Marconi, Gianni; Alvarado, Franklin, E-mail: vkravtsov@ucn.cl, E-mail: inewton@terra.cl, E-mail: falvarad@eso.org, E-mail: gmarconi@eso.org [ESO-European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2014-03-01

    This paper is devoted to photometric study of the Galactic globular cluster (GGC) NGC 6752 in UBVI, focusing on the multiplicity of its stellar population. We emphasize that our U passband is (1) narrower than the standard one due to its smaller extension blueward and (2) redshifted by ∼300 Å relative to its counterparts, such as the HST F336W filter. Accordingly, both the spectral features encompassed by it and photometric effects of the multiplicity revealed in our study are somewhat different than in recent studies of NGC 6752. Main sequence stars bluer in U – B are less centrally concentrated, as red giants are. We find a statistically significant increasing luminosity of the red giant branch (RGB) bump of ΔU ≈ 0.2 mag toward the cluster outskirts with no so obvious effect in V. The photometric results are correlated with spectroscopic data: the bluer RGB stars in U – B have lower nitrogen abundances. We draw attention to a larger width of the RGB than the blue horizontal branch (BHB) in U – B. This seems to agree with the effects predicted to be caused by molecular bands produced by nitrogen-containing molecules. We find that brighter BHB stars, especially the brightest ones, are more centrally concentrated. This implies that red giants that are redder in U – B, i.e., more nitrogen enriched and centrally concentrated, are the main progenitors of the brighter BHB stars. However, such a progenitor-progeny relationship disagrees with theoretical predictions and with the results on the elemental abundances in horizontal branch stars. We isolated the asymptotic giant branch clump and estimated the parameter ΔV{sub ZAHB}{sup clump} = 0.98 ± 0.12.

  10. Tracing the assembly history of NGC 1395 through its Globular Cluster System

    Science.gov (United States)

    Escudero, Carlos G.; Faifer, Favio R.; Smith Castelli, Analía V.; Forte, Juan C.; Sesto, Leandro A.; González, Nélida M.; Scalia, María C.

    2018-03-01

    We used deep Gemini-South/GMOS g΄r΄i΄z΄ images to study the globular cluster (GC) system of the massive elliptical galaxy NGC 1395, located in the Eridanus supergroup. The photometric analysis of the GC candidates reveals a clear colour bimodality distribution, indicating the presence of `blue' and `red' GC subpopulations. While a negative radial colour gradient is detected in the projected spatial distribution of the red GCs, the blue GCs display a shallow colour gradient. The blue GCs also display a remarkable shallow and extended surface density profile, suggesting a significant accretion of low-mass satellites in the outer halo of the galaxy. In addition, the slope of the projected spatial distribution of the blue GCs in the outer regions of the galaxy, is similar to that of the X-ray halo emission. Integrating up to 165 kpc the profile of the projected spatial distribution of the GCs, we estimated a total GC population and specific frequency of 6000 ± 1100 and SN = 7.4 ± 1.4, respectively. Regarding NGC 1395 itself, the analysis of the deep Gemini/GMOS images shows a low surface brightness umbrella-like structure indicating, at least, one recent merger event. Through relations recently published in the literature, we obtained global parameters, such as Mstellar = 9.32 × 1011 M⊙ and Mh = 6.46 × 1013 M⊙. Using public spectroscopic data, we derive stellar population parameters of the central region of the galaxy by the full spectral fitting technique. We have found that this region seems to be dominated for an old stellar population, in contrast to findings of young stellar populations from the literature.

  11. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Science.gov (United States)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  12. Strömgren uvby photometry of the peculiar globular cluster NGC 2419

    Science.gov (United States)

    Frank, Matthias J.; Koch, Andreas; Feltzing, Sofia; Kacharov, Nikolay; Wilkinson, Mark I.; Irwin, Mike

    2015-09-01

    NGC 2419 is a peculiar Galactic globular cluster offset from the others in the size-luminosity diagram, and showing several chemical abundance anomalies. Here, we present Strömgren uvby photometry of the cluster. Using the gravity- and metallicity-sensitive c1 and m1 indices, we identify a sample of likely cluster members extending well beyond the formal tidal radius. The estimated contamination by cluster non-members is only one per cent, making our catalogue ideally suited for spectroscopic follow-up. We derive photometric [Fe/H] of red giants, and depending on which metallicity calibration from the literature we use, we find reasonable to excellent agreement with spectroscopic [Fe/H], both for the cluster mean metallicity and for individual stars. We demonstrate explicitly that the photometric uncertainties are not Gaussian and this must be accounted for in any analysis of the metallicity distribution function. Using a realistic, non-Gaussian model for the photometric uncertainties, we find a formal internal [Fe/H] spread of σ=0.11+0.02-0.01 dex. This is an upper limit to the cluster's true [Fe/H] spread and may partially, and possibly entirely, reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive δ4, among other colour indices, anti-correlates strongly with magnesium abundance, indicating that the second-generation stars are nitrogen enriched. The absence of similar correlations in some other CN-sensitive indices supports the second generation being enriched in He, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed δ4 distribution of red giants is slightly better fit by two distinct populations with no internal spread, with the nitrogen

  13. Ages and chemical compositions of massive globular clusters in NGC147 and M31

    Science.gov (United States)

    Sharina, Margarita; Shimansky, Vladislav

    2015-08-01

    We present estimates of ages, [Fe/H], helium contents (Y) and abundances of C, N, Mg, Ca, Ti, Cr, Mn, Co and Ni for the following globular clusters (GCs): 7 in NGC147, and Mayall II, Mackey 1 and Mackey 6 in M31. Medium-resolution integrated-light spectra of the GCs were conducted with the 6m telescope. To derive the ages and abundances for the GCs we carried out their population synthesis using model stellar atmospheres, the Padova YZVAR isochrones and the Chabrier mass function. We compare the results with the corresponding data obtained using the same method for several massive Galactic GCs. We show that the differences in the Mg and C abundances between GCs with similar ages and metallicities may reach 0.5-0.6 dex. The corresponding differences for other elements are usually ˜2-3 times smaller. We suggest that at least partially the detected differences may be due to Mg and C abundance variations in the atmospheres of high-luminosity red giant branch stars as a consequence of the transportation of the produced elements to the surface layers.

  14. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  15. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  16. THE UNUSUAL X-RAY BINARIES OF THE GLOBULAR CLUSTER NGC 6652

    International Nuclear Information System (INIS)

    Coomber, G.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Grindlay, J. E.

    2011-01-01

    Our 5 ks Chandra ACIS-S observation of the globular cluster NGC 6652 detected seven X-ray sources, three of which were previously unidentified. This cluster hosts a well-known bright low-mass X-ray binary, source A (or XB 1832-330). Source B shows unusual rapid flaring variability, with an average L X (0.5-10 keV) ∼2 x 10 34 erg s -1 , but with minutes-long flares up to L X = 9 x 10 34 erg s -1 . Its spectrum can be fit by an absorbed power law of photon index Γ ∼ 1.24 and hardens as the count rate decreases. This suggests that part or all of the variation might be due to obscuration by the rim of a highly inclined accretion disk. Sources C and D, with L X ∼ 10 33 erg s -1 , have soft and unusual spectra. Source C requires a very soft component, with a spectrum peaking at 0.5 keV, which might be the hot polar cap of a magnetically accreting polar cataclysmic variable. Source D shows a soft spectrum (fit by a power law of photon index ∼2.3) with marginal evidence for an emission line around 1 keV; its nature is unclear. The faint new sources E, F, and G have luminosities of 1-2 x 10 32 erg s -1 , if associated with the cluster (which is likely). E and F have relatively hard spectra (consistent with power laws with photon index ∼1.5). G lacks soft photons, suggesting absorption with N H > 10 22 cm -2 .

  17. Uncovering multiple populations with washington photometry. I. The globular cluster NGC 1851

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Jeffrey D.; Geisler, D.; Villanova, S. [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción (Chile); Carraro, G. [ESO, Alonso de Cordova 3107, Casilla 19001, Santiago de Chile (Chile)

    2014-08-01

    The analysis of multiple populations (MPs) in globular clusters (GCs) has become a forefront area of research in astronomy. Multiple red giant branches (RGBs), subgiant branches (SGBs), and even main sequences (MSs) have now been observed photometrically in many GCs, while broad abundance distributions of certain elements have been detected spectroscopically in most, if not all, GCs. UV photometry has been crucial in discovering and analyzing these MPs, but the Johnson U and the Stromgren and Sloan u filters that have generally been used are relatively inefficient and very sensitive to reddening and atmospheric extinction. In contrast, the Washington C filter is much broader and redder than these competing UV filters, making it far more efficient at detecting MPs and much less sensitive to reddening and extinction. Here, we investigate the use of the Washington system to uncover MPs using only a 1 m telescope. Our analysis of the well-studied GC NGC 1851 finds that the C filter is both very efficient and effective at detecting its previously discovered MPs in the RGB and SGB. Remarkably, we have also detected an intrinsically broad MS best characterized by two distinct but heavily overlapping populations that cannot be explained by binaries, field stars, or photometric errors. The MS distribution is in very good agreement with that seen on the RGB, with ∼30% of the stars belonging to the second population. There is also evidence for two sequences in the red horizontal branch, but this appears to be unrelated to the MPs in this cluster. Neither of these latter phenomena have been observed previously in this cluster. The redder MS stars are also more centrally concentrated than the blue MS. This is the first time MPs in an MS have been discovered from the ground, and using only a 1 m telescope. The Washington system thus proves to be a very powerful tool for investigating MPs, and holds particular promise for extragalactic objects where photons are limited.

  18. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  19. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  20. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2016-06-10

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  1. The Globular Cluster NGC 2419: A Crucible for Theories of Gravity

    Science.gov (United States)

    Ibata, R.; Sollima, A.; Nipoti, C.; Bellazzini, M.; Chapman, S. C.; Dalessandro, E.

    2011-09-01

    We present the analysis of a kinematic data set of stars in the globular cluster NGC 2419, taken with the DEep Imaging Multi-Object Spectrograph at the Keck II telescope. Combined with a reanalysis of deep Hubble Space Telescope and Subaru Telescope imaging data, which provide an accurate luminosity profile of the cluster, we investigate the validity of a large set of dynamical models of the system, which are checked for stability via N-body simulations. We find that isotropic models in either Newtonian or Modified Newtonian Dynamics (MOND) are ruled out with extremely high confidence. However, a simple Michie model in Newtonian gravity with anisotropic velocity dispersion provides an excellent representation of the luminosity profile and kinematics of the cluster. The anisotropy profiles of these models ensure an isotropic center to the cluster, which progresses to extreme radial anisotropy toward the outskirts. In contrast, with MOND we find that Michie models that reproduce the luminosity profile either overpredict the velocity dispersion on the outskirts of the cluster if the mass-to-light ratio (M/L) is kept at astrophysically motivated values or else they underpredict the central velocity dispersion if the M/L is taken to be very small. We find that the best Michie model in MOND is a factor of ~104 less likely than the Newtonian model that best fits the system. A likelihood ratio of 350 is found when we investigate more general models by solving the Jeans equation with a Markov Chain Monte Carlo scheme. We verified with N-body simulations that these results are not significantly different when the MOND external field effect is accounted for. If the assumptions that the cluster is in dynamical equilibrium, spherical, not on a peculiar orbit, and possesses a single dynamical tracer population of constant M/L are correct, we conclude that the present observations provide a very severe challenge for MOND. Some of the data presented herein were obtained at the W

  2. A VST and VISTA study of globular clusters in NGC 253

    Science.gov (United States)

    Cantiello, Michele; Grado, Aniello; Rejkuba, Marina; Arnaboldi, Magda; Capaccioli, Massimo; Greggio, Laura; Iodice, Enrica; Limatola, Luca

    2018-03-01

    Context. Globular clusters (GCs) are key to our understanding of the Universe, as laboratories of stellar evolution, fossil tracers of the past formation epoch of the host galaxy, and effective distance indicators from local to cosmological scales. Aim. We analyze the properties of the sources in the NGC 253 with the aim of defining an up to date catalog of GC candidates in the galaxy. Given the distance of the galaxy, GCs in NGC 253 are ideal targets for resolved color-magnitude diagram studies of extragalactic GCs with next-generation diffraction limited ground-based telescopes. Methods: Our analysis is based on the science verification data of two ESO survey telescopes, VST and VISTA. Using ugri photometry from VST and JKs from VISTA, GC candidates were selected using as reference the morpho-photometric and color properties of spectroscopically confirmed GCs available in the literature. The strength of the results was verified against available archival HST/ACS data from the GHOSTS survey: all but two of the selected GC candidates appear as star clusters in HST footprints. Results: The adopted GC selection leads to the definition of a sample of ˜350 GC candidates. At visual inspection, we find that 82 objects match all the requirements for selecting GC candidates and 155 are flagged as uncertain GC candidate; however, 110 are unlikely GCs, which are most likely background galaxies. Furthermore, our analysis shows that four of the previously spectroscopically confirmed GCs, i.e., ˜20% of the total spectroscopic sample, are more likely either background galaxies or high-velocity Milky Way stars. The radial density profile of the selected best candidates shows the typically observed r1/4-law radial profile. The analysis of the color distributions reveals only marginal evidence of the presence of color bimodality, which is normally observed in galaxies of similar luminosity. The GC luminosity function does not show the typical symmetry, mainly because of the lack

  3. Ages of the Bulge Globular Clusters NGC 6522 and NGC 6626 (M28) from HST Proper-motion-cleaned Color–Magnitude Diagrams

    Science.gov (United States)

    Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.

    2018-01-01

    Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  4. An unexpected detection of bifurcated blue straggler sequences in the young globular cluster NGC 2173

    OpenAIRE

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-01-01

    Bifurcated patterns of blue straggler stars in their color--magnitude diagrams have atracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence of cluster core-collapse-driven stellar collisions as an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large MagellanicCloud cluster, NGC 2173. Because of the cluster's low central stellar numbe...

  5. VEGAS-SSS. II. Comparing the globular cluster systems in NGC 3115 and NGC 1399 using VEGAS and FDS survey data. The quest for a common genetic heritage of globular cluster systems

    Science.gov (United States)

    Cantiello, Michele; D'Abrusco, Raffaele; Spavone, Marilena; Paolillo, Maurizio; Capaccioli, Massimo; Limatola, Luca; Grado, Aniello; Iodice, Enrica; Raimondo, Gabriella; Napolitano, Nicola; Blakeslee, John P.; Brocato, Enzo; Forbes, Duncan A.; Hilker, Michael; Mieske, Steffen; Peletier, Reynier; van de Ven, Glenn; Schipani, Pietro

    2018-04-01

    We analyze the globular cluster (GC) systems in two very different galaxies, NGC 3115 and NGC 1399. With the papers of this series, we aim at highlighting common and different properties in the GC systems in galaxies covering a wide range of parameter space. We compare the GCs in NGC 3115 and NGC 1399 as derived from the analysis of one square degree u-, g-, and i-band images taken with the VST telescope as part of the VST early-type galaxy survey (VEGAS) and Fornax deep survey (FDS). We selected GC candidates using as reference the morpho-photometric and color properties of confirmed GCs. The surface density maps of GCs in NGC 3115 reveal a morphology similar to the light profile of field stars; the same is true when blue and red GCs are taken separately. The GC maps for NGC 1399 are richer in structure and confirm the existence of an intra-cluster GC component. We confirm the presence of a spatial offset in the NGC 1399 GC centroid and find that the centroid of the GCs for NGC 3115 coincides well with the galaxy center. Both GC systems show unambiguous color bimodality in (g - i) and (u - i); the color-color relations of the two GC systems are slightly different with NGC 3115 appearing more linear than NGC 1399. The azimuthal average of the radial density profiles in both galaxies reveals a larger spatial extent for the total GCs population with respect to the galaxy surface brightness profile. For both galaxies, the red GCs have radial density profiles compatible with the galaxy light profile, while the radial profiles for blue GCs are shallower. As for the specific frequency of GCs, SN, we find it is a factor of two higher in NGC 1399 than for NGC 3115; this is mainly the result of extra blue GCs. By inspecting the radial behavior of the specific frequency, SN(

  6. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  7. Tidal radii of the globular clusters M 5, M 12, M 13, M 15, M 53, NGC 5053 and NGC 5466 from automated star counts.

    Science.gov (United States)

    Lehmann, I.; Scholz, R.-D.

    1997-04-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).

  8. An Unexpected Detection of Bifurcated Blue Straggler Sequences in the Young Globular Cluster NGC 2173

    Science.gov (United States)

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-03-01

    The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.

  9. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    Energy Technology Data Exchange (ETDEWEB)

    Derakhshani, Kamran, E-mail: kderakhshani@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-1159 Zanjan (Iran, Islamic Republic of)

    2014-03-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ{sup 2} of surface brightness and velocity dispersion.

  10. The mond external field effect on the dynamics of the globular clusters: general considerations and application to NGC 2419

    International Nuclear Information System (INIS)

    Derakhshani, Kamran

    2014-01-01

    In this paper, we investigate the external field effect in the context of the MOdified Newtonian Dynamics (MOND) on the surface brightness and velocity dispersion profiles of globular clusters (GCs). Using N-MODY, which is an N-body simulation code with a MOND potential solver, we show that the general effect of the external field for diffuse clusters, which obey MOND in most of their parts, is that it pushes the dynamics toward the Newtonian regime. On the other hand, for more compact clusters, which are essentially Newtonian in their inner parts, the external field is effective mainly in the outer parts of compact clusters. As a case study, we then choose the remote Galactic GC NGC 2419. By varying the cluster mass, half-light radius, and mass-to-light ratio, we aim to find a model that will reproduce the observational data most effectively, using N-MODY. We find that even if we take the Galactic external field into account, a Newtonian Plummer sphere represents the observational data better than MOND to an order of magnitude in terms of the total χ 2 of surface brightness and velocity dispersion.

  11. Globular clusters and planetary nebulae kinematics and X-ray emission in the early-type galaxy NGC 5128

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2006-01-01

    Full Text Available The estimates of the mass of the galaxy NGC 5128 based on the different mass tracers, globular clusters (GCs and planetary nebulae (PNe, are presented. These estimates are compared with the estimate based on the X-ray methodology and it is found that the results for the mass (and mass-to-light ratio for all three approaches are in very good agreement interior to 25 arcmin; beyond 25 arcmin the X-rays predict the mass which is too high with respect to the one found using GCs and PNe. Some possible explanations for this discrepancy were discussed. The Jeans equation is also solved and its predictions for the velocity dispersion are then compared with the observed values, which extend to ~8 effective radii in the case of the GCs and ~15 effective radii in the case of the PNe. It is found that interior to ~25 arcmin (~5 effective radii dark matter does not dominate because the total mass-to-light ratio in the B band in solar units is less than 10. Based on the GCs and PNe beyond ~25 arcmin the total mass-to-light ratio increases to ~14 (at ~80 arcmin which indicates the existence of dark matter in the outer regions of NGC 5128.

  12. Globular clusters and galaxy halos

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1984-01-01

    Using semipartial correlation coefficients and bootstrap techniques, a study is made of the important features of globular clusters with respect to the total number of galaxy clusters and dependence of specific galaxy cluster on parent galaxy type, cluster radii, luminosity functions and cluster ellipticity. It is shown that the ellipticity of LMC clusters correlates significantly with cluster luminosity functions, but not with cluster age. The cluter luminosity value above which globulars are noticeably flattened may differ by a factor of about 100 from galaxy to galaxy. Both in the Galaxy and in M31 globulars with small core radii have a Gaussian distribution over luminosity, whereas clusters with large core radii do not. In the cluster systems surrounding the Galaxy, M31 and NGC 5128 the mean radii of globular clusters was found to increase with the distance from the nucleus. Central galaxies in rich clusters have much higher values for specific globular cluster frequency than do other cluster ellipticals, suggesting that such central galaxies must already have been different from normal ellipticals at the time they were formed

  13. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    International Nuclear Information System (INIS)

    Milone, A. P.; Marino, A. F.; Jerjen, H.; Piotto, G.; Renzini, A.; Bedin, L. R.; Anderson, J.; Bellini, A.; Cassisi, S.; Pietrinferni, A.; D’Antona, F.; Ventura, P.

    2015-01-01

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by the data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium

  14. CHEMODYNAMICS OF COMPACT STELLAR SYSTEMS IN NGC 5128: HOW SIMILAR ARE GLOBULAR CLUSTERS, ULTRA-COMPACT DWARFS, AND DWARF GALAXIES?

    International Nuclear Information System (INIS)

    Taylor, Matthew A.; Puzia, Thomas H.; Harris, Gretchen L.; Harris, William E.; Kissler-Patig, Markus; Hilker, Michael

    2010-01-01

    Velocity dispersion measurements are presented for several of the most luminous globular clusters (GCs) in NGC 5128 (Centaurus A) derived from high-resolution spectra obtained with the UVES echelle spectrograph on the 8.2 m ESO/Very Large Telescope. The measurements are made utilizing a penalized pixel-fitting method that parametrically recovers line-of-sight velocity dispersions. Combining the measured velocity dispersions with surface photometry and structural parameter data from the Hubble Space Telescope enables both dynamical masses and mass-to-light ratios to be derived. The properties of these massive stellar systems are similar to those of both massive GCs contained within the Local Group and nuclear star clusters and ultra-compact dwarf galaxies (UCDs). The fundamental plane relations of these clusters are investigated in order to fill the apparent gap between the relations of Local Group GCs and more massive early-type galaxies. It is found that the properties of these massive stellar systems match those of nuclear clusters in dwarf elliptical galaxies and UCDs better than those of Local Group GCs, and that all objects share similarly old (∼>8 Gyr) ages, suggesting a possible link between the formation and evolution of nuclear star clusters in dwarf elliptical galaxies (dE,Ns), UCDs, and massive GCs. We find a very steep correlation between dynamical mass-to-light ratio and dynamical mass of the form Υ V dyn ∝ M dyn 0.24±0.02 above M dyn ∼ 2x10 6 M sun . Formation scenarios are investigated with a chemical abundance analysis using absorption-line strengths calibrated to the Lick/IDS index system. The results lend support to two scenarios contained within a single general formation scheme. Old, massive, super-solar [α/Fe] systems are formed on short (∼ 13 -10 15 M sun potential wells of massive galaxies and galaxy clusters.

  15. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  16. C-M diagram and luminosity function of the Galactic globular cluster NGC 7099. I. Photographic photometry

    International Nuclear Information System (INIS)

    Piotto, G.; Rosino, L.; Capaccioli, M.; Ortolani, S.; Alcaino, G.; Osservatorio Astronomico, Padua, Italy; Ministerio de Educacion de Chile, Instituto Isaac Newton, Santiago)

    1987-01-01

    New photographic photometry of about 4400 stars in the field of the Galactic globular cluster NGC 7099 = M30 is presented. A C-M diagram and a luminosity function are obtained from this photometry. The distance modulus is estimated at 14.5 + or - 0.5 assuming V(HB) = 15.11 + or - 0.10 and E(B-V) = 0.03 + or - 0.03. The metallicity is (Fe/H) = 1.9 + or - 0.3 based on the dereddened color index (B-V)0,g = 0.71 + or - 0.03. The theoretical isochrones of VandenBerg and Bell (1985) give a better fit to the observations assuming (Fe/H) = -1.8, (m-M)V = 14.6, and E(B-V) = 0.02. A fair fit is also obtained using isochrones of low iron content with an oxygen enhancement of 0.7. From the fit, an age of 17 + or - 4 Gyr is deduced. 41 references

  17. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Durán, María Fernanda; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-01-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between –1.6 and –0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <–0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope

  18. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); McWilliam, Andrew, E-mail: jcolucci@ucolick.org [Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States)

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  19. Chemical Abundance Evidence of Enduring High Star Formation Rates in an Early-type Galaxy: High [Ca/Fe] in NGC 5128 Globular Clusters

    Science.gov (United States)

    Colucci, Janet E.; Fernanda Durán, María; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-08-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  20. CCD time-series photometry of the globular cluster NGC 5053: RR Lyrae, Blue Stragglers and SX Phoenicis stars revisited

    Science.gov (United States)

    Arellano Ferro, A.; Giridhar, Sunetra; Bramich, D. M.

    2010-02-01

    We report the results of CCD V, r and I time-series photometry of the globular cluster NGC 5053. New times of maximum light are given for the eight known RR Lyrae stars in the field of our images, and their periods are revised. Their V light curves were Fourier decomposed to estimate their physical parameters. A discussion on the accuracy of the Fourier-based iron abundances, temperatures, masses and radii is given. New periods are found for the five known SX Phe stars, and a critical discussion of their secular period changes is offered. The mean iron abundance for the RR Lyrae stars is found to be [Fe/H] ~ -1.97 +/- 0.16 and lower values are not supported by the present analysis. The absolute magnitude calibrations of the RR Lyrae stars yield an average true distance modulus of 16.12 +/- 0.04 or a distance of 16.7 +/- 0.3 kpc. Comparison of the observational colour magnitude diagram (CMD) with theoretical isochrones indicates an age of 12.5 +/- 2.0 Gyr for the cluster. A careful identification of all reported blue stragglers (BS) and their V, I magnitudes leads to the conclusion that BS12, BS22, BS23 and BS24 are not BS. On the other hand, three new BS are reported. Variability was found in seven BS, very likely of the SX Phe type in five of them, and in one red giant star. The new SX Phe stars follow established Period-Luminosity relationships and indicate a distance in agreement with the distance from the RR Lyrae stars. Based on observations collected at the Indian Astrophysical Observatory, Hanle, India. E-mail: armando@astroscu.unam.mx (AAF); giridhar@iiap.res.in (SG); dan.bramich@hotmail.co.uk (DMB)

  1. VizieR Online Data Catalog: Globular cluster candidates in NGC4258 (Gonzalez-Lopezlira+, 2017)

    Science.gov (United States)

    Gonzalez-Lopezlira, R. A.; Lomeli-Nunez, L.; Alamo-Martinez, K.; Ordenes-Briceno, Y.; Loinard, L.; Georgiev, I. Y.; Munoz, R. P.; Puzia, T. H.; Bruzual, G. A.; Gwyn, S.

    2017-08-01

    All data for the present work were obtained with the Canada-France-Hawaii-Telescope (CFHT). The optical images of NGC 4258 are all archival, and were acquired with MegaCam. Images were originally secured through programs 08BH55, 09AH42, 09AH98, 09BH95 (P.I. E. Magnier, u*-band); 09AC04 (P.I. R. Lasker, u* and i' filters); 10AT01 (P.I. C. Ngeow, g', r', and i' bands), and 11AC08 (P.I. G. Harris, g' and i' data) spanning 2008 Dec to 2011 Mar. The Ks-band images of NGC 4258 were acquired on 2013 March 27 UT, through proposal 13AC98 (P.I. R. Gonzalez-Lopezlira), with the Wide-field InfraRed Camera (WIRCam). (2 data files).

  2. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  3. The Brazil–Argentina Gemini Group for the Study of Globular Cluster Systems (BAGGs GCs: FLAMINGOS-2 and GMOS Data for NGC 1395

    Directory of Open Access Journals (Sweden)

    Favio Faifer

    2017-08-01

    Full Text Available In this letter, we present preliminary results of the analysis of Flamingos-2 and GMOS-S photometry of the globular cluster (GC system of the elliptical galaxy NGC 1395. This is the first step of a long-term Brazilian–Argentinian collaboration for the study of GC systems in early-type galaxies. In the context of this collaboration, we obtained deep NIR photometric data in two different bands (J and K s, which were later combined with high quality optical Gemini + GMOS photometry previously obtained by the Argentinian team. This allowed us to obtain different color indices, less sensitive to the effect of horizontal branch (HB stars for several hundreds of GC candidates, and to make an initial assessment of the presence or absence of multiple GC populations in colors in NGC 1395.

  4. H.E.S.S. OBSERVATIONS OF THE GLOBULAR CLUSTERS NGC 6388 AND M15 AND SEARCH FOR A DARK MATTER SIGNAL

    International Nuclear Information System (INIS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Bernloehr, K.; Bochow, A.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Borrel, V.; Becherini, Y.; Becker, J.; Behera, B.; Boisson, C.; Bolmont, J.; Bordas, P.

    2011-01-01

    Observations of the globular clusters (GCs) NGC 6388 and M15 were carried out by the High Energy Stereoscopic System array of Cherenkov telescopes for a live time of 27.2 and 15.2 hr, respectively. No gamma-ray signal is found at the nominal target position of NGC 6388 and M15. In the primordial formation scenario, GCs are formed in a dark matter (DM) halo and DM could still be present in the baryon-dominated environment of GCs. This opens the possibility of observing a DM self-annihilation signal. The DM content of the GCs NGC 6388 and M15 is modeled taking into account the astrophysical processes that can be expected to influence the DM distribution during the evolution of the GC: the adiabatic contraction of DM by baryons, the adiabatic growth of a black hole in the DM halo, and the kinetic heating of DM by stars. Ninety-five percent confidence level exclusion limits on the DM particle velocity-weighted annihilation cross section are derived for these DM halos. In the TeV range, the limits on the velocity-weighted annihilation cross section are derived at the 10 -25 cm 3 s -1 level and a few 10 -24 cm 3 s -1 for NGC 6388 and M15, respectively.

  5. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  6. Color maps of X-ray globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.; Grindlay, J.E.; Cohn, H.; Lugger, P.M.

    1988-01-01

    The results of a search for optical counterparts to X-ray sources in six globular clusters, 47 Tuc, NGC 1851, NGC 6441, NGC 6624, NGC 6712, and M15, are reported. Maps of the U-B color of the central regions of the clusters were prepared. A candidate for the optical counterpart of the source in NGC 6712 was found, along with a blue region near the X-ray source in 47 Tuc. Upper limits on the colors and magnitudes of possible optical counterparts are reported for the other three clusters. The use of color maps to determine color gradients in globular clusters is explored. It is found that, while such gradients do exist and vary from cluster to cluster, they can be explained by crowding effects. Crude limits are placed on the excess populations of blue objects such as CVs, which have been postulated to be concentrated in the centers of dense clusters. 32 references

  7. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  8. Globular clusters, old and young

    International Nuclear Information System (INIS)

    Samus', N.N.

