WorldWideScience

Sample records for global wind patterns

  1. Spatial and temporal patterns of global onshore wind speed distribution

    Zhou, Yuyu; Smith, Steven J

    2013-01-01

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/climate forecast system reanalysis (CFSR) data over land areas. The Weibull distribution performs well in fitting the time series wind speed data at most locations according to R 2 , root mean square error, and power density error. The wind speed frequency distribution, as represented by the Weibull k parameter, exhibits a large amount of spatial variation, a regionally varying amount of seasonal variation, and relatively low decadal variation. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in non-negligible errors. While large-scale wind speed data are often presented in the form of mean wind speeds, these results highlight the need to also provide information on the wind speed frequency distribution. (letter)

  2. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  3. Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.

    Mogollón, Rodrigo; R Calil, Paulo H

    2018-04-14

    It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.

  4. Global wind energy outlook 2006

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  5. Global wind energy outlook 2008

    2008-10-01

    An overview is given of the global potential of wind power up to 2050. This potential could play a key part in achieving a decline in emissions by 2020, which the IPCC indicates is necessary to avoid the worst consequences of climate change. By 2020, wind power could save as much as 1.5 billion tonnes of CO2 every year, which would add up to over 10 billion tonnes in this timeframe. The report also explains how wind energy can provide up to 30% of the word's electricity by the middle of the century. More importantly, wind power could save as much as 1.5 billion tonnes of CO2 every year by 2020. GWEO 2008 explores three different scenarios for wind power: a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an Advanced Scenario which assumes that all policy options in favour of renewables have been adopted. These are then set against two demand projections for global energy demand. Wind energy has already become a mainstream power generation source in many regions around the world, and it is being deployed in over 70 countries. In addition to environmental benefits, wind energy also provides a sustainable answer to increasing concerns about security of energy supply and volatile fossil fuel prices. Moreover, wind energy is becoming a substantial factor in economic development, providing more than 350,000 'green collar' jobs today both in direct and indirect employment. By 2020, this figure is projected to increase to over 2 million

  6. Computing and Learning Year-Round Daily Patterns of Hourly Wind Speed and Direction and Their Global Associations with Meteorological Factors

    Hsing-Ti Wu

    2015-08-01

    Full Text Available Daily wind patterns and their relational associations with other metocean (oceanographic and meteorological variables were algorithmically computed and extracted from a year-long wind and weather dataset, which was collected hourly from an ocean buoy located in the Penghu archipelago of Taiwan. The computational algorithm is called data cloud geometry (DCG. This DCG algorithm is a clustering-based nonparametric learning approach that was constructed and developed implicitly based on various entropy concepts. Regarding the bivariate aspect of wind speed and wind direction, the resulting multiscale clustering hierarchy revealed well-known wind characteristics of year-round pattern cycles pertaining to the particular geographic location of the buoy. A wind pattern due to a set of extreme weather days was also identified. Moreover, in terms of the relational aspect of wind and other weather variables, causal patterns were revealed through applying the DCG algorithm alternatively on the row and column axes of a data matrix by iteratively adapting distance measures to computed DCG tree structures. This adaptation technically constructed and integrated a multiscale, two-sample testing into the distance measure. These computed wind patterns and pattern-based causal relationships are useful for both general sailing and competition planning.

  7. Will surface winds weaken in response to global warming?

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  8. Wind energy in a global world

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  9. Global experience curves for wind farms

    Junginger, M.; Faaij, A.; Turkenburg, W.C.

    2005-01-01

    In order to forecast the technological development and cost of wind turbines and the production costs of wind electricity, frequent use is made of the so-called experience curve concept. Experience curves of wind turbines are generally based on data describing the development of national markets, which cause a number of problems when applied for global assessments. To analyze global wind energy price development more adequately, we compose a global experience curve. First, underlying factors for past and potential future price reductions of wind turbines are analyzed. Also possible implications and pitfalls when applying the experience curve methodology are assessed. Second, we present and discuss a new approach of establishing a global experience curve and thus a global progress ratio for the investment cost of wind farms. Results show that global progress ratios for wind farms may lie between 77% and 85% (with an average of 81%), which is significantly more optimistic than progress ratios applied in most current scenario studies and integrated assessment models. While the findings are based on a limited amount of data, they may indicate faster price reduction opportunities than so far assumed. With this global experience curve we aim to improve the reliability of describing the speed with which global costs of wind power may decline

  10. Global wind power development: Economics and policies

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  11. Global Wind Report. Annual market update 2010

    Pullen, A.; Sawyer, S.

    2011-04-01

    GWEC's annual report is the authoritative source of information on wind power markets around the world. The Global Wind 2010 Report contains installation figures for over 70 countries for the 2010 record year, as well as a five-year forecast up to 2015 and detailed chapters on the key countries.

  12. Wind power: breakthrough to global dimensions

    Horrighs, W.

    1996-01-01

    The beginning of the 1980s saw the start of wind-turbine manufacture. Soon it had become a booming industrial sector, thanks mainly to the spirit of some young entrepreneurs and political support in many countries. But the wind-power market has assumed global dimensions and major structural changes have to be faced. (author)

  13. Global sensitivity analysis in wind energy assessment

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present

  14. A review on global wind energy policy

    Saidur, R.; Islam, M.R.; Rahim, N.A.; Solangi, K.H.

    2010-01-01

    With the increasing negative effects of fossil fuel combustion on the environment in addition to limited stock of fossil fuel have forced many countries to inquire into and change to environmentally friendly alternatives that are renewable to sustain the increasing energy demand. Energy policy plays a vital role to mitigate the impacts of global warming and crisis of energy availability. This paper explores the wind energy industry from the point of view of the wind energy policy. It is noticed that energy policy could help increasing wind power generation as well as stimulating the energy industry. It may be stated that without specific energy policy, a country would not be able to solve the acute problems like reducing greenhouse gases (GHGs) emission, scarcity of energy, etc. This paper discussed the existing successful energy policies for few selected countries. Based on literatures, it has been found that FIT, RPS, incentives, pricing law and Quota system are the most useful energy policies practiced by many countries around the world. Then, status of wind energy policy for Malaysia was investigated and compared with few selected countries around the world. (author)

  15. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  16. A high resolution global wind atlas - improving estimation of world wind resources

    Badger, Jake; Ejsing Jørgensen, Hans

    2011-01-01

    to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...

