Sample records for globigerina bulloides neogloboquadrina

  1. Atypical delta sup(13) C signature in Globigerina bulloides at the ODP site 723A (Arabian Sea): Implications of environmental changes caused by upwelling

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.

    Production of Globigerina bulloides generally increases during upwelling in the tropical ocean and, in particular, during southwest monsoon season in the Arabian Sea. We studied the delta sup(13) C signatures of Globigerina bulloides from Ocean...

  2. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D'Orbigny...

  3. Seasonal variability of the vertical fluxes of @iGlobigerina bulloides@@ (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of @iGlobigerina bulloides@@ (@i...

  4. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D...

  5. Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides (United States)

    Dittert, Nicolas; Henrich, Rüdiger


    Ultrastructure dissolution susceptibility of the planktic foraminifer Globigerina bulloides, carbonate ion content of the water column, calcium carbonate content of the sediment surface, and carbonate/carbon weight percentage ratio derived from sediment surface samples were investigated in order to reconstruct the position of the calcite saturation horizon, the sedimentary calcite lysocline, and the calcium carbonate compensation depth (CCD) in the modern South Atlantic Ocean. Carbonate ion data from the water column refer to the GEOSECS locations 48, 103, and 109 and calcium carbonate data come from 19 GeoB sediment surface samples of 4 transects into the Brazil, the Guinea, and the Cape Basins. We present a new (paleo-) oceanographic tool, namely the Globigerina bulloides dissolution index (BDX). Further, we give evidence (a) for progressive G. bulloides ultrastructural breakdown with increasing carbonate dissolution even above the lysocline; (b) for a sharp BDX increase at the sedimentary lysocline; and (c) for the total absence of this species at the CCD. BDX puts us in the position to distinguish the upper open ocean and the upwelling influenced continental margin above from the deep ocean below the sedimentary lysocline. Carbonate ion data from water column samples, calcite weight percentage data from surface sediment samples, and carbonate/carbon weight percentage ratio appear to be good proxies to confirm BDX. As shown by BDX both the calcite saturation horizon (in the water column) and the sedimentary lysocline (at the sediment-water interface) mark the boundary between the carbonate ion undersaturated and highly corrosive Antarctic Bottom Water and the carbonate ion saturated North Atlantic Deep Water (NADW) of the modern South Atlantic.

  6. Oxygen isotope records of Globigerina bulloides across a north-south transect in the south-western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Chaturvedi, S.K.; Saraswat, R

    , Washington, D.C). Lutjeharms, J.R.E., N.M. Walters and B.R. Allanson. 1985. Oceanic frontal systems and biologicalenhancement. p.11-21. In: Antarctic Nutrient Cycles and Food Webs. ed. by W.R. Siegfried et al., Springer-Verlag, NewYork. Matsumoto, K., J...: Ocean Sci. J.: 44(2); 2009; 117-123 OXYGEN ISOTOPE RECORDS OF GLOBIGERINA BULLOIDES ACROSS A NORTH-SOUTH TRANSECT IN THE SOUTH-WESTERN INDIAN OCEAN N. Khare 1* , S. K. Chaturvedi 2 and R. Saraswat 3 1. Ministry of Earth Sciences, Block...

  7. Deciphering the modern calcification depth of Globigerina bulloides in the southwestern Indian Ocean from its oxygen isotopic composition

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Khare, N.

    -fit results. Similarly, the estimated seawater salinity was calculated using the seawater delta sup(18)O calculated from G. bulloides delta sup(18)O, and measured seawater temperature taken from the Levitus database. A comparison of seawater salinity...

  8. Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach

    DEFF Research Database (Denmark)

    Lombard, Fabien; Labeyrie, L.; Michel, E.


    We present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquadrina pachyderma, Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerina bulloides, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera and Orbulina universa...... in the marine carbon cycle....... ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data...

  9. Nomination of the Globigerina Limestone of the Maltese Islands as a "Global Heritage Stone Resource" (United States)

    Cassar, JoAnn


    The Maltese Islands consist of two main islands, Malta and Gozo, as well as a small number of islets, and lie in the central Mediterranean Sea approximately 90 km south of Sicily. Although only 316 square kilometres in size, the Islands contain a rich concentration of archaeological sites and historic buildings, as well as vernacular architecture and modern buildings, for the most part built of the local Globigerina Limestone, which is one of the few natural resources of the Islands. This stone can be described as a typical "soft limestone", very easy to carve and shape. It forms part of the large family of Oligo-Miocene "soft limestones" widely diffused in the Mediterranean Basin. The Maltese Globigerina Limestone Formation is one of five main Formations, and varies in thickness from 20 to over 200 m. The material used for building is located stratigraphically in the lower part of the Globigerina Limestone Formation, called the Lower Globigerina Limestone. This Formation is stratified into thick beds at outcrop. Sections where bioturbation is concentrated often also occur. This limestone is fine-grained, yellow to pale grey in colour, almost wholly composed of the tests of globigerinid planktonic foraminifera. Petrographically, Globigerina Limestone can be described as a bioclastic packstone, with bioclastic wackestones also occurring. This limestone has always been used as the predominant building material in the Islands. The Maltese prehistoric Temples, which were constructed approximately 6000 years ago, bear testimony to this. Between 1530 and 1798 the Order of the Knights of St John built kilometres of fortifications in this same material to protect the Island from the expanding Ottoman Empire. Fortifications, impressive churches, auberges and palaces were built of this stone during this period. The capital city of Valletta, a rich and dense manifestation of Baroque architecture in Globigerina Limestone, is included on the UNESCO World Heritage List, as are

  10. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer


    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  11. 16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer.

    Directory of Open Access Journals (Sweden)

    Clare Bird

    Full Text Available Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identify and culture. We use two species of planktonic foraminifera from the climatically susceptible, palaeoceanographically important genus Neogloboquadrina, as ideal test microorganisms for the application of 16S rRNA gene metabarcoding. Neogloboquadrina dutertrei and Neogloboquadrina incompta were collected from the California Current and subjected to either 16S rRNA gene metabarcoding, fluorescence microscopy, or transmission electron microscopy (TEM to investigate their species-specific trophic interactions and potential symbiotic associations. 53-99% of 16S rRNA gene sequences recovered from two specimens of N. dutertrei were assigned to a single operational taxonomic unit (OTU from a chloroplast of the phylum Stramenopile. TEM observations confirmed the presence of numerous intact coccoid algae within the host cell, consistent with algal symbionts. Based on sequence data and observed ultrastructure, we taxonomically assign the putative algal symbionts to Pelagophyceae and not Chrysophyceae, as previously reported in this species. In addition, our data shows that N. dutertrei feeds on protists within particulate organic matter (POM, but not on bacteria as a major food source. In total contrast, of OTUs recovered from three N. incompta specimens, 83-95% were assigned to bacterial classes Alteromonadales and Vibrionales of the order Gammaproteobacteria. TEM demonstrates that these bacteria are a food source, not putative symbionts. Contrary to the current view that non-spinose foraminifera are predominantly herbivorous, neither N. dutertrei nor N. incompta

  12. Relationships Between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory-Grown Neogloboquadrina Foraminifera (United States)

    Davis, Catherine V.; Fehrenbacher, Jennifer S.; Hill, Tessa M.; Russell, Ann D.; Spero, Howard J.


    Mg/Ca ratio paleothermometry in foraminifera is an important tool for the reconstruction and interpretation of past environments. However, existing Mg/Ca:temperature relationships for planktic species inhabiting middle- and high-latitude environments are limited by a lack of information about the development and impact of low-Mg/Ca ratio "crusts" and the influence of the carbonate system on Mg/Ca ratios in these groups. To address this, we cultured individual specimens of Neogloboquadrina incompta and Neogloboquadrina pachyderma in seawater across a range of temperature (6°-12°C) and pH (7.4-8.2). We found by laser ablation inductively couple mass spectrometry analyses of shells that culture-grown crust calcite in N. incompta had a lower Mg/Ca ratio than ontogenetic calcite formed at the same temperature, suggesting that temperature is not responsible for the low-Mg/Ca ratio of neogloboquadrinid crusts. The Mg/Ca:temperature relationship for ontogenetic calcite in N. incompta was consistent with the previously published culture-based relationship, and no significant relationship was found between Mg/Ca ratios and pH in this species. However, the Mg/Ca ratio in laboratory-cultured N. pachyderma was much higher than that reported in previous core top and sediment trap samples, due to lack of crust formation in culture. Application of our ontogenetic calcite-specific Mg/Ca:temperature relationships to fossil N. pachyderma and N. incompta from five intervals in cores from the Santa Barbara Basin and the Bering Sea shows that excluding crust calcite in fossil specimens may improve Mg/Ca-based temperature estimates.

  13. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells (United States)

    Livsey, C.; Spero, H. J.; Kozdon, R.


    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.

  14. Carbon and oxygen isotope time series records of planktonic and benthic foraminifera from the Arabian Sea: Implications on upwelling processes

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.

    changes associated with the calci¢cation depth of these twospecies. Ingeneral, Globigerina bulloides exhibitsgreater N 18 O amplitude £uctuations compared to Pulle- niatina obliquiloculata and Uvigerina excellens (Fig.3).TherangeofN 18 Ochangesin...,thelocalbottomwatertem- perature changes associated with monsoon circu- lationwouldaccountforthe0.4xhighershiftin N 18 Onoticed atODPSite723. 4.3. Carbon isotopes The N 13 Cvaluesof Globigerina bulloides, Pulle- niatina obliquiloculata and Uvigerina excellens vary from 31.13 to 32...

  15. Constraining Seasonal and Vertical Distributions of Planktonic Foraminifera for Paleoclimate Reconstruction Since MIS3 at the Axial Seamount, Juan de Fuca Ridge (United States)

    Chen, S. L.; Ravelo, A. C.; Clague, D. A.


    The California Current is an upwelling region with dynamic interactions between circulation, biological productivity and ecology. A 77 cm piston push core was taken from the Juan de Fuca Ridge Axial Seamount using a Remotely Operated Vehicle (ROV) (2213m, 45.55º N, 130.08º W), an active submarine volcano ~480 km off Oregon's coast. Five radiocarbon dates indicate that the sediment ranges from 42.6 ka at 77 cm to 17.6 ka at 15 cm, with an average sediment accumulation rate of 2.47 cm/ka from 77-15 cm, and an average rate of 0.85 cm/ka during the postglacial period (the core representing subtropical, subartic, and arctic fauna have been used to constrain changes in vertical and seasonal temperature since Marine Isotope Stage 3 (MIS3). Measurements of δ18O of the upwelling species Globigerina bulloides, the thermocline dwelling species Neogloboquadrina dutertrei, and the warm mixed-layer species Orbulina universa are offset from each other, reflecting vertical and seasonal variation among the planktonic foraminifera. Of the three species, G. bulloides shows the least variation in δ18O, possibly indicating that marked changes in temperature are masking changes in the δ18O of seawater due to global ice volume changes. G. bulloides and O. universa δ18O values are similar in MIS 3 and diverge with time, indicating the development of strong seasonal succession of species, since the last glacial maximum. Bulk nitrogen isotopes and nitrogen flux provide additional constraints on upwelling strength and insight into local biological productivity and nutrient dynamics. Obtaining Mg/Ca data will clarify the δ 18O interpretation except deep in the core where metal-bearing authigenic precipitates affect Mg concentrations. These climatic proxies together provide insight into how global climate change and local seamount volcanism impacts regional productivity in the California Current.

  16. Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach

    Directory of Open Access Journals (Sweden)

    F. Lombard


    Full Text Available We present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquadrina pachyderma, Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerina bulloides, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera and Orbulina universa. By using the main physiological rates of foraminifers (nutrition, respiration, symbiotic photosynthesis, this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%. Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle.

  17. Paleoenvironmental Reconstruction of the North Atlantic Current Variations from MIS 3 to Holocene Based on Multiproxy Record from the North-East Scotland Continental Margin. (United States)

    Ovsepyan, Y.; Tikhonova, A.; Novichkova, E.; Gupta, R. M.; Korsun, S.; Matul, A.


    In order to reconstruct the history of water mass interaction between the North Atlantic and the Nordic Seas since MIS 3 to the present, the sediment core from the North-East Scotland continental slope was investigated. The site of core AI-3521 (59°30.009 N, 7°20.062 E) from the 1051 m water depth is located beneath the pathway of the North Atlantic current which transports warm and saline Atlantic surface water to the Norwegian Sea. The age model of the sequence is based on stable isotope record of benthic Cassidulina neoteretis and planktic Neogloboquadrina pachyderma sin. and Globigerina bulloides. The Holocene interval of the upper 1.5 m is characterized by high sedimentation rates and the high biodiversity of microfauna. The distribution of ice rafted debris and CaCO3 content; benthic and planktic foraminiferal assemblages; oxygen, carbon and boron isotopes, Mg/Ca ratio were used to reconstruct the regional paleoceanographic conditions (bioproductivity, temperature, salinity) and to compare with the paleoclimatic events in the subpolar North Atlantic in the frame of the global environmental changes during the Late Pleistocene and Holocene. The research was supported by Russian Science Foundation projects 16-47-02009 and 14-50-00095.