    1984-01-01

    The problem of similarity of and difference in the globular and scattered star clusters is considered. Star clusters in astronomy are related either to globular or to scattered ones according to the structure of Hertzsprung-Russell diagram constructed for star clusters, but not according to the appearance. The qlobular clusters in the Galaxy are composed of giants and subgiants, which testifies to the old age of the globular clusters. The Globular clusters in the Magellanic clouds are classified into ''red'' ones - similar to the globular clusters of the Galaxy, and ''blue'' ones - similar to them in appearance but differing extremely by the star composition and so by the age. The old star clusters are suggested to be called globular ones, while another name (''populous'', for example) is suggested to be used for other clusters similar to globular ones only in appearance

  9. Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy. A pilot study based on globular cluster NGC 6397

    Science.gov (United States)

    Wendt, Martin; Husser, Tim-Oliver; Kamann, Sebastian; Monreal-Ibero, Ana; Richter, Philipp; Brinchmann, Jarle; Dreizler, Stefan; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC 6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims: We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods: This analysis utilized the fitting residuals of individual stellar spectra of NGC 6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results: This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na I and K I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines.

  10. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    International Nuclear Information System (INIS)

    Bellini, A.; Anderson, J.; Marel, R. P. van der; Vesperini, E.; Hong, J.; Piotto, G.; Milone, A. P.; Marino, A. F.; Bedin, L. R.; Renzini, A.; Cassisi, S.; D’Antona, F.

    2015-01-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piotto et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated

  11. Globular clusters - Fads and fallacies

    International Nuclear Information System (INIS)

    White, R.E.

    1991-01-01

    The types of globular clusters observed in the Milky Way Galaxy are described together with their known characteristics, with special attention given to correcting the erroneous statements made earlier about globular clusters. Among these are the following statements: the Galaxy is surrounded by many hundreds of globular clusters; all globular clusters are located toward the Galactic center, all globular clusters are metal poor and move about the Galaxy in highly elliptical paths; all globular clusters contain RR Lyrae-type variable stars, and the RR Lyrae stars found outside of globulars have come from cluster dissolution or ejection; all of the stars in a given cluster were born at the same time and have the same chemical composition; X-ray globulars are powered by central black holes; and the luminosity functions for globular clusters are well defined and well determined. Consideration is given to the fact that globular clusters in the Magellanic Clouds differ from those in the Milky Way by their age distribution and that the globulars of the SMC differ from those of the LMC

  12. DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.

    2010-01-01

    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, α, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their α and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either α (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.

  13. La galaxia NGC 6876 y su sistema de cúmulos globulares

    Science.gov (United States)

    Ennis, A. I.; Bassino, L. P.; Caso, J. P.

    2017-10-01

    We present preliminary results of the deep photometric study of the elliptical galaxy NGC6876, located at the center of the Pavo group, and its globular cluster system. We use images obtained with the GMOS camera mounted on the Gemini South telescope, in the and bands, with the purpose of disentangling the evolutionary history of the galaxy on the basis of their characteristics.

  14. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  15. Systematic main sequence photometry of globular cluster stars for age determination

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1984-01-01

    The individual photometric study of the coeval stars in globular clusters presents one of the best observational tests of the stellar evolution theory. Our own globular cluster system provides fundamental clues to the dynamical and chemical evolutionary history of the galaxy, and the study of their ages give a lower limit to the age of the galaxy as well as to that of the universe. The authors have undertaken a systematic research program, and discuss the ages deduced by fitting main sequence photometry to theoretical isochrones of six galactic globular clusters: M4, M22, M30, NGC 288, NGC 3201 and NGC 6397. (Auth.)

  16. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  17. Near infrared photometry of globular clusters

    International Nuclear Information System (INIS)

    Evans, T.L.; Menzies, J.W.

    1977-01-01

    Photographic photometry on the V, Isub(K) system has been obtained for giant stars in the metal-rich globular clusters NGC 5927, 6171, 6352, 6356, 6388, 6522, 6528, 6712 and 6723. Colour-magnitude diagrams are presented. These data, with earlier observations of NGC 104 (47 Tuc), yield new parameters to describe the giant branch. These are the colour of the red variables, represented by their mean colour (V - Isub(K)) 0 or by the colour (V - Isub(K))sub(BO) of the bluest red variable on the giant branch of a cluster, and ΔV' which is the magnitude difference between the horizontal branch and the highest point on the giant branch. The latter is independent of reddening, since the giant branch of the most metal-rich clusters passes through a maximum in the V, V - Isub(K) plane. These parameters are correlated with the metal content, deduced from integrated photometry: the red variables are redder and the giant branch fainter the higher the metal content. Comparison with theoretical evolutionary tracks suggests that the range in metal content of these clusters is at most a factor of 10, the most metal-rich clusters possibly approaching the solar value. The cluster giant branches and those of open clusters, groups and field stars of the old disk population are compared. The assumption that all the globular clusters have an absolute magnitude on the horizontal branch of Msub(v) = + 0.9, as found recently for 47 Tuc, gives good agreement between the magnitudes of giant stars in the most metal rich of the globular clusters and those of field stars deduced from statistical parallaxes and moving group parallaxes. The values of the parameters ΔV' and (V - Isub(k))sub(BO) also approach those in the moving groups. The globular clusters have a longer horizontal branch, however, and the subgiants are bluer even when the values of ) 7Fe/H{ appear to be the same. (author). )

  18. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source

    Science.gov (United States)

    Zepf, Stephen E.; Stern, Daniel; Maccarone, Thomas J.; Kundu, Arunav; Kamionkowski, Marc; Rhode, Katherine L.; Salzer, John J.; Ciardullo, Robin; Gronwall, Caryl

    2008-08-01

    We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ 2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [O III] λ5007 and [O III] λ4959 emission lines, with velocity widths of approximately 2000 km s-1. This result has significant implications for the nature of this accreting black hole system and the mass of the globular cluster black hole. We show that the broad [O III] λ5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [O III]-emitting atoms to account for the observed L([O III] λ5007) at high velocities, even if this volume is filled with oxygen at the critical density for [O III] λ5007. The Balmer emission is also weak, indicating the observed [O III] is not due to shocks. We therefore conclude that the [O III] λλ4959, 5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar-mass black hole. Since it is dynamically implausible to form an accreting stellar-mass black hole system in a globular cluster with an intermediate-mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the MBH - Mstellar and MBH - σ relations. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Speckle imaging of globular clusters

    International Nuclear Information System (INIS)

    Sams, B.J. III

    1990-01-01

    Speckle imaging is a powerful tool for high resolution astronomy. Its application to the core regions of globular clusters produces high resolution stellar maps of the bright stars, but is unable to image the faint stars which are most reliable dynamical indicators. The limits on resolving these faint, extended objects are physical, not algorithmic, and cannot be overcome using speckle. High resolution maps may be useful for resolving multicomponent stellar systems in the cluster centers. 30 refs

  20. Is age really the second parameter in globular clusters?

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Durrell, P.R.

    1990-01-01

    From the close similarity of the magnitude difference between the tip of the red giant branch and the turnoff in the Fe/H = about -1.3 globular cluster NGC 288, NGC 362, and M5, it is inferred that the ages of these three systems (and Palomar 5, whose horizonal branch is used to define its distance relative to the others) are not detectably different. An identical conclusion, by similar means, is reached for the Fe/H = about -2.1 globular clusters M15, M30, M68, and M92. Several recent claims that age is responsible for the wide variation in horizontal-branch morphology among clusters of the same metal abundance are not supported. 73 refs

  1. Supra-galactic colour patterns in globular cluster systems

    Science.gov (United States)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  2. An AO-assisted Variability Study of Four Globular Clusters

    Science.gov (United States)

    Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.

    2016-09-01

    The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  3. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  4. Photometric studies of globular clusters in the Andromeda nebula

    International Nuclear Information System (INIS)

    Sharov, A.S.; Lyutyj, V.M.

    1983-01-01

    The comparison of the frequency distribution of Bergh Q and Racine R metallicity parameters for globular clusters in the Galaxy and M31 is given. Mean values of the parameters are: in the Galaxy anti Q=-0.31 and anti R=0.40, in M31 anti Q=-0.32 and anti R=0.42. Hence the mean metallicity of globular clusters in two galaxies is identical. The differences in the observed frequency distribution of the parameters, in particular in the limits of general metallicity, are related to the random errors of photometrical measurements of globular clusters, considerably greater in the case of M31. Thereby the preference should be given to Hanes conclusion that globular clusters form a uniform population at least in two close systems. It should not be excepted that in other galaxies mean colour characteristics and hence metallicity of clusters may be of other type. Thus globular clusters related to the M31-NGC 205 satellite have somewhat minor B-V colour factors

  5. VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD GLOBULAR CLUSTER NGC 2257. I. RESULTS BASED ON 2007-2008 B, V PHOTOMETRY

    International Nuclear Information System (INIS)

    Nemec, James M.; Walker, Alistair; Jeon, Young-Beom

    2009-01-01

    The variable stars in the Large Magellanic Cloud star cluster NGC 2257 are reinvestigated using photometry (to ∼20th mag) of over 400 new B, V CCD images taken with the CTIO 0.9 m telescope on 14 nights in 2007 December and 2008 January. New period searches have been made using two independent algorithms (CLEAN, Period04); the resultant periods of most of the stars are consistent with the pulsation periods derived previously, and where there are discrepancies these have been resolved. For the B and V light curves, accurate Fourier coefficients and parameters are given. Six new variable stars have been discovered (V45-50), including a bright candidate long-period variable star showing secondary oscillations (V45) and two anomalously bright RRc stars (V48 and V50), which are shown to be brightened and reddened by nearby red giant stars. Also discovered among the previously known variable stars are three double-mode RR Lyrae stars (V8, V16, and V34) and several Blazhko variables. Archival Hubble Space Telescope images and the photometry by Johnson et al. have been used to define better the properties of the most crowded variable stars. The total number of cluster variable stars now stands at forty-seven: 23 RRab stars, four of which show Blazhko amplitude variations; 20 RRc stars, one showing clear Blazhko variations and another showing possible Blazhko variations; the three RRd stars, all having the dominant period ∼0.36 day and period ratios P 1 /P 0 ∼0.7450; and an LPV star located near the tip of the red giant branch. A comparison of the RRd stars with those in other environments shows them to be most similar to those in IC4499.

  6. Multiple Stellar Populations of Globular Clusters from Homogeneous Ca-CN Photometry. II. M5 (NGC 5904) and a New Filter System

    Science.gov (United States)

    Lee, Jae-Woo

    2017-07-01

    Using our ingeniously designed new filter systems, we investigate multiple stellar populations of the red giant branch (RGB) and the asymptotic giant branch (AGB) in the globular cluster (GC) M5. Our results are the following. (1) Our {{cn}}{JWL} index accurately traces nitrogen abundances in M5, while other color indices fail to do so. (2) We find bimodal CN distributions in both RGB and AGB sequences, with number ratios between CN-weak (CN-w) and CN-strong (CN-s) of n(CN-w):n(CN-s) = 29:71 (±2) and 21:79 (±7), respectively. (3) We also find a bimodal photometric [N/Fe] distribution for M5 RGB stars. (4) Our {{cn}}{JWL}-[O/Fe] and {{cn}}{JWL}-[Na/Fe] relations show clear discontinuities between the two RGB populations. (5) Although small, the RGB bump of CN-s is slightly brighter, {{Δ }}{V}{bump} = 0.07 ± 0.04 mag. If real, the difference in the helium abundance becomes {{Δ }}Y = 0.028 ± 0.016, in the sense that CN-s is more helium enhanced. (6) Very similar radial but different spatial distributions with comparable center positions are found for the two RGB populations. The CN-s RGB and AGB stars are more elongated along the NW-SE direction. (7) The CN-s population shows a substantial net projected rotation, while that of the CN-w population is nil. (8) Our results confirm the deficiency of CN-w AGB stars previously noted by others. We show that it is most likely due to stochastic truncation in the outer part of the cluster. Finally, we discuss the formation scenario of M5. Based on observations made with the Cerro Tololo Inter-American Observatory (CTIO) 1 m telescope, which is operated by the SMARTS consortium.

  7. An Archival Search For Young Globular Clusters in Galaxies

    Science.gov (United States)

    Whitmore, Brad

    1995-07-01

    One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.

  8. Gamma-ray Emission from Globular Clusters

    Directory of Open Access Journals (Sweden)

    Pak-Hin T. Tam

    2016-03-01

    Full Text Available Over the last few years, the data obtained using the Large Area Telescope (LAT aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs. Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  9. Photoelectric UBVRI sequences in the Magellanic Cloud clusters Lindsay 1, NGC 339, NGC 361, and NGC 1466

    International Nuclear Information System (INIS)

    Alcaino, G.; Alvarado, F.; Wenderoth, E.; Liller, W.

    1990-01-01

    UBVRI sequences in three Small Magellanic Cloud (SMC) clusters Lindsay 1, NGC 339, NGC 361, and in NGC 1466, which lies between the two Magellanic Clouds, are presented. These sequences are appropriate for charge-coupled device (CCD) coverage. Only BV standards have been published in NGC 339 and UBV in NGC 1466; no sequences exist for the two other clusters. 15 refs

  10. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    International Nuclear Information System (INIS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub; Cho, Jaeil; Chung, Chul; Sohn, Sangmo T.; Blakeslee, John P.

    2011-01-01

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if it is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u – g and u – z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g – z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g – z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.

  11. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    International Nuclear Information System (INIS)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  12. The Blue Hook Populations of Massive Globular Clusters

    Science.gov (United States)

    Brown, Thomas

    2006-07-01

    Blue hook stars are a class of hot { 35,000 K} subluminous horizontal branch stars that have been recently discovered using HST ultraviolet images of the globular clusters omega Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium core flash on the white dwarf cooling curve. This "flash mixing" produces an enormous enhancement of the surface helium and carbon abundances, which suppresses the flux in the far ultraviolet. Although flash mixing is more likely to occur in stars that are born with high helium abundances, a high helium abundance, by itself, does not explain the presence of a blue hook population - flash mixing of the envelope is required. We propose ACS ultraviolet {SBC/F150LP and HRC/F250W} observations of the five additional globular clusters for which the presence of blue hook stars is suspected from longer wavelength observations. Like omega Cen and NGC 2808, these five targets are also among the most massive globular clusters, because less massive clusters show no evidence for blue hook stars. Because our targets span 1.5 dex in metallicity, we will be able to test our prediction that flash-mixing should be less drastic in metal-rich blue hook stars. In addition, our observations will test the hypothesis that blue hook stars only form in globular clusters massive enough to retain the helium-enriched ejecta from the first stellar generation. If this hypothesis is correct, then our observations will yield important constraints on the chemical evolution and early formation history in globular clusters, as well as the role of helium self-enrichment in producing blue horizontal branch morphologies and multiple main sequence turnoffs. Finally, our observations will provide new insight into the

  13. Dinamical properties of globular clusters: Primordial or evolutional?

    Science.gov (United States)

    Surdin, V. G.

    1995-04-01

    Some observable relations between globular cluster parameters appear as a result of dynamical evolution of the cluster system. These relations are inapplicable to the studies of the globular cluster origin

  14. Millisecond radio pulsars in globular clusters

    Science.gov (United States)

    Verbunt, Frank; Lewin, Walter H. G.; Van Paradijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  15. Measuring age differences among globular clusters having similar metallicities - A new method and first results

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Bolte, M.; Stetson, P.B.

    1990-01-01

    A color-difference technique for estimating the relative ages of globular clusters with similar chemical compositions on the basis of their CM diagrams is described and demonstrated. The theoretical basis and implementation of the procedure are explained, and results for groups of globular clusters with m/H = about -2, -1.6, and -1.3, and for two special cases (Palomar 12 and NGC 5139) are presented in extensive tables and graphs and discussed in detail. It is found that the more metal-deficient globular clusters are nearly coeval (differences less than 0.5 Gyr), whereas the most metal-rich globular clusters exhibit significant age differences (about 2 Gyr). This result is shown to contradict Galactic evolution models postulating halo collapse in less than a few times 100 Myr. 77 refs

  16. The Most Massive Star Clusters: Supermassive Globular Clusters or Dwarf Galaxy Nuclei?

    Science.gov (United States)

    Harris, William

    2004-07-01

    Evidence is mounting that the most massive globular clusters, such as Omega Centauri and M31-G1, may be related to the recently discovered "Ultra-Compact Dwarfs" and the dense nuclei of dE, N galaxies. However, no systematic imaging investigation of these supermassive globular clusters - at the level of Omega Cen and beyond - has been done, and we do not know what fraction of them might bear the signatures {such as large effective radii or tidal tails} of having originated as dE nuclei. We propose to use the ACS/WFC to obtain deep images of 18 such clusters in NGC 5128 and M31, the two nearest rich globular cluster systems. These globulars are the richest star clusters that can be found in nature, the biggest of them reaching 10^7 Solar masses, and they are likely to represent the results of star formation under the densest and most extreme conditions known. Using the profiles of the clusters including their faint outer envelopes, we will carry out state-of-the-art dynamical modelling of their structures, and look for any clear evidence which would indicate that they are associated with stripped satellites. This study will build on our previous work with STIS and WFPC2 imaging designed to study the 'Fundamental Plane' of globular clusters. When our new work is combined with Archival WFPC2, STIS, and ACS material, we will also be able to construct the definitive mapping of the Fundamental Plane of globular clusters at its uppermost mass range, and confirm whether or not the UCD and dE, N objects occupy a different structural parameter space.

  17. Cyanogen strengths of globular cluster post-main-sequence stars

    International Nuclear Information System (INIS)

    Hesser, J.E.; Hartwick, F.D.A.; McClure, R.D.

    1976-01-01

    CN strengths in the peculiar clusters ω Cen and M22 and the metal-rich clusters 47 Tuc, M71, and NGC 6352 are found to vary markedly from star to star. The strong variations in CN strength found earlier for ω Cen by Norris and Bessell and by Dickens and Bell are shown to extend to fainter stars, although expected correlations of CN strength with position in the color-magnitude (C-M) diagram are less evident in our sample. Several CN and metal-strong stars were also observed in M22. We conclude that CN, once it appears in globular clusters, can vary much more than it does in equivalent Population I samples, a result we briefly examine in light of current understanding regarding physical processes in the stars themselves and of models of galactic chemical evolution

  18. Nova-driven winds in globular clusters

    International Nuclear Information System (INIS)

    Scott, E.H.; Durisen, R.H.

    1978-01-01

    Recent sensitive searches for Hα emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. We suggest that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds of globular cluster X-ray sources is also considered

  19. Reconstructing galaxy histories from globular clusters.

    Science.gov (United States)

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  20. Chemical Abundances of Giants in Globular Clusters

    Science.gov (United States)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  1. Globular clusters as a source of X-ray emission from the neighbourhood of M87

    International Nuclear Information System (INIS)

    Fabian, A.C.; Pringle, J.E.; Rees, M.J.

    1976-01-01

    It is stated that the X-ray emission from globular clusters may be attributable to accretion on to compact objects, the accreting material being supplied from binary companions, or gas trapped in the potential well of the cluster. Counts of objects in the vicinity of the M87 have revealed that it has an extensive halo of globular clusters, the number of which may exceed 10,000 within a radius of 23 arc min. Most of these clusters may be explicable as a population effect, and the similarity of their optical properties to those of cluster in our own Galaxy suggests that they may also contain X-ray sources. The brighter globular clusters in M87 may, however, be substantially more X-ray luminous, and there may be proportionally more gas available in globular clusters in M87 compared with our Galaxy. The average X-ray luminosity of individual globular clusters may be of the order of 10 38 erg/sec., which raises the possibility that the integrated globular cluster emission may account for a substantial fraction of the X-ray emission observed from the region of M87. In support of this it is noted that the extended X-ray emission from the Virgo cluster is centered on M87, which lies approximately 45 arc min from the cluster centroid, and it is expected that the general X-ray emission from the globular cluster will appear to be smoothly and symmetrically distributed about M87 at moderate spatial resolution. A similar situation may apply to the elliptical galaxy NGC 3311 in Abell 1060 which, as a cluster, has been suggested as the identification for the X-ray source 3 U 1044-40, and it seems possible that that galaxy is surrounded by a similar globular cluster population to that of M87. (U.K.)

  2. Exploring the Internal Dynamics of Globular Clusters

    Science.gov (United States)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  3. Elemental abundances of intermediate-age open cluster NGC 3680

    Science.gov (United States)

    Mitschang, A. W.; De Silva, G. M.; Zucker, D. B.

    2012-06-01

    We present a new abundance analysis of the intermediate-age Galactic open cluster NGC 3680, based on high-resolution, high signal-to-noise ratio VLT/UVES spectroscopic data. Several element abundances are presented for this cluster for the first time, but most notably we derive abundances for the light and heavy s-process elements Y, Ba, La and Nd. The serendipitous measurement of the rare-earth r-process element Gd is also reported. This cluster exhibits a significant enhancement of Na in giants as compared to dwarfs, which may be a proxy for an O to Na anticorrelation as observed in Galactic globular clusters but not open clusters. We also observe a step-like enhancement of heavy s-process elements towards higher atomic number, contrary to expectations from asymptotic giant branch nucleosynthesis models, suggesting that the r process played a significant role in the generation of both La and Nd in this cluster.

  4. Evidence from stellar abundances for a large age difference between two globular clusters

    International Nuclear Information System (INIS)

    Dickens, R.J.; Croke, B.F.W.; Cannon, R.D.; Bell, R.A.

    1991-01-01

    The globular clusters NGC288 and NGC362 are central to recent claims of large age differences (∼3 Gyr) between globular clusters associated with our Galaxy. According to standard models for the formation of the Galaxy, the system of globular clusters formed during the dynamical collapse of the protogalactic cloud, a process which should have lasted no more than 1 Gyr. But the claimed age differences are derived from stellar evolution models using assumed CNO abundances, and uncertainty in the actual CNO abundances of about a factor of three could account for an apparent 2-Gyr age difference. We have accurately measured abundances in red giants in NGC288 and NGC362, and find that the Fe abundance and the sum of the C, N and O abundances are essentially the same in every star studied. By eliminating compositional differences and thus confirming the reality of the age difference, these results imply a cluster formation period that is hard to reconcile with the standard collapse model. (author)

  5. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  6. RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars

    Science.gov (United States)

    Kunder, Andrea

    2018-06-01

    Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.

  7. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    Science.gov (United States)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  8. Close stellar encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1989-01-01

    Stellar encounters are expected to produce a variety of interesting objects in the cores of globular clusters, either through the formation of binaries by tidal capture, or direct collisions. Here, I describe several attempts to observe the products of stellar encounters. In particular, the use of color maps has demonstrated the existence of a color gradient in the core of M15, which seems to be caused by a population of faint blue objects concentrated towards the cluster center. (author)

  9. THE IMPACT OF CONTAMINATED RR LYRAE/GLOBULAR CLUSTER PHOTOMETRY ON THE DISTANCE SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Majaess, D.; Turner, D.; Lane, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada); Gieren, W., E-mail: dmajaess@ap.smu.ca [Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, CL Concepcion (Chile)

    2012-06-10

    RR Lyrae variables and the stellar constituents of globular clusters are employed to establish the cosmic distance scale and age of the universe. However, photometry for RR Lyrae variables in the globular clusters M3, M15, M54, M92, NGC 2419, and NGC 6441 exhibit a dependence on the clustercentric distance. For example, variables and stars positioned near the crowded high-surface brightness cores of the clusters may suffer from photometric contamination, which invariably affects a suite of inferred parameters (e.g., distance, color excess, absolute magnitude, etc.). The impetus for this study is to mitigate the propagation of systematic uncertainties by increasing awareness of the pernicious impact of contaminated and radial-dependent photometry.

  10. Infrared dust emission from globular clusters

    International Nuclear Information System (INIS)

    Angeletti, L.; Capuzzo-Dolcetta, R.; Giannone, P.; Blanco, A.; Bussoletti, E.

    1982-01-01

    The implications of the presence of a central cloud in the cores of globular clusters were investigated recently. A possible mechanism of confinement of dust in the central region of our cluster models was also explored. The grain temperature and infrared emission have now been computed for rather realistic grain compositions. The grain components were assumed to be graphite and/or silicates. The central clouds turned out to be roughly isothermal. The wavelengths of maximum emission came out to be larger than 20 μm in all studied cases. An application of the theoretical results to five globular clusters showed that the predictable infrared emission for 47 Tuc, M4 and M22 should be detectable by means of present instrumentation aboard flying platforms. (author)

  11. Infrared dust emission from globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Capuzzo-Dolcetta, R; Giannone, P. (Rome Univ. (Italy). Osservatorio Astronomico); Blanco, A; Bussoletti, E [Lecce Univ. (Italy). Ist. di Fisica

    1982-05-01

    The implications of the presence of a central cloud in the cores of globular clusters were investigated recently. A possible mechanism of confinement of dust in the central region of our cluster models was also explored. The grain temperature and infrared emission have now been computed for rather realistic grain compositions. The grain components were assumed to be graphite and/or silicates. The central clouds turned out to be roughly isothermal. The wavelengths of maximum emission came out to be larger than 20 ..mu..m in all studied cases. An application of the theoretical results to five globular clusters showed that the predictable infrared emission for 47 Tuc, M4 and M22 should be detectable by means of present instrumentation aboard flying platforms.

  12. Synthetic properties of models of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Dolcetta, R; Giannone, P. (Rome Univ. (Italy). Osservatorio Astronomico)

    1980-05-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10/sup 9/ yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit.

  13. Synthetic properties of models of globular clusters

    International Nuclear Information System (INIS)

    Angeletti, L.; Dolcetta, R.; Giannone, P.

    1980-01-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10 9 yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit. (orig.)

  14. Asteroseismic inferences on red giants in open clusters NGC 6791, NGC 6819, and NGC 6811 using Kepler

    DEFF Research Database (Denmark)

    Hekker, S.; Basu, S.; Stello, D.

    2011-01-01

    and metallicity contribute to the observed difference in locations in the H-R diagram of the old metal-rich cluster NGC 6791 and the middle-aged solar-metallicity cluster NGC 6819. For the young cluster NGC 6811, the explanation of the position of the stars in the H-R diagram challenges the assumption of solar...

  15. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  16. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  17. Photometric studies of globular clusters in the Andromeda Nebula. Luminosity function for old globular clusters

    International Nuclear Information System (INIS)

    Sharov, A.S.; Lyutyj, V.M.

    1989-01-01

    The luminosity function for old globular clusters in M 31 is presented. The objects were selected according to their structural and photometric properties. At the usually accepted normal (Gaussian) distribution, the luminosity function is characterized by the following parameters: the mean magnitude, corrected for the extinction inside M 31, V-bar 0 =16 m ,38±0 m .08, and the absolute magnitude M-bar v =-8 m .29 assuming )m-M) v =23 m .67, standard deviation σ M v =1 m .16±0 m .08 and total object number N=300±17. Old globular clusters in M 31 are in the average about one magnitude more luminous then those in our Galaxy (M v ≅ -7 m .3). Intrinsic luminosity dispersions of globular clusters are nearly the same in both galaxies. Available data on globular clusters in the Local Group galaxies against the universality of globular luminosity function with identical parameters M v and σ M v

  18. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  19. Lithium in old open clusters - NGC 188

    International Nuclear Information System (INIS)

    Hobbs, L.M.; Pilachowski, C.

    1988-01-01

    Echelle spectra which include the Li I line at 6707 A are reported for seven main-sequence stars and one subgiant in NGC 188. The Li I line is detected in five of the six dwarfs which are highly probable cluster members. The derived atmospheric Li/H ratios exceed the solar value by factors ranging approximately from 10 to 40, although these apparently closely solarlike stars are about twice as old as the sun. The variation of the lithium abundance with stellar mass along the main sequences of the Pleiades, the Hyades, NGC 752, and NGC 188 are compared. The resulting evolutionary pattern indicates that the lithium fraction in the Galactic gas has shown no appreciable change from Li/H of roughly 10 to the -9th since the birth of NGC 188 about 10 Gyr ago, except that the abundance could have been higher by an uncertain but possibly appreciable factor at the beginning of that epoch. 51 references

  20. Spectroscopic confirmation of the first symbiotic star in a globular cluster

    Science.gov (United States)

    Zurek, David

    2013-10-01

    We have recently discovered an 18-minute period in the ultraviolet of a star in the globular cluster NGC 1851. In the redder optical bands, this star is red and bright, while it shows a clear UV excess relative to other stars at similar positions in the HR diagram. The system is most likely a symbiotic binary, composed of a cool evolved star and a white dwarf, with an 18 minute spin period, accreting the cool star's wind. The binary would be the first such object ever found in a globular cluster, and only the third in the Galaxy where the white dwarf spin period is measured. The only viable alternatives are that the two components are a chance superposition - something with a nontrivial chance of happening in a globular cluster core. In such a case, the 18 minute period would most likely be the spin period of a magnetic white dwarf in an intermediate polar cataclysmic variable {this would be the first confirmed magnetic CV in a globular cluster}, or the orbital period of a double-degenerate AM CVn binary. Each of these three possibilities show unique {and very different} emission line spectra in the blue wavelength range. Two orbits of HST with STIS/G430L will produce a spectrum of sufficient signal-to-noise to distinguish between these 3 scenarios. The result will be an important constraint on N-body models of globular clusters.

  1. Pregalactic formation of globular clusters in cold dark matter

    International Nuclear Information System (INIS)

    Faber, S.M.; Blumenthal, G.R.; Rosenblatt, E.I.