  17. Use of wind data in global modelling

    Pailleux, J.

    1985-01-01

    The European Centre for Medium Range Weather Forecasts (ECMWF) is producing operational global analyses every 6 hours and operational global forecasts every day from the 12Z analysis. How the wind data are used in the ECMWF golbal analysis is described. For each current wind observing system, its ability to provide initial conditions for the forecast model is discussed as well as its weaknesses. An assessment of the impact of each individual system on the quality of the analysis and the forecast is given each time it is possible. Sometimes the deficiencies which are pointed out are related not only to the observing system itself but also to the optimum interpolation (OI) analysis scheme; then some improvements are generally possible through ad hoc modifications of the analysis scheme and especially tunings of the structure functions. Examples are given. The future observing network over the North Atlantic is examined. Several countries, coordinated by WMO, are working to set up an 'Operational WWW System Evaluation' (OWSE), in order to evaluate the operational aspects of the deployment of new systems (ASDAR, ASAP). Most of the new systems are expected to be deployed before January 1987, and in order to make the best use of the available resources during the deployment phase, some network studies are carried out at the present time, by using simulated data for ASDAR and ASAP systems. They are summarized.

  18. Global patterns of drought recovery

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin

    2017-08-09

    Drought is a recurring multi-factor phenomenon with major impacts on natural and human systems1-3. Drought is especially important for land carbon sink variability, influencing climate regulation of the terrestrial biosphere4. While 20th Century trends in drought regime are ambiguous, “more extreme extremes” as well as more frequent and severe droughts3,7 are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the spatiotemporal patterning and controls of drought recovery are largely unknown. Here we use three distinct global datasets of gross primary productivity to show that across diverse terrestrial ecosystems drought recovery times are driven by biological productivity and biodiversity, with drought length and severity of secondary importance. Recovery time, especially for extreme droughts, and the areal extent of ecosystems in recovery from drought generally increase over the 20th Century, supporting an increase globally in drought impact8. Our results indicate that if future Anthropocene droughts become more widespread as expected, that droughts will become more frequent relative to recovery time. This increases the risk of entering a new regime where vegetation never recovers to its original state and widespread degradation of the land carbon sink ensues.

  19. Wind energy global trends: Opportunities and challenges

    Ancona, D.F.

    1995-01-01

    Wind energy is one of the least cost and environmentally attractive new electricity source options for many parts of the world. Because of new wind turbine technology, reduced costs, short installation time, and environmental benefits, countries all over the world are beginning to once again develop one of the world's oldest energy technologies. A unique set of opportunities and challenges now faces the wind industry and its proponents. This paper discusses the potential and challenges of wind power. The US Department of Energy (DOE) is working closely with industry to develop new, improved wind turbine technology and to support both domestic and international deployment. The US DOE Wind Program is discussed within this context

  20. Global patterns of renewable energy innovation, 1990–2009

    Bayer, Patrick; Dolan, Lindsay; Urpelainen, Johannes

    2013-01-01

    Cost-effective approaches to mitigating climate change depend on advances in clean energy technologies, such as solar and wind power. Given increased technology innovation in developing countries, led by China, we focus our attention on global patterns of renewable energy innovation. Utilizing highly valuable international patents as our indicator of innovation, we examine the economic and political determinants of energy innovation in 74 countries across the world, 1990–2009. We find that hi...

  1. Evaluation of global onshore wind energy potential and generation costs.

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  2. On the energy pattern factor in wind measurements

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  3. Sporadic wind wave horse-shoe patterns

    S. Yu. Annenkov

    1999-01-01

    Full Text Available The work considers three-dimensional crescent-shaped patterns often seen on water surface in natural basins and observed in wave tank experiments. The most common of these 'horse-shoe-like' patterns appear to be sporadic, i.e., emerging and disappearing spontaneously even under steady wind conditions. The paper suggests a qualitative model of these structures aimed at explaining their sporadic nature, physical mechanisms of their selection and their specific asymmetric form. First, the phenomenon of sporadic horse-shoe patterns is studied numerically using the novel algorithm of water waves simulation recently developed by the authors (Annenkov and Shrira, 1999. The simulations show that a steep gravity wave embedded into widespectrum primordial noise and subjected to small nonconservative effects typically follows the simple evolution scenario: most of the time the system can be considered as consisting of a basic wave and a single pair of oblique satellites, although the choice of this pair tends to be different at different instants. Despite the effective low-dimensionality of the multimodal system dynamics at relatively sho ' rt time spans, the role of small satellites is important: in particular, they enlarge the maxima of the developed satellites. The presence of Benjamin-Feir satellites appears to be of no qualitative importance at the timescales under consideration. The selection mechanism has been linked to the quartic resonant interactions among the oblique satellites lying in the domain of five-wave (McLean's class II instability of the basic wave: the satellites tend to push each other out of the resonance zone due to the frequency shifts caused by the quartic interactions. Since the instability domain is narrow (of order of cube of the basic wave steepness, eventually in a generic situation only a single pair survives and attains considerable amplitude. The specific front asymmetry is found to result from the interplay of quartic

  4. Wind's share in global energy markets

    Madsen, B.T.