  18. Planktic foraminiferal responses to orbital scale oceanographic changes off the western Iberian margin over the last 900 kyr: Results from IODP site U1391 (United States)

    Singh, A. D.; Verma, K.; Jaiswal, S.; Alonso-Garcia, M.; Li, B.; Abrantes, F.


    This paper presents planktic foraminiferal assemblage records of the last 900 kyr from the SW Iberian margin (IODP Site U1391). The faunal records show the history of surface oceanographic changes on glacial/interglacial scales before and after the Mid-Brunhes Event (MBE), a period when a major shift in the climate pattern was recorded in other regions. Temporal variations in relative abundances of characteristic species/groups are used to infer changes in the latitudinal position of the polar/Arctic water (% Neogloboquadrina pachyderma sinistral and Turborotalita quinqueloba), influence of the transitional subpolar water mass (% N. pachyderma dextral), and subtropical water (% tropical/subtropical species/group). Past changes in the upwelling intensity and productivity pattern associated with seasonal trade wind strength are inferred from the abundance variations of Globigerina bulloides and G. bulloides + Globigerinita glutinata, respectively. Faunal data reveal the influence of cold water masses (polar/subpolar) at the examined site was more pronounced during glacial stages except for marine isotope stage (MIS) 14 and 16. The magnitude of the polar/subpolar water mass invading the study area was at maximum before the MBE during MIS 18, 20 and 22, resulting in a situation like the present day Arctic Front. Interglacial periods prior to the MBE were also relatively colder than those of the post-MBE. Our faunal based inferences are in agreement with the ice-rafted debris (IRD) concentration and N. pachyderma sinistral records of the subpolar North Atlantic sites. Based on faunal proxies, we recorded major and rapid changes in upwelling intensity and related productivity during glacial Terminations. Both the upwelling intensity and productivity significantly increased after the MBE, particularly during the interglacials MIS 7, 9 and 11. Our productivity record parallels the EPICA CH4 record suggesting teleconnections between trade winds induced productivity and the

  19. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka (United States)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.


    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  20. Late Pliocene Northern Hemisphere glaciations: The continental and marine responses in the central Mediterranean (United States)

    Nebout, Nathalie Combourieu; Grazzini, Colette Vergnaud

    Detailed pollen analyses and oxygen isotope records of three foraminiferal species, Globigerina bulloides, Uvigerina peregrina and Cibicides pachyderma, from the Semaforo and Vrica composite sections (Crotone, southern Italy) have been compared to the global climatic changes depicted by late Pliocene-early Pleistocene foraminiferal δ 18O records of Site 607 in the North Atlantic, and Hole 653A in the Tyrrhenian basin, West Mediterranean. Major overturns in the mid-altitude vegetation are shown near isotopic stages 82, 60, 58 and 50, at about 2.03 Ma, 1.6 Ma and 1.37 Ma according to the Raymo et al. (1989) and Ruddiman et al. (1989) timescales. At the same dates, glacial 18O maxima either became higher or display step increases in the western Mediterranean or in the open ocean as well. This suggests that size increases of Northern Hemisphere ice sheets were the driving factor for regional or local marine and continental environmental changes within the Mediterranean basin. Near isotopic stages 62-60, close to the conventional Plio-Pleistocene boundary, the climatic conditions severed enough within the Mediterranean basin to modify the continental environment, as depicted by a sudden increase of Artemisia percentages, while the first significant southward migration of the North Polar Front may have been recorded by an influx of left coiling Neogloboquadrina pachyderma in the central Mediterranean. It also appears that 'Boreal Guests' entered the Mediterranean during phases of 18O enrichment of foraminiferal calcite. There does not seem to be any discrepancy between the climatic concept of the Pliocene-Pleistocene boundary and its chronostratigraphic definition.

  1. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau (United States)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.


    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  2. Millennial-Scale Planktic Foraminifer Faunal Variability in the East China Sea during the Past 40000 Years (IMAGES MD012404 from the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Yuan-Pin Chang


    Full Text Available High resolution planktic foraminifer fauna assemblage data are used to reconstruct the millennial-scale sea surface temperature (SST variability of the past 40000 years at an IMAGES core site (MD012404 in the Okinawa Trough in the East China Sea (ECS. The fauna assemblages in core MD012404 are dominated by five species - Globigerinoides ruber, Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globigerinita glutinata, which account for > 70% in relative abundance. Our Q-mode factor analysis decomposed the fauna abundance data into three factors, which indicate cold water mass, warm water mass, and possibly coastal water flow with low salinity in the ECS. The MD012404 fauna data show abrupt changes at ~16 kya, suggesting a return to a warmer climate or warm water intrusion of the Kuroshio into the Okinawa Trough since the Last Glacial Maximum (LGM. SST estimates based on the fauna assemblages of planktic foraminifers indicate a LGM cooling of 1 - 2°C. Amaximum cooling by 3 - 4°C is observed in episodic, millennial-scale events in the glacial stages of the record. The SST record displays variability that closely tracks the structure of oxygen isotopes of stalagmites from Hulu Cave and ice cores from GISP 2 Dansgaard/Oeschger cycles and Heinrich events. Low salinity in the ECS is inferred based on MD012404 fauna SST and planktic foraminifer oxygen isotope records for the cold millennial-scale intervals, pointing to the Intertropical Convergence Zone (ITCZ and/or East Asian monsoon as important factors driving SST and salinity in the subtropical western Pacific, both on orbital and suborbital time scales.

  3. Centennial- to millennial-scale ice-ocean interactions in the subpolar northeast Atlantic 18-41 kyr ago (United States)

    Hall, I. R.; Colmenero-Hidalgo, E.; Zahn, R.; Peck, V. L.; Hemming, S. R.


    In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ˜41 and ˜18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ˜28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

  4. Seasonal variations of the particle flux in the Peru-Chile current at 30°S under `normal' and El Niño conditions (United States)

    Hebbeln, Dierk; Marchant, Margarita; Wefer, Gerold

    Time-series sediment traps were deployed 180 km off the Chilean coast at 30°S in the Peru-Chile Current during the El Niño period 1991/1992 (6 months) and during the 'normal' period 1993/1994 (12 months). Under normal conditions in 1993/1994 the particle fluxes display a pronounced seasonal cycle marked by a settling phytoplankton bloom in September, intermediate fluxes until January, and low fluxes between January and July. This seasonal pattern is also reflected in stable isotope data, measured on the planktic foraminifera species Neogloboquadrina pachyderma (dex.) and Globigerina bulloides, which indicate persistent upwelling conditions between August and February followed by a stratified water column between March and July. The total flux under normal conditions amounts to 65.1 g m -2 a-1, with the main flux constituents contributing 47.6% (carbonate), 26.4% (lithogenic matter), 17.4% (biogenic opal), and 8.6% (organic matter), respectively. Based on these particle flux data the export production has been estimated to be 42 gC m -2 a-1. Although the main flux event in September was not sampled in the El Niño period 1991/1992, the available record from November 1991 to April 1992 allows an interesting comparison with the fluxes of the normal year. The total amount of fluxes and the timing of minor flux events are very similar under normal and under El Niño conditions. However, increased proportions of organic carbon and lithogenic matter under El Niño conditions are interpreted to reflect faster sedimentation and preferred scavenging of organic matter by elevated lithogenic fluxes rather than increased productivity. The higher lithogenic fluxes under El Niño conditions are probably due to increased precipitation and terrestial runoff in the arid to semiarid northern part of Chile.

  5. A Record of the Eastern Tropical Pacific of Water Column Structure Reorganization during the Rapid Climate Changes of Marine Isotope Stage 3. (United States)

    Hendy, I. L.


    Little is known about the details of paleoceanographic changes in the Eastern Tropical Pacific (ETP) during marine isotope stage 3. Here we present a high resolution record of climate change from core ME0005A 10JC (15.7°N; 95.3°E, 1040 m water depth) collected in the Gulf of Tehuantepec spanning 48 to 38 Ka. Planktonic and benthic stable isotope records have been generated alongside Corg, carbonate, δ15N and trace metal concentrations of bulk sediments. Seasonal intense wind forced upwelling produces high Corg flux in the Gulf. In winter, high atmospheric pressures in the Gulf of Mexico and low pressures in the ETP (associated with the ITCZ) create a strong pressure gradient generally blocked by high mountains along the isthmus. A gap near the Gulf of Tehuantepec allows air to spill over into the Pacific creating a hurricane force wind (the Tehuanos) that pushes water off the broad shelf, producing non-Ekman upwelling. Corg production increases from 48 to 38 Ka in association with increasing nitrate utilization as indicated by increasing δ15N values. Conservative trace metals increase relative to non-conservative between 45 and 43 Ka simultaneously with shift to more positive benthic δ13C, while non-conservative (nutrient- like) metals increase after 43 Ka. A prominent short ~1‰ negative shift in benthic δ18O occurs at 44.5 Ka with a 0.5‰ positive step occurring at 43.5 Ka. Globigerina ruber records δ18O values of ~-1‰ between 46 and 45 Ka, decreasing by ~1‰ at 45 Ka, while δ13C values vary between 0 and 1‰. Globigerina bulloides records δ18O values of ~0.5‰ and δ13C of 1‰ between 46 and 45 Ka, but records δ18O values of ~-1‰ and δ13C of -1‰ between 44 and 42 Ka. G. bulloides is associated with winter upwelling in the region, while G. ruber is a surface dweller associated with the Costa Rica Current that enters the Gulf in summer. Neogloboquadrina dutertrei and Globorotalia menardii generally record δ18O values of 0.5 to 0‰ and δ13

  6. Fluids transfer in porous media, the case of carbonates and clay/limestone interfaces. Integrated study of petrophysical, sedimentology and microstructures.The case of two carbonates: the case of two carbonates the Oolithe Blanche from the Paris Basin and the Globigerina Limestone of maltese islands

    International Nuclear Information System (INIS)

    Casteleyn, Lisa


    energy; nonetheless, they are all located within ashore face depositional environment. They are composed of ooids, pellets and bio-clasts invarying proportions. The reservoir properties studied showed the Oolithe Blanche Formation is a microporous one. Microstructural parameters which influence reservoir properties are: the cement type (sparite or micrite), amount of compaction characterized by the cement quantity and the contact between elements and, at last, the pore size distribution within porous elements (micro, meso, macro-pores).The second part of this project is focused on a more petrophysical study which aimed at characterizing the pore network influence (volume, shape in space) on acoustic velocities, electrical conductivity and on permeability. The study is completed by the use of permeability predictive models based on mercury porosimetry spectra.The maltese archipelagos study is based on observations made by Missenard et al. (in prep.).), Rocher et al., (2008) and Missenard et al. (2009, 2011) on the Blue Clay Formation, thick clay formation (100 m) and on the underlying Globigerina Limestone. The clay formation presents an important fracture network characterized by gypsum filling and by an oxidizing zone near the fractures. A similar oxidation, in the shape of lobes and mushrooms, is observed within the Globigerina Limestone. This study is also divided in two parts. In the first one, the focus is on the study of gypsum filling fractures. Studying this filling is directly linked with the storage topic, because, in the case of a nuclear waste storage, the absence of fractures and fluid motion is an important condition to insure the storage security. In the case of gypsums filling, the study is based on geochemical measurements on oxygen (d"1"8O), sulphur (d"3"4S) and strontium isotopes ("8"7Sr/"8"6Sr) coupled with a fluid inclusion study, all measurements performed on gypsum crystal. Those analyses allow us to propose a downward fluids circulation model

  7. Variations of the paleo-productivity in benthic foraminifera records in MIS 3 from western South China Sea (United States)

    Niu, Y.; Du, J.; Huang, B.; Chen, M.


    Understanding climate change of last glacial age as the background information of climate forecasting is particularly important in climate research. Marine Isotope Stage 3 (MIS 3, 61-24 ka B.P.) is a relative warm and unstable period in the last glacial. Millennium scale abrupt climate changes, such as Heinrich events and Dansgaard-Oeschger (D-O) cycles, are identified in this period. Research topic on the variations of monsoon during the glacial cycles, especially in MIS 3, is critical for understanding low latitude climatic change and the global paleo-environment as a whole. Fortunately, high resolution sedimentary records in western South China Sea provide us valuable materials to uncover how East Asia Summer Monsoon (EASM) system acts in a highly fluctuating climate ambient like MIS 3. Core 17954 is located in the modern summer upwelling area off the Vietnam coast in western South China Sea (SCS), its sediments record the variations of upwelling generated by EASM. In this work, we carry out paleo-ecological analyses on planktonic ( Neogloboquadrina dutertrei, Globigerina bulloides) and benthic foraminifera (Bulimina aculeate, Uvigerina peregrina, Cibicidoides wuellerstorfi, ect.) sampled from Core 17954 to investigate paleo-productivity and nutrition change of western SCS and its relation to EASM. The results show that benthic and planktonic foraminifera have similar responses to nutrition change. Various indicators of productivity on the basis of benthic foraminiferal analyses reflect an overall three stage change trend: productivity gradually increases from the beginning of MIS 3 (60-40 ka) to its maximum during 35-30 ka, and finally declines after 30 ka. There is also another important discovery, if we observe the climate change in MIS 3 as a whole, we can also find western SCS and Northern Hemisphere High latitude have strong correspondences in such changes: Heinrich events coincided with high productivity events in the western SCS. Further, the result of

  8. Paleoceanographic Changes during the Past 95000 Years from the Indian Sector of the Southern Ocean (United States)

    Manoj, M. C.; Meloth, T.; Mohan, R.