    1988-01-01

    The pregalactic hypothesis for the formation of globular clusters is reconsidered in the light of Zinn's (1985) discovery of a two-component globular population in the Milky Way. For a cold dark matter spectrum, high-sigma fluctuations of 10 to the 5th - 10 to the 6th solar masses are assumed to be the progenitors of the spheroidal population of globular clusters. The mass fraction of globular clusters in galaxies then requires that perturbations above roughly 2.8 sigma survive as globulars, and their observed radii require baryonic collapse factors of order 10. Such an absolute density threshold for globular cluster formation achieves adequate fits to observed cluster radii and densities, the mass fraction of globulars versus Hubble type, the radial density profile of globulars within galaxies, and the globular luminosity function. However, a fixed density threshold criterion for cluster survival lacks convincing physical justification and does not by itself explain the homogeneous metallicities within clusters or the large metallicity variations from cluster to cluster and from galaxy to galaxy. 33 references

  2. MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?

    Science.gov (United States)

    Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian

    2017-01-01

    We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.

  3. Deep radio synthesis images of globular clusters

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Goss, W.M.; Wolszczan, A.; Middleditch, J.

    1990-01-01

    Results are reported from a program of high-resolution and high-sensitivity imaging of globular clusters at 20 cm. The findings indicate that there is not a large number of pulsars in compact binaries which have escaped detection in single-dish pulse searches. Such binaries have been postulated to result from tidal captures of single main-sequence stars. It is suggested that most tidal captures involving neutron stars ultimately result in the formation of a spun-up single pulsar and the complete disruption of the main-sequence star. 27 refs

  4. Constraints on H(0) from globular clusters

    International Nuclear Information System (INIS)

    Vandenberg, D.A.

    1988-01-01

    On the basis of canonical stellar evolutionary computations, the maximum age of the globular clusters is suggested to be near either 14 Gyr or 18 Gyr, depending on how (O/Fe) varies with (Fe/H) in the cluster stars. The lower estimate requires that H(0) = 65 km/s/Mpc or less, for all Omega(0) = O or greater, if the standard Big-Bang cosmological theory is correct - while the higher age value similarly constrains the Hubble constant to be smaller than 46 km/s/Mpc. Some reduction in the upper limit to cluster ages and a consequent increase in H(0) may be expected if helium diffusion is important in Population II stars; nevertheless, values of H(0) greater than 75 km/s/Mpc still appear to be precluded unless the cosmological constant is nonzero. 51 refs

  5. Extragalactic globular clusters. I. The metallicity calibration

    International Nuclear Information System (INIS)

    Brodie, J.P.; Huchra, J.P.

    1990-01-01

    The ability of absorption-line strength indices, measured from integrated globular cluster spectra, to predict mean cluster metallicity is explored. Statistical criteria, are used to identify the six best indices out of about 20 measured in a large sample of Galactic and M31 cluster spectra. Linear relations between index and metallicity have been derived along with new calibrations of infrared colors (V - K, J - K, and CO) versus Fe/H. Estimates of metallicity from the six spectroscopic index-metallicity relations have been combined in three different ways to identify the most efficient estimator and the minimum bias estimator of Fe/H - the weighted mean. This provides an estimate of Fe/H accurate to about 15 percent. 37 refs

  6. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems

    Science.gov (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  7. Ages of Globular Clusters from HIPPARCOS Parallaxes of Local Subdwarfs

    Science.gov (United States)

    Gratton, Raffaele G.; Fusi Pecci, Flavio; Carretta, Eugenio; Clementini, Gisella; Corsi, Carlo E.; Lattanzi, Mario

    1997-12-01

    We report here initial but strongly conclusive results for absolute ages of Galactic globular clusters (GGCs). This study is based on high-precision trigonometric parallaxes from the HIPPARCOS satellite coupled with accurate metal abundances ([Fe/H], [O/Fe], and [α/Fe]) from high-resolution spectroscopy for a sample of about thirty subdwarfs. Systematic effects due to star selection (Lutz-Kelker corrections to parallaxes) and the possible presence of undetected binaries in the sample of bona fide single stars are examined, and appropriate corrections are estimated. They are found to be small for our sample. The new data allow us to reliably define the absolute location of the main sequence (MS) as a function of metallicity. These results are then used to derive distances and ages for a carefully selected sample of nine globular clusters having metallicities determined from high-dispersion spectra of individual giants according to a procedure totally consistent with that used for the field subdwarfs. Very precise and homogeneous reddening values have also been independently determined for these clusters. Random errors for our distance moduli are +/-0.08 mag, and systematic errors are likely of the same order of magnitude. These very accurate distances allow us to derive ages with internal errors of ~12% (+/-1.5 Gyr). The main results are: 1. HIPPARCOS parallaxes are smaller than corresponding ground-based measurements, leading, in turn, to longer distance moduli (~0.2 mag) and younger ages (~2.8 Gyr). 2. The distance to NGC 6752 derived from our MS fitting is consistent with that determined using the white dwarf cooling sequence. 3. The relation between the zero-age HB (ZAHB) absolute magnitude and metallicity for the nine program clusters is MV(ZAHB)=(0.22+/-0.09)([Fe/H]+1.5)+(0.49+/-0.04) . This relation is fairly consistent with some of the most recent theoretical models. Within quoted errors, the slope is in agreement with that given by the Baade-Wesselink (BW

  8. THE HST/ACS COMA CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MASSIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Peng, Eric W.; Ferguson, Henry C.; Goudfrooij, Paul; Hammer, Derek; Lucey, John R.; Marzke, Ronald O.; Puzia, Thomas H.; Carter, David; Balcells, Marc; Bridges, Terry; Chiboucas, Kristin; Del Burgo, Carlos; Graham, Alister W.; Guzman, Rafael; Hudson, Michael J.; Matkovic, Ana

    2011-01-01

    Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster of galaxies is one of the nearest truly massive galaxy clusters and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R +4000 -5000 (systematic) IGCs out to this radius, and that they make up ∼70% of the central GC system, making this the largest GC system in the nearby universe. Even including the GC systems of other cluster galaxies, the IGCs still make up ∼30%-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S N dwarf galaxies, then the ICL has a mean surface brightness of μ V ∼ 27 mag arcsec -2 and a total stellar mass of roughly 10 12 M sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC 4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The inner GCs associated with NGC 4874 also have a bimodal distribution in color, but with a redder metal-poor population. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of

  9. CVs and millisecond pulsar progenitors in globular clusters

    Science.gov (United States)

    Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.

    1991-01-01

    The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.

  10. EXTENDED STAR CLUSTERS IN THE REMOTE HALO OF THE INTRIGUING DWARF GALAXY NGC 6822

    International Nuclear Information System (INIS)

    Hwang, Narae; Lee, Myung Gyoon; Lee, Jong Chul; Park, Hong Soo; Park, Won-Kee; Kim, Sang Chul; Park, Jang-Hyun

    2011-01-01

    We present a study on four new star clusters discovered in the halo of the intriguing dwarf irregular galaxy NGC 6822 from a wide-field survey covering 3 0 x 3 0 area carried out with MegaCam at the Canada-France-Hawaii Telescope. The star clusters have extended structures with half-light radii R h ∼ 7.5-14.0 pc, larger than typical Galactic globular clusters and other known globular clusters in NGC 6822. The integrated colors and color-magnitude diagrams of resolved stars suggest that the new star clusters are 2-10 Gyr old and relatively metal poor with Z = 0.0001-0.004 based on the comparison with theoretical models. The projected distance of each star cluster from the galaxy center ranges from 10.'7 (∼1.5 kpc) to 77' (∼11 kpc), far beyond the optical body of the galaxy. Interestingly, the new star clusters are aligned along the elongated old stellar halo of NGC 6822, which is almost perpendicular to the H I gas distribution where young stellar populations exist. We also find that the colors and half-light radii of the new clusters are correlated with the galactocentric distance: clusters farther from the galaxy center are larger and bluer than those closer to the galaxy center. We discuss the stellar structure and evolution of NGC 6822 implied by these new extended star clusters in the halo. We also discuss the current status of observational and theoretical understandings regarding the origin of extended star clusters in NGC 6822 and other galaxies.

  11. LISA Sources in Milky Way Globular Clusters

    Science.gov (United States)

    Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Rasio, Frederic A.

    2018-05-01

    We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ˜21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ˜7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.

  12. Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 Months of Kepler Photometry

    DEFF Research Database (Denmark)

    Corsaro, Enrico; Stello, Dennis; Huber, Daniel

    2012-01-01

    We studied solar-like oscillations in 115 red giants in the three open clusters, NGC 6791, NGC 6811, and NGC 6819, based on photometric data covering more than 19 months with NASA's Kepler space telescope. We present the asteroseismic diagrams of the asymptotic parameters δν02, δν01, and ϵ, which...

  13. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Washabaugh, Pearce C.; Bregman, Joel N.

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  14. Analytical Solution for Stellar Density in Globular Clusters MA Sharaf

    Indian Academy of Sciences (India)

    Introduction. A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. They are generally composed of hundreds of thousands of low-metal, old stars. The types of stars found in a globular cluster are similar to those in the bulge of a spiral galaxy but confined to a volume of only a few cubic ...

  15. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  16. Most Massive Globular Cluster in Our Galaxy

    Science.gov (United States)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  17. New cataclysmic variables and other exotic binaries in the globular cluster 47 Tucanae*

    Science.gov (United States)

    Rivera Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Anderson, J.; Cool, A. M.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.; Grindlay, J. E.

    2018-04-01

    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non-core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster centre than the main-sequence turn-off stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of ˜1.4 M⊙. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colours. For one of them we present very strong evidence for being an ablated companion. The other three could be CO or He white dwarfs.

  18. Observations of CO and OI in stars in globular clusters

    International Nuclear Information System (INIS)

    Wallerstein, G.; Pilachowski, C.

    1978-01-01

    Since studies at classification dispersion and early analyses of high dispersion spectra have yielded little quantitative data on the abundances of C, N, and O in globular clusters the authors have been endeavoring to establish their abundances in stars in several clusters. The problem has been approached in two ways, by observing the 2.3 micron CO bands and the 6300 A [OI] line in individual stars in globular clusters. (Auth.)

  19. Effect of radiation pressure in the cores of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Capuzzo-Dolcetta, R; Giannone

    1981-10-01

    The possible effects of a presence of a dust cloud in the cores of globular clusters was investigated. Two cluster models were considered together with various models of clouds. The problem of radiation transfer was solved under some simplifying assumptions. Owing to a differential absorption of the star light in the cloud, radiation pressure turned out be inward-directed in some cloud models. This fact may lead to a confinement of some dust in the central regions of globular clusters.

  20. Globular cluster metallicity scale: evidence from stellar models

    International Nuclear Information System (INIS)

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  1. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F., E-mail: joaovictor@on.br, E-mail: jearim@on.br, E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: drake@on.br, E-mail: froig@on.br [Observatório Nacional/MCT, Rua Gen. José Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  2. High-resolution Spectroscopic Observations of Binary Stars and Yellow Stragglers in Three Open Clusters : NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F.

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  3. Multiple stellar generations in the Large Magellanic Cloud Star Cluster NGC 1846

    Science.gov (United States)

    Milone, Antonino

    2010-09-01

    The recent discovery of multiple stellar populations in massive Galactic globular clusters poses a serious challenge for models of star cluster formation and evolution. The finding of multiple main sequences in the massive clusters NGC 2808 and omega Centauri, and multiple sub-giant-branch in NGC 1851 and many other globulars have demonstrated that star clusters are not as simple as we have imagined for decades. Surprisingly the only way to explain the main sequence splitting appears to be Helium enrichment, up to an astonishingly high Y 0.40.An unique angle on this problem can be provided by intermediate-age clusters in the Magellanic Clouds with peculiar main-sequence turn-off morphologies. Recent discoveries, based on ACS data of unparalleled photometric accuracy, have demonstrated that the CMDs of a large fraction of these clusters { 70 %} are not consistent with the simple, single stellar population hypothesis. Explanations for what conditions could give rise to multiple populations in Galactic Globular Clusters remain controversial; this is even more the case for LMC clustersTo properly constraint the multipopulation phenomenon in Magellanic Cloud star clusters, we propose deep UV/IR imaging of NGC 1846, a star cluster where multiple populations have already been identified. The proposed observation will allow us to accurately measure the age difference between the stellar populations providing fundamental clues on the formation mechanism. Our simulations of WFC3 performance suggest that we will be able to detect even the main sequence splitting caused by small He differences {Delta Y 0.02}.

  4. Spectroscopy of chromospheric lines of giants in the globular cluster

    Science.gov (United States)

    Dupree, A. K.; Hartmann, Lee; Smith, Graeme H.; Rodgers, A. W.; Roberts, W. H.; Zucker, D. B.

    1994-01-01

    Spectroscopic observations of chromospheric transitions (Mg II, H-alpha, and Ca II K) from two red giants (A31 and A59) in the globular cluster NGC 6572 were made with the Goddard High Resolution Spectrograph on the Hubble Space Telescope and the coude spectrograph of the 1.9 m telescope at the Mount Stromlo Observatory. These measurements give evidence for chromospheric activity and outward motions within the atmospheres. The surface flux of the Mg II emission is comparable to that in disk population giants of similar (B-V) color. The Mg II profiles are asymmetric, which is most likely caused by absorption in an expanding stellar atmosphere and/or by possible interstellar features. Notches are found in the core of the H-alpha line of A59, which are similar to those found in Cepheids. This suggests that shocks are present in the atmosphere of A59 and indicates that hydrodynamic phenomena are influencing the levvel of chromospheric emission and producing upper atmospheric motions which may lead to mass loss.

  5. NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

    Directory of Open Access Journals (Sweden)

    J.-W. Kim

    2007-03-01

    Full Text Available We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

  6. Metallicity Spreads in M31 Globular Clusters

    Science.gov (United States)

    Bridges, Terry

    2003-07-01

    Our recent deep HST photometry of the M31 halo globular cluster {GC} Mayall II, also called G1, has revealed a red-giant branch with a clear spread that we attribute to an intrinsic metallicity dispersion of at least 0.4 dex in [Fe/H]. The only other GC exhibiting such a metallicity dispersion is Omega Centauri, the brightest and most massive Galactic GC, whose range in [Fe/H] is about 0.5 dex. These observations are obviously linked to the fact that both G1 and Omega Cen are bright and massive GC, with potential wells deep enough to keep part of their gas, which might have been recycled, producing a metallicity scatter among cluster stars. These observations dramatically challenge the notion of chemical homogeneity as a defining characteristic of GCs. It is critically important to find out how common this phenomenon is and how it can constrain scenarios/models of GC formation. The obvious targets are other bright and massive GCs, which exist in M31 but not in our Galaxy where Omega Cen is an isolated giant. We propose to acquire, with ACS/HRC, deep imaging of 3 of the brightest M31 GCs for which we have observed velocity dispersion values similar to those observed in G1 and Omega Cen. A sample of GCs with chemical abundance dispersions will provide essential information about their formation mechanism. This would represent a major step for the studies of the origin and evolution of stellar populations.

  7. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-01-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements

  8. Central Rotations of Milky Way Globular Clusters

    Science.gov (United States)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  9. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, R. Di [Harvard-Smithsonian Center for Astrophysics (United States); Ray, A., E-mail: rdistefano@cfa.harvard.edu, E-mail: akr@tifr.res.in [Tata Institute of Fundamental Research (India)

    2016-08-10

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  10. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    International Nuclear Information System (INIS)

    Stefano, R. Di; Ray, A.

    2016-01-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  11. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry

    2009-01-01

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z ∼ M 0.30±0.05 . No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  12. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. M.; Bellini, A.; Anderson, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Pietrinferni, A. [INAF-Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); D’Antona, F. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Salaris, M. [Astrophysics Research Institute,Liverpool John Moores University, Liverpool Science Park, IC2 Building, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Dalessandro, E. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Piotto, G.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia “Galileo Galilei,”Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Renzini, A.; Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Sweigart, A. V. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Aparicio, A., E-mail: tbrown@stsci.edu, E-mail: jayander@stsci, E-mail: bellini@stsci.edu, E-mail: cassisi@oa-teramo.inaf.it, E-mail: pietrinferni@oa-teramo.inaf.it, E-mail: dantona@oa-roma.inaf.it, E-mail: M.Salaris@ljmu.ac.uk, E-mail: milone@mso.anu.edu.au [Instituto de Astrofísica de Canarias. Calle Vía Láctea s/n. E38200 — La Laguna, Tenerife, Canary Islands (Spain)

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arise in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.

  13. THE DYNAMICAL EFFECTS OF WHITE DWARF BIRTH KICKS IN GLOBULAR STAR CLUSTERS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Richer, Harvey B.; Rasio, Frederic A.; Hurley, Jarrod R.

    2009-01-01

    Recent observations of the white dwarf (WD) populations in the Galactic globular cluster NGC 6397 suggest that WDs receive a kick of a few km s -1 shortly before they are born. Using our Monte Carlo cluster evolution code, which includes accurate treatments of all relevant physical processes operating in globular clusters, we study the effects of the kicks on their host cluster and on the WD population itself. We find that in clusters whose velocity dispersion is comparable to the kick speed, WD kicks are a significant energy source for the cluster, prolonging the initial cluster core contraction phase significantly so that at late times the cluster core-to-half-mass radius ratio is a factor of up to ∼10 larger than in the no-kick case. WD kicks thus represent a possible resolution of the large discrepancy between observed and theoretically predicted values of this key structural parameter. Our modeling also reproduces the observed trend for younger WDs to be more extended in their radial distribution in the cluster than older WDs.

  14. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  15. The SUMO project I. A survey of multiple populations in globular clusters

    Science.gov (United States)

    Monelli, M.; Milone, A. P.; Stetson, P. B.; Marino, A. F.; Cassisi, S.; del Pino Molina, A.; Salaris, M.; Aparicio, A.; Asplund, M.; Grundahl, F.; Piotto, G.; Weiss, A.; Carrera, R.; Cebrián, M.; Murabito, S.; Pietrinferni, A.; Sbordone, L.

    2013-05-01

    We present a general overview and the first results of the SUMO project (a SUrvey of Multiple pOpulations in Globular Clusters). The objective of this survey is the study of multiple stellar populations in the largest sample of globular clusters homogeneously analysed to date. To this aim we obtained high signal-to-noise (S/N > 50) photometry for main sequence stars with mass down to ˜0.5 M⊙ in a large sample of clusters using both archival and proprietary U, B, V and I data from ground-based telescopes. In this paper, we focus on the occurrence of multiple stellar populations in 23 clusters. We define a new photometric index, cU, B, I = (U - B) - (B - I), which turns out to be very effective for identifying multiple sequences along the red giant branch (RGB). We found that in the V-cU, B, I diagram all clusters presented in this paper show broadened or multimodal RGBs, with the presence of two or more components. We found a direct connection with the chemical properties of different sequences, which display different abundances of light elements (O, Na, C, N and Al). The cU, B, I index is also a powerful tool for identifying distinct sequences of stars along the horizontal branch and, for the first time in the case of NGC 104 (47 Tuc), along the asymptotic giant branch. Our results demonstrate that (i) the presence of more than two stellar populations is a common feature amongst globular clusters, as already highlighted in previous work; (ii) multiple sequences with different chemical contents can be easily identified by using standard Johnson photometry obtained with ground-based facilities; (iii) in the study of globular cluster multiple stellar populations the cU, B, I index is an alternative to spectroscopy, and has the advantage of larger statistics.

  16. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-01-01

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  17. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  18. RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Morscher, Meagan; Umbreit, Stefan; Farr, Will M.; Rasio, Frederic A.

    2013-01-01

    Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses ∼10 M ☉ , BHs are ∼20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH-BH merger rate from globular clusters could be comparable to the rate in the field.

  19. The Hot Stellar Content and HB morphology of the massive globular cluster G1

    Science.gov (United States)

    Rich, R.

    2010-09-01

    We propose to obtain deep WFC3 imagery of the Local Group's most luminous globular cluster, G1. Our primary aim is to define the hot stellar content and the extent of what appears to be a multimodal horizontal branch, analogous to those known in Omega Cen and NGC 2808. G1 is 40 kpc distant in the M31, and it would have been highly unlikely that collision with a giant molecular clould would be responsible for the complex populations which must therefore be the result of self-enrichment. We will obtain data very similar to those obtained for the known Galactic multimodal globular clusters NGC 6388 and 6441, and compare the stellar distribution on the horizontal branch with models. We can constrain the fraction of helium-enriched stars, if present, and search for supra-horizontal branch and other anomalous hot, evolved, stars. Parallel ACS observations will be the deepest ever obtained in the adjacnt field to G1, and will help to constrain whether G1 was the nucleus of a now disrupted galaxy.

  20. Integrated photometry of globular star clusters in the Vilnius system

    International Nuclear Information System (INIS)

    Zdanavichyus, K.V.

    1983-01-01

    Integrated colour indices in the Vilnius photometric system and newly determined colour excesses Esub(B-V) for 39 globular clusters are presented. It is shown that the coincidence of integrated spectral types are not a sufficient criterion for the identity of intrinsic colour indices of globular clusters. Relation of integrated colour indices with the slope of the giant branch S and with the horizontal branch morphological type D is investigated. Integrated colour indices of clusters with a blue horizontal branch show no correlation with either D or S. The increase of colour indices of the clusters of types D >= 4 correlates with the distribution of stars along the horizontal branch. Integrated photometry of globular star clusters in the Vilnius multicoloured photometric system permits to determine their colour excesses from some Q diagrams and normal colour index. Integral normal colour indexes and Q parameters for I globular star clusters of the Mironov group display small changes as compared to clusters of group 2. Colour indexes among star clusters having only red horizontal branches (D=7) change most considerably

  1. Tracing dust in old stellar populations : the mid-infrared spectrum of globular cluster AGB stars

    International Nuclear Information System (INIS)

    Richter, H.

    2010-01-01

    Asymptotic Giant Branch (AGB) stars are considered to be the main stellar dust producers in the universe. Their dusty circumstellar shells leave fingerprints in the mid-infrared (MIR) spectra of AGB stars and in unresolved old stellar populations. Bressan et al. (2007) showed that co-added MIR-spectra of AGB stars of known luminosity, metallicity and age (like those found in the Galactic globular cluster NGC104) can be used to model the dust excess in early-type galaxies. This work aims to improve our understanding of the MIR-spectra of old stellar populations with respect to their metallicities by studying a large sample of AGB stars in Galactic globular clusters. A sample of AGB stars (taken from Lebzelter et al. 2006 and Sloan et al. 2010) is used to produce co-added MIR-spectra of globular cluster combinations for three metallicity groups. Each group consists of several globular clusters with similar age and metallicity. Combining the clusters leads to a higher number of AGB stars with available Spitzer spectra in each group. The low metallicity group (Z=0.0038) consists of five globular clusters with 18 AGB star spectra, the intermediate (Z=0.0058) and high (Z=0.01) metallicity groups both include three clusters with eight and seven available MIR-spectra, respectively. Stars within the 90% mass radius of each globular cluster are used to generate 2MASS Color- Magnitude diagrams (CMDs) of each cluster combination. Binning the stars in the CMDs with respect to their MK-values results in Luminosity Functions (LFs) for the cluster combinations. The LFs based on 2MASS data are compared to LFs obtained using theoretical isochrones from the Padova group (Bertelli et al. 2008, Marigo et al. 2008). Using the 2MASS LFs integrated MIR-spectra of the three globular cluster combinations are derived by weighting the existing spectra with the total number of AGB stars within each MK-bin of the LFs along the upper giant branch. This relies on the assumption that stars that

  2. Tycho- Gaia Astrometric Solution Parallaxes and Proper Motions for Five Galactic Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Laura L.; Van der Marel, Roeland P., E-mail: lwatkins@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States)

    2017-04-20

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho- Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope ( HST ) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST . By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.

  3. The Mystery of Globular Clusters: Uncovering the Complexities of Their Evolution

    Science.gov (United States)

    O'Malley, Erin Marie

    In recent years, evidence has grown for the existence of multiple stellar populations in globular clusters (GCs). However, questions remain regarding the nature of these populations. Photometric observations clearly show discrete populations while spectroscopic observations seem to show a continuous spread. This dissertation provides steps to better understanding GCs and the complexities associated with their evolution. Calibration of stellar evolution models at low metallicity is necessary for comparison to GCs. Accurate abundances of metal-poor subdwarfs are determined and used in this calibration. A Monte Carlo analysis is then performed in order to determine accurate distances, absolute ages, and integrated orbital trajectories for 24 GCs. These results are of critical importance as they not only incorporate the observational uncertainty, but also the uncertainty incurred by the models themselves. Lastly, high resolution spectra of three GCs (NGC 6681, NGC 6584 and NGC 7099) are obtained for a detailed abundance analysis of red giant branch stars. The high resolution and signal-to-noise achieved in these observations allows for the discovery of a statistically significant Na-O anticorrelation in all three clusters, the populations of which agree with those from photometric observations. Although we cannot determine precisely the nature of the polluters that were the predecessors to the enhanced populations, we do know that both s-process and r-process mechanisms contributed to the evolution and these results can be used to help constrain future models of GC polluter candidates.

  4. A New Globular Cluster in the Area of VVVX

    Science.gov (United States)

    Bica, E.; Minniti, D.; Bonatto, C.; Hempel, M.

    2018-06-01

    We communicate the discovery of a new globular cluster in the Galaxy that was first detected on WISE/2MASS images and is now confirmed with VVVX photometry. It is a Palomar-like cluster projected at ℓ = 359.15°, b = 5.73°, and may be related to the bulge. We derive an absolute magnitude of MV ≈ -3.3, thus being an underluminous globular cluster. Our analyses provide a reddening of E(B - V) = 1.08 ± 0.18 and a distance to the Sun d⊙ = 6.3 ± 1 kpc, which implies a current position in the bulge volume. The estimated metallicity is [Fe/H] = -1.5 ± 0.25. It adds to the recently discovered faint globular cluster (Minniti 22) and candidates found with VVV, building up expectations of ≈50 globular clusters yet to be discovered in the bulge. We also communicate the discovery of an old open cluster in the same VVVX tile as the globular cluster. The VVVX photometry provided E(B - V) = 0.62 ± 0.1, d⊙ = 7.6 ± 1 kpc, and an age of 1.5 ± 0.3 Gyr. With a height from the plane of ≈0.8 kpc, it adds to nine Gyr-class clusters recently discovered within 0.8 ⩽ Z ⩽ 2.2 kpc, as recently probed in the single VVV tile b201. We suggest that these findings may be disclosing the thick disk at the bulge, which so far has no open cluster counterpart, and hardly any individual star. Thus, the VVV and VVVX surveys are opening new windows for follow-up studies, to employ present and future generations of large aperture telescopes.

  5. Seeing deconvolution of globular clusters in M31

    International Nuclear Information System (INIS)

    Bendinelli, O.; Zavatti, F.; Parmeggiani, G.; Djorgovski, S.

    1990-01-01

    The morphology of six M31 globular clusters is examined using seeing-deconvolved CCD images. The deconvolution techniques developed by Bendinelli (1989) are reviewed and applied to the M31 globular clusters to demonstrate the methodology. It is found that the effective resolution limit of the method is about 0.1-0.3 arcsec for CCD images obtained in FWHM = 1 arcsec seeing, and sampling of 0.3 arcsec/pixel. Also, the robustness of the method is discussed. The implications of the technique for future studies using data from the Hubble Space Telescope are considered. 68 refs

  6. MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS

    International Nuclear Information System (INIS)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav; Rasio, Frederic A.

    2013-01-01

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters

  7. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Science.gov (United States)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  8. An observational study of disk-population globular clusters

    International Nuclear Information System (INIS)

    Armandroff, T.E.

    1988-01-01

    Integrated-light spectroscopy was obtained for twenty-seven globular clusters at the Ca II infrared triplet. Line strengths and radial velocities were measured from the spectra. For the well-studied clusters in the sample, the strength of the CA II lines is very well correlated with previous metallicity estimates obtained using a variety of techniques. The greatly reduced effect of interstellar extinction at these wavelengths compared to the blue region of the spectrum has permitted observations of some of the most heavily reddened clusters in the Galaxy. For several such clusters, the Ca II triplet metallicities are in poor agreement with metallicity estimates from infrared photometry by Malkan. Color-magnitude diagrams were constructed for six previously unstudied metal-rich globular clusters and for the well-studied cluster 47 Tuc. The V magnitudes of the horizontal branch stars in the six clusters are in poor agreement with previous estimates based on secondary methods. The horizontal branch morphologies and reddenings of the program clusters were also determined. Using the improved set of metallicities, radial velocities, and distance moduli, the spatial distribution, kinematics, and metallicity distribution of the Galactic globulars were analyzed. The revised data supports Zinn's conclusion that the metal-rich clusters form a highly flattened, rapidly rotating disk system, while the metal-poor clusters make up the familiar, spherically distributed, slowly rotating halo population. The scale height, metallicity distribution, and kinematics of the metal-rich globulars are in good agreement with those of the stellar thick disk. Luminosity functions were constructed, and no significant difference is found between disk and halo samples. Metallicity gradients seem to be present in the disk cluster system. The implications of these results for the formation and evol

  9. Ruprecht 106 - A young metal-poor Galactic globular cluster

    International Nuclear Information System (INIS)

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  10. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  11. SEARCH FOR PULSED {gamma}-RAY EMISSION FROM GLOBULAR CLUSTER M28

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. H. K.; Kong, A. K. H.; Huang, R. H. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Wu, E. M. H.; Takata, J.; Cheng, K. S., E-mail: wuhkjason@gmail.com, E-mail: cyhui@cnu.ac.kr [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong)

    2013-03-10

    Using the data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope, we have searched for {gamma}-ray pulsations from the direction of the globular cluster M28 (NGC 6626). We report the discovery of a signal with a frequency consistent with that of the energetic millisecond pulsar (MSP) PSR B1821-24 in M28. A weighted H-test test statistic of 28.8 is attained, which corresponds to a chance probability of {approx}10{sup -5} (4.3{sigma} detection). With a phase-resolved analysis, the pulsed component is found to contribute {approx}25% of the total observed {gamma}-ray emission from the cluster. However, the unpulsed level provides a constraint for the underlying MSP population and the fundamental plane relations for the scenario of inverse Compton scattering. Follow-up timing observations in radio/X-ray are encouraged to further investigate this periodic signal candidate.