    1997-01-01

    The question of how great of a contribution wind power can really make to the world's energy needs is discussed. Emphasis up until recently has been mainly on improving wind turbine technology and siting practices as it is these that will provide an answer. The International Energy Agency predicts that world energy demand will increase by 30-50% by 2010. More countries than ever are either using wind power now or are preparing for its use. Wind power continues to improve its price competitiveness. There is enough wind to cover our energy needs many times over, according to some reports twice the world's electricity supply could be met by utilizing just 5-10% of areas identified as having average wind speeds of 5 m/s or greater - ignoring population centers, forests and specially protected areas. But a major limiting factor to utilizing the available wind resource is the established grid systems, which can only base 20% of supply on wind power. It is concluded that wind can contribute significantly to the world's energy needs in the next century and beyond. If wind, which has taken giant leaps in improving its competitiveness over the past 20 hears, can be a major energy contributor by early next century, other renewables such as solar and biomass might also evolve to become major contributors too. If so, renewables, including hydro, could conceivably cover 50% of our energy needs by the middle of the next century. Much will depend on decision-makers at the centers of power. For Europe and certain other areas of the world, policies governing cross-border trade of electricity as well as the framework for environmental protection related to energy production will determine the final outcome

  5. The impacts of wind technology advancement on future global energy

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  6. Global wind power potential: Physical and technological limits

    Castro, Carlos de; Mediavilla, Margarita; Miguel, Luis Javier; Frechoso, Fernando

    2011-01-01

    This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. ). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (). We propose a top-down approach, such as that in , to evaluate the physical-geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. ). - Highlights: → Reported wind power potentials are flawed because they violate energy conservation. → For the first time, it is evaluated the technological wind power potential with a top-down approach. → Our results show 1 TWe for the limit of wind power energy, which is much lower than previous estimates.

  7. Global patterns of amphibian phylogenetic diversity

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    Aim  Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary...... processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location  Global; equal-area grid cells of approximately 10,000 km2. Methods  We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular...... phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...

  8. U.S. Hail Frequency and the Global Wind Oscillation

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  9. Wind energy. Energy technologies in national, European and global perspective

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  10. Wind energy. Energy technologies in national, European and global perspective

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  11. Assessment of Global Wind Energy Resource Utilization Potential

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  12. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  13. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  14. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  15. Wind-energy harnessing - global, national and local considerations

    Price, T.; Bunn, J.

    1996-01-01

    A review of the global issues of wind-energy capture and use is given, along with a case for developing the wind-energy potential of part of the Rhymney Valley, South Wales. Such an energy-supply project should be incorporated into an integrated energy and environmental strategy for the region. This would not only yield benefits with respect to the local, national and global environments, but also aid in enhancing the quality of life for the Rhymney Valley region and its inhabitants. (UK)

  16. Reducing storage of global wind ensembles with stochastic generators

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  17. Statistics-Based Compression of Global Wind Fields

    Jeong, Jaehong

    2017-02-07

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth\\'s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  18. Reducing storage of global wind ensembles with stochastic generators

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2018-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  19. Statistics-Based Compression of Global Wind Fields

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth's orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  20. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    A. Roobaert

    2018-03-01

    Full Text Available The calculation of the air–water CO2 exchange (FCO2 in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2. The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014, where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009 as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗ for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study

  1. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Roobaert, Alizée; Laruelle, Goulven G.; Landschützer, Peter; Regnier, Pierre

    2018-03-01

    The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ṡ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates

  2. The Ether Wind and the Global Positioning System.

    Muller, Rainer

    2000-01-01

    Explains how students can perform a refutation of the ether theory using information from the Global Positioning System (GPS). Discusses the functioning of the GPS, qualitatively describes how position determination would be affected by an ether wind, and illustrates the pertinent ideas with a simple quantitative model. (WRM)

  3. Mapping global diversity patterns for migratory birds.

    Marius Somveille

    Full Text Available Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world's birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective.

  4. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  5. Satellite communications - Intelsat and global patterns

    Astrain, S.

    1983-10-01

    The global pattern of mankind's population growth is examined, taking into account the exponential increase in population which began only in the 17th century. As world population has grown, trade has increased, and transportation and communications have become vitally important. A revolution in global communications was initiated when Intelsat launched the first international communications satellite, 'Early Bird', in April 1965. Since April 1965, a tremendous development in global communications by means of satellites has taken place. The Intelsat VI satellite will have a capacity of 36,000 telephone circuits plus 2 TV channels, while the capacity of Early Bird was only 240 telephone circuits. Today, Intelsat is truly an international organization which includes 108 member countries. Attention is given to the particular importance of the Intelsat services to the developing countries, the exploration of new technologies and system concepts, and the extension of services to those portions of the global village which have remained electronically isolated.

  6. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  7. Wind Patterns of Coastal Tanzania: Their Variability and Trends

    Abstract—Patterns in Tanzanian coastal winds were investigated in terms of their variability at the weather stations of Tanga, Zanzibar, Dar es Salaam and Mtwara. Three-hourly data collected over a 30-year period (1977-2006) were used for the study. Statistical analyses included regressions, correlations, spectral analysis,.

  8. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  9. Implementation Strategy for a Global Solar and Wind Atlas

    NONE

    2012-01-15

    In July 2009, Major Economies Forum leaders met to prepare for the COP 15 Copenhagen Conference that took place later that year. At this occasion the Major Economies Forum Global Partnership f or low carbon and climate-friendly technology was founded and Technology Action Plans (TAPs) for ten key low-carbon technologies were drafted. At that juncture Denmark, Germany and Spain took on the responsibility for drafting TAPs for Solar and Wind Energy Technologies. The TAPs were then consolidated and presented at COP 15 that would later take place in December in Copenhagen. Since then, countries that led the development of the Action Plans have started their implementation. During a first Clean Energy Ministerial (CEM) in July 2010 in Washington on the invitation of Steven Chu, US Secretary of Energy, several initiatives were launched. Denmark, Germany and Spain took the lead in the implementation of the TAPs for Solar and Wind Technologies and initiated the Multilateral Working Group on Solar and Wind Energy Technologies (MWGSW). Several countries joined the working group in Washington and afterwards. In two international workshops in Bonn (June 2010) and Madrid (November 2010) and in meetings during the first CEM in Washington (July 2010) and the second CEM in Abu Dhabi (April 2011) the Multilateral Working Group made substantial progress in the two initial fields of action: (1) the Development of a Global Solar and Wind Atlas; and (2) the Development of a Long-term Strategy on Joint Capacity Building. Discussion papers on the respective topics were elaborated involving the Working Group's member countries as well as various international institutions. This led to concrete proposals for several pilot activities in both fields of action. After further specifying key elements of the suggested projects in two expert workshops in spring 2011, the Multilateral Working Group convened for a third international workshop in Copenhagen, Denmark, to discuss the project

  10. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  11. A hydroclimatic model of global fire patterns

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  12. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  13. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Choun, Young Sun; Kim, Min Kyu; Kang, Ju Whan; Kim, Yang Seon