    High-resolution planktic/benthic foraminiferal stable isotope and mean sortable silt records in a sediment core (SK200/22a) from the sub-Antarctic regime of the Indian sector of Southern Ocean depict the variations in surface and deep water hydrography during the past 95,000 years. The δ18O records of shallow- and deep-dwelling planktonic foraminiferal species (Neogloboquadrina pachyderma, Globigerina bulloides and Globorotalia inflata), primarily reflects the changes in upper water column characteristics. The δ18O records revealed the presence of the Antarctic Cold Reversal and the timing of the variability in major surface warming events appears in phase with the Antarctic temperature variations at the millennial time scale. Comparison between the proxies of sea surface conditions like planktonic δ18O and productivity proxies like carbonate and biogenic opal content in the core indicate that millennial scale sea surface warming fluctuated with productivity. The marine isotopic stage (MIS) 1 and MIS2 are characterized by near constant variations in mean sortable silt values, negating any significant changes in the deep water flow during these periods. The MIS 3 - MIS 5 periods were characterized by a general increase in mean sortable silt value, suggesting a strengthening of bottom-current activity that triggered winnowing at these periods. This is supported by the low δ13C records of epibenthic Cibicidoides wuellerstorfi during the glacials and some parts of MIS3 and MIS 5, confirming older nutrient-rich and poorly ventilated southern sourced deep waters at these periods. The termination I is marked by decrease in flow speed and an increase in the C. wuellerstorfi δ13C values. Comparison of mean sortable silt and C. wuellerstorfi δ13C record with the Antarctic ice core records reveal that pulses of reduced bottom water flow of Circumpolar Deep Water/North Atlantic Deep Water are synchronous with the Antarctic warming events. The decreased flow speed during

  9. @iGlobigerina pachyderma@@ (Ehrenberg) in the shelf-slope sediments of northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    ~' latitudes in the Arabian Sea and 18~' latitude in the Bay of Bengal is considered and compared with similar occurrence from other oceans of the world. Considering various factors like movement of low salinity, low temperate water masses, mixing and upwelling...

  10. Occurrence of @iNeogloboquadrina pachyderma@@ new subspecies in the shelf-slope sediments of northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    ~'N in the Bay of Bengal. Studies of hydrological conditions in the Indian Ocean reveal that the Subtropical Subsurface Water Mass is traceable as far north as the Gulf of Aden, and the Indian Ocean Deep Bottom Water Mass originating in the deepest...

  11. Low planktic foraminiferal diversity and abundance observed in a spring 2013 west-east Mediterranean Sea plankton tow transect (United States)

    Mallo, Miguel; Ziveri, Patrizia; Mortyn, P. Graham; Schiebel, Ralf; Grelaud, Michael


    Planktic foraminifera were collected with 150 µm BONGO nets from the upper 200 m water depth at 20 stations across the Mediterranean Sea between 2 May and 2 June 2013. The main aim is to characterize the species distribution and test the covariance between foraminiferal area density (ρA) and seawater carbonate chemistry in a biogeochemical gradient including ultraoligotrophic conditions. Average foraminifera abundances are 1.42 ± 1.43 ind. 10 m-3 (ranging from 0.11 to 5.20 ind. 10 m-3), including 12 morphospecies. Large differences in species assemblages and total abundances are observed between the different Mediterranean sub-basins, with an overall dominance of spinose, symbiont-bearing species indicating oligotrophic conditions. The highest values in absolute abundance are found in the Strait of Gibraltar and the Alboran Sea. The western basin is dominated by Globorotalia inflata and Globigerina bulloides at slightly lower standing stocks than in the eastern basin. In contrast, the planktic foraminiferal assemblage in the warmer, saltier, and more nutrient-limited eastern basin is dominated by Globigerinoides ruber (white). These new results, when combined with previous findings, suggest that temperature-induced surface water stratification and food availability are the main factors controlling foraminiferal distribution. In the oligotrophic and highly alkaline and supersaturated with respect to calcite and aragonite Mediterranean surface water, standing stocks and ρA of G. ruber (white) and G. bulloides are affected by both food availability and seawater carbonate chemistry. Rapid warming increased surface ocean stratification impacting food availability and changes in trophic conditions could be the causes of reduced foraminiferal abundance, diversity, and species-specific changes in planktic foraminiferal calcification.

  12. Evaluating controls on planktonic foraminiferal geochemistry in the Eastern Tropical North Pacific (United States)

    Gibson, Kelly Ann; Thunell, Robert C.; Machain-Castillo, Maria Luisa; Fehrenbacher, Jennifer; Spero, Howard J.; Wejnert, Kate; Nava-Fernández, Xinantecatl; Tappa, Eric J.


    To explore relationships between water column hydrography and foraminiferal geochemistry in the Eastern Tropical North Pacific, we present δ18O and Mg/Ca records from three species of planktonic foraminifera, Globigerinoides ruber, Globigerina bulloides, and Globorotalia menardii, collected from a sediment trap mooring maintained in the Gulf of Tehuantepec from 2006-2012. Differences in δ18O between mixed-layer species G. ruber and G. bulloides and thermocline-dweller G. menardii track seasonal changes in upwelling. The records suggest an increase in upwelling during the peak positive phase of El Niño, and an overall reduction in stratification over the six-year period. For all three species, Mg/Ca ratios are higher than what has been reported in previous studies, and show poor correlations to calcification temperature. We suggest that low pH (7.6-8.0) and [3 2-CO] values (∼70-120 μmol/kg) in the mixed layer contribute to an overall trend of higher Mg/Ca ratios in this region. Laser Ablation Inductively Coupled Mass Spectrometry analyses of G. bulloides with high Mg/Ca ratios (>9 mmol/mol) reveal the presence of a secondary coating of inorganic calcite that has Mg/Ca and Mn/Ca ratios up to an order of magnitude higher than these elemental ratios in the primary calcite, along with elevated Sr/Ca and Ba/Ca ratios. Some of the samples with abnormally high Mg/Ca are found during periods of high primary productivity, suggesting the alteration may be related to changes in carbonate saturation resulting from remineralization of organic matter in oxygen-poor waters in the water column. Although similar shell layering has been observed on fossil foraminifera, this is the first time such alteration has been studied in shells collected from the water column. Our results suggest a role for seawater carbonate chemistry in influencing foraminiferal calcite trace element:calcium ratios prior to deposition on the seafloor, particularly in high-productivity, low

  13. The response of calcifying plankton to climate change in the Pliocene

    Directory of Open Access Journals (Sweden)

    C. V. Davis


    Full Text Available As a result of anthropogenic pCO2 increases, future oceans are growing warmer and lower in pH and oxygen, conditions that are likely to impact planktic communities. Past intervals of elevated and changing pCO2 and temperatures can offer a glimpse into the response of marine calcifying plankton to changes in surface oceans under conditions similar to those projected for the future. Here we present new records of planktic foraminiferal and coccolith calcification (weight and size from Deep Sea Drilling Project Site 607 (mid-North Atlantic and Ocean Drilling Program Site 999 (Caribbean Sea from the Pliocene, the last time that pCO2 was similar to today, and extending through a global cooling event into the intensification of Northern Hemisphere glaciation (3.3 to 2.6 million years ago. Test weights of both surface-dwelling Foraminifera Globigerina bulloides and thermocline-dwelling Foraminifera Globorotalia puncticulata vary with a potential link to regional temperature variation in the North Atlantic, whereas in the tropics Globigerinoides ruber test weight remains stable. In contrast, reticulofenestrid coccoliths show a narrowing size range and a decline in the largest lith diameters over this interval. Our results suggest no major changes in plankton calcite production during the high pCO2 Pliocene or during the transition into an icehouse world.

  14. Monsoon Variability In The Western Arabian Sea During Last 10,000 Years BP: A Planktic Foraminiferal Abundances And It's Stable Isotope Records (United States)

    Singh, A. K.; Tiwari, M.; Sinha, D. K.; Ramesh, R.


    : The western Arabian Sea responds to the southwest monsoon winds by upwelling colder and nutrient rich waters from the deeper layers, causing a reduction in the sea surface temperature and enhanced biological productivity. A number of paleoclimatic studies have been carried out in this region to elucidate past monsoon variability (Sirocco et al., 1993; Gupta et al, 2003; Tiwari, 2005; Saher; 2007). Globigerina bulloides, a planktic foraminiferal species normally inhabiting surface ocean waters in temperate latitudes ( Be and Tolderlund , 1977) also becomes abundant at tropical latitudes upwelling occurs, and in these cases its abundance can exceed considerably. The conspicuous fluctuation in the abundance of Gg.bulloides during upwelling and non upwelling intervals is established through several studies ( Thiede and Junger, 1980, Gupta et al, 2003) This robust relation has been used as a proxy for wind velocity at several different times in the past in the Arabian Sea (Anderson, 2002). A significant result from some of these centennially resolved Holocene records is declining abundance of Globigerina bulloides which is paralleled by reduced insolation record and this has been inferred as declining strength of Asian Monsoon. We are presenting here the data from the core SS4018 from near the Gulf of Aden, Western Arabian Sea taken at a water depth of 2830 m, precisely dated by the radiocarbon method using Accelerator Mass Spectrometry on planktonic foraminiferal separates. We have carried out the planktic foraminiferal census counts for each sample to know the relative abundance of key species. In addition to this, we have also employed multi- proxy approach such as oxygen and carbon isotopes of planktic foraminiferal tests, TOC, CaCO3 (%) to strengthen our interpretation and also to understand the relationships amongst the proxies themselves. Abundance of the key planktic foraminiferal species and other proxy records reveal at least 3 major climatic

  15. Speleothem records of western Mediterranean. Hydrological variability along the Last Interglacial Period and marine linkages (United States)

    Torner, Judit; Cacho, Isabel; Moreno, Ana; Stoll, Heather; Belmonte, Anchel; Sierro, Francisco J.; Frigola, Jaime; Martrat, Belen; Fornós, Joan; Arnau Fernández, Pedro; Hellstrom, John; Cheng, Hai; Edwards, R. Lawrence


    This study aims to identify and characterize regional hydrological variability in the western Mediterranean region in base to different geochemical parameters (δ18O, δ13C, and Mg/Ca ratios). Speleothems have been recovered from several caves located in southern central Pyrenees one and the others form the Balearic Islands. Their chronologies have been constructed in base on U/Th absolute dating and indicate that the speleothem sequences cover the end of the last interglacial and the glacial inception. One of the most remarkable features of the records is the intense and abrupt shift toward more arid conditions that marks the end of the last interglacial (MIS 5e). Furthermore, our speleothem records also show relatively humid but highly variable hydrological conditions during the interstadial periods from MIS 5c to 5a. These speleothem records have been compared with new generated western Mediterranean marine records from the Balearic Sea (MD99-2343) and Alboran Sea (OPD-977). Marine records include (1) proxies of sea surface temperature and changes in evaporation-precipitation rates based on pair analysis of δ18O and the Mg/Ca ratios in planktonic foraminifera Globigerina bulloides; (2) proxies of deep-water currents associated with the Western Mediterranean Deep Water (WMDW) based on grain size analyses. The results reveal that arid conditions on land were coeval with cold sea surface sub-stages (MIS 5b and 5d), and also with increases in the intensity of the WMDW-related currents. By contrast, humid and hydrological unstable atmosphere conditions were synchronous with sea surface warm sub-stages, and lower WMDW-related currents intensities (MIS 5a, c and e). Consequently, our results highly evidence a strong atmospheric-oceanic coupling, involving parallel changes in both surface but also deep western Mediterranean Sea conditions during the last interglacial period and the glacial inception.

  16. Deepwater carbonate ion concentrations in the western tropical Pacific since 250 ka: Evidence for oceanic carbon storage and global climate influence (United States)

    Qin, Bingbin; Li, Tiegang; Xiong, Zhifang; Algeo, Thomas J.; Chang, Fengming


    We present new "size-normalized weight" (SNW)-Δ[CO32-] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32-], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32-] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32-] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32-] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the "coral reef hypothesis" that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32-] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the "deglacial ventilation hypothesis"). During MIS 4, a transient decline in SNW-based [CO32-], along with other reported [CO32-] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.