  12. THE CENTRAL BLUE STRAGGLER POPULATION IN FOUR OUTER-HALO GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Beccari, Giacomo; Luetzgendorf, Nora [European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen (Germany); Olczak, Christoph [Astronomisches Rechen-Institut (ARI), Zentrum fuer Astronomie Universitaet Heidelberg, Moenchhofstrasse 1214, 69120 Heidelberg (Germany); Ferraro, Francesco R.; Lanzoni, Barbara [Dipartimento di Astronomia, Universita degli Studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Carraro, Giovanni; Boffin, Henri M. J. [European Southern Observatory, Alonso de Cordova 3107, Santiago de Chile (Chile); Stetson, Peter B. [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Sollima, Antonio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, 35122 Padova (Italy)

    2012-08-01

    Using Hubble Space Telescope/Wide Field Planetary Camera 2 data, we have performed a comparative study of the Blue Straggler Star (BSS) populations in the central regions of the globular clusters (GCs) AM 1, Eridanus, Palomar 3, and Palomar 4. Located at distances R{sub GC} > 50 kpc from the Galactic center, these are (together with Palomar 14 and NGC 2419) the most distant clusters in the halo. We determine their color-magnitude diagrams and centers of gravity. The four clusters turn out to have similar ages (10.5-11 Gyr), significantly smaller than those of the inner-halo globulars, and similar metallicities. By exploiting wide-field ground-based data, we build the most extended radial density profiles from resolved star counts ever published for these systems. These are well reproduced by isotropic King models of relatively low concentration. BSSs appear to be significantly more centrally segregated than red giants in all GCs, in agreement with the estimated core and half-mass relaxation times which are smaller than the cluster ages. Assuming that this is a signature of mass segregation, we conclude that AM 1 and Eridanus are slightly dynamically more evolved than Pal 3 and Pal 4.

  13. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  14. VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)

    Science.gov (United States)

    Lehmann, I.; Scholz, R.-D.

    1998-02-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).

  15. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  16. Possible systematic decreases in the age of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. [Univ. of Chicago, Chicago, IL (United States); Schramm, D. N. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States); Dearborn, D. S.P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Truran, J. W. [Univ. of Chicago, Chicago, IL (United States)

    1994-03-01

    The ages of globular clusters inferred from observations depends sensitively on assumptions like the initial helium abundance and the mass loss rate. A high helium abundance (e.g., Y\\approx0.28) or a mass loss rate of \\sim10^{-11}M_\\odot yr^{-1} near the main sequence turn-off region lowers the current age estimate from 14 Gyr to about 10--12 Gyr, significantly relaxing the constraints on the Hubble constant, allowing values as high as 60km/sec/Mpc for a universe with the critical density and 90km/sec/Mpc for a baryon-only universe. Possible mechanisms for the helium enhancement in globular clusters are discussed, as are arguments for an instability strip induced mass loss near the turn-off. Ages lower than 10 Gyr are not possible even with the operation of both of these mechanisms unless the initial helium abundance in globular clusters is >0.30, which would conflict with indirect measurements of helium abundances in globular clusters.

  17. Globular Cluster Candidates for Hosting a Central Black Hole

    Science.gov (United States)

    Noyola, Eva

    2009-07-01

    We are continuing our study of the dynamical properties of globular clusters and we propose to obtain surface brightness profiles for high concentration clusters. Our results to date show that the distribution of central surface brightness slopes do not conform to standard models. This has important implications for how they form and evolve, and suggest the possible presence of central intermediate-mass black holes. From our previous archival proposals {AR-9542 and AR-10315}, we find that many high concentration globular clusters do not have flat cores or steep central cusps, instead they show weak cusps. Numerical simulations suggest that clusters with weak cusps may harbor intermediate-mass black holes and we have one confirmation of this connection with omega Centauri. This cluster shows a shallow cusp in its surface brightness profile, while kinematical measurements suggest the presence of a black hole in its center. Our goal is to extend these studies to a sample containing 85% of the Galactic globular clusters with concentrations higher than 1.7 and look for objects departing from isothermal behavior. The ACS globular cluster survey {GO-10775} provides enough objects to have an excellent coverage of a wide range of galactic clusters, but it contains only a couple of the ones with high concentration. The proposed sample consists of clusters whose light profile can only be adequately measured from space-based imaging. This would take us close to completeness for the high concentration cases and therefore provide a more complete list of candidates for containing a central black hole. The dataset will also be combined with our existing kinematic measurements and enhanced with future kinematic studies to perform detailed dynamical modeling.

  18. ASTEROSEISMOLOGY OF THE OPEN CLUSTERS NGC 6791, NGC 6811, AND NGC 6819 FROM 19 MONTHS OF KEPLER PHOTOMETRY

    International Nuclear Information System (INIS)

    Corsaro, Enrico; Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; White, Timothy R.; Bonanno, Alfio; Brogaard, Karsten; Kallinger, Thomas; Mosser, Benoit; Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne P.; Mathur, Savita; Christensen-Dalsgaard, Jørgen; García, Rafael A.; Hekker, Saskia; Kjeldsen, Hans; Meibom, Søren; Hall, Jennifer R.

    2012-01-01

    We studied solar-like oscillations in 115 red giants in the three open clusters, NGC 6791, NGC 6811, and NGC 6819, based on photometric data covering more than 19 months with NASA's Kepler space telescope. We present the asteroseismic diagrams of the asymptotic parameters δν 02 , δν 01 , and ε, which show clear correlation with fundamental stellar parameters such as mass and radius. When the stellar populations from the clusters are compared, we see evidence for a difference in mass of the red giant branch stars and possibly a difference in structure of the red clump stars, from our measurements of the small separations δν 02 and δν 01 . Ensemble échelle diagrams and upper limits to the linewidths of l = 0 modes as a function of Δν of the clusters NGC 6791 and NGC 6819 are also shown, together with the correlation between the l = 0 ridge width and the T eff of the stars. Lastly, we distinguish between red giant branch and red clump stars through the measurement of the period spacing of mixed dipole modes in 53 stars among all the three clusters to verify the stellar classification from the color-magnitude diagram. These seismic results also allow us to identify a number of special cases, including evolved blue stragglers and binaries, as well as stars in late He-core burning phases, which can be potentially interesting targets for detailed theoretical modeling.

  19. The globular cluster ω Centauri and its RR Lyrae variables

    International Nuclear Information System (INIS)

    Dickens, R.J.

    1989-07-01

    The significance of some of the unusual characteristics of the globular cluster ωCentauri in various fundamental problems is explored. Interest is centred on the properties of the cluster RR Lyraes, and what they can contribute to studies of early cluster chemical enrichment, stellar pulsation, the distance scale, stellar evolution, stellar ages and the Oosterhoff period-shift problem. This article, which is intended to highlight problems and progress rather than give a comprehensive review, includes new results based on photometry of the RR Lyraes, red giants, subgiants, horizontal-branch and main sequence stars in the cluster. (author)

  20. BVRI main-sequence photometry of the globular cluster M4

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1984-01-01

    We present BV and RI photographic photometry of 1421 and 189 stars, respectively, in the intermediate metallicity globular cluster M4 (NGC 6121). This investigation includes the first results of RI main-sequence photometry of a globular cluster. The use of longer wavelengths and longer color baselines provides the potential of improved isochrone fittings and underscores the urgent need for calculations of RI synthetic isochrones to be compared with observations. The Pickering-Racine wedge was used with the ESO 3.6 m telescope, the Las Campanas 2.5 m du Pont telescope, and the CTIO 1 m Yale telescope to extend the photoelectric limit from Vroughly-equal16.1 to Vroughly-equal19.1. We have determined the position of the main-sequence turnoff to lie at V = 16.6 +- 0.2 (m.e.) and B-V = 0.80 +- 0.03 (m.e.). A comparison of our BV observations with the CCD data of Richer and Fahlman shows excellent agreement: the two fifucial main sequences agree at all points to within 0.025 mag and, on average, to 0.013 mag. For the cluster we derive a distance modulus (m-M)/sub V/ = 12.52 +- 0.2 and reddening E(B-V) = 0.44 +- 0.03, results which confirm that at a distance of 2 kpc, M4 is the closest globular clusters to the Sun. Using the isochrones of VandenBerg, we deduce an age 13 +- 2 Gyr. As noted in several other investigations, there is a striking deficiency of stars in certain parts of the color-magnitude diagram; in M4 we find a pronounced gap over approx.0.6 mag at the base of the subgiant branch

  1. New Target for an Old Method: Hubble Measures Globular Cluster Parallax

    Science.gov (United States)

    Hensley, Kerry

    2018-05-01

    Measuring precise distances to faraway objects has long been a challenge in astrophysics. Now, one of the earliest techniques used to measure the distance to astrophysical objects has been applied to a metal-poor globular cluster for the first time.A Classic TechniqueAn artists impression of the European Space Agencys Gaia spacecraft. Gaia is on track to map the positions and motions of a billion stars. [ESA]Distances to nearby stars are often measured using the parallax technique tracing the tiny apparent motion of a target star against the background of more distant stars as Earth orbits the Sun. This technique has come a long way since it was first used in the 1800s to measure the distance to stars a few tens of light-years away; with the advent of space observatories like Hipparcos and Gaia, parallax can now be used to map the positions of stars out to thousands of light-years.Precise distance measurements arent only important for setting the scale of the universe, however; they can also help us better understand stellar evolution over the course of cosmic history. Stellar evolution models are often anchored to a reference star cluster, the properties of which must be known precisely. These precise properties can be readily determined for young, nearby open clusters using parallax measurements. But stellar evolution models that anchor on themore-distant, ancient, metal-poor globular clusters have been hampered by theless-precise indirect methods used tomeasure distance to these faraway clusters until now.Top: An image of NGC 6397 overlaid with the area scanned by Hubble (dashed green) and the footprint of the camera (solid green). The blue ellipse represents the parallax motion of a star in the cluster, exaggerated by a factor of ten thousand. Bottom: An example scan from this field. [Adapted from Brown et al. 2018]New Measurement to an Old ClusterThomas Brown (Space Telescope Science Institute) and collaborators used the Hubble Space Telescope todetermine the

  2. Rates of collapse and evaporation of globular clusters

    Science.gov (United States)

    Hut, Piet; Djorgovski, S.

    1992-01-01

    Observational estimates of the dynamical relaxation times of Galactic globular clusters are used here to estimate the present rate at which core collapse and evaporation are occurring in them. A core collapse rate of 2 +/- 1 per Gyr is found, which for a Galactic age of about 12 Gyr agrees well with the fact that 27 clusters have surface brightness profiles with the morphology expected for the postcollapse phase. A destruction and evaporation rate of 5 +/- 3 per Gyr is found, suggesting that a significant fraction of the Galaxy's original complement of globular clusters have perished through the combined effects of mechanisms such as relaxation-driven evaporation and shocking due to interaction with the Galactic disk and bulge.

  3. A Revised Velocity for the Globular Cluster GC-98 in the Ultra Diffuse Galaxy NGC 1052-DF2

    Science.gov (United States)

    van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Romanowsky, Aaron; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Kruijssen, J. M. Diederik; Lokhorst, Deborah; Merritt, Allison; Mowla, Lamiya; Zhang, Jielai

    2018-06-01

    We recently published velocity measurements of luminous globular clusters in the galaxy NGC1052-DF2, concluding that it lies far off the canonical stellar mass - halo mass relation. Here we present a revised velocity for one of the globular clusters, GC-98, and a revised velocity dispersion measurement for the galaxy. We find that the intrinsic dispersion $\\sigma=5.6^{+5.2}_{-3.8}$ km/s using Approximate Bayesian Computation, or $\\sigma=7.8^{+5.2}_{-2.2}$ km/s using the likelihood. The expected dispersion from the stars alone is ~7 km/s. Responding to a request from the Editors of ApJ Letters and RNAAS, we also briefly comment on the recent analysis of our measurements by Martin et al. (2018).

  4. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Van Loon, J. Th.

    2011-01-01

    Dust production among post-main-sequence stars is investigated in the Galactic globular cluster 47 Tucanae (NGC 104) based on infrared photometry and spectroscopy. We identify metallic iron grains as the probable dominant opacity source in these winds. Typical evolutionary timescales of asymptotic giant branch stars suggest the mass-loss rates we report are too high. We suggest that this is because the iron grains are small or elongated and/or that iron condenses more efficiently than at solar metallicity. Comparison to other works suggests metallic iron is observed to be more prevalent toward lower metallicities. The reasons for this are explored, but remain unclear. Meanwhile, the luminosity at which dusty mass loss begins is largely invariant with metallicity, but its presence correlates strongly with long-period variability. This suggests that the winds of low-mass stars have a significant driver that is not radiation pressure, but may be acoustic driving by pulsations.

  5. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B., E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: denise@on.br [Observatorio Nacional/MCT, Rua Gen. Jose Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  6. The properties of the disk system of globular clusters

    Science.gov (United States)

    Armandroff, Taft E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters.

  7. Properties of the disk system of globular clusters

    International Nuclear Information System (INIS)

    Armandroff, T.E.

    1989-01-01

    A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters. 70 references

  8. Carbon Isotopes in Globular Clusters Down to the Bump in the Luminosity Function

    Science.gov (United States)

    Shetrone, Matthew D.

    2003-03-01

    We find that the 12C/13C ratio evolves from high values (>20) below the bump in the luminosity function (BLF) to near the equilibrium value of the CNO cycle above the BLF in the globular clusters (GCs) NGC 6528 and M4. This is the first time that the predicted decline of the 12C/13C ratios due to the extra mixing at the BLF is detected in a GC. In M4, a slight decline from 12C/13C = 10 just above the BLF at MV=+0.5 to 12C/13C = 4 at MV=-0.6 is detected, suggesting that some additional mixing may occur beyond the BLF in this cluster. Isotope ratios are measured and found to be constant in the GCs NGC 6553 and 47 Tucanae down to just above the BLF of those GCs. Based on observations made in part at the W. M. Keck Observatory by the Gemini staff, supported by the Gemini Observatory, which is operated by the Association of Universities of Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the UK, and the US. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. THE UNIQUE Na:O ABUNDANCE DISTRIBUTION IN NGC 6791: THE FIRST OPEN(?) CLUSTER WITH MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Geisler, D.; Villanova, S.; Cummings, J.; Carraro, G.; Pilachowski, C.; Johnson, C. I.; Bresolin, F.

    2012-01-01

    Almost all globular clusters investigated exhibit a spread in their light element abundances, the most studied being an Na:O anticorrelation. In contrast, open clusters show a homogeneous composition and are still regarded as Simple Stellar Populations. The most probable reason for this difference is that globulars had an initial mass high enough to retain primordial gas and ejecta from the first stellar generation and thus formed a second generation with a distinct composition, an initial mass exceeding that of open clusters. NGC 6791 is a massive open cluster and warrants a detailed search for chemical inhomogeneities. We collected high-resolution, high signal-to-noise spectra of 21 members covering a wide range of evolutionary status and measured their Na, O, and Fe content. We found [Fe/H] = +0.42 ± 0.01, in good agreement with previous values, and no evidence for a spread. However, the Na:O distribution is completely unprecedented. It becomes the first open cluster to show intrinsic abundance variations that cannot be explained by mixing, and thus the first discovered to host multiple populations. It is also the first star cluster to exhibit two subpopulations in the Na:O diagram with one being chemically homogeneous while the second has an intrinsic spread that follows the anticorrelation so far displayed only by globular clusters. NGC 6791 is unique in many aspects, displaying certain characteristics typical of open clusters, others more reminiscent of globulars, and yet others, in particular its Na:O behavior investigated here, that are totally unprecedented. It clearly had a complex and fascinating history.

  10. The Unique Na:O Abundance Distribution in NGC 6791: The First Open(?) Cluster with Multiple Populations

    Science.gov (United States)

    Geisler, D.; Villanova, S.; Carraro, G.; Pilachowski, C.; Cummings, J.; Johnson, C. I.; Bresolin, F.

    2012-09-01

    Almost all globular clusters investigated exhibit a spread in their light element abundances, the most studied being an Na:O anticorrelation. In contrast, open clusters show a homogeneous composition and are still regarded as Simple Stellar Populations. The most probable reason for this difference is that globulars had an initial mass high enough to retain primordial gas and ejecta from the first stellar generation and thus formed a second generation with a distinct composition, an initial mass exceeding that of open clusters. NGC 6791 is a massive open cluster and warrants a detailed search for chemical inhomogeneities. We collected high-resolution, high signal-to-noise spectra of 21 members covering a wide range of evolutionary status and measured their Na, O, and Fe content. We found [Fe/H] = +0.42 ± 0.01, in good agreement with previous values, and no evidence for a spread. However, the Na:O distribution is completely unprecedented. It becomes the first open cluster to show intrinsic abundance variations that cannot be explained by mixing, and thus the first discovered to host multiple populations. It is also the first star cluster to exhibit two subpopulations in the Na:O diagram with one being chemically homogeneous while the second has an intrinsic spread that follows the anticorrelation so far displayed only by globular clusters. NGC 6791 is unique in many aspects, displaying certain characteristics typical of open clusters, others more reminiscent of globulars, and yet others, in particular its Na:O behavior investigated here, that are totally unprecedented. It clearly had a complex and fascinating history.

  11. Globular cluster seeding by primordial black hole population

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A. [ITEP, Bol. Cheremushkinsaya ul., 25, 117218 Moscow (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr., 13, Moscow 119234 (Russian Federation)

    2017-04-01

    Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. In this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.

  12. CCD photometry of NGC 2419

    International Nuclear Information System (INIS)

    Christian, C.A.; Heasley, J.N.

    1988-01-01

    The properties of the globular cluster NGC 2419 are reexamined using CCD photometry deepened to the vicinity of the main-sequence turnoff. A new color-magnitude diagram is derived that extends to V = 24.5 mag. It is concluded that NGC 2419 is an outer-halo analog of the metal-poor globulars closer to the Galactic center. NGC 2419 is probably nearly the same age as M15 and differs only slightly, if at all, in metallicity. NGC 2419 has many similarities with the clusters NGC 5466, M15, and M92. Comparison of the data with the isochrones of VandenBerg and Bell (1985) implies a distance modulus of 20.1 with Delta (B-V) = 0.18 mag. Oxygen-rich models can be fit to the data; such a comparison yields a lower limit to the acceptable distance modulus of the cluster. 26 references

  13. Evolution of redback radio pulsars in globular clusters

    Science.gov (United States)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  14. Imprint of galaxy formation and evolution on globular cluster properties

    OpenAIRE

    Bekki, Kenji

    2006-01-01

    We discuss the origin of physical properties of globular cluster systems (GCSs) in galaxies in terms of galaxy formation and evolution processes. Based on numerical simulations of dynamical evolution of GCSs in galaxies, we particularly discuss (1) the origin of radial density profiles of GCSs, (2) kinematics of GCSs in elliptical galaxies, (3) transformation from nucleated dwarf galaxies into GCs (e.g., omega Centauri), and (4) the origin of GCSs in the Large Magellanic Cloud (LMC).

  15. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  16. A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS

    International Nuclear Information System (INIS)

    Mackey, A. D.; Da Costa, G. S.; Yong, D.; Ferguson, A. M. N.

    2013-01-01

    In this paper we present high-resolution VLT/FLAMES observations of red giant stars in the massive intermediate-age Large Magellanic Cloud star cluster NGC 1846, which, on the basis of its extended main-sequence turnoff (EMSTO), possesses an internal age spread of ≈300 Myr. We describe in detail our target selection and data reduction procedures, and construct a sample of 21 stars possessing radial velocities indicating their membership of NGC 1846 at high confidence. We consider high-resolution spectra of the planetary nebula Mo-17, and conclude that this object is also a member of the cluster. Our measured radial velocities allow us to conduct a detailed investigation of the internal kinematics of NGC 1846, the first time this has been done for an EMSTO system. The key result of this work is that the cluster exhibits a significant degree of systemic rotation, of a magnitude comparable to the mean velocity dispersion. Using an extensive suite of Monte Carlo models we demonstrate that, despite our relatively small sample size and the substantial fraction of unresolved binary stars in the cluster, the rotation signal we detect is very likely to be genuine. Our observations are in qualitative agreement with the predictions of simulations modeling the formation of multiple populations of stars in globular clusters, where a dynamically cold, rapidly rotating second generation is a common feature. NGC 1846 is less than one relaxation time old, so any dynamical signatures encoded during its formation ought to remain present.

  17. Medium Resolution Spectroscopy and Chemical Composition of Galactic Globular Clusters

    Directory of Open Access Journals (Sweden)

    Khamidullina D. A.

    2014-12-01

    Full Text Available We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005, as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  18. Color Gradients Within Globular Clusters: Restricted Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Young-Jong Sohn

    1997-06-01

    Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  19. Medium resolution spectroscopy and chemical composition of Galactic globular clusters

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  20. Search for Formation Criteria for Globular Cluster Systems

    Science.gov (United States)

    Nuritdinov, S. N.; Mirtadjieva, K. T.; Tadjibaev, I. U.

    2005-01-01

    Star cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. By studying ages and metallicities of young metal-enhanced star clusters in mergers / merger remnants we can learn about the violent star formation history of these galaxies and eventually about galaxy formation and evolution. We will present a new set of evolutionary synthesis models of our GALEV code specially developed to account for the gaseous emission of presently forming star clusters and an advanced tool to compare large model grids with multi-color broad-band observations becoming presently available in large amounts. Such observations are an ecomonic way to determine the parameters of young star clusters as will be shown in the presentation. First results of newly-born clusters in mergers and starburst galaxies are presented and compared to the well-studied old globulars and interpreted in the framework of galaxy formation / evolution.

  1. The gravitational waveforms of white dwarf collisions in globular clusters

    International Nuclear Information System (INIS)

    Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J

    2009-01-01

    In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.

  2. On the evolution of globular clusters and the origin of galactic halo stars

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    Evolution of globular clusters of galactic halo is considered. It is shown that evolution of massive globular clusters with a greater degree of probability takes place under the effect of dynamic friction, which brings about the cluster fall on the center of galactic and their destruction by tidal forces. Evolution of small massive cluster takes place under the effect of dissipation. All the other reasons, causing the destruction of globular clusters (gravitational tidal forces, mutual cluster collision, outflow of gas from red gigant atmospheres, the change of the radius of the cluster orbit at the expense of the change of the galaxy mass inside the cluster orbit) play a secondary role. The whole mass of the stars lost by globular clusters does not exceed 10 7 M sun. It is concluded that the origin of the star population of galactic halo field can not be explained by destruction of already formed only astral globular clusters

  3. Deep CCD photometry in globular clusters III. M15

    International Nuclear Information System (INIS)

    Fahlman, G.G.; Richer, H.B.; Vandenberg, D.A.

    1985-01-01

    CCD photometry in U, B, and V is presented for a 5' x 3' field in the globular cluster M15. The location of the main sequence in the color-magnitude diagram is found here to be significantly bluer than previous studies have indicated. The luminosity function of the cluster is studied down to V = 22.8 (Mroughly-equal7.5) and shown to be consistent with a power-law mass function, n(M) = QM/sup -alpha/ with α = 2.5 +- 1.0, to the limit of our data. The field star population brighter than V = 21.5, is examined in some detail. There appears to be about 50% more stars belonging to the disk in the field as compared with the Bahcall-Soneira standard galaxy model. The reddening to the cluster is found to be E(B-V) = 0.11 +- 0.04 from nine bright field stars. A new value for the ultraviolet excess of the cluster main-sequence stars is obtained, delta(0.6) = 0.25 +- 0.02, and confirms the well-known fact that M15 is among the metal poorest of the globular clusters

  4. Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.

    Science.gov (United States)

    de Marchi, G.; Paresce, F.

    1995-12-01

    We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 195%. The main sequence luminosity function obtained from the observed CMD increases with decreasing luminosity following a power-law trend with index α=~0.15 in the range 5crowding. On the basis of the available mass-luminosity relation for this metallicity, the resultant mass function shows a power-law increase in numbers for decreasing masses in the range 0.8-0.3Msun_ with a slope α=~1.5, but then flattens out in the 0.3-0.15Msun_ range. The comparison of the mass function of 47 Tuc with that of NGC 6397 (Paper I) and of M 15 (Paper II), previously investigated with the same instrumentation, suggests that the stellar population near the half-mass radius of these clusters should not be very sensitive to either internal or externally-driven dynamical processes. The difference between their mass functions could then be attributed to metallicity, reflecting an intrinsic difference in their initial mass functions, unless mass-segregation is stronger in 47 Tuc than in the other two clusters. This latter circumstance could be due, for instance, to the large number of binaries discovered in 47 Tuc. In all cases, however, the mass function is found to flatten below 0.3Msun_ and the flattening is most likely an intrinsic

  5. Magnesium isotopes: a tool to understand self-enrichment in globular clusters

    Science.gov (United States)

    Ventura, P.; D'Antona, F.; Imbriani, G.; Di Criscienzo, M.; Dell'Agli, F.; Tailo, M.

    2018-06-01

    A critical issue in the asymptotic giant branch (AGB) self-enrichment scenario for the formation of multiple populations in globular clusters (GCs) is the inability to reproduce the magnesium isotopic ratios, despite the model in principle can account for the depletion of magnesium. In this work, we analyse how the uncertainties on the various p-capture cross sections affect the results related to the magnesium content of the ejecta of AGB stars. The observed distribution of the magnesium isotopes and of the overall Mg-Al trend in M13 and NGC 6752 are successfully reproduced when the proton-capture rate by 25Mg at the temperatures ˜100 MK, in particular the 25Mg(p, γ)26Alm channel, is enhanced by a factor ˜3 with respect to the most recent experimental determinations. This assumption also allows us to reproduce the full extent of the Mg spread and the Mg-Si anticorrelation observed in NGC 2419. The uncertainties in the rate of the 25Mg(p, γ)26Alm reaction at the temperatures of interest here leave space for our assumption and we suggest that new experimental measurements are needed to settle this problem. We also discuss the competitive model based on the supermassive star nucleosynthesis.

  6. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    Science.gov (United States)

    Kuehn, Charles A.; Drury, Jason A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.; Reed, Mike; Quick, Breanna

    2015-09-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger "superstamps" which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler's target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.

  7. Photometry Using Kepler “Superstamps” of Open Clusters NGC 6791 & NGC 6819

    Directory of Open Access Journals (Sweden)

    Kuehn Charles A.

    2015-01-01

    Full Text Available The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger “superstamps” which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler’s target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.

  8. Effect of the horizontal branch on the colours of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sil' chenko, O K [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' '

    1963-05-01

    The influence of the horizontal branch (HB) on the integral UBV colours of globular clusters is studied by means of statistical analysis of the colour-magnitude diagram catalogue for globular clusters of our Galaxy. The colour correction for HB is shown to be always negative. It turns out to be small for m. tal-rich globular clusters ((Fe/H)>-1.1) and independent on the HB shape for metal-poor ones.

  9. Effect of the horizontal branch on the colours of globular clusters

    International Nuclear Information System (INIS)

    Sil'chenko, O.K.

    1963-01-01

    The influence of the horizontal branch (HB) on the integral UBV colours of globular clusters is studied by means of statistical analysis of the colour-magnitude diagram catalogue for globular clusters of our Galaxy. The colour correction for HB is shown to be always negative. It turns out to be small for m. tal-rich globular clusters ([Fe/H]>-1.1) and independent on the HB shape for metal-poor ones

  10. Dynamical Friction in Multi-component Evolving Globular Clusters

    Science.gov (United States)

    Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.

    2014-11-01

    We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t DF) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t DF are expected to be dependent on radius. We find that in spite of the presence of different masses, t DF is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t DF is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t DF within the half-mass radius.

  11. Comparing Chemical Compositions of Dwarf Elliptical Galaxies and Globular Clusters

    Science.gov (United States)

    Chu, Jason; Sparkman, Lea; Toloba, Elisa; Guhathakurta, Puragra

    2015-01-01

    Because of their abundance in cluster environments and fragility due to their low mass, dwarf elliptical galaxies (dEs) are excellent specimens for studying the physical processes that occur inside galaxy clusters. These studies can be used to expand our understanding of the process of galaxy (specifically dE) formation and the role of dark matter in the Universe. To move closer to better understanding these topics, we present a study of the relationship between dEs and globular clusters (GCs) by using the largest sample of dEs and GC satellites to date. We focus on comparing the ages and chemical compositions of dE nuclei with those of satellite GCs by analyzing absorption lines in their spectra. To better view the spectral features of these relatively dim objects, we employ a spectral co-addition process, where we add the fluxes of several objects to produce a single spectrum with high signal-to-noise ratio. Our finding that dE nuclei are younger and more metal rich than globular clusters establishes important benchmarks that future dE formation theories will consider. We also establish a means to identify GCs whose parent galaxies are uncertain, which allows us to make comparisons between this GC group and the satellite GCs.

  12. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    Science.gov (United States)

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  13. Structure and Dynamics of the Globular Cluster Palomar 13

    Science.gov (United States)

    Bradford, J. D.; Geha, M.; Muñoz, R. R.; Santana, F. A.; Simon, J. D.; Côté, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G.

    2011-12-01

    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s-1. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7+0.6 -0.5 km s-1. Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4+0.4 -0.3 km s-1. We determine a spectroscopic metallicity of [Fe/H] = -1.6 ± 0.1 dex, placing a 1σ upper limit of σ[Fe/H] ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be MV = -2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σvpropr η, η = -2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M 1/2 = 1.3+2: 7 -1.3 × 103 M ⊙ and a mass-to-light ratio of M/LV = 2.4+5.0 -2.4 M ⊙/L ⊙. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a

  14. Astrometric and photometric study of the open cluster NGC 2323

    Directory of Open Access Journals (Sweden)

    Amin M.Y.