    2016-01-01

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  14. Prediction of Typhoon Wind Speeds under Global Warming Conditions

    Choun, Young Sun; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Kang, Ju Whan; Kim, Yang Seon [Mokpo National University, Muan (Korea, Republic of)

    2016-05-15

    The continuous increase of SST by global warming conditions in the western North Pacific Ocean results in an increased occurrence of supertyphoons in East Asia and the Korean Peninsula. Recent numerical experiments have found that the central pressures of two historical typhoons, Maemi (2003) and Rusa (2002), which recorded the highest storm surges along the coasts of the Korean Peninsula, dropped about 19 and 17 hPa, respectively, when considering the future SST (a warming of 3.9 .deg. C for 100 years) over the East China Sea. The maximum wind speeds increase under global warming conditions. The probability of occurrence of super-typhoons increases in the future. The estimated return period for supertyphoons affecting the Younggwang site is about 1,000,000 years.

  15. Are child eating patterns being transformed globally?

    Adair, Linda S; Popkin, Barry M

    2005-07-01

    To examine the extent to which child dietary patterns and trends are changing globally. Diets of children 2 to 19 years of age were studied with nationally representative data from Russia and the United States, nationwide data from China, and regional data from metropolitan Cebu, Philippines. Twenty-four-hour dietary recalls were examined at several points in time to examine trends in calories consumed away from home, snacking behavior, and soft drink and modern fast food consumption. Urban-rural trends were compared. U.S. and Cebu youth consume more than one-third of their daily calories and a higher proportion of snack calories from foods prepared away from home. In contrast, away from home food consumption is minimal in Chinese and Russian children. U.S. and Cebu youth consume about one-fifth of their total daily energy from snacks, but snacks provide a much lower proportion of energy in Russia ( approximately 16%) and China (where snacks provide only approximately 1% of energy). Fast food plays a much more dominant role in the American diet ( approximately 20% of energy vs. 2% to 7% in the other countries), but as yet does not contribute substantially to children's diets in the other countries. Urban-rural differences were found to be important, but narrowing over time, for China and Cebu, whereas they are widening for Russia. This research suggests that globalization of the fast food and other modern food sectors is beginning to affect child eating patterns in several countries undergoing nutrition transition. However, the contribution of fast food and soft drinks to the diet of children remains relatively small in China, Russia, and Cebu, Philippines, relative to the United States.

  16. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  17. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Moore, Todd W.

    2018-06-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  18. GLOBALIZATION, CONSUMPTION PATTERNS AND POLITICAL STABILITY

    Grzegorz Malinowski

    2017-06-01

    Full Text Available Rapid changes in technology and economy that we observe nowadays are accompanied by rapid changes in traditional values and attitudes. In the contemporary world, a permanent proximity of internet, computer, television or smartphone makes us all citizens of the globalised, virtual world rather than a physical, geographical, real one. But even if people consider themselves to be citizens of the “global village”, a political architecture of the real world has remained based on the nation-state. One of the main characteristics of a nation-state is its territory defined by its borders. Recognition and respect of nation-state borders is considered to be a principle of national sovereignty, national interest and territorial independence, which shape international relations. Historically, rulers always usurped the right to control what happens on their territory, but there were some areas that had escaped their supervision. The first one is the sphere of science and more broadly – ideas. Whether it was religion, superstition or steam engine, ideas were unstoppable even for isolated countries. Second area is a realm of trade. Rulers were usually rather kind for merchants, therefore borders were always wide open for business people. It is worth mentioning that both ideas and trade are significant driving forces in the history of world. Their influence is sometimes stronger and sometimes weaker but it is always meaningful. Yet the very hypothesis of this article states that in contemporary, globalised world a third important factor has arrived. It was always present but until the economy hasn’t become globalized, its impact wasn’t noticeable. This third factor can be described as universalisation of western consumption patterns and it plays an important role particularly in developing countries.

  19. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  20. A global condition monitoring system for wind turbines

    Schlechtingen, Meik

    the output signal is entirely reconstructed by using other correlated signals. Benefits in fault visibility and lead-time to failure estimatesare observed. A very important signal to monitor contained in the SCADA data is the wind turbine power output. The power output has a direct influence on the revenue...... proposed method to separate discrete (e.g. originating from gears) from random (e.g. originating from bearings) signal components is applied and validated in this research. This state of the art method named“signal pre-whitening” enhances the fault pattern visibility in the envelope spectra in a very...... developed leading to fully automated fault diagnosis. For this purpose a frequency content identifier is developed extracting the frequency content from the envelope spectrum building the basis for automated diagnosis. A modified parameter, namely the Kurtosis of the Amplitude Envelope Spectrum (KEAS...

  1. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  2. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  3. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  4. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  5. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  6. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  7. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  8. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  9. Global long-term cost dynamics of offshore wind electricity generation

    Gernaat, David E H J; Van Vuuren, Detlef P.; Van Vliet, Jasper; Sullivan, Patrick; Arent, Douglas J.

    2014-01-01

    Using the IMAGE/TIMER (The Targets IMage Energy Regional) long-term integrated assessment model, this paper explores the regional and global potential of offshore wind to contribute to global electricity production. We develop long-term cost supply curve for offshore wind, a representation of the

  10. The use of energy pattern factor (EPF) in estimating wind power ...

    The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...

  11. On wind speed pattern and energy potential in Nigeria

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  12. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  13. The impact of scatterometer wind data on global weather forecasting

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  14. Global VDET pattern recognition for ALEPH

    Bazarko, Andrew; Pusztaszeri, Jean-Francois; Rensing, Paul E.; Brown, David; Gay, Pascal

    1996-01-01

    With the current reliance on high-precision vertex detectors to provide very accurate information about the primary and secondary vertices in an event, the accuracy and efficiency of the assignment of vertex detectors hits to tracks has become crucial. This paper discusses new software written for ALEPH which attempts to make this assignment in a global manner using interger programming techniques. (author)

  15. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  16. Trend patterns in global sea surface temperature

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  17. Global variation in elevational diversity patterns

    Qinfeng Guo; Douglas A. Kelt; Zhongyu Sun; Hongxiao Liu; Liangjun Hu; Hai Ren; Jun We

    2013-01-01

    While horizontal gradients of biodiversity have been examined extensively in the past, vertical diversity gradients (elevation, water depth) are attracting increasing attention. We compiled data from 443 elevational gradients involving diverse organisms worldwide to investigate how elevational diversity patterns may vary between the Northern and Southern hemispheres...