  17. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera (United States)

    Raitzsch, Markus; Bijma, Jelle; Benthien, Albert; Richter, Klaus-Uwe; Steinhoefel, Grit; Kučera, Michal


    The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) provides valuable information on the pH of ambient water at the time of calcification. Hence, δ11BCc of fossil surface-dwelling planktonic foraminifera can be used to reconstruct ancient aqueous pCO2 if information on a second carbonate system parameter, temperature and salinity is available. However, pH and pCO2 of surface waters may vary seasonally, largely due to changes in temperature, DIC, and alkalinity. As also the shell fluxes of planktonic foraminifera show species-specific seasonal patterns that are linked to intra-annual changes in temperature, it is obvious that δ11BCc of a certain species reflects the pH and thus pCO2 biased towards a specific time period within a year. This is important to consider for the interpretation of fossil δ11BCc records that may mirror seasonal pH signals. Here we present new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11BCc coretop data for the planktonic foraminifera species Globigerina bulloides, Globigerinoides ruber, Trilobatus sacculifer and Orbulina universa and compare them with δ11Bborate derived from seasonally resolved carbonate system parameters. We show that the inferred season-adjusted δ11BCc /δ11Bborate relationships are similar to existing calibrations and can be combined with published δ11BCc field and culture data to augment paleo-pH calibrations. To test the applicability of these calibrations, we used a core drilled on the Walvis Ridge in the Southeast Atlantic spanning the last 330,000 years to reconstruct changes in surface-water pCO2. The reconstruction based on G. bulloides, which reflects the austral spring season, was shown to yield values that closely resemble the Vostok ice-core data indicating that surface-water pCO2 was close to equilibrium with the atmosphere during the cooler spring season. In contrast, pCO2 estimated from δ11BCc of O. universa, T. sacculifer and G. ruber that

  18. Evidence of Himalayan uplift as seen in Neogene records of Indian monsoon variability from ODP Hole 722B, NW Arabian Sea (United States)

    Muthusamy, Prakasam; Gupta, Anil K.; Saini, Naresh K.


    The Indian monsoon is one of the most interesting climatic features on Earth impacting most populous countries of South and East Asia. It is marked by seasonal reversals of wind direction with southwesterly winds in summer (June-September) and northeasterly winds in winter (December-February). The monsoon not only impacts socioeconomic conditions of Asia but also brings important changes in fauna and flora, ocean upwelling and primary productivity in the Arabian Sea. The Himalaya has undergone several phases of rapid uplift and exhumation since the early Miocene which led to major intensification of the Indian monsoon. The monsoon is driven by the thermal contrast between land and sea, and is intimately linked with the latitudinal movement of the Inter-Tropical Convergence Zone (ITCZ). The effect of Indian monsoon variability and the Himalayan uplift can be seen in numerous proxy records across the region. In this study we discussed about the Indian monsoon intensification and the Himalayan uplift since the early Miocene based on multi proxy records such as planktic foraminiferal relative abundances (Globigerina bulloides, Globigerinita glutinata and mixed layer species), total organic carbon (TOC), CaCO3 and elemental data from ODP Hole 722B (2028 mbsf), northwestern Arabian Sea. The TOC, CaCO3 and elemental variations of the ODP Hole 722B suggest multi phase of monsoonal intensification and Himalayan uplifts. Our results suggest that in the early Miocene (23.03 Ma) to ~15Ma, the wind strength and productivity were low. A major change is observed at ~15 Ma, during which time numerous proxies show abrupt changes. TOC, CaCO3 and Elemental analyses results reveal that a major change in the productivity, wind strength and chemical weathering starts around 15 Ma and extends up to 10 Ma. This suggests that a major Himalayan uplift occurred during ~15-10 Ma that drove Indian monsoon intensification. A similar change is also observed during 5 to 1 Ma. These long

  19. A new 0.9 Ma oxygen isotope stratigraphy for a shallow-water sedimentary transect across three IODP 317 sites in the Canterbury Bight of southwest Pacific Ocean (United States)

    Ding, Xuan; Wu, YingYing


    Sedimentary records in shallow-water environment provide unique opportunity to further our understanding on the regional relative sea level changes in relation to global climate change. Here we present a new 0.9 Ma oxygen isotope stratigraphy for a shallow-water sedimentary transect across three IODP 317 sites in the Canterbury Bight of southwest Pacific Ocean. The three sites are located on the eastern margin of the South Island of New Zealand, including a continental slope site, IODP317-U1352 and two continental shelf sites, IODP317-U1354 and IODP317-U1351. We first generated high resolution benthic foraminifers (Nonionella flemingi) δ18O records for the three sites and a planktonic (Globigerina bulloides) record for the U1352B. An initial chronological framework for the benthic δ18O record of the U1352B was constructed using 8 accelerator mass spectrometry (AMS) radiocarbon dates and 4 biostratigraphic events. Then a refined age model was established by correlating the U1352B benthic δ18O record with the EDC δD record on the AICC2012 time-scale, and the LR04 benthic δ18O stack. Although the U1354B and U1351B have lower sedimentation rates, their benthic δ18O records correlate well with that of U1352B. In order to ensure the accuracy of the chronostratigraphic framework established, we also analyzed the characteristics of sedimentary grain size and the planktonic and benthic δ18O values. In accord with the adjacent sites, the results show that the melt of Southern Alps glaciers due to the warming climate during MIS 11 and 5.5 led to the increased fresh water delivery, with massive terrigenous deposit; and the warm SST during the MIS7 is related with the STF migration, which led to strong current activity, with coarser grain size. Meanwhile, records of benthic δ18O, sedimentation rate and content of >63μm coarse fraction of site U1352 all indicate the MIS 20 was indeed a colder interval compared to subsequent glacial times.

  20. Sea surface density gradients in the Nordic Seas during the Holocene as revealed by paired microfossil and isotope proxies

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.


    We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...

  1. Determination of thermal characteristics of standard and improved hollow concrete blocks using different measurement techniques

    DEFF Research Database (Denmark)

    Caruana, C.; Yousif, C.; Bacher, Peder


    The lighter weight, improved thermal properties and better acoustic insulation of hollow-core concrete blocks are few of the characteristics that one encounters when comparing them to traditional Maltese globigerina limestone solid blocks. As a result, hollow concrete blocks have recently been...

  2. Holocene benthonic foraminifera from the shelf sediments of Kerala coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    the occurrence of @iHyalinea balthica@@ found in the present material (and which marks the Pliocene-Pleistocene boundary in Italy) is known to be a cool to cold water indicator. Earlier it was reported (Setty 1972) that @iGlobigerina pachyderma@@ (Ehrenberg) a...

  3. Planktic foraminifera form their shells via metastable carbonate phases


    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.


    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  4. Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile: Paleontological, paleoclimatic and tectonic implications Evidencias de una edad miocena temprana-media de la Formación Navidad: Implicancias paleontológicas, paleoclimáticas y tectónicas

    Directory of Open Access Journals (Sweden)

    Néstor M Gutiérrez


    Full Text Available The age of the Navidad Formation in central Chile has always been controversial, mainly due to the conflicting age ranges indicated by its macro- and microfossils. Macrofossils are generally interpreted as having been reworked from older, Early to Middle Miocene strata, whereas a Late Miocene-Pliocene age has been accepted on the basis of planktonic foraminifer index species. The results of this study, however, indicate that the macrofossils occur in situ, which necessitates a complete revision of the geochronological data. It is concluded that the evidence for an Early to Middle Miocene age is overwhelming, and that the planktonic foraminifer index species must have appeared in the SE Pacific earlier than elsewhere. These include Globoturborotalia apertura, Globorotalia puncticulata (Deshayes, Globorotalia spheriomizea (Walters, Neogloboquadrina pachyderma (Ehrenberg, and Neogloboquadrina acostaensis (Blow. An Early to Middle Miocene age for the Navidad Formation correlates well with a reinterpretation of its depo-sitional environment as a continental shelf instead of a deepwater continental slope, global and regional paleoclimatic events, and the tectonic development of the Andes Range.La edad de la Formación Navidad en Chile central siempre ha sido controversial, debido a los distintos rangos de edad indicados por los macro- y microfósiles. En general, se considera que los macro-fósiles han sido retrabajados de estratos del Mioceno Temprano a Medio, y se aceptó una edad miocena tardía para esta unidad sobre la base de especies indicadoras de foraminíferos planctónicos. Sin embargo, los resultados de este estudio indican que los macrofósiles ocurren in situ, lo cual hace necesario una revisión completa de los datos geocronológicos. Se concluye que la evidencia por una edad miocena temprana a media es contundente, y que los foraminíferos planctónicos que indicarían una edad miocena tardía aparecieron más temprano en el SE del oc

  5. Paleomonsoon records from the western Arabian Sea: evidence of aeolian input and Red Sea water inflow

    International Nuclear Information System (INIS)

    Tiwari, M.; Ramesh, R.; Bhushan, R.; Somayajulu, B.L.K.; Jull, A.J.T.; Burr, G.S.; Sheshshayee, M.S.


    The western Arabian Sea experiences intense productivity variations due to wind-induced upwelling during the South West monsoon. Variations in calcareous productivity derived from marine sediment cores can prove to be an excellent indicator of monsoon wind strength provided that the core has been raised from water depths well above the lysocline (∼4000 m). The core was radiocarbon dated by on select planktonic foraminiferal species viz. Globigerinoides ruber, Globigerinoides sacculifer, Orbulina universa and Neogloboquadrina dutertrei (size range chosen for dating as well as isotopic analysis is 250 μ -500 μ. Planktonic foraminifera were selected for our study because they inhabit the surface and near surface oceans (upto∼ 100 m) and, therefore, readily incorporate changes occurring in the surface ocean into their calcitic shells

  6. Planktic foraminifera form their shells via metastable carbonate phases. (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M


    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.


    Directory of Open Access Journals (Sweden)



    Full Text Available The distribution of ostracods in the composed Langhian-Serravallian section of Ras il Pellegrin (Malta has been studied quantitatively to define the evolution of both the assemblages and the palaeoenvironmental conditions. 99 samples have been examined at a stratigraphic distance of about 1 m. 78 species have been identified whose assemblages indicate an epibathyal environment and a sedimentation depth of 500-700 m. In particular, the almost continuous occurrence of the genus Oblitacythereis, which characterizes the water layer just above the psychrosphere, together with the absolute absence of the psychrospheric genus Agrenocythere confirm this interpretation. The sudden drop of both the simple diversity and abundance near the boundary "Upper Globigerina Limestone" - "Blue Clays" Formations, especially at the top of the succession, in our opinion may be due to the the decrease of dissolved bottom oxygen content as supported also by the Cytherellidae. 

  8. Benthic foraminifera and bottom water evolution in the middle-southern Okinawa Trough during the last 18 ka

    Institute of Scientific and Technical Information of China (English)

    LI Tiegang; XIANG Rong; SUN Rongtao; CAO Qiyuan


    A piston sediment core E017 from the middle-southern Okinawa Trough was investigated. A preliminary study of the deep-water evolution since 18 cal. ka BP was performed based on the quantitative census data of benthic foraminiferal fauna, together with planktonic foraminiferal oxygen and carbon isotope, AMS14C dating, and the previous results achieved in the southern Okinawa Trough. The result shows that the benthic fauna was dominated by Bulimina aculeata (d'Orbigny), Uvigerina peregrina (Cushman), Hispid Uvigerina and Uvigerina dirupta (Todd) during the glaciation-deglaciation before 9.2 cal. ka BP, while Epistominella exigua (Brady), Pullenia bulloides (d'Orbigny), Cibicidoides hyalina (Hofker), Sphaeroidina bulloides (d'Orbigny) and Globocassidulina subglobosa (Brady) predominated the fauna in the post-glacial period after 9.2 cal. ka BP. The benthic foraminifera accumulation rate (BFAR), paleoproductivity estimates and benthic foraminiferal assemblage conformably indicate that surface water paleoproductivity and organic matter flux during the glaciation-deglaciation were higher than those of the post-glacial period in the middle-southern Okinawa Trough, and gradually enhanced from the southern to the central Okinawa Trough during the glaciation-deglaciation, which could be caused by the discrepancy of the terrigenous nutrients supply. High abundances of E. exigua, an indicator of pulsed organic matter input, after 9.2 cal. ka BP may indicate that the intensity of seasonally riverine pulsed flux during the post-glacial period was stronger than that of the glaciation-deglaciation period, and the seasonal influx in the central trough might be stronger than in the south. The temporal distributions of the typical species indicating bottom water oxygen content and ventilation condition show that the ventilation of the bottom water during the post-glacial period is more active than the glaciation-deglaciation, which reflects that the evolution of the intermediate and

  9. Holocene Planktonic Foraminiferal Assemblage Shifts on the California Margin; Environmental Forcing of Medieval Chumash Society? (United States)

    Fisler, J. A.; Hendy, I.