    2017-01-01

    Full Text Available We present a study of the open cluster NGC 2323 using astrometric and photometric data. In our study we used two methods that are able to separate open cluster’s stars from those that belong to the stellar background. Our results of calculations by these two methods indicate that: 1 according to the membership probability, NGC 2323 should contain 497 stars, 2 the cluster center should be at 07h 02m 48.s02 and -08° 20' 17''74,3 the limiting radius of NGC 2323 is 2.31 ± 0.04 pc, the surface number density at this radius is 98.16 stars pc −2, 4 the magnitude function has a maximum at about mv = 14 mag, 5 the total mass of NGC 2323 is estimated dynamically by using astrometric data to be 890 M_, and statistically by using photometric data to be 900 M_, and 6 the distance and age of the cluster are found to be equal to 900 ± 100 pc, and 140 ± 20 Myr, respectively. Finally the dynamical evolution parameter τ of the cluster is about 436.2.

  15. NGC 346: Looking in the Cradle of a Massive Star Cluster

    Science.gov (United States)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  16. The fragmentation of proto-globular clusters. I. Thermal instabilities

    International Nuclear Information System (INIS)

    Murray, S.D.; Lin, D.N.C.

    1989-01-01

    The metal abundances among the stars within a typical globular cluster are remarkably homogeneous. This indicates that star formation in these systems was a globally coordinated event which occurred over a time span less than or comparable to the collapse time scale of the cluster. This issue is addressed by assuming that the fragmentation of a proto-globular cluster cloud proceeded in two steps. In the first step, thermal instability led to the rapid growth of initial fluctuations. This led to a large contrast in the dynamical time scales between the perturbations and the parent cloud, and the perturbations then underwent gravitational instabilities on short time scales. This process is modeled using one-dimensional hydrodynamic simulations of clouds both with and without external heat sources and self-gravity. The models include the effects of a non-equilibrium H2 abundance. The results indicate that fragmentation can occur on time scales significantly less than the dynamical time scale of the parent cloud. 21 refs

  17. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    Science.gov (United States)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  18. A fast pulsar candidate in the globular cluster M28

    International Nuclear Information System (INIS)

    Mahoney, M.J.; Erickson, W.C.

    1985-01-01

    Recent work on radio sources in globular clusters, using the very large Array telescope at 1,465 MHz, revealed a source within the core of M28. Observations of this source at 30.9 and 57.5 MHz have also been carried out, by the authors, using the Clark lake TPT synthesis telescope. The observations show that the source has a spectral index of -2.44. Only pulsars have well-documented spectra which are as steep as this. (U.K.)

  19. HUBBLE SPACE TELESCOPE PHOTOMETRY OF GLOBULAR CLUSTERS IN M81

    International Nuclear Information System (INIS)

    Nantais, Julie B.; Huchra, John P.; Zezas, Andreas; Gazeas, Kosmas; Strader, Jay

    2011-01-01

    We perform aperture photometry and profile fitting on 419 globular cluster (GC) candidates with m V ≤ 23 mag identified in Hubble Space Telescope/Advanced Camera for Surveys BVI imaging, and estimate the effective radii of the clusters. We identify 85 previously known spectroscopically confirmed clusters, and newly identify 136 objects as good cluster candidates within the 3σ color and size ranges defined by the spectroscopically confirmed clusters, yielding a total of 221 probable GCs. The luminosity function peak for the 221 probable GCs with estimated total dereddening applied is V ∼ (20.26 ± 0.13) mag, corresponding to a distance of ∼3.7 ± 0.3 Mpc. The blue and red GC candidates, and the metal-rich and metal-poor spectroscopically confirmed clusters, respectively, are similar in half-light radius. Red confirmed clusters are about 6% larger in median half-light radius than blue confirmed clusters, and red and blue good GC candidates are nearly identical in half-light radius. The total population of confirmed and 'good' candidates shows an increase in half-light radius as a function of galactocentric distance.

  20. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    Science.gov (United States)

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  1. Statistical method for determining ages of globular clusters by fitting isochrones

    International Nuclear Information System (INIS)

    Flannery, B.P.; Johnson, B.C.

    1982-01-01

    We describe a statistical procedure to compare models of stellar evolution and atmospheres with color-magnitude diagrams of globular clusters. The isochrone depends on five parameters: m-M, age, [Fe/H], Y, and α, but in practice we can only determine m-M and age for an assumed composition. The technique allows us to determine parameters of the model, their uncertainty, and to assess goodness of fit. We test the method, and evaluate the effect of assumptions on an extensive set of Monte Carlo simulations. We apply the method to extensive observations of NGC 6752 and M5, and to smaller data sets for the clusters M3, M5, M15, and M92. We determine age and m-M for two assumed values of helium Y = (0.2, 0.3), and three values of metallicity with a spread in [Fe/H] of +- 0.3 dex. These result in a spread in age of 5-8 Gyr (1 Gyr = 10 9 yr), and a spread in m-M of 0.5 mag. The mean age is generally younger by 2-3 Gyr than previous estimates. Likely uncertainty associated with an individual fit can be small as 0.4 Gyr. Most importantly, we find that two uncalibratable sources of systematic error make the results suspect. These are uncertainty in the stellar temperatures induced by choice of mixing length, and known errors in stellar atmospheres. These effects could reduce age estimates by an additional 5 Gyr. We conclude that observations do not preclude ages as young as 10 Gyr for globular clusters

  2. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    Science.gov (United States)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  3. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    Science.gov (United States)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  4. Na-O abundances in M53: A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch (RGB) stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the WIYN 3.5- meter telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs withmultiple populations, which have been found to be dominated by second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previouslypublished results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find thatthe Na-O anti-correlation is not as extended as other GCs with similarly high masses. The fraction of SG to FG stars in our sample is approximately 1:3 and the SG is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  5. Fermi detection of a luminous γ-ray pulsar in a globular cluster.

    Science.gov (United States)

    2011-11-25

    We report on the Fermi Large Area Telescope's detection of γ-ray (>100 mega-electron volts) pulsations from pulsar J1823-3021A in the globular cluster NGC 6624 with high significance (~7 σ). Its γ-ray luminosity, L(γ) = (8.4 ± 1.6) × 10(34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The nondetection of the cluster in the off-pulse phase implies that it contains <32 γ-ray MSPs, not ~100 as previously estimated. The γ-ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823-3021A has the largest magnetic field and is the youngest MSP ever detected and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  6. THE DISCOVERY OF REMOTE GLOBULAR CLUSTERS IN M33

    International Nuclear Information System (INIS)

    Huxor, A.; Ferguson, A. M. N.; Barker, M. K.; Tanvir, N. R.; Irwin, M. J.; Chapman, S. C.; Ibata, R.; Lewis, G.

    2009-01-01

    We present the discovery of four remote star clusters in M33, one of which is of an extended nature. Three of the clusters were discovered using survey data from the Isaac Newton Telescope Wide-Field Camera while one was discovered serendipitously in a deep image taken with the Hubble Space Telescope's Advanced Camera for Surveys. With projected radii of 38-113 arcmin (9.6-28.5 kpc for an assumed M33 distance of 870 kpc), these clusters lie significantly beyond all but one of the currently confirmed clusters in M33. The clusters have magnitudes and colors consistent with their being old to intermediate-age globular clusters (GCs). Indeed, they bear a strong resemblance to the outer halo GC population of the Milky Way and M31 in terms (V - I) 0 color. The three outermost clusters are projected on the far side of M33 with respect to M31, an asymmetry that could suggest tidal interactions have affected M33's GC distribution at large radii.

  7. The WAGGS project - I. The WiFeS Atlas of Galactic Globular cluster Spectra

    Science.gov (United States)

    Usher, Christopher; Pastorello, Nicola; Bellstedt, Sabine; Alabi, Adebusola; Cerulo, Pierluigi; Chevalier, Leonie; Fraser-McKelvie, Amelia; Penny, Samantha; Foster, Caroline; McDermid, Richard M.; Schiavon, Ricardo P.; Villaume, Alexa

    2017-07-01

    We present the WiFeS Atlas of Galactic Globular cluster Spectra, a library of integrated spectra of Milky Way and Local Group globular clusters. We used the WiFeS integral field spectrograph on the Australian National University 2.3 m telescope to observe the central regions of 64 Milky Way globular clusters and 22 globular clusters hosted by the Milky Way's low-mass satellite galaxies. The spectra have wider wavelength coverage (3300-9050 Å) and higher spectral resolution (R = 6800) than existing spectral libraries of Milky Way globular clusters. By including Large and Small Magellanic Cloud star clusters, we extend the coverage of parameter space of existing libraries towards young and intermediate ages. While testing stellar population synthesis models and analysis techniques is the main aim of this library, the observations may also further our understanding of the stellar populations of Local Group globular clusters and make possible the direct comparison of extragalactic globular cluster integrated light observations with well-understood globular clusters in the Milky Way. The integrated spectra are publicly available via the project website.

  8. Open clusters. II. Fundamental parameters of B stars in Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025

    Science.gov (United States)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2015-05-01

    Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (age between 40 Myr and 69 Myr. In

  9. The “UV-route” to Search for Blue Straggler Stars in Globular Clusters: First Results from the HST UV Legacy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Raso, S.; Ferraro, F. R.; Lanzoni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat, 6/2, Bologna (Italy); Dalessandro, E. [INAF Osservatorio Astronomico di Bologna, Via Ranzani 1, Bologna (Italy); Nardiello, D. [Department of Physics and Astronomy Galileo Galilei, University of Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bellini, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vesperini, E. [Department of Astronomy, Indiana University, Bloomington, IN, 47401 (United States)

    2017-04-10

    We used data from the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters to select the Blue Straggler Star (BSS) population in four intermediate/high density systems (namely NGC 2808, NGC 6388, NGC 6541, and NGC 7078) through a “UV-guided search.” This procedure consists of using the F275W images in each cluster to construct the master list of detected sources, and then force it to the images acquired in the other filters. Such an approach optimizes the detection of relatively hot stars and allows the detection of a complete sample of BSSs even in the central region of high-density clusters, because the light from the bright cool giants, which dominates the optical emission in old stellar systems, is sensibly reduced at UV wavelengths. Our UV-guided selections of BSSs have been compared to the samples obtained in previous, optical-driven surveys, clearly demonstrating the efficiency of the UV approach. In each cluster we also measured the parameter A {sup +}, defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference population, which traces the level of BSS central segregation and the level of dynamical evolution suffered by the system. The values measured for the four clusters studied in this paper nicely fall along the dynamical sequence recently presented for a sample of 25 clusters.

  10. The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22

    Science.gov (United States)

    Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.

    2017-09-01

    The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.

  11. A binary origin for 'blue stragglers' in globular clusters.

    Science.gov (United States)

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  12. Deep CCD photometry in globular clusters. VII. M30

    International Nuclear Information System (INIS)

    Richer, H.B.; Fahlman, G.G.; Vandenberg, D.A.

    1988-01-01

    New UBV CCD photometry in a single field of the globular cluster M30 was obtained, and the data were used to obtain the color magnitude diagram (CMD) of the cluster, its luminosity function, and to derive fundamental cluster parameters. No blue stragglers were found, nor any evidence of a binary sequence in the data even though the field under study is only 21 core radii from the cluster center. The cluster reddening is observed to be 0.068 + or - 0.035, significantly higher than that adopted in most current papers on M30. An intercomparison of the CMDs of three very metal-poor clusters clearly shows that there is no evidence for any age difference between them. The age of M30 itself is found to be about 14 Gyr. The luminosity function of M30 is determined to be M(V) = 8. Comparison of this function with one found by Bolte (1987) at 65 core radii shows clear evidence of mass segregation in the low-mass stars. 44 references

  13. LISA Sources in Milky Way Globular Clusters.

    Science.gov (United States)

    Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L; Larson, Shane L; Rasio, Frederic A

    2018-05-11

    We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ∼21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ∼7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.

  14. Tidal origin of NGC 1427A in the Fornax cluster

    Science.gov (United States)

    Lee-Waddell, K.; Serra, P.; Koribalski, B.; Venhola, A.; Iodice, E.; Catinella, B.; Cortese, L.; Peletier, R.; Popping, A.; Keenan, O.; Capaccioli, M.

    2018-02-01

    We present new HI observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less HI tail that contains ˜10 per cent of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. Rather than being the result of ram pressure induced star formation, as previously suggested in the literature, the disturbed optical appearance of NGC 1427A has tidal origins. The galaxy itself likely consists of two individual objects in an advanced stage of merging. The HI tail may be made of gas expelled to large radii during the same tidal interaction. It is possible that some of this gas is subject to ram pressure, which would be considered a secondary effect and implies a north-west trajectory of NGC 1427A within the Fornax cluster.

  15. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Minniti, Dante; Gómez, Matías [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernandez Concha 700, Las Condes, Santiago (Chile); Geisler, Douglas; Fernández-Trincado, Jose G. [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alonso-García, Javier; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Ramos, Rodrigo Contreras; Kurtev, Radostin; Pullen, Joyce [Instituto Milenio de Astrofísica, Santiago (Chile); Palma, Tali; Clariá, Juan J. [Observatorio Astronómico, Universidad Nacional de Córdoba, Laprida 854, Córdoba (Argentina); Cohen, Roger E. [Space Telescope Science Institute, 2700 San Martin Drive, Baltimore (United States); Dias, Bruno [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Hempel, Maren [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Av. Vicuña Mackenna 4860, Santiago (Chile); Ivanov, Valentin D. [European Southern Observatory, Karl-Schwarszchild-Str. 2, D-85748 Garching bei Muenchen (Germany); Lucas, Phillip W. [Dept. of Astronomy, University of Hertfordshire, Hertfordshire (United Kingdom); Moni-Bidin, Christian; Alegría, Sebastian Ramírez [Instituto de Astronomía, Universidad Católica del Norte, Antofagasta (Chile); and others

    2017-11-10

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.

  16. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    Science.gov (United States)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  17. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    Science.gov (United States)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  18. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  19. Young stars in the old galactic cluster NGC 188

    International Nuclear Information System (INIS)

    Veer, F. van 't

    1984-01-01

    We first briefly discuss the age of the oldest known galactic clusters, according to recently published determinations. The now definitely established membership of our W UMa type contact binaries in this cluster is difficult to understand if the age of these stars is that of the cluster. It appears therefore that these binaries are much younger and that the several episodes of star formation took place in NGC 188. This conclusion is reached after a new study of the mean density of the four contact binaries and a critical discussion of the chemical composition and the mixing length parameter. (orig.)

  20. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-01-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611 +213 -200 pc and age as 12 ± 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor ω Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of ∼1000 L sun , becoming ubiquitous above L = 2000 L sun . Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  1. SHRINKING THE BRANEWORLD: BLACK HOLE IN A GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Gnedin, Oleg Y.; Maccarone, Thomas J.; Psaltis, Dimitrios; Zepf, Stephen E.

    2009-01-01

    Large extra dimensions have been proposed as a possible solution to the hierarchy problem in physics. In one of the suggested models, the RS2 braneworld model, black holes may evaporate by Hawking radiation faster than in general relativity, on a timescale that depends on the black hole mass and on the asymptotic radius of curvature of the extra dimensions. Thus the size of the extra dimensions can be constrained by astrophysical observations. Here we point out that the black hole, recently discovered in an extragalactic globular cluster, places the strongest upper limit on the size of the extra dimensions in the RS2 model, L ∼< 0.003 mm. This black hole has the virtues of old age and relatively small mass. The derived upper limit is within an order of magnitude of the absolute limit afforded by astrophysical observations of black holes.

  2. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  3. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    International Nuclear Information System (INIS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  4. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory, Center for Particle Astrophysics, Batavia, IL 60510 (United States); Linden, Tim, E-mail: dhooper@fnal.gov, E-mail: linden.70@osu.edu [Ohio State University, Center for Cosmology and AstroParticle Physcis (CCAPP), Columbus, OH 43210 (United States)

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  5. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    International Nuclear Information System (INIS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Chapman, S. C.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.

    2010-01-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ∼30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.

  6. Giant Rapid X-ray Flares in Extragalactic Globular Clusters

    Science.gov (United States)

    Irwin, Jimmy

    2018-01-01

    There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.

  7. HORIZONTAL BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS: A MULTIVARIATE STATISTICAL ANALYSIS

    International Nuclear Information System (INIS)

    Jogesh Babu, G.; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar; Mondal, Saptarshi

    2009-01-01

    The proper interpretation of horizontal branch (HB) morphology is crucial to the understanding of the formation history of stellar populations. In the present study a multivariate analysis is used (principal component analysis) for the selection of appropriate HB morphology parameter, which, in our case, is the logarithm of effective temperature extent of the HB (log T effHB ). Then this parameter is expressed in terms of the most significant observed independent parameters of Galactic globular clusters (GGCs) separately for coherent groups, obtained in a previous work, through a stepwise multiple regression technique. It is found that, metallicity ([Fe/H]), central surface brightness (μ v ), and core radius (r c ) are the significant parameters to explain most of the variations in HB morphology (multiple R 2 ∼ 0.86) for GGC elonging to the bulge/disk while metallicity ([Fe/H]) and absolute magnitude (M v ) are responsible for GGC belonging to the inner halo (multiple R 2 ∼ 0.52). The robustness is tested by taking 1000 bootstrap samples. A cluster analysis is performed for the red giant branch (RGB) stars of the GGC belonging to Galactic inner halo (Cluster 2). A multi-episodic star formation is preferred for RGB stars of GGC belonging to this group. It supports the asymptotic giant branch (AGB) model in three episodes instead of two as suggested by Carretta et al. for halo GGC while AGB model is suggested to be revisited for bulge/disk GGC.

  8. Ghosts of Milky Way's past: the globular cluster ESO 37-1 (E 3)

    Science.gov (United States)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Ortolani, S.; Carraro, G.

    2015-09-01

    Context. In the Milky Way, most globular clusters are highly conspicuous objects that were found centuries ago. However, a few dozen of them are faint, sparsely populated systems that were identified largely during the second half of the past century. One of the faintest is ESO 37-1 (E 3) and as such it remains poorly studied, with no spectroscopic observations published so far although it was discovered in 1976. Aims: We investigate the globular cluster E 3 in an attempt to better constrain its fundamental parameters. Spectroscopy of stars in the field of E 3 is shown here for the first time. Methods: Deep, precise VI CCD photometry of E 3 down to V ~ 26 mag is presented and analysed. Low-resolution, medium signal-to-noise ratio spectra of nine candidate members are studied to derive radial velocity and metallicity. Proper motions from the UCAC4 catalogue are used to explore the kinematics of the bright members of E 3. Results: Isochrone fitting indicates that E 3 is probably very old, with an age of about 13 Gyr; its distance from the Sun is nearly 10 kpc. It is also somewhat metal rich with [Fe/H] = -0.7. Regarding its kinematics, our tentative estimate for the proper motions is (μα cosδ,μδ) = (-7.0 ± 0.8, 3.5 ± 0.3) mas yr-1 (or a tangential velocity of 382 ± 79 km s-1) and for the radial velocity 45 ± 5 km s-1 in the solar rest frame. Conclusions: E 3 is one of the most intriguing globular clusters in the Galaxy. Having an old age and being metal rich is clearly a peculiar combination, only seen in a handful of objects like the far more conspicuous NGC 104 (47 Tucanae). In addition, its low luminosity and sparse population make it a unique template for the study of the final evolutionary phases in the life of a star cluster. Unfortunately, E 3 is among the most elusive and challenging known globular clusters because field contamination severely hampers spectroscopic studies. This research note is based on observations made with the ESO VLT at the

  9. CCD photometry of the distant young open cluster NGC 7510

    International Nuclear Information System (INIS)

    Sagar, R.; Bonn Univ.; Griffiths, W.K.

    1991-01-01

    CCD observations in B, V and I passbands have been used to generate deep V, (B-V) and V,(V-I) colour-magnitude diagrams for the open cluster NGC 7510. The sample consists of 592 stars reaching down to V=21 mag. There appears to be non-uniform extinction over the face of the cluster with the value of colour excess, E(B-V), ranging from 1.0 to 1.3 mag. The law of interstellar extinction in the direction of the cluster is found to be normal. A broad main sequence is clearly visible in both colour-magnitude diagrams. From the bluest part of the colour-magnitude diagrams, the true distance modulus to the cluster has been estimated as 12.5±0.3 mag and an upper limit of 10 Myr has been assigned for the cluster age. (author)

  10. ALMA Detects CO(3-2) within a Super Star Cluster in NGC 5253

    Science.gov (United States)

    Turner, Jean L.; Consiglio, S. Michelle; Beck, Sara C.; Goss, W. M.; Ho, Paul. T. P.; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui

    2017-09-01

    We present observations of CO(3-2) and 13CO(3-2) emission near the supernebula in the dwarf galaxy NGC 5253, which contains one of the best examples of a potential globular cluster in formation. The 0.″3 resolution images reveal an unusual molecular cloud, “Cloud D1,” that is coincident with the radio-infrared supernebula. The ˜6 pc diameter cloud has a linewidth, Δ v = 21.7 {km} {{{s}}}-1, that reflects only the gravitational potential of the star cluster residing within it. The corresponding virial mass is 2.5 × 105 {M}⊙ . The cluster appears to have a top-heavy initial mass function, with M * ≳ 1-2 {M}⊙ . Cloud D1 is optically thin in CO(3-2), probably because the gas is hot. Molecular gas mass is very uncertain but constitutes <35% of the dynamical mass within the cloud boundaries. In spite of the presence of an estimated ˜1500-2000 O stars within the small cloud, the CO appears relatively undisturbed. We propose that Cloud D1 consists of molecular clumps or cores, possibly star-forming, orbiting with more evolved stars in the core of the giant cluster.

  11. Open clusters. III. Fundamental parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type stars with circumstellar envelopes

    Science.gov (United States)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2018-02-01

    Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (operating under agreement of CONICET and the Universities of La Plata, Córdoba, and San Juan, Argentina.Tables 1, 2, 9-16 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A30

  12. Binarity and Variable Stars in the Open Cluster NGC 2126

    Science.gov (United States)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  13. Searching for Be stars in the open cluster NGC 663

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P. C.; Lin, C. C.; Chen, W. P.; Lee, C. D.; Ip, W. H.; Ngeow, C. C. [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Kulkarni, Shrinivas R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    We present Be star candidates in the open cluster NGC 663, identified by Hα imaging photometry with the Palomar Transient Factory Survey, as a pilot program to investigate how the Be star phenomena, the emission spectra, extended circumstellar envelopes, and fast rotation, correlate with massive stellar evolution. Stellar membership of the candidates was verified by 2MASS magnitudes and colors and by proper motions (PMs). We discover four new Be stars and exclude one known Be star from being a member due to its inconsistent PMs. The fraction of Be stars to member stars [N(Be)/N(members)] in NGC 663 is 3.5%. The spectral type of the 34 Be stars in NGC 663 shows bimodal peaks at B0–B2 and B5–B7, which is consistent with the statistics in most star clusters. Additionally, we also discover 23 emission-line stars of different types, including non-member Be stars, dwarfs, and giants.

  14. The center of the core-cusp globular cluster M15: CFHT and HST Observations, ALLFRAME reductions

    Science.gov (United States)

    Stetson, Peter B.

    1994-03-01

    The central brightness cusps seen in some globular clusters are thought to be the relics of a gravothermal core collapse that occurred sometime in the clusters' past. Recent observations show that the centers of such clusters are bluer than their outskirts, indicating that the stellar populations there are somehow different than those farther out, presumably as a result of unusual physical processes that took place in these extremely dense regions. Here I analyze a large body of digital imagery from the Canada-France-Hawaii Telescope and the Hubble Space Telescope to obtain color-magnitude and color-color diagrams for stars in the central two arcminutes of the prototypical core-cusp globular cluster M15 = NGC 7078 = C 2127 + 119. These data were reduced with a new computer program, named ALLFRAME, that is described in detail here for the first time. ALLFRAME makes simultaneous use of the geometric and photometric information from all images of a given field to derive a self-consistent set of positions and magnitudes for all detected starlike objects in that area of sky, thereby extending the range of magnitude and crowding conditions for which useful photometry is obtainable. I tentatively conclude that the color gradient in M15 is due to three distinct effects: (1) there is a deficiency of the brightest red giants in the central regions of the cluster; (2) the giant branch of the dominant cluster population shifts systematically toward the blue as the center of the cluster is approached; and (3) the very center of the cluster (radius approximately equal or less than 12 seconds) contains a large population of blue and yellow stragglers that occupy the area of the color-magnitude diagram between the main-sequence turnoff and the horizontal branch and between the extended blue horizontal branch and the subgiant branch; many of these appear to have a significant ultraviolet excess.

  15. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  16. Study of Remote Globular Cluster Satellites of M87

    Science.gov (United States)

    Sahai, Arushi; Shao, Andrew; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Zhang, Hao

    2017-01-01

    We present a sample of “orphan” globular clusters (GCs) with previously unknown parent galaxies, which we determine to be remote satellites of M87, a massive elliptical galaxy at the center of the Virgo Cluster of Galaxies. Because GCs were formed in the early universe along with their original parent galaxies, which were cannibalized by massive galaxies such as M87, they share similar age and chemical properties. In this study, we first confirm that M87 is the adoptive parent galaxy of our orphan GCs using photometric and spectroscopic data to analyze spatial and velocity distributions. Next, we increase the signal-to-noise ratio of our samples’ spectra through a process known as coaddition. We utilize spectroscopic absorption lines to determine the age and metallicity of our orphan GCs through comparison to stellar population synthesis models, which we then relate to the GCs’ original parent galaxies using a mass-metallicity relation. Our finding that remote GCs of M87 likely developed in galaxies with ~1010 solar masses implies that M87’s outer halo is formed of relatively massive galaxies, serving as important parameters for developing theories about the formation and evolution of massive galaxies.This research was funded in part by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  17. The luminosity function for globular clusters, 4: M3

    International Nuclear Information System (INIS)

    Simoda, Mahiro; Fukuoka, Takashi

    1976-01-01

    The subgiant-turnoff portion (V = 17.2 - 20.0 mag) of the luminosity function for the globular cluster M3 has been determined from photometry of the stars within the annuli 3'-8' and 6'-8' for V = 17.2 - 19.0 mag and 19.0 - 20.0 mag, respectively, by using plates taken with the Kitt Peak 2.1-m reflector. Our result shows that the luminosity function for M3 has a similar steep rise in the subgiant portion as other clusters so far studied (M5, M13, and M92), in direct conflict with the result by SANDAGE (1954, 1957). A probable cause of this discrepancy is given. Comparison with theoretical luminosity functions by SIMODA and IBEN (1970) suggests that theory and observation are not inconsistent if the initial helium abundance of M3 stars is taken to be about 20 percent. It is suggested that M13 has a larger helium abundance than M3 and M92 from the intercomparison of their luminosity functions and color-magnitude diagrams. (auth.)

  18. Variable stars in the field of open cluster NGC 2126

    International Nuclear Information System (INIS)

    Liu Shunfang; Wu Zhenyu; Zhang Xiaobin; Wu Jianghua; Ma Jun; Jiang Zhaoji; Chen Jiansheng; Zhou Xu

    2009-01-01

    We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z o-dot , age log(t) = 8.95, distance modulus (m - M) 0 = 10.34 and reddening value E (B - V) = 0.55 mag.

  19. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Andrews, J. E. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A. [Space Telescope Science Institute, Baltimore, MD (United States); Kim, H. [Department of Astronomy, The University of Texas at Austin, Austin, TX (United States); Thilker, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, E. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Mink, S. E. de [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Chandar, R., E-mail: calzetti@astro.umass.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  20. Overlapping Open Clusters NGC 1750 and NGC 1758 behind the Taurus Dark Clouds. II. CCD Photometry in the Vilnius System

    Directory of Open Access Journals (Sweden)

    Straižys V.

    2003-09-01

    Full Text Available Seven-color photometry in the Vilnius system has been obtained for 420 stars down to V = 16 mag in the area containing the overlapping open clusters NGC 1750 and NGC 1758 in Taurus. Spectral and luminosity classes, color excesses, interstellar extinctions and distances are given for 287 stars. The classification of stars is based on their reddening-free Q-parameters. 18 stars observed photoelectrically were used as standards. The extinction vs. distance diagram exhibits the presence of one dust cloud at a distance of 175 pc which almost coincides with a distance of other dust clouds in the Taurus complex. The clusters NGC 1750 and NGC 1758 are found to be at the same distance of ~760 pc and may penetrate each other. Their interstellar extinction AV is 1.06 mag which corresponds to EB-V = 0.34 mag.

  1. The s-process enrichment of the globular clusters M4 and M22

    Energy Technology Data Exchange (ETDEWEB)

    Shingles, Luke J.; Karakas, Amanda I.; Fishlock, Cherie K.; Yong, David; Da Costa, Gary S.; Marino, Anna F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Hirschi, Raphael, E-mail: luke.shingles@anu.edu.au [Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, 277-8583 Kashiwa (Japan)

    2014-11-01

    We investigate the enrichment in elements produced by the slow neutron-capture process (s-process) in the globular clusters M4 (NGC 6121) and M22 (NGC 6656). Stars in M4 have homogeneous abundances of Fe and neutron-capture elements, but the entire cluster is enhanced in s-process elements (Sr, Y, Ba, Pb) relative to other clusters with a similar metallicity. In M22, two stellar groups exhibit different abundances of Fe and s-process elements. By subtracting the mean abundances of s-poor from s-rich stars, we derive s-process residuals or empirical s-process distributions for M4 and M22. We find that the s-process distribution in M22 is more weighted toward the heavy s-peak (Ba, La, Ce) and Pb than M4, which has been enriched mostly with light s-peak elements (Sr, Y, Zr). We construct simple chemical evolution models using yields from massive star models that include rotation, which dramatically increases s-process production at low metallicity. We show that our massive star models with rotation rates of up to 50% of the critical (break-up) velocity and changes to the preferred {sup 17}O(α, γ){sup 21}Ne rate produce insufficient heavy s-elements and Pb to match the empirical distributions. For models that incorporate asymptotic giant branch yields, we find that intermediate-mass yields (with a {sup 22}Ne neutron source) alone do not reproduce the light-to-heavy s-element ratios for M4 and M22, and that a small contribution from models with a {sup 13}C pocket is required. With our assumption that {sup 13}C pockets form for initial masses below a transition range between 3.0 and 3.5 M {sub ☉}, we match the light-to-heavy s-element ratio in the s-process residual of M22 and predict a minimum enrichment timescale of between 240 and 360 Myr. Our predicted value is consistent with the 300 Myr upper limit age difference between the two groups derived from isochrone fitting.