  18. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  19. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  20. Extreme wind atlases of South Africa from global reanalysis data

    Larsén, Xiaoli Guo; Kruger, Andries; Badger, Jake

    2013-01-01

    Extreme wind atlases of South Africa were developed using three reanalysis data and recently developed approaches. The results are compared with the maps produced using standard wind measurements over the region. It was found that different reanalyses with the same approach provide similar spatia...

  1. Wind Patterns of Coastal Tanzania: Their Variability and Trends ...

    Generally, the wind speeds were significantly correlated with the El-Niño Southern Oscillation and the Pacific Decadal Oscillation, while at Mtwara the winds were also correlated with the Indian Ocean Dipole. These correlations were higher during the SE Monsoon than during the NE Monsoon. Trends in the monthly mean ...

  2. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.

  3. Global cancer patterns: causes and prevention.

    Vineis, Paolo; Wild, Christopher P

    2014-02-08

    Cancer is a global and growing, but not uniform, problem. An increasing proportion of the burden is falling on low-income and middle-income countries because of not only demographic change but also a transition in risk factors, whereby the consequences of the globalisation of economies and behaviours are adding to an existing burden of cancers of infectious origin. We argue that primary prevention is a particularly effective way to fight cancer, with between a third and a half of cancers being preventable on the basis of present knowledge of risk factors. Primary prevention has several advantages: the effectiveness could have benefits for people other than those directly targeted, avoidance of exposure to carcinogenic agents is likely to prevent other non-communicable diseases, and the cause could be removed or reduced in the long term--eg, through regulatory measures against occupational or environmental exposures (ie, the preventive effort does not need to be renewed with every generation, which is especially important when resources are in short supply). Primary prevention must therefore be prioritised as an integral part of global cancer control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Global patterns in marine predatory fish

    van Denderen, Pieter Daniël; Lindegren, Martin; MacKenzie, Brian

    2017-01-01

    known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal......Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur...... in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly...

  5. Global changes in total and wind electricity (1990–2014

    María del P. Pablo-Romero

    2017-03-01

    Full Text Available Wind energy is one of the renewable energies which have less adverse environmental impact and is becoming economically affordable long before several other renewable energies. Over recent years, substantial additions have been noted in wind energy capacity, although many differences can be observed between countries. Using the latest available data, this paper provides a concise analysis of wind energy and electricity consumption trends for the period 1990–2014 in a dual perspective, by principal world regions and by per capita gross national income levels in 2014. Electricity consumption has been divided into three types of energy: non-renewable, renewable excluding wind and wind energy. Annual rates of change, energy intensity, energy in per capita terms and some ratios have been analyzed. Notable regional differences and trends are observed in the studied variables. The first 15 European Union countries, other developed countries (ODC and East Asian (EAS and South Asian countries (SAS are the regions which currently have the highest wind capacity.

  6. Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor

    J.-S. Wang

    2004-06-01

    Full Text Available Electron density profiles in the Martian ionosphere observed by the radio occultation experiment on board Mars Global Surveyor have been analyzed to determine if the densities are influenced by the solar wind. Evidence is presented that the altitude of the maximum ionospheric electron density shows a positive correlation to the energetic proton flux in the solar wind. The solar wind modulation of the Martian ionosphere can be attributed to heating of the neutral atmosphere by the solar wind energetic proton precipitation. The modulation is observed to be most prominent at high solar zenith angles. It is argued that this is consistent with the proposed modulation mechanism.

  7. Changing Strategies in Global Wind Energy Shipping, Logistics, and Supply Chain Management

    Poulsen, Thomas

    2015-01-01

    Within the global wind energy market, a number of derived industries support the continued expansion of the ever larger onshore and offshore wind farms. One such derived industry is that of shipping, logistics, and supply chain management. Based on extensive case study work performed since 2009......, the paper reviews different wind energy markets globally. Subsequently, a number of supply chain set-ups serviced by the shipping, logistics, and supply chain management industry are reviewed. Finally, winning business models and strategies of current as well as emerging supply chain constituencies...

  8. Controls on wind abrasion patterns through a fractured bedrock landscape

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  9. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses.

    Thorne, L H; Conners, M G; Hazen, E L; Bograd, S J; Antolos, M; Costa, D P; Shaffer, S A

    2016-06-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. © 2016 The Author(s).

  10. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  11. Analysis of Roanoke Region Weather Patterns Under Global Teleconnections

    LaRocque, Eric John

    2006-01-01

    This work attempts to relate global teleconnections, through physical phenomena such as the El Nino-Southern Oscillation (ENSO), Artic Oscillation (AO), North Atlantic Oscillation (NAO), and the Pacific North American (PNA) pattern to synoptic-scale weather patterns and precipitation in the Roanoke, Virginia region. The first chapter describes the behavior of the El Nino-Southern Oscillation (ENSO) by implementing non-homogeneous and homogeneous Markov Chain models on a monthly time series o...

  12. 77 FR 7601 - Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...

    2012-02-13

    ... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy... Acts, for a period of 2 years for the purpose of processing a wind energy right-of-way (ROW... filed by Pattern Energy Group for the Ocotillo Express Wind Project on the above described lands while...

  13. Global aspects of stream evolution in the solar wind

    Gosling, J.T.

    1984-01-01

    A spatially variable coronal expansion, when coupled with solar rotation, leads to the formation of high speed solar wind streams which evolve considerably with increasing heliocentric distance. Initially the streams steepen for simple kinematic reasons, but this steepening is resisted by pressure forces, leading eventually to the formation of forward-reverse shock pairs in the distant heliosphere. The basic physical processes responsible for stream steepening an evolution are explored and model calculations are compared with actual spacecraft observations of the process. The solar wind stream evolution problem is relatively well understood both observationally and theoretically. Tools developed in achieving this understanding should be applicable to other astrophysical systems where a spatially or temporally variable outflow is associated with a rotating object. 27 references, 13 figures

  14. Global surface wind and flux fields from model assimilation of Seasat data

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  15. An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint

    Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.