    The contribution of D. Kennett and J.P. Kennett to recent literature on native Chumash cultural evolution has linked societal changes between 500 and 1300 A.D. with a rapidly-changing environment. As large-amplitude fluctuations in surface water and climate conditions at the California Margin would have had severe implications for local flora and fauna, high resolution paleooceanographic records from ODP Site 893 should record these environmental changes. The planktonic foraminifera of Santa Barbara Basin are known to be sensitive to climate change over glacial/interglacial and stadial/interstadial time scales. Here we present a Holocene record of planktonic foraminiferal assemblage change that demonstrates this sensitivity continued through what is generally considered to be a warm stable climatic interval. Absolute numbers of planktonic foraminifera specimens decreased through the Holocene, from a peak of over 30,000 specimens/cm3 at 9 kyr BP to several thousand in the last millennia. Eurythermal, high nutrient species G. bulloides and G. quinqueloba show opposite abundance trends throughout deglaciation, with significant decreases in G. bulloides abundance during the Late Holocene while G. quinqueloba increases in abundance. Significant assemblage shifts occurring at 2 kyr BP are particularly pronounced in N. pachyderma dextral/sinistral ratios. Large fluctuations in the dextral/sinistral ratio occur during this interval, varying between 50 and 95%. The most recent decrease in the ratio occurs 800 yrs BP before returning to modern values at 500 yr BP. Assemblage data suggest more dramatic environmental change than indicated by planktonic oxygen isotope records. While N. pachyderma dextral/sinistral ratios generally follow oxygen isotopes throughout the Holocene, the records decouple at 2 kyr BP when the first substantial decrease in the ratio occurs. Salinity may, in part, explain this observation. ODP Site 893 is located at the confluence of the cool

  10. Groundwater residence time and movement in the Maltese islands - A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, M.E., E-mail: [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Maurice, L. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Heaton, T.H.E. [British Geological Survey, NERC Isotope Geoscience Laboratory, Keyworth, Nottinghamshire NG12 5GG (United Kingdom); Sapiano, M.; Micallef Sultana, M. [Malta Resources Authority, Marsa MRS 9065 (Malta); Gooddy, D.C.; Chilton, P.J. [British Geological Survey, Wallingford, Oxfordshire OX10 8BB (United Kingdom)


    The Maltese islands are composed of two limestone aquifers, the Upper and Lower Coralline Limestone separated by an aquitard, the 'Blue Clay'. The Lower Coralline Limestone is overlain in part by the poorly permeable Globigerina Limestone. The upper perched aquifers are discontinuous and have very limited saturated thickness and a short water level response time to rainfall. Frequent detections of coliforms suggest a rapid route to groundwater. However, the unsaturated zone has a considerable thickness in places and the primary porosity of the Upper Coralline Limestone is high, so there is likely to be older recharge by slow matrix flow as well as rapid recharge from fractures. Measurement of SF{sub 6} from a pumping station in a deep part of one of the perched aquifers indicated a mean saturated zone age of about 15 a. The Main Sea Level aquifers (MSL) on both Malta and Gozo have a large unsaturated thickness as water levels are close to sea level. On Malta, parts of the aquifer are capped by the perched aquifers and more extensively by the Globigerina Limestone. The limited detection of coliform bacteria suggests only some rapid recharge from the surface via fractures or karst features. Transmissivity is low and {sup 3}H and CFC/SF{sub 6} data indicate that saturated zone travel times are in the range 15-40 a. On Gozo the aquifer is similar but is more-extensively capped by impermeable Blue Clay. CFC data show the saturated zone travel time is from 25 a to possibly more than 60 a. Groundwater age is clearly related to the extent of low-permeability cover. The {delta}{sup 13}C signature of groundwater is related to the geochemical processes which occur along the flowpath and is consistent with residence time ages in the sequence; perched aquifers < Malta MSL < Gozo MSL. The {sup 18}O and {sup 2}H enriched isotopic signature of post 1983 desalinated water can be seen in more-modern groundwater, particularly the urbanized areas of the perched and Malta MSL

  11. Cordilleran Ice Sheet meltwater delivery to the coastal waters of the northeast Pacific Ocean (United States)

    Hendy, I. L.; Taylor, M.; Gombiner, J. H.; Hemming, S. R.; Bryce, J. G.; Blichert-Toft, J.


    Cordilleran Ice Sheet (CIS) delivered meltwater to the NE Pacific Ocean off BC and WA via glacial lake outburst floods (GLOFs), ice rafting and subglacial meltwater discharge. A deglacial glaciomarine sedimentation record is preserved in the well dated ~50-kyr core MD02-2496 (48˚58.47' N, 127˚02.14' W, water depth 1243 m), collected off Vancouver Island. To understand the history of the relationship between the CIS, climate and meltwater discharge, high resolution, multi-proxy geochemical records from the interval that captures the Fraser Glaciation (~30-10 ka) were generated. These proxies include Mg/Ca temperatures and δ18Oseawater from planktonic foraminiferal sp. N. pachyderma and G. bulloides, elemental and organic carbon (Corg) geochemistry of bulk sediments, ɛNd and K/Ar dating of the rose by > 3°C to 10-12°C in association with an additional IRD event at ~14.8 ka sourced from a ~75 Ma felsic volcanic source, likely the Southern Coast Plutonic Complex. At no point in the δ18Oseawater reconstruction is an obvious meltwater isotopic signature recorded despite the sedimentary evidence for both ice rafting and outburst flooding. Thus CIS meltwater likely entered the NE Pacific Ocean via hyperpycnal flow.

  12. Holocene Millennial-scale Surface and Bottom Water Variability, Feni Drift, NE Atlantic Ocean: Foraminiferal Assemblages (United States)

    Lassen, S. J.; Richter, T. O.; de Stigter, H. C.; van Weering, T. C. E.; de Haas, H.

    A high-resolution sediment core from Feni Drift (ENAM9606, 56N 14W, 2543 m wa- ter depth) was investigated for planktonic and benthic foraminiferal assemblages dur- ing the last 12,000 years. During the Preboreal, peak abundances of T.quinqueloba indicate the passage of the Arctic front over the core site. Holocene planktonic foraminiferal assemblages indicate a gradual warming trend of surface water masses punctuated by a major cooling (8,200ky event s.l.), and possibly a slight cooling dur- ing the last 3,000 years. The interval from 10 to 5kyrs shows higher and fluctuating abundances of T.quinqueloba and G.bulloides, which suggest proximity of the subarc- tic front and enhanced spring blooms compared to the upper Holocene. Abundance peaks of N.pachyderma(s) and/or T.quinqueloba indicate a series of millennial-scale cooling events during the entire Holocene, which can be correlated to similar episodes previously described from other locations in the North Atlantic and Norwegian- Greenland Sea. Benthic foraminiferal assemblages indicate a gradual transition from seasonal, spring-bloom related food supply in the Lower Holocene (dominance of the phytodetritus species E.exigua) to possibly lower, but more sustained food supply in the Upper Holocene (dominance of C.obtusa and C.laevigata).

  13. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria) (United States)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid


    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  14. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean (United States)

    Poore, R.Z.; Osterman, L.; Curry, W.B.; Phillips, R.L.


    Accelerator mass spectrometer 14C dated stable isotope data from Neogloboquadrina pachyerma in cores raised from the Mendeleyev Ridge and slope provide evidence for significant influx of meltwater to the western Arctic Ocean during the early part of marine oxygen isotope stage 1 (OIS 1) and during several intervals within OIS 3. The strongest OIS 3 meltwater event occurred before ca. 45 ka (conventional radiocarbon age) and was probably related to the deglaciation at the beginning of OIS 3. Major meltwater input to the western Arctic Ocean during the last deglaciation coincides closely with the maximum rate of global sea-level rise as determined from the Barbados sea-level record, demonstrating a strong link between the global record and changes in the central Arctic Ocean. OIS 2, which includes the last glacial maximum, is very condensed or absent in the cores. Abundance and ??13C values for N. pachyderma in the middle part of OIS 3 are similar to modern values, indicating high productivity and seasonal ice-free areas along the Arctic margin at that time. These records indicate that the Arctic Ocean was a source of heat and moisture to the northern polar atmosphere during parts of OIS 3.

  15. Late Neogene marine incursions and the ancestral Gulf of California (United States)

    McDougall, K.


    The late Neogene section in the Salton Trough, California, and along the lower Colorado River in Arizona is composed of marine units bracketed by nonmarine units. Microfossils from the marine deposits indicate that a marine incursion inundated the Salton Trough during the late Miocene. Water depths increased rapidly in the Miocene and eventually flooded the region now occupied by the Colorado River as far north as Parker, Arizona. Marine conditions were restricted in the Pliocene as the Colorado River filled the Salton Trough with sediments and the Gulf of California assumed its present configuration. Microfossils from the early part of this incursion include a diverse assemblage of benthic foraminifers (Amphistegina gibbosa, Uvigerina peregrina, Cassidulina delicata, and Bolivina interjuncta), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes), and calcareous nannoplankton (Discoaster brouweri, Discoaster aff. Discoaster surculus, Sphenolithus abies, and S. neoabies), whereas microfossils in the final phase contain a less diverse assemblage of benthic foraminifers that are diagnostic of marginal shallow-marine conditions (Ammonia, Elphidium, Bolivina, Cibicides, and Quinqueloculina). Evidence of an earlier middle Miocene marine incursion comes from reworked microfossils found near Split Mountain Gorge in the Fish Creek Gypsum (Sphenolithus moriformis) and near San Gorgonio Pass (Cyclicargolithus floridanus and Sphenolithus heteromorphus and planktic foraminifers). The middle Miocene incursion may also be represented by the older marine sedimentary rocks encountered in the subsurface near Yuma, Arizona, where rare middle Miocene planktic foraminifers are found. ?? 2008 The Geological Society of America.

  16. Benthic foraminiferal distribution in surface sediments along continental slope of the southern Okinawa Trough:dependance on water masses and food supply

    Institute of Scientific and Technical Information of China (English)

    向荣; 李铁刚; 杨作升; 阎军; 曹奇原


    Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Oki-nawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidlywith increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm themodem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to thebottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corre-sponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, domi-nated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispi-da, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4) lower con-tinental slope- trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua andCibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottomagglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds tostrongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southemOkinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygenconcentration and carbonate dissolution of the water masses are important controlling factors especiallyfor the continental shelf break and trough bottom assemblages. The food supply also plays an importantrole in these benthic foraminiferal assemblages along the westem slope of the Okinawa Trough. Both theabundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supplyalong the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulateorganic

  17. Calcareous Nannofossils and Variation of the Kuroshio Current in the Okinawa Tro ugh During the Last 14000 Years

    Directory of Open Access Journals (Sweden)



    Full Text Available A quantitative census study on calcareous nannofossils from sediments of Site 1202 recovered by ODP Leg 195 and surface sediments from the East China Sea was carried out to obtain a high-resolution nannofossil record of the change of the Kuroshio Current during the late Quaternary. Two nannofossil ratio indices were designed and employed in this study: (1 ratio of Florisphaera profunda against F. profunda, Emiliania huxleyi and Gephyrocapsa oceanica (F-EG ratio as a nannofossil proxy of the Kuroshio Current, (2 ratio of G. oceanica against F. profunda and E. huxleyi and G. oceanica (G-FE ratio as a proxy of near-coast environment. Results from the 14 surface nannofossil samples demonstrate that the F-EG ratio is > 15% in the assemblage lying directly under the main route of the Kuroshio Current, whereas it is very low ( 30% were seen from all samples on the East China Sea continental shelf or from near-coast cores. Down hole nannofossil record from the top 60 mbsf sediment interval at ODP Hole 1202B reflects the change of the Kuroshio Current in the last glacial and postglacial period since 14 ka. Extreme low F-EG ratio together with very high G-FE ratio at Hole 1202B during the time of the latest Pleistocene and the earliest Holocene suggest the absence of the Kuroshio Current in the area studied. The event of intrusion of the Kuroshio Current was clearly recorded by a dramatically increase of F-EG ratio and notably a reduction in the G-FE ratio around 9 ka. Furthermore, based on the variation of the F-EG ratio and _ of planktonic foraminifera Neogloboquadrina dutertrei, variation of the Kuroshio Current in the Holocene shows three long-term cycles (with a periodicity of ~3000 yr.

  18. Lunar periodicity in the shell flux of planktonic foraminifera in the Gulf of Mexico (United States)

    Jonkers, Lukas; Reynolds, Caitlin E.; Richey, Julie N.; Hall, Ian R.


    Synchronised reproduction offers clear benefits to planktonic foraminifera – an important group of marine calcifiers – as it increases the chances of successful gamete fusion. Such synchrony requires tuning to an internal or external clock. Evidence exists for lunar reproductive cycles in some species, but its recognition in shell flux time series has proven difficult, raising questions about reproductive strategies. Using spectral analysis of a 4-year time series (mostly at weekly resolution) from the northern Gulf of Mexico, we show that the shell flux ofGloborotalia menardii, Globigerinella siphonifera, Orbulina universa, Globigerinoides sacculifer, Globigerinoides ruber (both pink and white varieties), Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globigerinella calida and Globigerinita glutinata is characterised by lunar periodicity. However, the lunar rhythm is not present in all size fractions of each species and tends to be more dominant in the flux of larger shells, consistent with reproduction being more prevalent in larger specimens. Lunar periodicity is superimposed on longer term/seasonal changes in the shell fluxes, but accounts for a significant part of the variance in the fluxes. The amplitude of the lunar cycle increases roughly proportional with the magnitude of the flux, demonstrating that most of the population is indeed affected by lunar-phased synchronisation. In most species peak fluxes occur predominantly around, or just after, full moon. Only G. siphonifera and G. calida show a contrasting pattern with peaks concentrated around new moon. Although the exact cause of the synchronisation remains elusive, our data considerably increase the number of species for which lunar synchronised reproduction is reported and suggest that such reproductive behaviour is common in many species of planktonic foraminifera.