  2. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan, E-mail: m.morscher@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL (United States)

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  3. Images in the rocket ultraviolet - UV fluxes of M31 globular clusters

    International Nuclear Information System (INIS)

    Bohlin, R.C.; Cornett, R.H.; Hill, J.K.; Hill, R.S.; Stecher, T.P.

    1988-01-01

    Images obtained by a rocket-borne UV imaging telescope are used here to determine near-UV fluxes for 17 sources in M31 that are optical globular-cluster candidates and for the bright open cluster vdB0 in M31. Far-UV fluxes or flux limits are determined for the same clusters. The m(NUV)-V colors for M31 clusters are similar to those of Galactic clusters, except for the high-metallicity M31 cluster Bo 171. Four of the detected clusters have optical, m(NUV) - V, and m(FUV) - V colors indicating ages of about 100 million years. These four clusters are probably similar to the so-called 'blue globular' clusters of the LMC. The existence of young LMC-type blue globulars and the possible existence of middle-aged metal-rich globulars may indicate that M31 has continued to form globular clusters throughout its life. 39 references

  4. A spectroscopic and photometric study of MSP companions in Galactic Globular Clusters

    OpenAIRE

    Cocozza, Gabriele

    2008-01-01

    This Thesis is devoted to the study of the optical companions of Millisecond Pulsars in Galactic Globular Clusters (GCs) as a part of a large project started at the Department of Astronomy of the Bologna University, in collaboration with other institutions (Astronomical Observatory of Cagliari and Bologna, University of Virginia), specifically dedicated to the study of the environmental effects on passive stellar evolution in galactic GCs. Globular Clusters are very efficien...

  5. BV CCD photometry of the old open cluster NGC 2243

    International Nuclear Information System (INIS)

    Bergbusch, P.A.; Vandenberg, D.A.; Infante, L.

    1991-01-01

    The photometry of NGC 2243 is presented, which reaches approximately 4 mag below the turnoff point calibrated independently of studies of the cluster. The color-magnitude diagram (CMD) and luminosity function (LF) are calibrated by utilizing stars from the lists of Landolt and Graham. A strong binary sequence is noted in the CMD which contributes approximately 30 percent of the stars, a gap is observed in the turnoff region, and a clump of HB stars is located. The CMD data are compared to those for the cluster 47 Tuc and are found to match well, although a slightly higher metal abundance accounts for the redder giant branch of the NGC 2243. The distance modulus and the cluster age are calculated, and the Fe/H = -0.47, O/Fe = +0.23 isochrones are the only isochrones that reproduce the location of the giant branch. A flat mass spectrum characterizes the LF, and a small gap is found where V is 16.1. Convective overshooting in the cores of moderate mass stars is theorized as the cause of the gap, and other models of the structure are shown to provide inadequate descriptions. 41 refs

  6. BVI CCD photometry of the globular cluster M4

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.

    1988-01-01

    CCD BV1 main-sequence (MS) photometry of M4, the globular cluster closest to the sun, is presented. The photometry is matched to the BVI isochrones of VandenBerg and Bell (1985). The MS turnoffs are found to be at V = 16.90 + or - 0.05, B-V = 0.81 + or - 0.02, V-I = 0.96 + or - 0.02, and B - I = 1.77 + or - 0.02. The magnitude difference between the MS turnoff and the horizontal branch is Delta M(V) = 3.52 + or - 0.1 for all three color indices. Using Y = 0.2, (Fe/H) = - 1.27, and alpha = 1.65, with a distance modulus of (m-M)V = 12.7 and E(B-V) = 0.41, a consistent age for M4 is deduced in all three color indices of 17 + or - 1.5 Gyr. 34 references

  7. KINEMATICS OF OUTER HALO GLOBULAR CLUSTERS IN M31

    International Nuclear Information System (INIS)

    Veljanoski, J.; Ferguson, A. M. N.; Bernard, E. J.; Peñarrubia, J.; Mackey, A. D.; Huxor, A. P.; Irwin, M. J.; Chapman, S. C.; Côté, P.; Tanvir, N. R.; McConnachie, A.; Ibata, R. A.; Martin, N. F.; Fardal, M.; Lewis, G. F.

    2013-01-01

    We present the first kinematic analysis of the far outer halo globular cluster (GC) population in the Local Group galaxy M31. Our sample contains 53 objects with projected radii of ∼20-130 kpc, 44 of which have no previous spectroscopic information. GCs with projected radii ∼> 30 kpc are found to exhibit net rotation around the minor axis of M31, in the same sense as the inner GCs, albeit with a smaller amplitude of 79 ± 19 km s –1 . The rotation-corrected velocity dispersion of the full halo GC sample is 106 ± 12 km s –1 , which we observe to decrease with increasing projected radius. We find compelling evidence for kinematic coherence among GCs that project on top of halo substructure, including a clear signature of infall for GCs lying along the northwest stream. Using the tracer mass estimator, we estimate the dynamical mass of M31 within 200 kpc to be M M31 = (1.2-1.5) ± 0.2 × 10 12 M ☉ . This value is highly dependent on the chosen model and assumptions within.

  8. Multicolor photometric study of M31 globular clusters

    International Nuclear Information System (INIS)

    Fan Zhou; Ma Jun; Zhou Xu

    2009-01-01

    We present the photometry of 30 globular clusters (GCs) and GC candidates in 15 intermediate-band filters covering the wavelength region from ∼3000 to ∼10000 A using the archival CCD images of M31 observed as part of the Beijing - Arizona - Taiwan - Connecticut (BATC) Multicolor Sky Survey. We transform these intermediate-band photometric data into the photometry in the standard U BV RI broad-bands. These M31 GC candidates are selected from the Revised Bologna Catalog (RBC V.3.5), and most of these candidates do not have any photometric data. Therefore, the presented photometric data are a supplement to the RBC V.3.5. We find that 4 out of 61 GCs and GC candidates in RBC V.3.5 do not show any signal on the BATC images at their locations. By applying a linear fit of the distribution in the color-magnitude diagram of blue GCs and GC candidates using data from the RBC V.3.5, in this study, we find the 'blue-tilt' of blue M31 GCs with a high confidence at 99.95% or 3.47σ for the confirmed GCs, and > 99.99% or 4.87σ for GCs and GC candidates. (research papers)

  9. Fibers in the NGC 1333 proto-cluster

    Science.gov (United States)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  10. Spatial Substructure in the M87 Globular Cluster System

    Science.gov (United States)

    Feng, Yuting; Zhang, Yunhao; Guhathakurta, Puragra; Peng, Eric; Lim, Sungsoon

    2018-01-01

    Based on the observation of Next Generation Virgo Cluster Survey (NGVS) project, we obtained the u,g,r,i,z and Ks band photometric information of all the objects in the 2 degree × 2 degree area (Pilot Region) around M87, the major subcluster of Virgo. By adapting an Extreme Deconvolution method, which classifies objects into Globular Clusters (GCs), galaxies and foreground stars with their color and morphology data, we got a purer-than-ever GC distribution map with a depth to gmag=25 in Pilot Region. After masking galaxy GCs, smoothing with a 10arcmin Gaussian kernel and performing a flat field correction, we show the GC density map of M87, and got a good sersic fitting of GC radial distribution with a sersic index~2.2 in the central ellipse part (45arcmin semi major axis area of M87). We quantitatively compared our GC sample with a substructure-free mock data set, which was generated from the smoothed density map as well as the sersic fitting, by calculating the 2 point correlation function (TPCF) value in different parts of the map. After separately performing such comparison with mocks based on different galaxy masking radii which vary from 4 times g band effective radius to 10, we found signals of remarkable spatial enhancement in certain directions in the central ellipse of M87, as well as halo substructures shown as lumpiness and holes in the outer region. We present the estimated scales of these substructures from the TPCF results, and, managed to locate them with a statistical analysis of the pixelized GC map. Apart from all results listed above, we discuss the constant, extra-galactic substructure signal at a scale of ~3kpc, which does not diminish with masking sizes, as the evidence of merging and accretion history of M87.

  11. GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Michael A.; Trujillo, Ignacio, E-mail: beasley@iac.es [Instituto de Astrofisica de Canarias, Calle Via Láctea, La Laguna, Tenerife (Spain)

    2016-10-10

    We present an analysis of archival HST /ACS imaging in the F475W ( g {sub 475}), F606W ( V {sub 606}), and F814W ( I {sub 814}) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5 σ completeness limit of the imaging ( I {sub 814} = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V -band specific frequency S {sub N} = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ∼9.0 × 10{sup 10} M {sub ⊙} and a dark-to-stellar mass ratio M {sub vir}/ M {sub star} ∼ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g {sub 475}– I {sub 814} = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  12. Open clusters. I. Fundamental parameters of B stars in NGC 3766 and NGC 4755

    Science.gov (United States)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Arias, M. L.

    2012-08-01

    Context. Spectroscopic investigations of galactic open clusters are scarce and limited to a reduced sample of cluster members. Aims: We intend to perform a complete study of the physical parameters of two galactic clusters as well as of their individual members. Methods: To carry out this study, we used the BCD (Barbier-Chalonge-Divan) spectrophotometric system, which is based on the study of the Balmer discontinuity and is independent of interstellar and circumstellar extinction. Additional physical properties were derived from the line profiles (FWHM) and stellar evolution models. We analyzed low-resolution spectra around the Balmer discontinuity for normal B-type and Be stars in two open clusters: NGC 3766 and NGC 4755. We determined the stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes, and color gradient excesses. The stellar rotation velocity was also determined. Complementary information, mainly stellar mass, age, and radius of the star population were calculated using stellar evolution models. In some cases, the stellar fundamental parameters were derived for the first time. The obtained results allowed us also to determine the reddening, age, and distance to the clusters. Results: The cluster parameters obtained through the BCD method agree very well with those derived from classical methods based on photometric data. The BCD system also provides physical properties of the star members. This study enables us to test the good behavior of Mbol(λ1,D)-calibrations and detect systematic discrepancies between log g estimates from model atmospheres and those derived from stellar evolution models. To improve our knowledge on the formation and evolution of the clusters, more statistical studies on the initial mass luminosity and angular momentum distributions should be addressed. Therefore, the BCD spectrophotometric system could be a powerful tool for studying

  13. Comparison of Intra-cluster and M87 Halo Orphan Globular Clusters in the Virgo Cluster

    Science.gov (United States)

    Louie, Tiffany Kaye; Tuan, Jin Zong; Martellini, Adhara; Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric; Longobardi, Alessia; Lim, Sungsoon

    2018-01-01

    We present a study of “orphan” globular clusters (GCs) — GCs with no identifiable nearby host galaxy — discovered in NGVS, a 104 deg2 CFHT/MegaCam imaging survey. At the distance of the Virgo cluster, GCs are bright enough to make good spectroscopic targets and many are barely resolved in good ground-based seeing. Our orphan GC sample is derived from a subset of NGVS-selected GC candidates that were followed up with Keck/DEIMOS spectroscopy. While our primary spectroscopic targets were candidate GC satellites of Virgo dwarf elliptical and ultra-diffuse galaxies, many objects turned out to be non-satellites based on a radial velocity mismatch with the Virgo galaxy they are projected close to. Using a combination of spectral characteristics (e.g., absorption vs. emission), Gaussian mixture modeling of radial velocity and positions, and extreme deconvolution analysis of ugrizk photometry and image morphology, these non-satellites were classified into: (1) intra-cluster GCs (ICGCs) in the Virgo cluster, (2) GCs in the outer halo of M87, (3) foreground Milky Way stars, and (4) background galaxies. The statistical distinction between ICGCs and M87 halo GCs is based on velocity distributions (mean of 1100 vs. 1300 km/s and dispersions of 700 vs. 400 km/s, respectively) and radial distribution (diffuse vs. centrally concentrated, respectively). We used coaddition to increase the spectral SNR for the two classes of orphan GCs and measured the equivalent widths (EWs) of the Mg b and H-beta absorption lines. These EWs were compared to single stellar population models to obtain mean age and metallicity estimates. The ICGCs and M87 halo GCs have = –0.6+/–0.3 and –0.4+/–0.3 dex, respectively, and mean ages of >~ 5 and >~ 10 Gyr, respectively. This suggests the M87 halo GCs formed in relatively high-mass galaxies that avoided being tidally disrupted by M87 until they were close to the cluster center, while IGCCs formed in relatively low-mass galaxies that were

  14. On the Absolute Age of the Globular Cluster M92

    Science.gov (United States)

    Di Cecco, A.; Becucci, R.; Bono, G.; Monelli, M.; Stetson, P. B.; Degl'Innocenti, S.; Prada Moroni, P. G.; Nonino, M.; Weiss, A.; Buonanno, R.; Calamida, A.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Iannicola, G.; Pulone, L.; Romaniello, M.; Walker, A. R.

    2010-09-01

    We present precise and deep optical photometry of the globular M92. Data were collected in three different photometric systems: Sloan Digital Sky Survey (g‧, r‧, i‧, and z‧ MegaCam at CFHT), Johnson-Kron-Cousins (B, V, and I; various ground-based telescopes), and Advanced Camera for Surveys (ACS) Vegamag (F475W, F555W, and F814W; Hubble Space Telescope). Special attention was given to the photometric calibration, and the precision of the ground-based data is generally better than 0.01 mag. We computed a new set of α-enhanced evolutionary models accounting for the gravitational settling of heavy elements at fixed chemical composition ([α/Fe] = +0.3, [Fe/H] = -2.32 dex, and Y = 0.248). The isochrones—assuming the same true distance modulus (μ = 14.74 mag), the same reddening [E(B - V) = 0.025 ± 0.010 mag], and the same reddening law—account for the stellar distribution along the main sequence and the red giant branch in different color-magnitude diagrams (i‧, g‧ - i‧ i‧, and g‧ - r‧ i‧, g‧ - z‧ I, and B - I and F814W and F475W-F814W). The same outcome applies to the comparison between the predicted zero-age horizontal-branch (ZAHB) and the HB stars. We also found a cluster age of 11 ± 1.5 Gyr, in good agreement with previous estimates. The error budget accounts for uncertainties in the input physics and the photometry. To test the possible occurrence of CNO-enhanced stars, we also computed two sets of α- and CNO-enhanced (by a factor of 3) models, both at fixed total metallicity ([M/H] = -2.10 dex) and at fixed iron abundance. We found that the isochrones based on the former set give the same cluster age (11 ± 1.5 Gyr) as the canonical α-enhanced isochrones. The isochrones based on the latter set also give a similar cluster age (10 ± 1.5 Gyr). These findings support previous results concerning the weak sensitivity of cluster isochrones to CNO-enhanced chemical mixtures. This paper makes use of data obtained from the Isaac Newton

  15. THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-01-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  16. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    Science.gov (United States)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  17. WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188

    Science.gov (United States)

    Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.

    2008-06-01

    We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 =3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from unresolved binaries. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 ± 460 M sun .

  18. THE ORIGIN OF GAMMA RAYS FROM GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Hui, C. Y.; Kong, A. K. H.

    2010-01-01

    Fermi has detected gamma-ray emission from eight globular clusters (GCs). It is commonly believed that the energy sources of these gamma rays are millisecond pulsars (MSPs) inside GCs. Also it has been standard to explain the spectra of most Fermi Large Area Telescope pulsars including MSPs resulting from the curvature radiation (CR) of relativistic electrons/positrons inside the pulsar magnetosphere. Therefore, gamma rays from GCs are expected to be the collection of CR from all MSPs inside the clusters. However, the angular resolution is not high enough to pinpoint the nature of the emission. In this paper, we calculate the gamma rays produced by the inverse Compton (IC) scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the GCs and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons, and the galactic star lights. We show that the gamma-ray spectrum from 47 Tucanae can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons, or the galactic star lights, whereas the gamma-ray spectra from the other seven GCs are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore, the IC scattering may also contribute to the observed gamma-ray emission from GCs detected by Fermi in addition to the standard CR process. Furthermore, we find that the emission region of high-energy photons from GCs produced by the IC scattering is substantially larger than the cores of GCs with a radius >10 pc. The diffuse radio and X-rays emitted from GCs can also be produced by the synchrotron radiation and IC scattering, respectively. We suggest that future observations including radio, X-rays, and gamma rays

  19. The globular cluster-dark matter halo connection

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  20. Two stellar-mass black holes in the globular cluster M22.

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  1. HST Observations of NGC 7252

    Science.gov (United States)

    Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-05-01

    A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9

  2. Detailed abundances from integrated-light spectroscopy: Milky Way globular clusters

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Strader, J.

    2017-05-01

    Context. Integrated-light spectroscopy at high spectral resolution is rapidly maturing as a powerful way to measure detailed chemical abundances for extragalactic globular clusters (GCs). Aims: We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Methods: Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. Results: The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the α-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Conclusions: Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects

  3. Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245

    Science.gov (United States)

    Carrera, R.; Casamiquela, L.; Ospina, N.; Balaguer-Núñez, L.; Jordi, C.; Monteagudo, L.

    2015-06-01

    Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R ~ 8000) in the infrared region Ca ii triplet lines (~8500 Å) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5 m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca ii lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain ⟨Vr⟩ = 48.6 ± 3.4, -58.4 ± 6.8, 26.0 ± 4.3, and -65.3 ± 3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603, and NGC 7245, respectively. We found [ Fe/H ] = -0.25 ± 0.14 and -0.15 ± 0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has low metallicity, [ Fe/H ] = -0.42 ± 0.13, which is similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived high metallicity ([ Fe/H ] = +0.43 ± 0.15) for NGC 6603, which places this system among the most metal-rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members. Based on observations made with the 2.5 m Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the

  4. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  5. A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

    International Nuclear Information System (INIS)

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Sesar, Branimir; Rix, Hans-Walter; Schlafly, Edward F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Slater, Colin T.; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Sweeney, William E.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.

    2014-01-01

    We present a new satellite in the outer halo of the Galaxy, the first Milky Way satellite found in the stacked photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) Survey. From follow-up photometry obtained with WFI on the MPG/ESO 2.2 m telescope, we argue that the object, located at a heliocentric distance of 145 ± 17 kpc, is the most distant Milky Way globular cluster yet known. With a total magnitude of M V = –4.3 ± 0.2 and a half-light radius of 20 ± 2 pc, it shares the properties of extended globular clusters found in the outer halo of our Galaxy and the Andromeda galaxy. The discovery of this distant cluster shows that the full spatial extent of the Milky Way globular cluster system has not yet been fully explored

  6. The ellipticities of a sample of globular clusters in M31

    International Nuclear Information System (INIS)

    Lupton, R.H.

    1989-01-01

    Images for a sample of 18 globular clusters in M31 have been obtained. The mean ellipticity on the sky in the range 7-14 pc (2-4 arcsec) is 0.08 + or - 0.02 and 0.12 + or - 0.01 in the range 14-21 pc (4-6 arcsec), with corresponding true ellipticities of 0.12 and 0.18. The difference between the inner and outer parts is significant at a 99 percent level. The flattening of the inner parts is statistically indistinguishable from that of the Galactic globular clusters, while the outer parts are flatter than the Galactic clusters at a 99.8 percent confidence level. There is a significant anticorrelation of ellipticity with line strength; such a correlation may in retrospect also be seen in the Galactic globular cluster system. For the M31 data, this anticorrelation is stronger in the inner parts of the galaxy. 30 refs

  7. NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA

    International Nuclear Information System (INIS)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-01-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam –1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ☉ . These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs ∼> 1000 M ☉ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  8. No Evidence for Intermediate-mass Black Holes in Globular Clusters: Strong Constraints from the JVLA

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-05-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam-1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ⊙. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs >~ 1000 M ⊙ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  9. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-01-01

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  10. The Size Difference between Red and Blue Globular Clusters is not due to Projection Effects

    Science.gov (United States)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-01

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  11. Ages and chemical compositions of massive clusters in NGC147 and M31

    Science.gov (United States)

    Sharina, Margarita; Shimansky, Vladislav

    2017-03-01

    We present estimates of ages, [Fe/H], helium content (Y) and abundances of C, N, Mg, Ca, and several other elements for the following globular clusters (GCs): GC7 in NGC147, and Mayall II, Mackey 1 and Mackey 6 in M31. Medium-resolution integrated-light spectra of the GCs were conducted with the 6m telescope. To derive the ages and abundances for the GCs we carried out their population synthesis using model stellar atmospheres, the Padova YZVAR isochrones and the Chabrier mass function. We compare the results with the corresponding data obtained using the same method for several massive Galactic GCs. We show that the differences in the light-element abundances between GCs with similar ages and metallicities may reach 0.5-0.6 dex. The corresponding differences for other elements are usually 2-3 times smaller. We suggest that at least partially the detected differences may be due to light-element abundance variations in the atmospheres of high-luminosity red giant branch stars as a consequence of the transportation of the produced elements to the surface layers.

  12. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  13. Galactic evolution of sulphur as traced by globular clusters

    Science.gov (United States)

    Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.

    2015-05-01

    Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required. Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M 30, which appear to be highly enriched in S. Conclusions: With the tentative exception of two stars with measured high S abundances, we conclude that sulphur behaves like a typical α element in the studied Galactic GCs, showing enhanced abundances with respect to the solar value at metallicities below [Fe/H]-1.0 dex without a considerable spread. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programmes ID 091.B-0171(A).The reduced spectra and the best fit synthetic models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  14. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. 5; Radiative Levitation Versus Helium Mixing

    Science.gov (United States)

    Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.

    2000-01-01

    Atmospheric parameters (T(sub eff), log g), masses and helium abundances are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC6752. For 19 stars we derive magnesium and iron abundances as well and find that iron is enriched by a factor of 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster abundance. Radiation pressure may levitate heavy elements like iron to the surface of the star in a diffusive process. Taking into account the enrichment of heavy elements in our spectroscopic analyses we find that high iron abundances can explain part, but not all, of the problem of anomalously low gravities along the blue HB. The blue HB stars cooler than about 15,100 K and the sdB stars (T(sub eff) greater than or = 20,000 K) agree well with canonical theory when analysed with metal-rich ([M/H] = +0.5) model atmospheres, but the stars in between these two groups remain offset towards lower gravities and masses. Deep Mixing in the red giant progenitor phase is discussed as another mechanism that may influence the position of the blue HB stars in the (T(sub eff), log g)-plane but not their masses.

  15. Integrated-light spectroscopy of globular clusters at the infrared Ca II lines

    Science.gov (United States)

    Armandroff, Taft E.; Zinn, Robert

    1988-01-01

    Integrated-light spectroscopy has been obtained for 27 globular clusters at the Ca II IR triplet. Line strengths and radial velocities have been measured from the spectra. For the well-studied clusters in the sample, the strength of the Ca II lines is very well correlated with previous metallicity estimates. Thus, the triplet is useful as a metallicity indicator in globular cluster integrated-light spectra. The greatly reduced effect of interstellar extinction at these wavelengths (compared to the blue region of the spectrum) has permitted observations of some of the most heavily reddened clusters in the Galaxy. For several such clusters, the Ca II triplet metallicities are in poor agreement with metallicity estimates from IR photometry by Malkan (1981). The strength of an interstellar band at 8621A has been used to estimate the amount of extinction towards these clusters. Using the new metallicity and radial-velocity data, the metallicity distribution, kinematics, and spatial distribution of the disk globular cluster system have been analyzed. Results very similar to those of Zinn (1985) have been found. The relation of the disk globulars to the stellar thick disk is discussed.

  16. SPB stars in the open SMC cluster NGC 371

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2008-05-01

    Pulsation in β Cep and slowly pulsating B (SPB) stars are driven by the κ mechanism which depends critically on the metallicity. It has therefore been suggested that β Cep and SPB stars should be rare in the Magellanic Clouds which have lower metallicities than the solar neighbourhood. To test this prediction we have observed the open Small Magellanic Cloud (SMC) cluster NGC 371 for 12 nights in order to search for β Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in the upper part of the main sequence, many of which are probably SPB stars. This result indicates that pulsation is still driven by the κ mechanism even in low-metallicity environments. All the identified variables have periods longer than the fundamental radial period which means that they cannot be β Cep stars. Within an amplitude detection limit of 5 mmag no stars in the top of the Hertzsprung-Russell diagram show variability with periods shorter than the fundamental radial period. So if β Cep stars are present in the cluster they oscillate with amplitudes below 5 mmag, which is significantly lower than the mean amplitude of β Cep stars in the Galaxy. We see evidence that multimode pulsation is more common in the upper part of the main sequence than in the lower. We have also identified five eclipsing binaries and three periodic pulsating Be stars in the cluster field.

  17. The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem?

    Science.gov (United States)

    Chaboyer, Brian; Demarque, P.; Kernan, Peter J.; Krauss, Lawrence M.

    1998-02-01

    We review five independent techniques that are used to set the distance scale to globular clusters, including subdwarf main-sequence fitting utilizing the recent Hipparcos parallax catalog. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. We now adopt a best-fit value Mv (RR Lyrae stars) = 0.39 +/- 0.08 (statistical) at [Fe/H] = -1.9 with an additional uniform systematic uncertainty of +0.13-0.18. This new distance scale estimate is combined with a detailed numerical Monte Carlo study (previously reported by Chaboyer et al.) designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5 +/- 1.3 Gyr, with a one-sided 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ compared to our earlier estimate, owing completely to the new distance scale--a shift which we emphasize results not only from the Hipparcos data. This now provides a lower limit on the age of the universe that is consistent with either an open universe or with a flat matter-dominated universe (the latter requiring H0 explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided that can be used to update our age estimate as improved determinations for various quantities become available. Formulae are also provided that can be used to derive the age and its uncertainty for a globular cluster, given the absolute magnitude of the turnoff or the point on the subgiant branch 0.05 mag redder than the turnoff.

  18. AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811

    International Nuclear Information System (INIS)

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Meibom, Soeren; Gilliland, Ronald L.; Grundahl, Frank; Brogaard, Karsten; Christensen-Dalsgaard, Joergen; Hekker, Saskia; Chaplin, William J.; Elsworth, Yvonne P.; Mosser, BenoIt; Kallinger, Thomas; Mathur, Savita; GarcIa, Rafael A.; Basu, Sarbani; Molenda-Zakowicz, Joanna; Szabo, Robert; Still, Martin; Jenkins, Jon M.

    2011-01-01

    Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identify fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC 6819 are confirmed in this study, and three additional non-members are found-two in NGC 6819 and one in NGC 6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analyzing these Kepler data.

  19. Disrupted globular clusters and the gamma-ray excess in the Galactic Centre

    Science.gov (United States)

    Fragione, Giacomo; Antonini, Fabio; Gnedin, Oleg Y.

    2018-04-01

    The Fermi Large Area Telescope has provided the most detailed view towards the Galactic Centre (GC) in high-energy gamma-rays. Besides the interstellar emission and point source contributions, the data suggest a residual diffuse gamma-ray excess. The similarity of its spatial distribution with the expected profile of dark matter has led to claims that this may be evidence for dark matter particle annihilation. Here, we investigate an alternative explanation that the signal originates from millisecond pulsars (MSPs) formed in dense globular clusters and deposited at the GC as a consequence of cluster inspiral and tidal disruption. We use a semi-analytical model to calculate the formation, migration, and disruption of globular clusters in the Galaxy. Our model reproduces the mass of the nuclear star cluster and the present-day radial and mass distribution of globular clusters. For the first time, we calculate the evolution of MSPs from disrupted globular clusters throughout the age of the Galaxy and consistently include the effect of the MSP spin-down due to magnetic-dipole braking. The final gamma-ray amplitude and spatial distribution are in good agreement with the Fermi observations and provide a natural astrophysical explanation for the GC excess.

  20. Constraints from stellar models on mixing as a viable explanation of abundance anomalies in globular clusters

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Smith, G.H.

    1988-01-01

    Published observational data on changes in the surface abundances of evolving stars in globular clusters are compiled and compared with the predictions of theoretical evolutionary sequences (for stars of mass 0.8 solar mass and metallicity Z = 0.0001 or mass 0.9 solar mass and Z = 0.006) and of models incorporating enhanced envelope-interior mixing at various evolutionary phases. The results are presented in graphs and characterized in detail. It is found that mixing models of CN bimodality in globular-cluster stars can encounter difficulties when abundance anomalies appear early in the evolution of the star. 63 references

  1. The pulsation mode and period-luminosity relationship of cool variables in globular clusters

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1986-01-01

    The period-luminosity-temperature relationship for globular cluster red and yellow variables is examined. The results suggest that the higher temperature, more metal-deficient cluster variables pulsate in the fundamental mode, while the lower temperature more metal-rich variables pulsate in the first overtone. On the assumption that this is correct, a relationship between fundamental period and bolometric magnitude is derived for cluster variables with observed periods of between 1 and 300 days. (author)

  2. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  3. Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies

    Science.gov (United States)

    Guhathakurta, Puragra; NGVS Collaboration

    2018-01-01

    We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.

  4. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    Science.gov (United States)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  5. EXPLANATION OF A SPECIAL COLOR–MAGNITUDE DIAGRAM OF STAR CLUSTER NGC 1651 FROM DIFFERENT MODELS

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li

    2015-01-01

    The color–magnitude diagram (CMD) of globular cluster NGC 1651 has special structures including a broad main sequence, an extended main sequence turn-off, and an extended red giant clump. The reason for such a special CMD remains unclear. In order to test the difference among the results from various stellar population assumptions, we study a high-quality CMD of NGC 1651 from the Hubble Space Telescope archive using eight kinds of models. Distance modulus, extinction, age ranges, star formation mode, fraction of binaries, and fraction of rotational stars are determined and then compared. The results show that stellar populations both with and without age spread can reproduce the special structure of the observed CMD. A composite population with extended star formation from 1.8 Gyrs ago to 1.4 Gyrs ago, which contains 50% binaries and 70% rotational stars, fits the observed CMD best. Meanwhile, a 1.5 Gyr-old simple population that consists of rotational stars can also fit the observed CMD well. The results of CMD fitting are shown to depend strongly on stellar population type (simple or composite), and fraction of rotators. If the member stars of NGC 1651 formed in a single star burst, the effect of stellar rotation should be very important for explaining the observed CMDs. Otherwise, the effect may be small. It is also possible that the special observed CMD is a result of the combined effects of stellar binarity, rotation, and age spread. Therefore, further work on stellar population type and fraction of rotational stars of intermediate-age clusters are necessary to understand their observed CMDs

  6. The Frequency of Binary Stars in the Globular Cluster M71

    Science.gov (United States)

    Barden, S. C.; Armandroff, T. E.; Pryor, C. P.