  16. Modelling Global Pattern Formations for Collaborative Learning Environments

    Grappiolo, Corrado; Cheong, Yun-Gyung; Khaled, Rilla

    2012-01-01

    We present our research towards the design of a computational framework capable of modelling the formation and evolution of global patterns (i.e. group structures) in a population of social individuals. The framework is intended to be used in collaborative environments, e.g. social serious games...

  17. Food, Populations and Health — global Patterns and Challenges

    2016-01-01

    The present volume is based on presentations at a symposium at the Royal Danish Academy of Sciences and Letters in September 2014 with the title Food, Population and Health – global Patterns and Challenges. Food has played a fundamental role in the history of all societies over the World. Availab...

  18. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    James, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-12

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  19. Optimizing human activity patterns using global sensitivity analysis.

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  20. Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  1. Prospects for global market expansion of China’s wind turbine manufacturing industry

    Gosens, Jorrit; Lu, Yonglong

    2014-01-01

    Emerging economies are increasingly contributing to global innovation, including clean-tech innovation. The development of China’s wind power sector has often been used to illustrate this point. China’s domestic wind power market is the largest in the world and is largely supplied by domestic manufacturers. Competition for market share in the domestic market may pressure firms to innovate, which consecutively improves prospects for global expansion. This paper reviews developments in China’s domestic wind turbine market using the Technological Innovation System framework. We analyze the pressure to innovate arising from market competition and assess the prospects for global expansion of Chinese wind turbine manufacturers. We conclude that domestic customers are not pressured or incentivized to perform with respect to power output, such that turbine manufacturers are not pressured to perform with respect to turbine efficiency or maintenance needs. Pressure to innovate is further reduced by formalizing connections between wind farm developers and turbine manufacturers. Chinese turbine manufacturers cannot yet compete with leading global brands in technological leadership. The prospects for exports are improved, however, by the preferential supply of project financing from institutional investors, such as the China Development Bank, from Chinese utilities that seek global expansion and from the manufacturers themselves. - Highlights: • We assess the pressure to innovate in the Chinese wind turbine market. • Customer demand is focused more strongly on turbine cost than quality. • Formalizing connections between users and suppliers reduce pressure to innovate. • Chinese manufacturers cannot yet compete globally in technological quality. • Preferential supplies of project finance may provide a vehicle for exports

  2. Global patterns of phytoplankton dynamics in coastal ecosystems

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  3. Global assessment of onshore wind power resources considering the distance to urban areas

    Silva Herran, Diego; Dai, Hancheng; Fujimori, Shinichiro; Masui, Toshihiko

    2016-01-01

    This study assessed global onshore wind power resources considering the distance to urban areas in terms of transmission losses and costs, and visibility (landscape impact) restrictions. Including this factor decreased the economic potential considerably depending on the level of supply cost considered (at least 37% and 16% for an economic potential below 10 and 14 US cents/kWh, respectively). Its importance compared to other factors was secondary below 15 US cents/kWh. At higher costs it was secondary only to land use, and was more important than economic and technical factors. The impact of this factor was mixed across all regions of the world, given the heterogeneity of wind resources in remote and proximal areas. Regions where available resources decreased the most included the European Union, Japan, Southeast Asia, the Middle East, and Africa. The supply cost chosen to evaluate the economic potential and uncertainties influencing the estimation of distance to the closest urban area are critical for the assessment. Neglecting the restrictions associated with integration into energy systems and social acceptability resulted in an overestimation of global onshore wind resources. These outcomes are fundamental for global climate policies because they help to clarify the limits of wind energy resource availability. - Highlights: • Global onshore wind resources were assessed including the distance to urban areas. • We evaluate the impact of transmission losses and cost, and visibility restrictions. • The distance to urban areas' impact was considerable, depending on the supply cost. • This factor's importance was secondary to economic, land use, and technical factors. • Neglecting this factor resulted in an overestimation of global wind resources.

  4. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  5. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Mauder, M; Schmid, H-P; Eugster, W; Montagnani, L; Gianelle, D

    2016-01-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies. (letter)

  6. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    Y. Kawatani

    2016-06-01

    Full Text Available This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO. At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50–70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10–20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979–2012. The SD among the reanalysis

  7. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  8. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  9. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  10. Validation of High Wind Retrievals from the Cyclone Global Navigation Satellite System (CYGNSS) Mission

    McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the

  11. China’s impact on the global wind power industry

    Lema, Rasmus; Berger, Axel; Schmitz, Hubert

    China’s economic rise has transformed the global economy in a number of manufacturing industries. This paper investigates whether China’s transformative influence extends to the new green economy. Drawing on the debate about how China is driving major economic changes in the world – the ‘Asian...... firms. While the combined impact of Chinese market and production power is already visible, other influences are beginning to be felt – arising from China’s coordination, innovation and financing power....

  12. China’s Impact on the Global Wind Power Industry

    Lema, Rasmus; Berger, Axel; Schmitz, Hubert

    2013-01-01

    China’s economic rise has transformed the global economy in a number of manufacturing industries. This paper investigates whether China’s transformative influence extends to the new green economy. Drawing on the debate about how China is driving major economic changes in the world – the “Asian....... While the combined impact of Chinese market and production power is already visible, other influences are beginning to be felt – arising from China’s coordination, innovation and financing power....

  13. Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Ewers Lewis, Carolyn J.; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2017-01-01

    . Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns

  14. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  15. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  16. What drives the formation of global oil trade patterns?