  19. Changes in Eastern Equatorial Pacific Thermocline Structure across the Last Deglaciation: Evidence from the Carnegie Ridge (United States)

    Glaubke, R.; Schmidt, M. W.; Warner, L.; Hertzberg, J. E.; Marcantonio, F.; Bianchi, T. S.


    The eastern equatorial Pacific (EEP) is an important climatological region given its influence in the modulation of the El Niño - Southern Oscillation (ENSO). The current climatic mean state of the EEP is characterized by cool sea surface temperatures (SST) and a strong, shallow thermocline. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale climate events of the last deglaciation. Here, we will present 21 kyrs of Mg/Ca paleotemperature data from the surface-dwelling foraminifera Globigerinoides ruber and the thermocline-dwelling foraminifera Neogloboquadrina dutertrei collected from piston core MV1014-02-17JC (00° 10.83'S, 85° 52.00'W; 2846 m depth) on the Carnegie Ridge. Initial results reveal a 1.3°C warming of the surface ocean from the early-Holocene until 6 kyrs, a trend present in other EEP SST reconstructions (Pena et al., 2008; Timmerman et al., 2014; Lea et al., 2000). The surface ocean subsequently cools from 6 kyrs and reaches present-day temperatures by 3.5 kyrs. The subsurface reveals a nearly monotonic cooling of 1.8°C from 10.8 kyrs to the present day, which suggest a gradual shoaling of the thermocline across the Holocene. Furthermore, an increase in the vertical temperature gradient occurs from the late- to mid-Holocene, with the sharpest temperature difference centered at 6 kyrs, coincident with the mid-Holocene peak in SSTs. Taken together, these data suggest a gradual shoaling of the thermocline across the Holocene, with the variations in SST primarily governing the intensity of the vertical temperature gradient. Future work includes extending this record back to the last glacial maximum (LGM) to assess tropical Pacific mean state change across the abrupt climate events that characterized the last deglaciation.

  20. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab


    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  1. Seasonal Trends and Inter-Individual Heterogeneity: A multi-species record of Mg, Sr, Ba, & Mn in Planktic Foraminifera from the Modern Cariaco Basin (United States)

    Davis, C. V.; Thunell, R.; Astor, Y. M.


    The trace element to calcium ratios (TE/Ca) of planktic foraminifera shells are a valuable tool for paleoceanographic reconstructions, and represent a combination of environmental, ecological and biological signals. We present here a three-year record (2010-2013) of TE/Ca (Mg, Sr, Ba, Mn) from four species of foraminifera (Orbulina universa, Globigerina ruber, Globigerinella siphonifera, and Globorotalia menardii) collected by plankton tow in the modern Cariaco basin. Each tow is paired with in situ measurements of water column properties, allowing a direct comparison between shell geochemistry and calcification environment. A combination of Laser Ablation and solution ICP-MS analyses are used to document seasonality, primarily due to the alternating influence of wind-driven coastal upwelling and riverine inputs, in shell TE/Ca. Individual shell data further allows for the quantification of trace element heterogeneity among individual shells within single tows. All TE/Ca ratios vary temporally and show inter-individual variability within single tows. The spread in TE/Ca differs between element and species, with Mg/Ca ratios being the most variable. Despite this, Mg/Ca still tracks temperature changes in G. ruber, O. universa, and G. menardii, with G. ruber most closely reproducing sea surface temperature. Some species show chamber-to-chamber differences in trace element ratios, with G. ruber Mg/Ca and Ba/Ca decreasing in younger chambers (but not other elements) and Mg/Ca, Mn/Ca and Ba/Ca decreasing in younger chambers in G. siphonifera. We find the original Mn/Ca to be variable both temporally and between species, with G. menardii in some samples having extremely high ratios (100 μmol/mol). Assessing seasonal trends and environmental drivers of TE/Ca variability and quantifying the extent of inter-individual heterogeneity in these species will inform the use of their shells as geochemical proxies.

  2. The nummulithoclast event within the Lower Eocene in the Southern Tethyan margin: Mechanisms involved, analogy with the filament event and climate implication (Kairouan, Central Tunisia) (United States)

    Mardassi, Besma


    Early Eocene deposits in Tunisia are marked by clear variations in terms of facies and thickness. Each facies corresponds to an appropriate depositional environment. Shallow water deposits pass gradually offshore into deeper carbonates along a homoclinal ramp. In Central Tunisia, detailed investigation of carbonate facies under transmitted light shows a particular richness of the middle part of Early Eocene deposits in nummulithoclasts. These facies are often frequent within corrugated banks. They are overlaying Globigerina rich well-bedded limestones and overlain by nummulites and Discocyclina rich massively-bedded carbonates. Nummulithoclasts occurrence is recorded on field by an abrupt vertical change from autochthonous thinly-bedded limestones to massively-bedded fossiliferous carbonates. Change concerns structures, textures and limestones' composition. Nummulithoclasts are associated either to planktonic micro-organisms or to benthic fauna and phosphates grains. The middle and the upper parts of the Early Eocene deposits, particularly, fossilize hummocky cross-stratifications and megaripples. Their presence advocates the role of energetic currents in sweeping nummulites from lower circatidal to upper bathyal environments. The absence of a slope break helped the settling of reworked nummulites within deeper environments. The abrupt change, nummulithoclast associations and current structures arouse reflection and make them not reliable to characterize depositional environments. However, their preferential occurrence within the middle part of Early Eocene deposits and the tight linkage with storm activity lead them to be considered as event. The large scale hummocks recorded on field suggests that nummulite fragmentation was triggered by tropical cyclones rather than humble storms. The frequent occurrence of cyclones which correspond to low pressure atmospheric systems seems in relation with a global warming enhancing the sea surface temperature.

  3. Fossil and Genetic Evidence for the Polyphyletic Nature of the Planktonic Foraminifera "Globigerinoides", and Description of the New Genus Trilobatus (United States)

    Spezzaferri, Silvia; Kucera, Michal; Pearson, Paul Nicholas; Wade, Bridget Susan; Rappo, Sacha; Poole, Christopher Robert; Morard, Raphaël; Stalder, Claudio


    Planktonic foraminifera are one of the most abundant and diverse protists in the oceans. Their utility as paleo proxies requires rigorous taxonomy and comparison with living and genetically related counterparts. We merge genetic and fossil evidence of “Globigerinoides”, characterized by supplementary apertures on spiral side, in a new approach to trace their “total evidence phylogeny” since their first appearance in the latest Paleogene. Combined fossil and molecular genetic data indicate that this genus, as traditionally understood, is polyphyletic. Both datasets indicate the existence of two distinct lineages that evolved independently. One group includes “Globigerinoides” trilobus and its descendants, the extant “Globigerinoides” sacculifer, Orbulina universa and Sphaeroidinella dehiscens. The second group includes the Globigerinoides ruber clade with the extant G. conglobatus and G. elongatus and ancestors. In molecular phylogenies, the trilobus group is not the sister taxon of the ruber group. The ruber group clusters consistently together with the modern Globoturborotalita rubescens as a sister taxon. The re-analysis of the fossil record indicates that the first “Globigerinoides” in the late Oligocene are ancestral to the trilobus group, whereas the ruber group first appeared at the base of the Miocene with representatives distinct from the trilobus group. Therefore, polyphyly of the genus "Globigerinoides" as currently defined can only be avoided either by broadening the genus concept to include G. rubescens and a large number of fossil species without supplementary apertures, or if the trilobus group is assigned to a separate genus. Since the former is not feasible due to the lack of a clear diagnosis for such a broad genus, we erect a new genus Trilobatus for the trilobus group (type species Globigerina triloba Reuss) and amend Globoturborotalita and Globigerinoides to clarify morphology and wall textures of these genera. In the new

  4. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea (United States)

    Huang, B.


    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  5. Seasonal and annual variation in planktonic foraminiferal fluxes including warm period related El Niño in the northwestern North Pacific (United States)

    Kuroyanagi, A.; Kawahata, H.; Nishi, H.; Honda, M. C.


    Planktonic foraminifera provide a record of the upper ocean environment through their species assemblage and individual tests. To investigate the relationship between foraminifera and oceanographic conditions and the impact of El Niño on foraminifera, we analyzed foraminiferal fluxes and relative abundances by using sediment trap samples collected biweekly at three sites in the northwestern North Pacific: Site 40N (39 °60'N, 165 °00'E), Site KNOT (43 °58'N, 155 °03'E), and Site 50N (50 °01'N, 165 °02'E) from 1998- 2001, a period that included an El Niño effect. Based on foraminiferal production and assemblage composition, we divided the sampling duration into several periods during which certain characteristic oceanographic properties were observed. These sampling periods were classified into five types (I-V) based upon four factors: 1) the predominant foraminiferal group, 2) total foraminiferal fluxes (TFFs), 3) organic matter (OM) fluxes, and 4) hydrographic conditions, which included sea surface temperature (SST) and thermal structure. Our results suggest that seasonal changes in foraminifera were closely related to water mass properties in addition to SST. If species compositions were the same, then water mass properties were the most important factors affecting the seasonal variation of foraminiferal abundance in the northwestern North Pacific. Although one of the major controlling factors for foraminiferal fluxes is food availability, the controlling factors for each type (types I-V) are different because of specific oceanographic situations, such as phytoplankton blooms, which result in an excess food supply for foraminifera. At Site KNOT in 1998, SST was remarkably high because of El Niño, and high surface temperatures and weak winds would have lowered nutrient supply and intensified water column stratification, resulting in the relatively low fluxes of total foraminifera, N. pachyderma, and G. bulloides, and the high fluxes of N. dutertrei that

  6. Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea

    Directory of Open Access Journals (Sweden)

    G. Siani


    Full Text Available Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs and oxygen isotope composition of seawater (δ18Ow from a high sedimentation core collected in the South Adriatic Sea (SAS. Core chronology is based on 10 AMS 14C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted paleohydrological periods that reflect (i a marked lowering of δ18Ow/salinity during the early to mid-Holocene (11.5 ka to 6.3 ka, including the two-step sapropel S1 deposition, followed during the mid- to upper Holocene by (ii a prevailing period of increased salinity and enhanced arid conditions in the South Adriatic Basin. Superimposed on these trends, short-term centennial-scale hydrological events punctuated the Holocene period in the SAS. During the early to mid-Holocene, two main SST coolings together with prominent δ18Ow/salinity lowering delineate the sapropel S1 interruption and the post-sapropel phase between 7.3 to 6.3 ka. After 6 ka, centennial-scale δ18Ow and G. bulloides δ13C lowering, mostly centered between 3 to 0.6 ka, reflect short-term hydrological changes related to more intensive runoff of the Po and/or Apennine rivers. These short-term events, even of lesser amplitude compared to the early to mid-Holocene period, may have induced a lowering of sea surface density and consequently reduced and/or inhibited the formation of deep bottom waters in the SAS. Comparison of the emerging centennial- to millennial-scale hydrological record with previous climatic records from the central Mediterranean area and north of the Alps reveal possible synchronicities (within the radiocarbon-dating uncertainty between phases of lower salinity in the SAS and periods of wetter climatic conditions around the north-central Adriatic Sea. Finally, wavelet analyses provide new clues about the potential origin of climate variability in the SAS, confirming

  7. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios (United States)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.


    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the

  8. Tephrochronology as a tool to constrain radiocarbon reservoir age in the deglacial Bering Sea (United States)

    Chapman, A. U.; White-Nockleby, C.; de Konkoly Thege, P. A.; Rubel, J. N.; Cook, M. S.; Mix, A. C.; Addison, J. A.


    In order to accurately calendar date marine carbon, it is necessary to constrain surface reservoir age, the apparent 14C age difference between the atmosphere and surface ocean that results from incomplete equilibration of 14C across the air-sea interface. Surface reservoir age is generally assumed to be constant at the preindustrial value, but evidence suggests it has varied through time by up to 1000 years. In this study we use tephrochronology, a method of correlating tephras across different environments, to identify equivalent strata, as a tool to quantify reservoir age in the Bering Sea during the transition between the Oldest Dryas and Bolling-Allerod (14.7 kcal BP). With frequent volcanic eruptions that allow for possibility of high-resolution reservoir age reconstructions, the Bering Sea/Aleutian Islands region is uniquely positioned to provide insight into the hypothesis that dense water formed in the North Pacific during the last deglaciation. We compare a massive tephra found in three deep-sea sediment cores from Umnak Plateau in the southeast Bering Sea (HLY02-02-55JPC, HLY-02-02-51JPC, and IODP Site U1339) to a tephra dated to 14.8 kcal BP from Deep Lake, Sanak Island in the Eastern Aleutians. For both the Umnak and Sanak tephras, volcanic glass shards are geochemically matched using major and trace elements from electron microprobe and laser-ablation inductively-coupled-plasma mass spectrometry. We compare 14C ages of foraminiferal species Uvigerina peregrina and Neogloboquadrina pachyderma (sinistral) from just above the tephra in HLY-02-02-51JPC (1467 m) to 14C age of the corresponding tephra at Sanak Island from terrestrial plant macrofossils. The surface reservoir age found (930 ± 160 14C y) is similar to the average preindustrial value in the region (790 ± 130 14C y). Benthic-atmosphere age difference (1860 ± 200 14C y) is also comparable to the preindustrial value (2030 ± 60 14C y). These results and future work on additional tephras from

  9. Correlation of Brunhes detrital-layer stratigraphy into the North Atlantic from Orphan Knoll (Labrador Sea) (United States)

    Channell, J. E.; Hodell, D. A.; Romero, O. E.; Hillaire-Marcel, C.; de Vernal, A.; Stoner, J. S.; Mazaud, A.; Roehl, U.