    1994-12-01

    The frequency of binary stars is a fundamental property of a stellar population. A comparison of the frequency of binaries in globular clusters with those in the field halo and disk populations tests the similarity of star formation in those environments. Binary stars in globular clusters also act as an energy source which ``heats" the cluster through super-elastic encounters with other stars and binaries. Such encounters can not only profoundly affect the dynamical evolution of the cluster, they can disrupt the widely separated binaries and catalyze the formation of exotic objects such as blue stragglers, x-ray binaries, and milli-second pulsars. We have used the KPNO 4-m and the multi-fiber instruments Nessie and Hydra to measure radial velocities at 4 epochs over two years for a sample of 126 stars in the globular cluster M71. Velocity errors are under 1 km s(-1) for the brighter stars and under 2 km s(-1) for the majority of our data set. These velocities will be valuable for studying the kinematics of M71, but here we focus on searching for binaries. The faintest stars are at V=17, or just above the main sequence turnoff. Our sample is thus deeper than any published globular cluster binary search utilizing spectroscopic techniques. By observing smaller stars, we double the number of decades of binary periods sampled compared to previous studies and come within a factor of 4 of the shortest possible periods for turnoff stars. This wider period window has produced the largest known sample of binaries in a globular cluster. Four stars show velocity ranges larger than 20 km s(-1) , nine have ranges larger than 10 km s(-1) , and others are clearly variable. We will compare the radial distribution of these stars to that predicted by theory and derive the main-sequence binary fraction.

  7. A Science Portal and Archive for Extragalactic Globular Cluster Systems Data

    Science.gov (United States)

    Young, Michael; Rhode, Katherine L.; Gopu, Arvind

    2015-01-01

    For several years we have been carrying out a wide-field imaging survey of the globular cluster populations of a sample of giant spiral, S0, and elliptical galaxies with distances of ~10-30 Mpc. We use mosaic CCD cameras on the WIYN 3.5-m and Kitt Peak 4-m telescopes to acquire deep BVR imaging of each galaxy and then analyze the data to derive global properties of the globular cluster system. In addition to measuring the total numbers, specific frequencies, spatial distributions, and color distributions for the globular cluster populations, we have produced deep, high-quality images and lists of tens to thousands of globular cluster candidates for the ~40 galaxies included in the survey.With the survey nearing completion, we have been exploring how to efficiently disseminate not only the overall results, but also all of the relevant data products, to the astronomical community. Here we present our solution: a scientific portal and archive for extragalactic globular cluster systems data. With a modern and intuitive web interface built on the same framework as the WIYN One Degree Imager Portal, Pipeline, and Archive (ODI-PPA), our system will provide public access to the survey results and the final stacked mosaic images of the target galaxies. In addition, the astrometric and photometric data for thousands of identified globular cluster candidates, as well as for all point sources detected in each field, will be indexed and searchable. Where available, spectroscopic follow-up data will be paired with the candidates. Advanced imaging tools will enable users to overlay the cluster candidates and other sources on the mosaic images within the web interface, while metadata charting tools will allow users to rapidly and seamlessly plot the survey results for each galaxy and the data for hundreds of thousands of individual sources. Finally, we will appeal to other researchers with similar data products and work toward making our portal a central repository for data

  8. VLT/UVES abundances of individual stars in the Fornax dwarf spheroidal globular clusters

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Jablonka, P.; Tolstoy, E.; Randich, S; Pasquini, L

    2006-01-01

    We present high resolution abundance analysis of nine stars belonging to three of the five globular clusters (GCs) of the Fornax dwarf galaxy. The spectra were taken with UVES at a resolution of 43 000. We find them to be slightly more metal-poor than what was previously calculated with other

  9. On the blind use of statistical tools in the analysis of globular cluster stars

    Science.gov (United States)

    D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco

    2018-04-01

    As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.

  10. A Fossil Bulge Globular Cluster Revealed by very Large Telescope Multi-conjugate Adaptive Optics

    Czech Academy of Sciences Publication Activity Database

    Ortolani, S.; Barbuy, B.; Momany, Y.; Saviane, I.; Bica, E.; Jílková, L.; Salerno, G.M.; Jungwiert, Bruno

    2011-01-01

    Roč. 737, č. 1 (2011), 31/1-31/9 ISSN 0004-637X Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy * globular clusters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  11. The Case of the Missing Cyanogen-rich AGB Stars in Galactic Globular Clusters

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.

    2012-01-01

    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars (eg. Norris et al. 1981; Sneden et al. 2000). This contrasts strongly with the distributions on the RGB (and other) populations, which generall...

  12. Curve-of-growth analysis of a red giant in the globular cluster M13

    International Nuclear Information System (INIS)

    Griffin, R.

    1979-01-01

    A coude spectrogram of a red giant (L973) in the globular cluster M13 is analysed, with respect to α Boo, by the differential curve-of-growth technique. The overall metal abundance is found to be approximately one-tenth of that of α Boo, or one-fortieth that of the Sun. (author)

  13. Three Ancient Halo Subgiants: Precise Parallaxes, Compositions, Ages, and Implications for Globular Clusters

    DEFF Research Database (Denmark)

    VandenBerg, Don A.; Bond, Howard E.; Nelan, Edmund P.

    2014-01-01

    very soon after the Big Bang. (Stellar models that neglect diffusive processes seem to be ruled out as they would predict that HD 140283 is ~1.5 Gyr older than the universe.) The field halo subgiants appear to be older than globular clusters of similar metallicities: if distances close to those implied...

  14. Multiple populations along the asymptotic giant branch of the globular cluster M 4

    NARCIS (Netherlands)

    Lardo, C.; Salaris, M.; Savino, A.; Donati, P.; Stetson, P. B.; Cassisi, S.

    2016-01-01

    Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investigation questioned the presence of O-poor/Na-rich

  15. Modeling the formation of globular cluster systems in the Virgo cluster

    International Nuclear Information System (INIS)

    Li, Hui; Gnedin, Oleg Y.

    2014-01-01

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 10 12 to 7 × 10 13 M ☉ and match them to 19 Virgo galaxies with K-band luminosity between 3 × 10 10 and 3 × 10 11 L ☉ . To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  16. Red Clump stars in Kepler open cluster NGC 6819

    Directory of Open Access Journals (Sweden)

    Abedigamba O.P.

    2015-01-01

    Full Text Available We measure the large frequency separation, Δν, and the frequency of maximum amplitude, νmax, for 10 Red Clump (RC single member (SM stars in the Kepler open cluster NGC 6819. We derive luminosities and masses for each individual RC star. A comparison of the observations with an isochrone of Age = 2.5 Gyr, Z = 0.017 with no mass loss using a statistical techniques is made. A fractional mass loss of 5 ± 3 percent is obtained if we assume that no correction to Δν between RC and red-giant branch (RGB is necessary. However, models suggest that an effective correction of about 1.9 percent in Δν is required to obtain the correct mass of RC stars owing to the different internal structures of stars in the two evolutionary stages. In this case we find that the mass loss in the red giant branch is not significantly different from zero. This finding confirms that of [6]. It is clear that the mass estimate obtained by asteroseismology is not sufficient to deduce the mass loss on the red giant branch. However, it is clearly only a few percent at most.

  17. Be STARS IN THE OPEN CLUSTER NGC 6830

    International Nuclear Information System (INIS)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chang, Chan-Kao; Huang, Li-Ching; Cheng, Yu-Chi; Ritter, Andreas; Konidaris, Nick; Chen, Hui-Chen; Malkan, Matthew A.; Laher, Russ; Surace, Jason; Edelson, Rick; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran O.

    2016-01-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven H α emitters were discovered using the H α imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three H α emitters were confirmed as Be stars with H α equivalent widths greater than −10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong H α emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  18. Be STARS IN THE OPEN CLUSTER NGC 6830

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chang, Chan-Kao; Huang, Li-Ching; Cheng, Yu-Chi; Ritter, Andreas [Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan (China); Konidaris, Nick [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Chen, Hui-Chen [Department of Natural Sciences and Sustainable Development, Ministry of Science and Technology, 106, Sec. 2, Heping E. Road, Taipei 10622, Taiwan (China); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Edelson, Rick [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Quimby, Robert [Kavli-Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba (Japan); Ben-Ami, Sagi; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); and others

    2016-05-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven H α emitters were discovered using the H α imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three H α emitters were confirmed as Be stars with H α equivalent widths greater than −10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong H α emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  19. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    Science.gov (United States)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  20. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    Science.gov (United States)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  1. A period-luminosity relation for Mira variables in globular clusters and its impact on the distance scale

    International Nuclear Information System (INIS)

    Menzies, J.W.; Whitelock, P.A.

    1985-01-01

    JHKL photometry is presented for 31 red variables in 15 galactic globular clusters. The photometry of the Mira variables is used to find absolute bolometric magnitudes and an Msub(bol)-log P relation which differs from the one found for LMC Miras. This can be understood only if there is some systematic error in the globular cluster and/or LMC distance scales or if there is some fundamental difference between the cluster Miras and those in the LMC. (author)

  2. MORE REMOTE GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    International Nuclear Information System (INIS)

    Di Tullio Zinn, Graziella; Zinn, Robert

    2013-01-01

    We searched the Sloan Digital Sky Survey for outer halo globular clusters (GCs) around M31. Our search of non-stellar objects, within the limits of 0.3 ≤ (g – i) 0 ≤ 1.5 and 14.0 ≤ r 0 ≤ 19.0 concentrated in some remote areas of the extended halo, to a maximum projected distance of 240 kpc, for a total of approximately 200 deg 2 . Another ∼50 deg 2 , ∼5-75 kpc from M31, were surveyed as test areas. In these areas, we identified 39 GCs and 2 GC candidates, 84% of the previously known GCs (93% of the 'classical GCs' and 40% of the 'halo extended clusters', on the cluster classification scheme of Huxor et al.). For the entire survey, we visually inspected 78,516 objects for morphological evidence of cluster status, and we identified 18 new clusters, and 75 candidate clusters. The new clusters include 15 classical globulars and 3 clusters of lower density. Six of the clusters reside in the remote areas of the outer halo, beyond projected distances of 100 kpc. Previously, only MGC1 was found beyond this limit at 117 kpc. The farthest cluster discovered in this survey lies at a projected radius of 158 kpc from M31, assuming that the M31 distance is 780 kpc.

  3. Gravitational microlensing by low-mass objects in the globular cluster M22.

    Science.gov (United States)

    Sahu, K C; Casertano, S; Livio, M; Gilliland, R L; Panagia, N; Albrow, M D; Potter, M

    2001-06-28

    Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

  4. Globular Cluster Variable Stars—Atlas and Coordinate Improvement using AAVSOnet Telescopes (Abstract)

    Science.gov (United States)

    Welch, D.; Henden, A.; Bell, T.; Suen, C.; Fare, I.; Sills, A.

    2015-12-01

    (Abstract only) The variable stars of globular clusters have played and continue to play a significant role in our understanding of certain classes of variable stars. Since all stars associated with a cluster have the same age, metallicity, distance and usually very similar (if not identical reddenings), such variables can produce uniquely powerful constraints on where certain types of pulsation behaviors are excited. Advanced amateur astronomers are increasingly well-positioned to provide long-term CCD monitoring of globular cluster variable star but are hampered by a long history of poor or inaccessible finder charts and coordinates. Many of variable-rich clusters have published photographic finder charts taken in relatively poor seeing with blue-sensitive photographic plates. While useful signal-to-noise ratios are relatively straightforward to achieve for RR Lyrae, Type 2 Cepheids, and red giant variables, correct identification remains a difficult issue—particularly when images are taken at V or longer wavelengths. We describe the project and report its progress using the OC61, TMO61, and SRO telescopes of AAVSOnet after the first year of image acquisition and demonstrate several of the data products being developed for globular cluster variables.

  5. M31 GLOBULAR CLUSTER STRUCTURES AND THE PRESENCE OF X-RAY BINARIES

    International Nuclear Information System (INIS)

    Agar, J. R. R.; Barmby, P.

    2013-01-01

    The Andromeda galaxy, M31, has several times the number of globular clusters found in the Milky Way. It contains a correspondingly larger number of low-mass X-ray binaries (LMXBs) associated with globular clusters, and as such can be used to investigate the cluster properties that lead to X-ray binary formation. The best tracer of the spatial structure of M31 globulars is the high-resolution imaging available from the Hubble Space Telescope (HST), and we have used HST data to derive structural parameters for 29 LMXB-hosting M31 globular clusters. These measurements are combined with structural parameters from the literature for a total of 41 (of 50 known) LMXB clusters and a comparison sample of 65 non-LMXB clusters. Structural parameters measured in blue bandpasses are found to be slightly different (smaller core radii and higher concentrations) than those measured in red bandpasses; this difference is enhanced in LMXB clusters and could be related to stellar population differences. Clusters with LMXBs show higher collision rates for their mass compared to clusters without LMXBs, and collision rates estimated at the core radius show larger offsets than rates estimated at the half-light radius. These results are consistent with the dynamical formation scenario for LMXBs. A logistic regression analysis finds that, as expected, the probability of a cluster hosting an LMXB increases with increasing collision rate and proximity to the galaxy center. The same analysis finds that probability of a cluster hosting an LMXB decreases with increasing cluster mass at a fixed collision rate, although we caution that this could be due to sample selection effects. Metallicity is found to be a less important predictor of LMXB probability than collision rate, mass, or distance, even though LMXB clusters have a higher metallicity on average. This may be due to the interaction of location and metallicity: a sample of M31 LMXBs with a greater range in galactocentric distance would

  6. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  7. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas; Schechtman-Rook, Andrew; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Clem, James L. [Department of Physics, Grove City College, 100 Campus Dr., Grove City, PA 16127 (United States); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 (United States); Beers, Timothy C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Schneider, Donald P., E-mail: hlm5@case.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  8. New bound on neutrino dipole moments from globular-cluster stars

    Science.gov (United States)

    Raffelt, Georg G.

    1990-01-01

    Neutrino dipole moments mu(nu) would increase the core mass of red giants at the helium flash by delta(Mc) = 0.015 solar mass x mu(nu)/10 to the -12th muB (where muB is the Bohr magneton) because of enhanced neutrino losses. Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters, number counts of horizontal-branch stars and red giants in 15 globular clusters, and statistical parallax determinations of field RR Lyr luminosities yield delta(Mc) = 0.009 + or - 0.012 solar mass, so that conservatively mu(nu) is less than 3 x 10 to the -12th muB.

  9. Globular cluster neutron stars and the determination of the dense matter equation of state

    Science.gov (United States)

    Guillot, Sebastien

    2016-09-01

    Combining measurements of the mass and radius of multiple neutron stars (NSs) represents the most promising way to determine the equation of state of dense NS matter. NSs in quiescent low-mass x-ray binaries (qLMXB) located in globular clusters have placed useful constraints on the equation of state. The statistical approaches combining measurements from multiple NSs can be further improved by the addition of more NS observations. We propose here to obtain a high signal to noise spectrum of the qLMXB in M30, the only low-absorption globular cluster qLMXBs that does not have deep X-ray observations, and which requires Chandra unmatched angular resolution. The 300 ks proposed observation will permit measurement of the NS radius with 12-15% uncertainties.

  10. HST Proper Motions of Distant Globular Clusters: Constraining the Formation & Mass of the Milky Way

    Science.gov (United States)

    Sohn, S. Tony; van der Marel, Roeland P.; Deason, Alis; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2018-04-01

    Proper motions (PMs) are required to calculate accurate orbits of globular clusters (GCs) in the Milky Way (MW) halo. We present our HST program to create a PM database for 20 GCs at distances of R GC = 10-100 kpc. Targets are discussed along with PM measurement methods. We also describe how our PM results can be used for Gaia as an external check, and discuss the synergy between HST and Gaia as astrometric instruments in the coming years.

  11. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    Science.gov (United States)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  12. ULTRA-COMPACT DWARFS IN THE CORE OF THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Madrid, Juan P.; Graham, Alister W.; Forbes, Duncan A.; Spitler, Lee R.; Harris, William E.; Goudfrooij, Paul; Ferguson, Henry C.; Carter, David; Blakeslee, John P.

    2010-01-01

    We have discovered both a red and a blue subpopulation of ultra-compact dwarf (UCD) galaxy candidates in the Coma galaxy cluster. We analyzed deep F475W (Sloan g) and F814W (I) Hubble Space Telescope images obtained with the Advanced Camera for Surveys Wide Field Channel as part of the Coma Cluster Treasury Survey and have fitted the light profiles of ∼5000 point-like sources in the vicinity of NGC 4874, one of the two central dominant galaxies of the Coma Cluster. Although almost all of these sources are globular clusters that remain unresolved, we found that 52 objects have effective radii between ∼10 and 66 pc, in the range spanned by dwarf globular transition objects (DGTOs) and UCDs. Of these 52 compact objects, 25 are brighter than M V ∼ -11 mag, a magnitude conventionally thought to separate UCDs and globular clusters. The UCD/DGTO candidates have the same color and luminosity distribution as the most luminous globular clusters within the red and blue subpopulations of the immensely rich NGC 4874 globular cluster system. Unlike standard globular clusters, blue and red UCD/DGTO subpopulations have the same median effective radius. The spatial distribution of UCD/DGTO candidates reveals that they congregate toward NGC 4874 and are not uniformly distributed. We find a relative deficit of UCD/DGTOs compared with globular clusters in the inner 15 kpc around NGC 4874; however, at larger radii UCD/DGTO and globular clusters follow the same spatial distribution.

  13. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  14. A 5.75-millisecond pulsar in the globular cluster 47 Tucanae

    International Nuclear Information System (INIS)

    Manchester, R.N.; Lyne, A.G.; Johnston, S.; D'Amico, N.; Lim, J.; Kniffen, D.A.

    1990-01-01

    Millisecond pulsars are generally believed to be old pulsars that have been spun up ('recycled') as a result of accretion of matter from a companion in a low-mass X-ray binary system. As there is a high incidence of such systems in globular clusters, these are good places to search for millisecond pulsars; so far, ten globular-cluster pulsars have been detected unambiguously. Using the Parkes radiotelescope in Australia, we have found a pulsar with a period of 5.75 ms and a dispersion measure of 25 cm -3 pc in the direction of 47 Tucanae. Despite its probable origin as a member of a binary system, timing measurements show that the pulsar is now single. The observed dispersion measure is consistent with the pulsar lying outside the galactic electron layer and within 47 Tucanae; but it is very different from the value of 67 cm -3 pc for the pulsars that were reported recently as being in this globular cluster, and we suggest that the latter pulsars probably do not in fact lie within 47 Tucanae. (author)

  15. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    Science.gov (United States)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  16. MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. V. BINARY STELLAR EVOLUTION

    International Nuclear Information System (INIS)

    Chatterjee, Sourav; Umbreit, Stefan; Rasio, Frederic A.; Fregeau, John M.

    2010-01-01

    We study the dynamical evolution of globular clusters containing primordial binaries, including full single and binary stellar evolution using our Monte Carlo cluster evolution code updated with an adaptation of the single and binary stellar evolution codes SSE and BSE from Hurley et al. We describe the modifications that we have made to the code. We present several test calculations and comparisons with existing studies to illustrate the validity of the code. We show that our code finds very good agreement with direct N-body simulations including primordial binaries and stellar evolution. We find significant differences in the evolution of the global properties of the simulated clusters using stellar evolution compared with simulations without any stellar evolution. In particular, we find that the mass loss from the stellar evolution acts as a significant energy production channel simply by reducing the total gravitational binding energy and can significantly prolong the initial core contraction phase before reaching the binary-burning quasi-steady state of the cluster evolution. We simulate a large grid of models varying the initial cluster mass, binary fraction, and concentration parameter, and we compare properties of the simulated clusters with those of the observed Galactic globular clusters (GGCs). We find that simply including stellar evolution in our simulations and assuming the typical initial cluster half-mass radius is approximately a few pc independent of mass, our simulated cluster properties agree well with the observed GGC properties such as the core radius and the ratio of the core radius to the half-mass radius. We explore in some detail qualitatively different clusters in different phases of their evolution and construct synthetic Hertzsprung-Russell diagrams for these clusters.

  17. The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data

    Science.gov (United States)

    Amorisco, N. C.; Monachesi, A.; Agnello, A.; White, S. D. M.

    2018-04-01

    We use data from the HST Coma Cluster Treasury program to assess the richness of the globular cluster systems (GCSs) of 54 Coma ultra-diffuse galaxies (UDGs), 18 of which have a half-light radius exceeding 1.5 kpc. We use a hierarchical Bayesian method tested on a large number of mock data sets to account consistently for the high and spatially varying background counts in Coma. These include both background galaxies and intra-cluster globular clusters (ICGCs), which are disentangled from the population of member globular clusters (GCs) in a probabilistic fashion. We find no candidate for a GCS as rich as that of the Milky Way, our sample has GCSs typical of dwarf galaxies. For the standard relation between GCS richness and halo mass, 33 galaxies have a virial mass Mvir ≤ 1011 M⊙ at 90 per cent probability. Only three have Mvir > 1011 M⊙ with the same confidence. The mean colour and spread in colour of the UDG GCs are indistinguishable from those of the abundant population of ICGCs. The majority of UDGs in our sample are consistent with the relation between stellar mass and GC richness of `normal' dwarf galaxies. Nine systems, however, display GCSs that are richer by a factor of 3 or more (at 90 per cent probability). Six of these have sizes ≲1.4 kpc. Our results imply that the physical mechanisms responsible for the extended size of the UDGs and for the enhanced GC richness of some cluster dwarfs are at most weakly correlated.

  18. Deep and accurate near-infrared photometry of the Galactic globular cluster omega Cen .

    Science.gov (United States)

    Calamida, A.; Bono, G.; Corsi, C. E.; Stetson, P. B.; Prada Moroni, P. G.; Degl'Innocenti, S.; Marchetti, E.; Amico, P.; Ferraro, I.; Iannicola, G.; Monelli, M.; Buonanno, R.; Caputo, F.; Dall'Ora, M.; Freyhammer, L. M.; Koester, D.; Nonino, M.; Piersimoni, A. M.; Pulone, L.; Romaniello, M.

    We present deep and accurate Near-Infrared (NIR) photometry of the Galactic Globular Cluster omega Cen . Data were collected using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) mounted on the VLT (ESO). We combined the NIR photometry with optical space data collected with the Advanced Camera for Surveys (ACS) for the same region of the cluster. Our deep optical-NIR CMD indicates that the spread in age among the different stellar populations in omega Cen is at most of the order of 2 Gyr.

  19. The gravitational wave emission from white dwarf interactions in globular clusters

    International Nuclear Information System (INIS)

    Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J

    2009-01-01

    In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.

  20. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known in NGC 6440 (see Pooley et al. 2002, ApJ 573, 184, Altarmirano et al. 2010, ApJL 712,

  1. Understanding the central kinematics of globular clusters with simulated integrated-light IFU observations

    Science.gov (United States)

    Bianchini, Paolo; Norris, Mark A.; van de Ven, Glenn; Schinnerer, Eva

    2015-10-01

    The detection of intermediate-mass black holes in the centres of globular clusters is highly controversial, as complementary observational methods often deliver significantly different results. In order to understand these discrepancies, we develop a procedure to simulate integral field unit (IFU) observations of globular clusters: Simulating IFU Star Cluster Observations (SISCO). The inputs of our software are realistic dynamical models of globular clusters that are then converted in a spectral data cube. We apply SISCO to Monte Carlo cluster simulations with a realistic number of stars and concentrations. Using independent realizations of a given simulation we are able to quantify the stochasticity intrinsic to the problem of observing a partially resolved stellar population with integrated-light spectroscopy. We show that the luminosity-weighted IFU observations can be strongly biased by the presence of a few bright stars that introduce a scatter in the velocity dispersion measurements up to ≃40 per cent around the expected value, preventing any sound assessment of the central kinematic and a sensible interpretation of the presence/absence of an intermediate-mass black hole. Moreover, we illustrate that, in our mock IFU observations, the average kinematic tracer has a mass of ≃0.75 M⊙, only slightly lower than the mass of the typical stars examined in studies of resolved line-of-sight velocities of giant stars. Finally, in order to recover unbiased kinematic measurements we test different masking techniques that allow us to remove the spaxels dominated by bright stars, bringing the scatter down to a level of only a few per cent. The application of SISCO will allow us to investigate state-of-the-art simulations as realistic observations.

  2. On the incidence of close binary stars in globular clusters and the nature of the cluster X-ray sources

    International Nuclear Information System (INIS)

    Trimble, V.

    1977-01-01

    Recent calculations suggest that the globular clusters could not have formed with more than 20 per cent of the normal Population I fraction of their stars in binary systems. The fact that the clusters have more than their fair share of novae and U Geminorum stars (three each out of approximately 200 of each known, while the clusters contain only about 10 -4 of the mass and 10 -3 of the luminosity of the galaxy) therefore becomes surprising. The hypothesis of binary capture within cluster cores suggested to account for the clusters' high X-ray luminosity provides a few extra systems, but neither it nor any of the similar encounter or capture mechanisms suggested can account for the novae and U Gen stars, which remain puzzling. The number of Algol-type and W UMa eclipsing binaries predicted by these hypotheses do not conflict with data presently available, but careful searches for them would constitute a critical test of the theories. (author)

  3. New constraints on the star formation history of the star cluster NGC 1856

    NARCIS (Netherlands)

    Correnti, M.; Goudfrooij, P.; Puzia, T.H.; de Mink, S.E.

    2015-01-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (age ∼ 300 Myr) star cluster NGC 1856 in the Large Magellanic Cloud. We compare the observed colour-magnitude diagram (CMD), after having applied a correction for differential

  4. A new Be star in an open cluster - NGC 6871-8

    Science.gov (United States)

    Grigsby, James A.; Morrison, Nancy D.

    1988-01-01

    Spectroscopic observations of H-alpha show that star eight in the open cluster NGC 6871 is a previously-undiscovered Be star. The H-alpha profile was observed to vary from clear emission to pure absorption over a period of ten days; later observations over a five-day interval show weak emission along with asymmetries and filling in of the profile.

  5. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404

    DEFF Research Database (Denmark)

    Gall, C.; Stritzinger, M. D.; Ashall, C.

    2018-01-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of...

  6. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    Energy Technology Data Exchange (ETDEWEB)

    Durrell, Patrick R.; Accetta, Katharine [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen [Herzberg Astronomy and Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng, Eric W.; Zhang, Hongxin [Department of Astronomy, Peking University, Beijing 100871 (China); Mihos, J. Christopher [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Puzia, Thomas H.; Jordán, Andrés [Institute of Astrophysics, Pontificia Universidad Catolica, Av. Vicu' a Mackenna 4860, Macul 7820436, Santiago (Chile); Lançon, Ariane [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cuillandre, Jean-Charles [Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743 (United States); Boissier, Samuel; Boselli, Alessandro [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen' s University, Kingston, ON K7L 3N6 (Canada); Duc, Pierre-Alain [AIM Paris Saclay, CNRS/INSU, CEA/Irfu, Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Emsellem, Eric [Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval (France); CNRS, UMR 5574, ENS de Lyon (France); and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5

  7. A CCD photometric analysis of the old open cluster NGC 2420

    International Nuclear Information System (INIS)

    Anthony-Twarog, B.J.; Twarog, B.A.; Kaluzny, J.; Shara, M.M.

    1990-01-01

    Precision CCD photometry on the BV system of the core of the old open cluster NGC 2420 is analyzed to explore the value of such an approach for open clusters, particularly in the areas of Galactic and stellar evolution. The unevolved main sequence is shown to be narrow and well defined to the completeness limit of V = 18.5, and the distribution of stars away from the main sequence is shown to be bimodal, with a secondary peak located approximately 0.7 mag above the fiducial main sequence. It is estimated that 50 percent of the cluster systems are binary. Near the turnoff the cluster exhibits some detailed structure. Fiducial relations are given for the cluster extending from the lower main sequence to the red giant branch 1.5 mag above the clump. Comparisons are made between the NGC 2420 cluster and NGC 2506, the isochrones of VandenBerg (1985), and 47 Tuc, in order to estimate cluster parameters, including reddening and metallicity. 68 refs

  8. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  9. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B W [Rijksuniversiteit Utrecht (Netherlands). Inst. of Astronomy; Rutten, R G.M. [Astronomical Inst. ' Anton Pannekoek' , Amsterdam (Netherlands); Callanan, P J [Oxford Univ. (UK). Dept. of Astrophysics; Seitzer, Patrick [Space Telescope Science Inst., Baltimore, MD (USA); Charles, P A [Oxford Univ. (UK). Dept. of Astrophysics Observatorio del Roque do los Muchachos, Santa Cruz de La Palma, Tenerife, Canary Islands (Spain); Cohn, H N; Lugger, P M [Indiana Univ., Bloomington, IN (USA). Dept. of Astronomy

    1991-05-09

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author).

  10. Detection of binaries in the core of the globular cluster M15 using calcium emission lines

    International Nuclear Information System (INIS)

    Murphy, B.W.; Callanan, P.J.; Charles, P.A.; Cohn, H.N.; Lugger, P.M.