    Zhang, Hai-Ying; Ji, Qiang; Fan, Ying

    2015-01-01

    In this paper, the spatial characteristics of current global oil trade patterns are investigated by proposing a new indicator Moran-F. Meanwhile, the factors that influence the formation of oil trade patterns are identified by constructing four different kinds of spatial econometric models. The findings indicate that most oil exporters have an obvious export focus in North America and a relatively balanced export in Europe and the Asia-Pacific region. Besides supply and demand factors, technological progress and energy efficiency have also significantly influenced the oil trade. Moreover, there is a spillover effect of trade flow among different regions, but its impact is weak. In addition, oil importers in the same region have the potential to cooperate due to their similar import sources. Finally, promotion of oil importers' R&D investments can effectively reduce the demand for global oil trade. - Highlights: • A new spatial association Moran-F indicator that applies to trade flows is proposed. • Driving factors affecting the formation of oil trade patterns are identified. • Oil-exporting countries implement various export strategies in different regions. • Supply, demand and technological factors contribute to the oil trade patterns. • Spillover effect of each factor affecting oil trade flows does exist but is limited

  17. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  18. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  19. Neural Global Pattern Similarity Underlies True and False Memories.

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  20. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  1. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  2. Global Sensitivity Analysis of High Speed Shaft Subsystem of a Wind Turbine Drive Train

    Saeed Asadi

    2018-01-01

    Full Text Available The wind turbine dynamics are complex and critical area of study for the wind industry. Quantification of the effective factors to wind turbine performance is valuable for making improvements to both power performance and turbine health. In this paper, the global sensitivity analysis of validated mathematical model for high speed shaft drive train test rig has been developed in order to evaluate the contribution of systems input parameters to the specified objective functions. The drive train in this study consists of a 3-phase induction motor, flexible shafts, shafts’ coupling, bearing housing, and disk with an eccentric mass. The governing equations were derived by using the Lagrangian formalism and were solved numerically by Newmark method. The variance based global sensitivity indices are introduced to evaluate the contribution of input structural parameters correlated to the objective functions. The conclusion from the current research provides informative beneficial data in terms of design and optimization of a drive train setup and also can provide better understanding of wind turbine drive train system dynamics with respect to different structural parameters, ultimately designing more efficient drive trains. Finally, the proposed global sensitivity analysis (GSA methodology demonstrates the detectability of faults in different components.

  3. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  4. Spatial and temporal patterns of stranded intertidal marine debris: is there a picture of global change?

    Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J

    2015-06-16

    Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.

  5. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  6. Global Patterns in the Implementation of Payments for Environmental Services.

    Driss Ezzine-de-Blas

    Full Text Available Assessing global tendencies and impacts of conditional payments for environmental services (PES programs is challenging because of their heterogeneity, and scarcity of comparative studies. This meta-study systematizes 55 PES schemes worldwide in a quantitative database. Using categorical principal component analysis to highlight clustering patterns, we reconfirm frequently hypothesized differences between public and private PES schemes, but also identify diverging patterns between commercial and non-commercial private PES vis-à-vis their service focus, area size, and market orientation. When do these PES schemes likely achieve significant environmental additionality? Using binary logistical regression, we find additionality to be positively influenced by three theoretically recommended PES 'best design' features: spatial targeting, payment differentiation, and strong conditionality, alongside some contextual controls (activity paid for and implementation time elapsed. Our results thus stress the preeminence of customized design over operational characteristics when assessing what determines the outcomes of PES implementation.

  7. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  8. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  9. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  10. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B

    2013-01-01

    Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  11. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    Kamran Safi

    Full Text Available BACKGROUND: Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE. Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. METHODS AND PRINCIPAL FINDINGS: Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. CONCLUSIONS: Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  12. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  13. On damage diagnosis for a wind turbine blade using pattern recognition

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  14. Global Climatology of the Coastal Low-Level Wind Jets using different Reanalysis

    Lima, Daniela C. A.; Soares, Pedro M. M.; Semedo, Alvaro; Cardoso, Rita M.

    2016-04-01

    Coastal Low-Level Jets (henceforth referred to as "coastal jets" or simply as CLLJ) are low-tropospheric mesoscale wind features, with wind speed maxima confined to the marine atmospheric boundary layer (MABL), typically bellow 1km. Coastal jets occur in the eastern flank of the semi-permanent subtropical mid-latitude high pressure systems, along equatorward eastern boundary currents, due to a large-scale synoptic forcing. The large-scale synoptic forcing behind CLLJ occurrences is a high pressure system over the ocean and a thermal low inland. This results in coastal parallel winds that are the consequence of the geostrophic adjustment. CLLJ are found along the California (California-Oregon) and the Canary (Iberia and Northeastern Africa) currents in the Northern Hemisphere, and along the Peru-Humboldt (Peru-Chile), Benguela (Namibia) and Western Australia (West Australia) currents in the Southern Hemisphere. In the Arabian Sea (Oman CLLJ), the interaction between the high pressure over the Indian Ocean in summer (Summer Indian Monsoon) and the Somali (also known as Findlater) Jet forces a coastal jet wind feature off the southeast coast of Oman. Coastal jets play an important role in the regional climates of the mid-latitude western continental regions. The decrease of the sea surface temperatures (SST) along the coast due to upwelling lowers the evaporation over the ocean and the coast parallel winds prevents the advection of marine air inshore. The feedback processes between the CLLJ and upwelling play a crucial role in the regional climate, namely, promoting aridity since the parallel flow prevents the intrusion of moisture inland, and increasing fish stocks through the transport of rich nutrient cold water from the bottom. In this study, the global coastal low-level wind jets are identified and characterized using an ensemble of three reanalysis, the ECMWF Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the NCEP Climate Forecast

  15. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  16. Global patterns of diversity and selection in human tyrosinase gene.

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  17. Global patterns and predictions of seafloor biomass using random forests.

    Chih-Lin Wei

    Full Text Available A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM, seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes. Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

  18. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  19. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    B. de Foy

    2006-01-01

    Full Text Available Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5 is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  20. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  1. A 'special effort' to provide improved sounding and cloud-motion wind data for FGGE. [First GARP Global Experiment

    Greaves, J. R.; Dimego, G.; Smith, W. L.; Suomi, V. E.

    1979-01-01

    Enhancement and editing of high-density cloud motion wind assessments and research satellite soundings have been necessary to improve the quality of data used in The Global Weather Experiment. Editing operations are conducted by a man-computer interactive data access system. Editing will focus on such inputs as non-US satellite data, NOAA operational sounding and wind data sets, wind data from the Indian Ocean satellite, dropwindsonde data, and tropical mesoscale wind data. Improved techniques for deriving cloud heights and higher resolution sounding in meteorologically active areas are principal parts of the data enhancement program.