    IODP Site U1302-U1303, on the SE flank of Orphan Knoll (Labrador Sea), has a record of detrital layers that extends through most of the Brunhes Chron. The age model is built by tandem matching of relative paleointensity (RPI) and oxygen isotope data (δ18O) from Neogloboquadrina pachyderma (sin.) to reference records, indicating a mean Brunhes sedimentation rate of 14 cm/kyr. Sedimentation back to marine isotope stage (MIS) 18 is characterized by detrital layers that are detected by higher than background gamma-ray attenuation (GRA) density, peaks in X-ray fluorescence (XRF) indicators for detrital carbonate (Ca/Sr) and detrital silicate (Si/Sr), an ice-rafted debris (IRD) proxy (>106 μm), magnetic susceptibility, and magnetic grain-size peaks. The age model enables correlation of Site U1302/03 to IODP Site U1308 (re-drill of DSDP Site 609) in the heart of the central Atlantic IRD belt where an age model and a similar set of detrital-layer proxies have already been derived. Ages of Heinrich layers H1, H2, H4, H5 and H6 are within ~2 kyr at the two sites (H0, H3 and H5a are not observed at Site U1308), and agree with previous work at Orphan Knoll within ~3 kyr. At Site U1308, Brunhes detrital layers are restricted to peak glacials and glacial terminations back to MIS16, however, these same proxies at Site U1302/03 indicate detrital layers distributed throughout the record in both glacial and most interglacial stages. At Site U1302/03, we distinguish Heinrich-type layers in glacial stages, which are associated with IRD (some of which have near-synchronous analogues at Site U1308), from detrital layers within interglacial stages manifested by multiple detrital layer proxies (including Ca/Sr) but usually not associated with IRD, that may be attributed to a distinct depositional process, namely drainage and debris-flow events funneled down the nearby NAMOC (North Atlantic Mid-Ocean Channel).

  10. The Pleistocene evolution of the East Antarctic Ice Sheet in the Prydz bay region: Stable isotopic evidence from ODP Site 1167 (United States)

    Theissen, K.M.; Dunbar, R.B.; Cooper, A. K.; Mucciarone, D.A.; Hoffmann, D.


    Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based ??18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36. 9 ?? 3.3 ka at 0.45 m below sea floor and correlate suspected glacial-interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The ??18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early-mid-Pleistocene (0.9-1.38 Ma). An increase in ?? 18O values after ??? 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The ??18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial-interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16-21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic

  11. Variability of the planktonic foraminifera community across the Eocene/Oligocene boundary, Fuente Caldera Section, Baetic Ranges (Spain) (United States)

    Legarda-Lisarri, A.


    During the Eocene/Oligocene transition, in a massive extinction event that took place about 33.7 million years ago, the current high resolution study analyzes qualitatively and quantitatively the community structure of the planktonic foraminifera that were preserved in the hemipelagic sediments of the Tethys Sea. The sampled section of the Fuente Caldera column, located in the Baetic mountain ranges, spans a register of 396,551.7 years. Based in the identification of 27 species, that belong to 13 genera and 2 families of foraminifera, there have been found three biozones of Gonzalvo Zonation (Gonzalvo, 2002) in the studied stratigraphic interval: Turborotalia cocoaensis and Cribrohantkenina lazzarii Biozones (Rupelian), and Paragloborotalia increbescens (Priabonian). The planktonic foraminifera associations variability patterns are defined by paleoecologic indexes (diversity index, high and low latitude species index and planktonic and benthic foraminifera index), by geochemical proxies: δ18O and δ13C and by 'Q' Mode Factor Analysis. They prove that the deposition environment is outer platform and also, they suggest that the studied area in the Tethys Sea underwent many thermal pulses, during which some species extinct or appear. In the first extinction event the species Turborotalia cocoaensis and Turborotalia cunialensis became extinct. In the second one, Hantkenina alabamensis, Hantkenina brevispina, Cribrohantkenina lazzarii and Pseudohastigerina micra became extinct while a succession occured; Globigerina officinalis, Globoturborotalita anguliofficinalis and Tenuitellinata angustiumbilicata appeared. The cooling event that finished in the Lower Oligocene was the biggest of these pulses, which was extremely abrupt and corresponds to the Oi-1 event that was described by Miller (Miller, 1991). All this evidences that the planktonic foraminifera extinction in the Upper Eocene was a gradual and fast event, what is supported by the Factor Analysis application. Key

  12. Age and paleoenvironment of the imperial formation near San Gorgonio Pass, Southern California (United States)

    McDougall, K.; Poore, R.Z.; Matti, J.


    Microfossiliferous marine sediments of the Imperial Formation exposed in the Whitewater and Cabazon areas, near San Gorgonio Pass, southern California, are late Miocene in age and were deposited at intertidal to outer neritic depths, and possibly upper bathyal depths. A late Miocene age of 7.4 to >6.04 Ma is based on the ranges of age-diagnostic benthic foraminifers (Cassidulina delicata and Uvigerina peregrina), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes; zones N17-N19), and calcareous nannoplankton (Discoaster brouweri, D. aff. D. surculus, Reticulofenestra pseudoumbilicata, Sphenolithus abies, and S. neoabies; zones CN9a-CN11) coupled with published K/Ar dates from the underlying Coachella Formation (10.1 ?? 1.2 Ma; Peterson, 1975) and overlying Painted Hill Formation (6.04 ?? 0.18 and 5.94 ?? 0.18 Ma; J. L. Morton in Matti and others, 1985 and Matti and Morton, 1993). Paleoecologic considerations (sea-level fluctuations and paleotemperature) restrict the age of the Imperial Formation to 6.5 through 6.3 Ma. Benthic foraminiferal assemblages indicate that the Imperial Formation in the Whitewater and Cabazon sections accumulated at inner neritic to outer neritic (0-152 m) and possibly upper bathyal (152-244 m) depths. Shallowing to inner neritic depths occurred as the upper part of the section was deposited. This sea-level fluctuation corresponds to a global highstand at 6.3 Ma (Haq and others, 1987). Planktic foraminifers suggest an increase in surface-water temperatures upsection. A similar increase in paleotemperatures is interpreted for the North Pacific from 6.5 to 6.3 Ma (warm interval W10 of Barron and Keller, 1983). Environmental contrasts between the Whitewater and Cabazon sections of the Imperial Formation provide evidence for right-lateral displacements on the Banning fault, a late Miocene strand of the San Andreas fault system. The Cabazon section lies south of the Banning fault, and has been displaced west

  13. Ichnological analysis of the Upper Miocene in the ANH-Tumaco-1-ST-P well: assessing paleoenvironmental conditions at the Tumaco Basin, in the Colombian Pacific (United States)

    Giraldo-Villegas, Carlos A.; Celis, Sergio A.; Rodríguez-Tovar, Francisco J.; Pardo-Trujillo, Andrés; Vallejo-Hincapié, Diego F.; Trejos-Tamayo, Raúl A.


    Tumaco is a frontier basin located on the SW Colombian Pacific coast. It is composed of a thick siliciclastic sequence up to reach 10,000 m-thick. In recent years, the National Hydrocarbon Agency-ANH has promoted new exploration wells in order to understand the sedimentary dynamic and its relationship with petroleum systems. One of them, the ANH-Tumaco-1-ST-P well has ∼3000 m (12,000 feet). We carried out sedimentological, geochemical, and micropaleontological detailed analyses with special attention to the ichnology on a 55 m-cored interval (from 1695.3 to 1640.4 m = 5563-5382 ft) in order to assess paleoenvironmental conditions. Beds are composed of green and gray mudrocks interbedded with lithic sandstones and fine-grained tuffs. Calcareous microfossil assemblages defined by the recovery of Uvigerina carapitana, Uvigerina laviculata, Uvigerina pigmaea, Globigerina woodi, Globigerionoides obliquus, Discoaster bellus gr., Catinaster coalitus, Reticulofenestra pseudoumbilicus and Sphenolithus abies indicated a Tortonian age, between CN6/CN7 biozones. Six sedimentary facies were identified: (1, 2) massive and laminated mudrocks, (3, 4) massive and normal-graded sandstones, (5) heterolithic beds, and in some cases (6) sandstones with soft-deformation structures. These rocks were accumulated in a shallowing platform-prodelta environment with continuous volcanic influence. Ichnotaxonomic analysis, conducted for the first time in the Colombian Pacific, allowed the identification of eighteen ichnogenera: Alcyonidiopsis, Asterosoma, Chondrites, Conichnus, Cylindrichnus, Diplocraterion, Ophiomorpha, Palaeophycus, Phycosiphon, Planolites, Rhyzocorallium, Schaubcylindrichnus, Scolicia, Siphonichnus, Taeinidum, Teichichnus, Thalassinoides, and Zoophycos. The ichnological association belongs to the archetypal Cruziana ichnofacies and its "distal" expression. By integrating lithofacies and ichnological results, two segments have been distinguished: 1) the lower one (1695

  14. Controlling crystallization damage by the use of salt inhibitors on Malta’s limestone

    Directory of Open Access Journals (Sweden)

    Muscat, M.


    Full Text Available The main building stone in the Maltese Islands is the Globigerina Limestone, of which the Lower member is commonly used. This occurs in two types, the durable franka and the more easily weathered soll. Two types of fresh franka (bajda -white- and safra -yellow-, as well as fresh soll stone blocks, were obtained, based on the identification by quarry owners. Their designation was confirmed by geochemistry. Physical and mechanical properties of the three were investigated, including uniaxial compressive strength, water absorption by capillarity, permeability and porosimetry. Porosimetry results confirmed outcomes of previous research work. Soll was found to have a lower overall porosity, but a high percentage of small pores with practically no large pores. Some of the tested stones were then treated with a non-toxic phospho-organic compound containing carboxylic moieties as a salt inhibitor and the corresponding non-phosphorylated compound, as aqueous solutions at different concentrations. Both treated and untreated stones were then subject to salt crystallization tests, using sodium sulphate in different concentrations. For the untreated stones, even after only one salt cycle, faster and more pronounced deterioration was observed for the soll samples as opposed to the franka ones. In the case of the treated stones, less deterioration with almost no damage was observed as opposed to non-treated ones. The presence of even very low concentrations of the inhibitor thus helps crystallization to occur on the stone surface and not within the pores. These encouraging results led to the conclusion that salt inhibitors can be used to treat salt-infested stone. Further research in this respect, also using NaCl/NaHCO3, is continuing.El principal tipo de piedra para construcción existente en las islas maltesas es la caliza globigerina, de la cual suele utilizarse la capa inferior, existiendo dos tipos: la duradera franka y la soll, de meteorización más f

  15. Foraminiferal area density as a proxy for ocean acidification over the last 200 years in the California Current System (United States)

    Osborne, E.; Thunell, R.


    -barren planktonic foraminifera, N. pachyderma (dextral) and G. bulloides. ρA measurements of these species collected from 35 months of sediment trap material are regressed with corresponding calcification depth-specific [CO32-]. Preliminary results show that ρA for both species demonstrate a positive linear relationship with ambient [CO32-]. Seasonal upwelling patterns are clearly recorded in ρA measurements with lower values occurring during periods of peak upwelling, which typically initiates in early spring. Preliminary observations suggest that distinguishing different morphotypes and ontogenic stages of the planktonic foraminifera used in this study could optimize the calibration equations. Final calibration equations will be applied to ρA measurements for a 200-year core record collected near the sediment trap mooring in the SBB. This reconstruction will quantify changes in [CO32-] as a result of OA since the onset of the industrial revolution, providing insights for future reduction in calcification efficiency of foraminifera as a result of OA and increasing carbon emissions.

  16. Stable isotope stratigraphy of Latest Miocene sequences in northwest Morocco: The Bou Regreg section (United States)

    Hodell, David A.; Benson, Richard H.; Kennett, James P.; Rakic-El Bied, Kruna


    Oxygen and carbon isotopic ratios of foraminifers were measured from outcrop and drill core sequences from the Bou Regreg Section, northwest Morocco. This composite section was located at the western end of the Rifian Corridor during the late Miocene and thus potentially contains a record of water exchange between the Atlantic and Mediterranean during the late Tortonian and Messinian stages. Here we correlate isotopic and sedimentologic events in the Bou Regreg Section with Mediterranean and deep-sea sequences during the time leading up to and including the deposition of the Messinian evaporites. The late Miocene chron 6 carbon shift was identified in two Moroccan sequences, providing a valuable 6.3-Ma datum level. In both sections, the carbon shift coincides with the first occurrence of Globorotalia conomiozea and the Tortonian/Messinian boundary. Near this boundary, a major faunal turnover occurred in ostracod, planktonic foraminiferal, and nannofossil assemblages that indicates a cooling of surface and deep water in the Rifian Corridor. At 6.1 Ma, just above the Tortonian/Messinian boundary, mean ∂18O values of benthic foraminifers increased by 0.4-0.5‰ suggesting decreased temperature and/or increased continental ice volume. The faunal and isotopic changes are interpreted as reflecting a reversal in the direction of deep water flow through the Rifian Corridor that occurred between 6.3 and 6.1 Ma. At this time, cold, nutrient-rich waters filled the Mediterranean basins from intermediate depths of the Atlantic, and the production of Mediterranean Outflow Water ceased. The upwelling of nutrient-rich Atlantic intermediate water stimulated productivity in the Mediterranean, which led to the deposition of organic-rich strata such as those found in the Tripoli Formation. At ˜5.5 Ma, coincident with a coiling shift in Neogloboquadrina acostaensis, the variability of the benthic ∂18O signal increased markedly, and strong color variations appeared in the sediments

  17. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms (United States)

    Nuttin, L.; Hillaire-Marcel, C.