    1991-01-01

    M12 is the prototypical collapsed-core globular cluster. Having undergone collapse, its core is believed now to be expanding, with energy for the re-expansion provided by binary stars, which turn gravitational potential energy into kinetic energy. Because these binary stars are generally more massive than single stars, they will have settled to the centre of the cluster. We report here that several of the stars at the core of M15 show Ca II H- and K-line emission characteristic of young, rapidly rotating stars and close binaries. We argue that the emission from M15 comes from primordial binaries, in which a period of spin-up has led to magnetic field generation by enhanced dynamo action, which in turn causes heating of the stellar chromospheres. If this interpretation is correct, the Ca H and K emission may provide an important diagnostic tool of the binary population in cluster cores, and thus of the cluster dynamics. (author)

  11. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, George H. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Marco, Orsola De [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Davies, James [Space Telescope Science Institute, Baltimore MD 21218 (United States); Lotarevich, I. [American Museum of Natural History, New York, NY (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Harrington, J. Patrick [University of Maryland, College Park, MD (United States); Lanz, Thierry, E-mail: gjacoby@lowell.edu, E-mail: orsola.demarco@mq.edu.au, E-mail: jdavies@stsci.edu, E-mail: heb11@psu.edu, E-mail: jph@astro.umd.edu, E-mail: thierry.lanz@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice (France)

    2017-02-10

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.

  12. TIME-SERIES SPECTROSCOPY OF TWO CANDIDATE DOUBLE DEGENERATES IN THE OPEN CLUSTER NGC 6633

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Chakraborty, Subho [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Serna-Grey, Donald [Department of Astronomy, University of Washington, Box 351580, Seattle, WA, 98195 (United States); Gianninas, A.; Canton, Paul A., E-mail: Kurtis.Williams@tamuc.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States)

    2015-12-15

    SNe Ia are heavily used tools in precision cosmology, yet we still are not certain what the progenitor systems are. General plausibility arguments suggest there is potential for identifying double degenerate SN Ia progenitors in intermediate-age open star clusters. We present time-resolved high-resolution spectroscopy of two white dwarfs (WDs) in the field of the open cluster NGC 6633 that had previously been identified as candidate double degenerates in the cluster. However, three hours of continuous observations of each candidate failed to detect any significant radial velocity variations at the ≳10 km s{sup −1} level, making it highly unlikely that either WD is a double degenerate that will merge within a Hubble Time. The WD LAWDS NGC 6633 4 has a radial velocity inconsistent with cluster membership at the 2.5σ level, while the radial velocity of LAWDS NGC 6633 7 is consistent with cluster membership. We conservatively conclude that LAWDS 7 is a viable massive double degenerate candidate, though unlikely to be a Type Ia progenitor. Astrometric data from GAIA will likely be needed to determine if either WD is truly a cluster member.

  13. The VMC survey. XXVIII. Improved measurements of the proper motion of the Galactic globular cluster 47 Tucanae

    Science.gov (United States)

    Niederhofer, Florian; Cioni, Maria-Rosa L.; Rubele, Stefano; Schmidt, Thomas; Bekki, Kenji; de Grijs, Richard; Emerson, Jim; Ivanov, Valentin D.; Oliveira, Joana M.; Petr-Gotzens, Monika G.; Ripepi, Vincenzo; Sun, Ning-Chen; van Loon, Jacco Th.

    2018-05-01

    We use deep multi-epoch point-spread function (PSF) photometry taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) to measure and analyze the proper motions of stars within the Galactic globular cluster 47 Tucanae (47 Tuc, NGC 104). The observations are part of the ongoing near-infrared VISTA survey of the Magellanic Cloud system (VMC). The data analyzed in this study correspond to one VMC tile, which covers a total sky area of 1.77 deg2. Absolute proper motions with respect to 9070 background galaxies are calculated from a linear regression model applied to the positions of stars in 11 epochs in the Ks filter. The data extend over a total time baseline of about 17 months. We found an overall median proper motion of the stars within 47 Tuc of (μαcos(δ), μδ) = (+5.89 ± 0.02 (statistical) ± 0.13 (systematic), -2.14 ± 0.02 (statistical) ± 0.08 (systematic)) mas yr-1, based on the measurements of 35 000 individual sources between 5' and 42' from the cluster center. We compared our result to the proper motions from the newest US Naval Observatory CCD Astrograph Catalog (UCAC5), which includes data from the Gaia data release 1. Selecting cluster members ( 2700 stars), we found a median proper motion of (μαcos(δ), μδ) = (+5.30 ± 0.03 (statistical) ± 0.70 (systematic), -2.70 ± 0.03 (statistical) ± 0.70 (systematic)) mas yr-1. Comparing the results with measurements in the literature, we found that the values derived from the VMC data are consistent with the UCAC5 result, and are close to measurements obtained using the Hubble Space Telescope. We combined our proper motion results with radial velocity measurements from the literature and reconstructed the orbit of 47 Tuc, finding that the cluster is on an orbit with a low ellipticity and is confined within the inner 7.5 kpc of the Galaxy. We show that the use of an increased time baseline in combination with PSF-determined stellar centroids in crowded regions significantly improves

  14. A Deep X-ray Survey of the Globular Cluster Omega Centauri

    Science.gov (United States)

    Henleywillis, Simon; Cool, Adrienne M.; Haggard, Daryl; Heinke, Craig; Callanan, Paul; Zhao, Yue

    2018-03-01

    We identify 233 X-ray sources, of which 95 are new, in a 222 ks exposure of Omega Centauri with the Chandra X-ray Observatory's ACIS-I detector. The limiting unabsorbed flux in the core is fX(0.5-6.0 keV) ≃ 3×10-16 erg s-1 cm-2 (Lx ≃ 1×1030 erg s-1 at 5.2 kpc). We estimate that ˜60 ± 20 of these are cluster members, of which ˜30 lie within the core (rc = 155 arcsec), and another ˜30 between 1-2 core radii. We identify four new optical counterparts, for a total of 45 likely identifications. Probable cluster members include 18 cataclysmic variables (CVs) and CV candidates, one quiescent low-mass X-ray binary, four variable stars, and five stars that are either associated with ω Cen's anomalous red giant branch, or are sub-subgiants. We estimate that the cluster contains 40 ± 10 CVs with Lx > 1031 erg s-1, confirming that CVs are underabundant in ω Cen relative to the field. Intrinsic absorption is required to fit X-ray spectra of six of the nine brightest CVs, suggesting magnetic CVs, or high-inclination systems. Though no radio millisecond pulsars (MSPs) are currently known in ω Cen, more than 30 unidentified sources have luminosities and X-ray colours like those of MSPs found in other globular clusters; these could be responsible for the Fermi-detected gamma-ray emission from the cluster. Finally, we identify a CH star as the counterpart to the second-brightest X-ray source in the cluster and argue that it is a symbiotic star. This is the first such giant/white dwarf binary to be identified in a globular cluster.

  15. VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B; Hill, [No Value; Jablonka, P; Tolstoy, E; Francois, P; Meylan, G

    We present a high resolution ( R similar to 43 000) abundance analysis of a total of nine stars in three of the five globular clusters associated with the nearby Fornax dwarf spheroidal galaxy. These three clusters ( 1, 2 and 3) trace the oldest, most metal-poor stellar populations in Fornax. We

  16. Effects of main-sequence mass loss on the turnoff ages of globular clusters

    International Nuclear Information System (INIS)

    Guzik, J.A.

    1989-01-01

    Willson, Bowen, and Struck-Marcell have proposed that globular cluster main-sequence turnoff ages can be reconciled with the lower ages of the Galaxy and universe deduced from other methods by incorporating an epoch of early main-sequence mass-loss by stars of spectral types A through early-F. The proposed mass loss is pulsation-driven, and facilitated by rapid rotation. This paper presents stellar evolution calculations of Pop. II (Z = 0.001) mass-losing stars of initial mass 0.8 to 1.6 M circle dot , with exponentially-decreasing mass loss rates of e-folding times 0.5 to 2.0 Gyr, evolving to a final mass of 0.7 M circle dot . The calculations indicate that a globular cluster with apparent turnoff age 18 Gyr could have an actual age as low as ∼12 Gyr. Observational implications that may help to verify the hypothesis, e.g. low C/N abundance ratios among red giants following first dredge-up, blue stragglers, red giant deficiencies, and signatures in cluster mass/luminosity functions, are also discussed.25 refs., 4 figs., 3 tabs

  17. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    OpenAIRE

    McDonald, Iain; Zijlstra, Albert A.; Lagadec, Eric; Sloan, Gregory C.; Boyer, Martha L.; Matsuura, Mikako; Smith, Rowan J.; Smith, Christina L.; Yates, Jeremy A.; van Loon, Jacco Th.; Jones, Olivia C.; Ramstedt, Sofia; Avison, Adam; Justtanont, Kay; Olofsson, Hans

    2015-01-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be similar to 1.2-3.5x10(-7) M-circle dot yr(-1). We would naively expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 4...

  18. On the radial distribution of white dwarfs in the Galactic globular cluster omega Cen

    Science.gov (United States)

    Calamida, A.; Corsi, C. E.; Bono, G.; Stetson, P. B.; Prada Moroni, P. G.; Degl'Innocenti, S.; Ferraro, I.; Iannicola, G.; Koester, D.; Pulone, L.; Monelli, M.; Amico, P.; Buonanno, R.; Freyhammer, L. M.; Marchetti, E.; Nonino, M.; Romaniello, M.

    We present deep and accurate photometry (F435W, F625W, F658N) of the Galactic Globular Cluster omega Cen collected with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We identified ≈ 6,500 white dwarf (WD) candidates and compared their radial distribution with that of Main Sequence (MS) stars. We found a mild evidence that young WDs ( 0.1 ≲ t ≲ 0.6 Gyr) are less centrally concentrated when compared to MS stars in the magnitude range 25 < F435W < 26.5.

  19. Standard globular cluster giant branches in the (MI/V-IO) plane

    International Nuclear Information System (INIS)

    Da Costa, G.S.; Armandroff, T.E.

    1990-01-01

    CCD photometry in the V, I (Cousins) bandpasses is presented for a large number of giants in eight galactic globular clusters. The (V-I) O color of the giant branch accurately ranks clusters in metal abundance, and can accordingly be used to ascertain both metal abundances and abundance dispersions in old stellar populations. A relation is derived that yields the bolometric correction to the I magnitude for red giants as a function of (V-I) O color. With this relation, and the assumption of the LDZ distance scale, the bolometric magnitudes of the brightest red giants in the clusters were determined; good agreement is obtained with the predictions of stellar evolution theory for the luminosity of the He core flash. 63 refs

  20. GLOBULAR CLUSTER FORMATION EFFICIENCIES FROM BLACK HOLE X-RAY BINARY FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Justham, Stephen [The Key Laboratory of Optical Astronomy, National Astronomical Observatories, The Chinese Academy of Sciences, Datun Road, Beijing 100012 (China); Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Schawinski, Kevin, E-mail: sjustham@nao.cas.cn [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland)

    2015-08-10

    We investigate a scenario in which feedback from black hole X-ray binaries (BHXBs) sometimes begins inside young star clusters before strong supernova (SN) feedback. Those BHXBs could reduce the gas fraction inside embedded young clusters while maintaining virial equilibrium, which may help globular clusters (GCs) to stay bound when SN-driven gas ejection subsequently occurs. Adopting a simple toy model with parameters guided by BHXB population models, we produce GC formation efficiencies consistent with empirically inferred values. The metallicity dependence of BHXB formation could naturally explain why GC formation efficiency is higher at lower metallicity. For reasonable assumptions about that metallicity dependence, our toy model can produce a GC metallicity bimodality in some galaxies without a bimodality in the field-star metallicity distribution.

  1. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E. M. H.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Dogiel, V. A., E-mail: cyhui@cnu.ac.kr [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow (Russian Federation)

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  2. New 2MASS near-infrared photometry for globular clusters in M31

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Ma, Jun; Wu, Zhenyu; Zhou, Xu, E-mail: majun@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-01

    We present Two Micron All Sky Survey JHK {sub s} photometry for 913 star clusters and candidates in the field of M31, which are selected from the latest Revised Bologna Catalog of M31 globular clusters (GCs) and candidates. The photometric measurements in this paper supplement this catalog, and provide the most comprehensive and homogeneous photometric catalog for M31 GCs in the JHK {sub s} bandpasses. In general, our photometry is consistent with previous measurements. The globular cluster luminosity function (GCLF) peaks for the confirmed GCs derived by fitting a t {sub 5} distribution using the maximum likelihood method are J{sub 0}=15.348{sub −0.208}{sup +0.206}, H{sub 0}=14.703{sub −0.180}{sup +0.176}, and K{sub s0}=14.534{sub −0.146}{sup +0.142}, all of which agree well with previous studies. The GCLFs are different between metal-rich (MR) and metal-poor (MP), and between inner and outer subpopulations, as MP clusters are fainter than their MR counterparts and the inner clusters are brighter than the outer ones, which confirm previous results. The NIR colors of the GC candidates are on average redder than those of the confirmed GCs, which leads to an obscure bimodal distribution of color indices. The relation of (V – K {sub s}){sub 0} and metallicity shows a notable departure from linearity, with a shallower slope toward the redder end. The color-magnitude diagram (CMD) and color-color diagram show that many GC candidates are located out of the evolutionary tracks, suggesting that some of them may be false M31 GC candidates. The CMD also shows that the initial mass function of M31 GCs covers a large range, and the majority of the clusters have initial masses between 10{sup 3} and 10{sup 6} M {sub ☉}.

  3. THE 100 Myr STAR FORMATION HISTORY OF NGC 5471 FROM CLUSTER AND RESOLVED STELLAR PHOTOMETRY

    International Nuclear Information System (INIS)

    Garcia-Benito, Ruben; Perez, Enrique; Maiz Apellaniz, Jesus; Cervino, Miguel; Diaz, Angeles I.

    2011-01-01

    We show that star formation in the giant H II region NGC 5471 has been ongoing during the past 100 Myr. Using Hubble Space Telescope/Wide-Field Planetary Camera 2 F547M and F675W, ground-based JHK s , and GALEX FUV and NUV images, we have conducted a photometric study of the star formation history (SFH) in the massive giant extragalactic H II region NGC 5471 in M101. We perform a photometric study of the color-magnitude diagram (CMD) of the resolved stars and an integrated analysis of the main individual star-forming clusters and of NGC 5471 as a whole. The integrated UV-optical-NIR photometry for the whole region provides two different reference ages, 8 Myr and 60 Myr, revealing a complex SFH, clearly confirmed by the CMD-resolved stellar photometry analysis. The spatial distribution of the stars shows that the star formation in NGC 5471 has proceeded along the whole region during, at least, the last 100 Myr. The current ionizing clusters are enclosed within a large bubble, which is likely to have been produced by the stars that formed in a major event ∼20 Myr ago.

  4. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Wang, Chuchu [Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Bekki, Kenji; For, Bi-Qing [ICRAR M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Cioni, Maria-Rosa L. [Department of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Clementini, Gisella [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Emerson, Jim [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Groenewegen, Martin A. T. [Royal Observatory of Belgium, Ringlaan 3, 1180 Ukkel (Belgium); Guandalini, Roald [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D 2401, 3001 Leuven (Belgium); Marconi, Marcella; Ripepi, Vincenzo [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Naples (Italy); Piatti, Andrés E. [Observatorio Astrońomico, Universidad Nacional de Córdoba, Laprida 854, 5000 Córdoba (Argentina); Van Loon, Jacco Th., E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  5. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    International Nuclear Information System (INIS)

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron

    2011-01-01

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R GC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  6. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. PRELIMINARY PUBLIC CATALOG RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Bellini, A.; Anderson, J.; Van der Marel, R. P.; Brown, T. M. [Space Telescope Science Institute, San Martin Drive 3700, Baltimore, MD 21218 (United States); Piotto, G.; Granata, V.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Cassisi, S. [Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); Aparicio, A.; Hidalgo, S., E-mail: mario.soto@uda.cl [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain)

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  7. STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256

    Energy Technology Data Exchange (ETDEWEB)

    Mulia, A. J.; Chandar, R. [Physics and Astronomy Department, University of Toledo, Toledo, OH 43606-3390 (United States); Whitmore, B. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-07-20

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  8. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  9. N-body modeling of globular clusters: detecting intermediate-mass black holes by non-equipartition in HST proper motions

    Science.gov (United States)

    Trenti, Michele

    2010-09-01

    Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in

  10. Synthetic horizontal branch models for globular clusters - the luminosity of the horizontal branch and the Oosterhoff effect

    International Nuclear Information System (INIS)

    Lee, Y.W.; Demarque, P.; Zinn, R.

    1987-01-01

    The variation of horizontal-branch (HB) luminosities with metal abundances is analyzed on the basis of HB models synthesized from theoretical HB evolutionary tracks. The focus is on the Oosterhoff effect, as related to period shifts in globular-cluster RR Lyr variables. The construction of the models and the Oosterhoff period groups is explained in detail, and the implications for globular-cluster ages are considered. The ratio of Delta M(bol) (RR) to Delta Fe/H for the HB is calculated as 0.24, slightly steeper than that found by Sandage (1981 and 1982). 35 references

  11. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  12. The puzzling assembly of the Milky Way halo – contributions from dwarf Spheroidals and globular clusters

    Directory of Open Access Journals (Sweden)

    Lépine S.

    2012-02-01

    Full Text Available While recent sky surveys have uncovered large numbers of ever fainter Milky Way satellites, their classification as star clusters, low-luminosity galaxies, or tidal overdensities remains often unclear. Likewise, their contributions to the build-up of the halo is yet debated. In this contribution we will discuss the current knowledge of the stellar populations and chemo-dynamics in these puzzling satellites, with a particular focus on dwarf spheroidal galaxies and the globular clusters in the outer Galactic halo. Also the question of whether some of the outermost halo objects are dynamically associated with the (Milky Way halo at all is addressed in terms of proper measurements in the remote Leo I and II dwarf galaxies.

  13. WHERE ARE MOST OF THE GLOBULAR CLUSTERS IN TODAY’S UNIVERSE?

    Energy Technology Data Exchange (ETDEWEB)

    Harris, William E., E-mail: harris@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON (Canada)

    2016-04-15

    The total number of globular clusters (GCs) in a galaxy rises continuously with the galaxy luminosity L, while the relative number of galaxies decreases with L following the Schechter function. The product of these two very nonlinear functions gives the relative number of GCs contained by all galaxies at a given L. It is shown that GCs, in this universal sense, are most commonly found in galaxies within a narrow range around L{sub ⋆}. In addition, blue (metal-poor) GCs outnumber the red (metal-richer) ones globally by 4 to 1 when all galaxies are added, pointing to the conclusion that the earliest stages of galaxy formation were especially favorable to forming massive, dense star clusters.

  14. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    Science.gov (United States)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  15. Variable blue straggler stars in NGC 5466

    International Nuclear Information System (INIS)

    Harris, H.C.; Mateo, M.; Olszewski, E.W.; Nemec, J.M.

    1990-01-01

    Nine variable blue stragglers have been found in the globular cluster NGC 5466. The six dwarf Cepheids in this cluster coexist in the instability strip with other nonvariable stars. The three eclipsing binaries are among the hottest of the blue stragglers. The hypothesis is discussed that all blue stragglers in this cluster have undergone mass transfer in close binaries. Under this hypothesis, rotation and spin-down play important roles in controlling the evolution of blue stragglers in old clusters and in affecting some of their observational properties. 14 refs

  16. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengyuan; De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of the clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.

  17. The Next Generation Virgo Cluster Survey (NGVS). XXXII. A Search for Globular Cluster Substructures in the Virgo Galaxy Cluster Core

    Science.gov (United States)

    Powalka, Mathieu; Puzia, Thomas H.; Lançon, Ariane; Longobardi, Alessia; Peng, Eric W.; Duc, Pierre-Alain; Alamo-Martínez, Karla; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Durrell, Patrick; Eigenthaler, Paul; Ferrarese, Laura; Guhathakurta, Puragra; Gwyn, S. D. J.; Hudelot, Patrick; Liu, Chengze; Mei, Simona; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Rubén; Toloba, Elisa; Zhang, Hongxin

    2018-03-01

    Substructure in globular cluster (GC) populations around large galaxies is expected in galaxy formation scenarios that involve accretion or merger events, and it has been searched for using direct associations between GCs and structure in the diffuse galaxy light, or with GC kinematics. Here, we present a search for candidate substructures in the GC population around the Virgo cD galaxy M87 through the analysis of the spatial distribution of the GC colors. The study is based on a sample of ∼1800 bright GCs with high-quality u, g, r, i, z, K s photometry, selected to ensure a low contamination by foreground stars or background galaxies. The spectral energy distributions of the GCs are associated with formal estimates of age and metallicity, which are representative of its position in a 4D color space relative to standard single stellar population models. Dividing the sample into broad bins based on the relative formal ages, we observe inhomogeneities that reveal signatures of GC substructures. The most significant of these is a spatial overdensity of GCs with relatively young age labels, of diameter ∼0.°1 (∼30 kpc), located to the south of M87. The significance of this detection is larger than about 5σ after accounting for estimates of random and systematic errors. Surprisingly, no large Virgo galaxy is present in this area that could potentially host these GCs. But candidate substructures in the M87 halo with equally elusive hosts have been described based on kinematic studies in the past. The number of GC spectra available around M87 is currently insufficient to clarify the nature of the new candidate substructure.

  18. THE EXTENDED MAIN-SEQUENCE TURNOFF CLUSTERS OF THE LARGE MAGELLANIC CLOUD-MISSING LINKS IN GLOBULAR CLUSTER EVOLUTION

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2011-01-01

    Recent observations of intermediate-age (1-3 Gyr) massive star clusters in the Large Magellanic Cloud have revealed that the majority possess bifurcated or extended main-sequence turnoff (EMSTO) morphologies. This effect can be understood to arise from subsequent star formation among the stellar population with age differences between constituent stars amounting to 50-300 Myr. Age spreads of this order are similarly invoked to explain the light-element abundance variations witnessed in ancient globular clusters (GCs). In this paper, we explore the proposition that the clusters exhibiting the EMSTO phenomenon are a general phase in the evolution of massive clusters, one that naturally leads to the particular chemical properties of the ancient GC population. We show that the isolation of EMSTO clusters to intermediate ages is the consequence of observational selection effects. In our proposed scenario, the EMSTO phenomenon is identical to that which establishes the light-element abundance variations that are ubiquitous in the ancient GC population. Our scenario makes a strong prediction: EMSTO clusters will exhibit abundance variations in the light-elements characteristic of the ancient GC population.

  19. WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819

    International Nuclear Information System (INIS)

    Tabetha Hole, K.; Geller, Aaron M.; Mathieu, Robert D.; Meibom, Soeren; Platais, Imants; Latham, David W.

    2009-01-01

    We present the current results from our ongoing radial-velocity (RV) survey of the intermediate-age (2.4 Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry, we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11 ≤V≤ 16.5 and an approximate mass range of 1.1-1.6 M sun . Our sample covers a 23 arcminute (13 pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4 km s -1 for most narrow-lined stars. We use our RV data to calculate membership probabilities for stars with ≥3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster. Using our single cluster members, we find a cluster average RV of 2.34 ± 0.05 km s -1 . We use our kinematic cluster members to construct a cleaned color-magnitude diagram from which we identify rich giant, subgiant, and blue straggler populations and a well defined red clump. The cluster displays a morphology near the cluster turnoff clearly indicative of core convective overshoot. Finally, we discuss a few stars of note, one of which is a short-period red-clump binary that we suggest may be the product of a dynamical encounter.

  20. Four-color and Hβ photometry for open clusters I: NGC 2516

    International Nuclear Information System (INIS)

    Snowden, M.S.

    1975-01-01

    Extensive uvby and Hβ photometry was obtained for stars in the region of the open cluster NGC 2516. A photometric analysis revealed variable reddening and a mean reddening of E(b - y) = 0.088 m. In addition to determining a new age of 137 x 10 6 years and a new adopted distance modulus of 8.01 m, several possible new variable stars were discovered, one of which may be an eclipsing Ap star. From the photometry of the Si-lambda4200 stars in the cluster it appears the absolute magnitudes and masses for this type of star are not as restricted as previously thought

  1. Isochrone Fittings for the Open Star Clusters NGC 3680 and Melotte 66

    Science.gov (United States)

    Guillemaud, Nikolas; Frinchaboy, P. M.; Thompson, B. A.

    2013-01-01

    I will be displaying the results from isochrone fittings on two open star clusters. The stellar evolution models used to generate the isochrones are from Dartmouth (Dotter et al. 2007) and Padova (Mango et al. 2008). Both of the models were applied to two star clusters: NGC 3680 and Melotte 66. The analysis is performed by utilizing infrared observations from the CPAPIR instrument; which is operated in conjunction with CTIO’s 1.5m telescope. This research was made possible by the NSF’s REU grant; award number 0851558.

  2. Data Analysis of Globular Cluster Harris Catalogue in View of the King Models and Their Dynamical Evolution. I. Theoretical model

    Directory of Open Access Journals (Sweden)

    Marco Merafina

    2014-12-01

    Full Text Available We discuss the possibility to analyze the problem of gravothermal catastrophe in a new way, by obtaining thermodynamical equations to apply to a selfgravitating system. By using the King distribution function in the framework of statistical mechanics we treat the globular clusters evolution as a sequence of quasi-equilibrium thermodynamical states.

  3. The first two transient supersoft X-ray sources in M 31 globular clusters and the connection to classical novae

    Czech Academy of Sciences Publication Activity Database

    Henze, M.; Pietsch, W.; Haberl, F.; Sala, G.; Quimby, R.; Hernanz, M.; Della Valle, M.; Milne, P.; Williams, G.G.; Burwitz, V.; Greiner, J.; Stiele, H.; Hartmann, D. H.; Kong, A. K. H.; Hornoch, Kamil

    2009-01-01

    Roč. 500, č. 2 (2009), s. 769-779 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : M 31 * novae * globular clusters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  4. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    Science.gov (United States)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  5. A spectroscopic study of chemical abundances in the globular cluster Omega Centauri

    International Nuclear Information System (INIS)

    Caldwell, S.P.

    1987-10-01

    Blue spectra at a resolution of 0.5 A of red giants in the globular clusters Omega Centauri and NGCs 288, 362, 6397 and 6809 (M55) have been obtained with the Anglo-Australian Telescope. The observations were made to test Sweigart and Mengel's [Astrophy S. J. 229, 624] theory of mixing of nuclearly-processed material to the star's surface, and to elucidate the relationship between primordial and evolutionary origins for the range in abundance within Omega Cen. The Omega Cen stars were chosen in two groups either side of the giant branch, covering the luminosity range where the onset of mixing was predicted to occur. Abundances of C, N, Fe and other heavy elements have been determined by fitting synthetic spectra, calculated from model atmospheres, to the observational data. (author)

  6. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    Science.gov (United States)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  7. Neutron-Capture Element Abundances in the Globular Cluster M15.

    Science.gov (United States)

    Sneden; Johnson; Kraft; Smith; Cowan; Bolte

    2000-06-20

    High-resolution, high signal-to-noise ratio, blue-violet spectra of three red giant branch tip stars in M15 have been obtained with the Keck I High-Resolution Echelle Spectrograph. These spectra have been analyzed to determine the abundances of several neutron-capture elements, including the radioactive chronometer element thorium. There are two principal results of this study. First, the abundances of the heavier (Z>/=56) elements for each of the three stars is well matched by a scaled solar system r-process abundance distribution. Second, a weighted mean-observed Th/Eu ratio for the stars implies an age for the neutron-capture material in M15 stars of 14+/-3 Gyr, in reasonable agreement with other recent age estimates for Galactic globular clusters.

  8. Image processing of globular clusters - Simulation for deconvolution tests (GlencoeSim)

    Science.gov (United States)

    Blazek, Martin; Pata, Petr

    2016-10-01

    This paper presents an algorithmic approach for efficiency tests of deconvolution algorithms in astronomic image processing. Due to the existence of noise in astronomical data there is no certainty that a mathematically exact result of stellar deconvolution exists and iterative or other methods such as aperture or PSF fitting photometry are commonly used. Iterative methods are important namely in the case of crowded fields (e.g., globular clusters). For tests of the efficiency of these iterative methods on various stellar fields, information about the real fluxes of the sources is essential. For this purpose a simulator of artificial images with crowded stellar fields provides initial information on source fluxes for a robust statistical comparison of various deconvolution methods. The "GlencoeSim" simulator and the algorithms presented in this paper consider various settings of Point-Spread Functions, noise types and spatial distributions, with the aim of producing as realistic an astronomical optical stellar image as possible.

  9. Anti-helium flux as a signature for antimatter globular clusters in our galaxy

    International Nuclear Information System (INIS)

    Belotskij, K.M.; Golubkov, Yu.A.; Khlopov, M.Yu.; Konoplich, R.V.; Sakharov, A.S.

    2000-01-01

    The alpha magnetic spectrometer experiment is shown to be sensitive to test the hypothesis on the existence of antimatter globular cluster in our Galaxy. The hypothesis follows from the analysis of possible tests for the mechanisms of baryosynthesis and uses antimatter domain in the matter domain Universe as the probe for the physics underlaying the origin of the matter. The interval of masses for the antimatter in our Galaxy is fixed from below by the condition of antimatter domain survival in the matter dominated Universe and from above by the observed gamma-ray flux. For this interval the expected fluxes of anti-helium-3 and anti-helium-4 are calculated with the account of their interaction with the matter in the Galaxy [ru

  10. Anti-helium flux as a signature for antimatter globular clusters in our galaxy

    International Nuclear Information System (INIS)

    Belotsky, K.M.; Golubkov, Yu.A.; Khlopov, M.Yu.; Konoplich, R.V.; Sakharov, A.S.

    2000-01-01

    The Alpha Magnetic Spectrometer experiment is shown to be sensitive to test the hypothesis on the existence of antimatter globular cluster in our Galaxy. The hypothesis follows from the analysis of possible tests for the mechanisms of baryosynthesis and uses antimatter domains in the matter-dominated Universe as the probe for the physics underlying the origin of matter. The interval of masses for the antimatter in our Galaxy is fixed from below by the condition of antimatter domain survival in the matter-dominated Universe and from above by the observed gamma-ray flux. For this interval, the expected fluxes of anti-helium-3 and anti-helium-4 are calculated with account for their interaction with the matter in the Galaxy