    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  18. Rock and stone weathering at Citadel fortifications, Gozo (Malta): benefits from terrestrial laser scanning combined with conventional investigations (United States)

    Tapete, D.; Gigli, G.; Mugnai, F.; Vannocci, P.; Pecchioni, E.; Morelli, S.; Fanti, R.; Casagli, N.


    Military architecture heritage is frequently built on rock masses affected by slope instability and weathering processes, which progressively undermine the foundations and cause collapses and toppling of the masonries. The latter can be also weakened by alteration of the stone surfaces, as a consequence of the interactions with the local environmental conditions. These conservation issues are emphasized for those sites, whose susceptibility to structural damages is also due to the similarity between the lithotypes constituting the geologic substratum and the construction materials. Effective solutions for the protection from such a type of phenomena can be achieved if the whole "rock mass - built heritage system" is analyzed. In this perspective, we propose a new approach for the study of the weathering processes affecting historic hilltop sites, taking benefits from the combination of terrestrial laser scanning (TLS) and conventional investigations, the latter including geotechnical and minero-petrographic analyses. In particular, the results here presented were obtained from specific tests on the fortifications of Citadel, Gozo (Malta), performed in co-operation with the Restoration Unit, Works Division, Maltese Ministry for Resources and Rural Affairs and the private company Politecnica Ingegneria e Architettura. The Citadel fortifications are built at the top of a relatively stiff and brittle limestone plate, formed by Upper Coralline Limestone (UCL) and overlying a thick Blue Clay (BC) layer. Differential weathering creates extensively fractured ledges on the cap and erosion niches in the strata beneath, thereby favouring block detachment, even rockfall events, such as the last one occurred in 2001. The locally quarried Globigerina Limestone (GL), historically employed in restoration masonries, is also exposed to alveolization and powdering, and several collapses damaged the underwalling interventions. Since the erosion pattern distribution suggested a

  19. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene. (United States)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David


    The Aquitaine basin located in south western Europe, is a Pyrenean retro-foreland basin. Two main phases of compression are recorded in this retro-foreland basin during the Pyrenean orogeny. A first upper Cretaceous phase corresponding to the early stage of the orogeny, and a second one usually related to a Pyrenean paroxysmal phase during the middle Eocene. During Paleocene to lower Eocene deformations are less pronounced, interpreted as a tectonically quiet period. The aim of the study is to better constrain the sedimentary system of the Aquitaine basin during this period of Paleocene-lower Eocene, in order to discuss the evolution of the sedimentary architecture in response of the Pyrenean compression. This work is based on a compilation of a large set of subsurface data (wells logs, seismic lines and cores logs) represented by isopachs and facies map. Three main cycles were identified during this structural quiet period: (1) The Danian cycle, is recorded by the aggradation of carbonate reef-rimmed platform. This platform is characterized by proximal facies (oncoid carbonate and mudstone with thalassinoides) to the north, which leads to distal deposit facies southern (pelagic carbonate with globigerina and slump facies) and present a significant thickness variation linked to the platform-slope-basin morphology. (2) The upper Selandian-Thanetian cycle follows a non-depositional/erosional surface associated with a Selandian hiatus. The base of this cycle marked the transition between the last reef rimmed platform and a carbonate ramp. The transgressive cycle is characterized by proximal lagoon facies to the north that leads southward to distal hemipelagic facies interfingered by turbiditic Lowstand System Tracks (LST). The location of these LST is strongly controlled by inherited Danian topography. The regressive cycle ends with a major regression associated with an erosional surface. This surface is linked with a network of canyons in the north, an important

  20. Geomorphological map of a coastal stretch of north-eastern Gozo (Maltese archipelago, Mediterranean Sea) (United States)

    Soldati, Mauro; Micallef, Anton; Biolchi, Sara; Chelli, Alessandro; Cuoghi, Alessandro; Devoto, Stefano; Gauci, Christopher; Graff, Kevin; Lolli, Federico; Mantovani, Matteo; Mastronuzzi, Giuseppe; Pisani, Luca; Prampolini, Mariacristina; Restall, Brian; Roulland, Thomas; Saliba, Michael; Selmi, Lidia; Vandelli, Vittoria


    Geomorphological investigations carried out along the north-eastern coast of the Island of Gozo (Malta) have led to the production of a detailed geomorphological map. Field surveys, accompanied by aerial photo-interpretation, were carried out within the framework of the EUR-OPA Major Hazards Agreement Project ``Developing Geomorphological mapping skills and datasets in anticipation of subsequent Susceptibility, Vulnerability, Hazard and Risk Mapping'' (Council of Europe). In particular, this geomorphological map is the main output of a `Training Course on Geomorphological Mapping in Coastal Areas' held within the Project in November 2016. The study area selected was between Ramla Bay and Dacrhlet Qorrot Bay on the Island of Gozo (67 km2), part of the Maltese archipelago in the central Mediterranean Sea. From a geological viewpoint, the stratigraphic sequence includes Late Oligocene (Chattian) to Late Miocene (Messinian) sedimentary rocks. The hard limestones of the Upper Coralline Limestone Formation, the youngest lithostratigraphic unit, dominate the study area. Underlying this formation, marls and clays belonging to the Blue Clay Formation extensively outcrop. The oldest lithostratigraphic unit observed in the study area is the Globigerina Limestone Formation, a fine-grained limestone. The lithostructural features of the outcropping units clearly condition the morphography of the landscape. The coast is characterised by the alternation of inlets and promontories. Worthy of notice is the large sandy beach of Ramla Bay partly backed by dunes. From a geomorphological perspective, the investigated coastal stretch is characterised by limestone plateaus bounded by steep structural scarps which are reshaped by gravitational and/or degradation processes, and milder slopes in Blue Clays at their foot comprising of numerous rock block deposits (rdum in Maltese) and active or abandoned terraced fields used for agricultural purposes. Landforms and processes related to

  1. Programa de Pós-Graduação em Geologia - Teses Defendidas 1999 - Doutorado - Instituto de Geociências - Universidade Federal do Rio de Janeiro

    Directory of Open Access Journals (Sweden)


    ática do nível do mar. Na área estudada do talude de Albacora os depósitos de escorregamentos são mais restritos e configuram eventos diferentes. Ficou evidente o controle paleoclimático e, conseqüentemente, glácio-eustático dos movimentos de massa ocorridos no Pleistoceno Superior do talude da Bacia de Campos. Em todos os testemunhos estudados, onde ocorrem movimentos de massa, estes localizam-se em biozonas glaciais, coincidentes com períodos de rebaixamento do nível do mar. Portanto, na situação eustática atual, de nível de mar alto, os sedimentos de fundo do talude encontram-se em estado de relativa estabilidade. Uma curva traçada a partir dos resultados das análises isotópicas de oxigênio, em amostras de rocha-total, para o furo geológico G1- 07, apresenta evidente similaridade com a curva obtida para o testemunho V22-174, coletado no Atlântico Sul. Esta similaridade possibilitou algumas discussões em torno do zoneamento paleoclimático obtido através de foraminíferos planctônicos para o mesmo testemunho. O conjunto de dados levantados no estudo do Quaternário Superior da Bacia de Campos, quando correlacionado com o zoneamento bioestratigráfico de Bolli & Premoli Silva (1973, revela que os sedimentos amostrados situam-se na parte superior da Zona Globorotalia truncatulinoides truncatulinoides. Os testemunhos longos atingiram as subzonas Globorotalia crassaformis hessi (parte, Globigerina calida calida e Globigerina bermudezi (Pleistoceno e Globorotalia fimbriata (Holoceno, que se correlacionam com as zonas paleoclimáticas W (parte, X, Y (Pleistoceno e Z (Holoceno. Os testemunhos a pistão coletados no talude não atravessaram completamente a Subzona Globigerina bermudezi (Zona Y, têm idades variáveis, alguns atingiram o bio-horizonte Pulleniatina obliquiloculata (YP.3 (42/45.000 anos mas nenhum deles alcançou o topo da Subzona Globigerina calida calida (84.000 anos. O testemunho a pistão coletado no Platô de São Paulo recuperou

  2. The Red Sea and Gulf of Aden Basins (United States)

    Bosworth, William; Huchon, Philippe; McClay, Ken


    We here summarize the evolution of the greater Red Sea-Gulf of Aden rift system, which includes the Gulfs of Suez and Aqaba, the Red Sea and Gulf of Aden marine basins and their continental margins, and the Afar region. Plume related basaltic trap volcanism began in Ethiopia, NE Sudan (Derudeb), and SW Yemen at ˜31 Ma, followed by rhyolitic volcanism at ˜30 Ma. Volcanism thereafter spread northward to Harrats Sirat, Hadan, Ishara-Khirsat, and Ar Rahat in western Saudi Arabia. This early magmatism occurred without significant extension, and continued to ˜25 Ma. Much of the Red Sea and Gulf of Aden region was at or near sea level at this time. Starting between ˜29.9 and 28.7 Ma, marine syn-tectonic sediments were deposited on continental crust in the central Gulf of Aden. At the same time the Horn of Africa became emergent. By ˜27.5-23.8 Ma a small rift basin was forming in the Eritrean Red Sea. At approximately the same time (˜25 Ma), extension and rifting commenced within Afar itself. At ˜24 Ma, a new phase of volcanism, principally basaltic dikes but also layered gabbro and granophyre bodies, appeared nearly synchronously throughout the entire Red Sea, from Afar and Yemen to northern Egypt. This second phase of magmatism was accompanied in the Red Sea by strong rift-normal extension and deposition of syn-tectonic sediments, mostly of marine and marginal marine affinity. Sedimentary facies were laterally heterogeneous, being comprised of inter-fingering siliciclastics, evaporite, and carbonate. Throughout the Red Sea, the principal phase of rift shoulder uplift and rapid syn-rift subsidence followed shortly thereafter at ˜20 Ma. Water depths increased dramatically and sedimentation changed to predominantly Globigerina-rich marl and deepwater limestone. Within a few million years of its initiation in the mid-Oligocene the Gulf of Aden continental rift linked the Owen fracture zone (oceanic crust) with the Afar plume. The principal driving force for extension

  3. Programa de Pós-Graduação em Geologia - Teses Defendidas 1998 - Doutorado - Instituto de Geociências - Universidade Federal do Rio de Janeiro

    Directory of Open Access Journals (Sweden)


    da foz do rio Amazonas existem espécies oportunistas que desenvolveram-se à superfície das camadas, durante paradas na sedimentação. Tecas desgastadas e escurecidas, encontradas entre 5 e 6m de profundidade no sedimento, evidenciaram uma interrupção na sedimentação seguida de erosão. Estes fenômenos foram identificados por análises sísmicas e sedimentológicas, e datadas entre 700 e 100 anos atrás. A noroeste e a sudeste da foz do Amazonas foram encontradas associações relíquias. Tecas de Steigerina? bubnamensis escurecidas, preenchidas com sedimentos, quebradas e deformadas, encontram-se em diferentes pontos da plataforma e em camadas mais raras e mais profundas do sedimento. Estas características demonstram processos hidrodinâmicos de arraste das carapaças no fundo marinho, que ocorreram em escala geográfica e temporal. No talude encontram-se formas características desta região, tais como espécies de Cassidulina e Bulimina, Globocassidulina subglobosa, Epistominella exigua e outras. Nos sedimentos abissais holocênicos do leque do Amazonas foram identificados foraminíferos típicos de grandes profundidades, como Cibicides wuellerstorfi, Laticarinina pauperata e aglutinantes tubulares, em meio a uma vasa de planctônicos. Nos sedimentos abissais pleistocênicos situados abaixo dos holocênicos existe uma vasa de planctônicos com raras e desgastadas tecas bentônicas. Estes sedimentos são respectivamente pelágicos do Holoceno e hemipelágicos do último máximo glacial do Pleistoceno final. Os foraminíferos planctônicos da plataforma externa, talude e sedimentos abissais do leque amazônico são de clima quente e temperado. Há um aumento da 125 Anuário do Instituto de Geociências - UFRJ Volume 21 / 1998 abundância e diversidade em relação ao aumento da profundidade da lâmina d’ água. Globigerina calida datou os sedimentos das amostras da plataforma e talude, e a amostra mais rasa dos sedimentos abissais do leque no Pleistoceno