  2. Renewable energy from wind and sun. Status quo and development perspectives at the global level

    Graichen, Patrick; Grotewold, Lars; Kordowski, Klaus; Wesemann, Philipp

    2015-01-01

    The global market for renewable energy technologies has experienced strong growth since the year 2000. In 2013 newly installed electricity production plants based on renewable energy for the first time outnumbered the aggregate of newly installed plants based on coal, gas or nuclear energy. In more and more parts of the world, wind and solar energy plants are becoming the most cost-effective means of electricity production. As renewable energy resources begin to claim significant shares in the energy mix they also become more system-relevant, resulting in a need for more investment as well as regulatory changes. Due to their specific features (high capital intensity, low incremental costs, fluctuating electricity production), and in spite of the marked decline in costs, wind and solar energy are still dependent on proactive policies in support of renewable energy.

  3. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  4. Global patterns and trends in human-wildlife conflict compensation.

    Ravenelle, Jeremy; Nyhus, Philip J

    2017-12-01

    Human-wildlife conflict is a major conservation challenge, and compensation for wildlife damage is a widely used economic tool to mitigate this conflict. The effectiveness of this management tool is widely debated. The relative importance of factors associated with compensation success is unclear, and little is known about global geographic or taxonomic differences in the application of compensation programs. We reviewed research on wildlife-damage compensation to determine geographic and taxonomic gaps, analyze patterns of positive and negative comments related to compensation, and assess the relative magnitude of global compensation payments. We analyzed 288 publications referencing wildlife compensation and identified 138 unique compensation programs. These publications reported US$222 million (adjusted for inflation) spent on compensation in 50 countries since 1980. Europeans published the most articles, and compensation funding was highest in Europe, where depredation by wolves and bears was the most frequently compensated damage. Authors of the publications we reviewed made twice as many negative comments as positive comments about compensation. Three-quarters of the negative comments related to program administration. Conversely, three-quarters of the positive comments related to program outcomes. The 3 most common suggestions to improve compensation programs included requiring claimants to employ damage-prevention practices, such as improving livestock husbandry or fencing of crops to receive compensation (n = 25, 15%); modifying ex post compensation schemes to some form of outcome-based performance payment (n = 21, 12%); and altering programs to make compensation payments more quickly (n = 14, 8%). We suggest that further understanding of the strengths and weaknesses of compensation as a conflict-mitigation tool will require more systematic evaluation of the factors driving these opinions and that differentiating process and outcomes and understanding

  5. Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae.

    Caleb D McMahan

    Full Text Available The contrasting distribution of species diversity across the major lineages of cichlids makes them an ideal group for investigating macroevolutionary processes. In this study, we investigate whether different rates of diversification may explain the disparity in species richness across cichlid lineages globally. We present the most taxonomically robust time-calibrated hypothesis of cichlid evolutionary relationships to date. We then utilize this temporal framework to investigate whether both species-rich and depauperate lineages are associated with rapid shifts in diversification rates and if exceptional species richness can be explained by clade age alone. A single significant rapid rate shift increase is detected within the evolutionary history of the African subfamily Pseudocrenilabrinae, which includes the haplochromins of the East African Great Lakes. Several lineages from the subfamilies Pseudocrenilabrinae (Australotilapiini, Oreochromini and Cichlinae (Heroini exhibit exceptional species richness given their clade age, a net rate of diversification, and relative rates of extinction, indicating that clade age alone is not a sufficient explanation for their increased diversity. Our results indicate that the Neotropical Cichlinae includes lineages that have not experienced a significant rapid burst in diversification when compared to certain African lineages (rift lake. Neotropical cichlids have remained comparatively understudied with regard to macroevolutionary patterns relative to African lineages, and our results indicate that of Neotropical lineages, the tribe Heroini may have an elevated rate of diversification in contrast to other Neotropical cichlids. These findings provide insight into our understanding of the diversification patterns across taxonomically disparate lineages in this diverse clade of freshwater fishes and one of the most species-rich families of vertebrates.

  6. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Gao eHu

    2016-02-01

    Full Text Available Most insect migrants fly at considerable altitudes (hundreds of meters above the ground where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects’ self-powered speed is directed downstream, and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here we analyze a large dataset of >600,000 radar-detected ‘medium-sized’ windborne insect migrants (body mass from 10 to 70 mg, flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all ‘migration events’ analyzed, and was also frequent at sunset (85% and at night (81%. Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment, but there was no directional bias in the offsets during the day or at sunset. Orientation ‘performance’ significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings.

  7. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  8. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  9. GLOBAL PATTERNS OF LEPTOSPIRA PREVALENCE IN VERTEBRATE RESERVOIR HOSTS.

    Andersen-Ranberg, Emilie U; Pipper, Christian; Jensen, Per M

    2016-07-01

    Leptospirosis is a widespread emerging bacterial zoonosis. As the transmission is believed to be predominantly waterborne, human incidence is expected to increase in conjunction with global climate change and associated extreme weather events. Providing more accurate predictions of human leptospirosis requires more detailed information on animal reservoirs that are the source of human infection. We evaluated the prevalence of Leptospira in vertebrates worldwide and its association with taxonomy, geographic region, host biology, ambient temperature, and precipitation patterns. A multivariate regression analysis with a meta-analysis-like approach was used to analyze compiled data extracted from 300 Leptospira-related peer reviewed papers. A fairly uniform Leptospira infection prevalence of about 15% was found in the majority of mammalian families. Higher prevalence was frequently associated with species occupying urban habitats, and this may explain why climatic factors were not significantly correlated with prevalence as consistently as expected. Across different approaches of the multiple regression analyses, the variables most frequently correlated with Leptospira infection prevalence were the host's ability to swim, minimum ambient temperature, and methodologic quality of the study. Prevalence in carnivores was not associated with any climatic variable, and the importance of environmental risk factors were indicated to be of lesser consequence in nonhuman mammals. The dataset is made available for further analysis.

  10. Global patterns of city size distributions and their fundamental drivers.

    Ethan H Decker

    2007-09-01

    Full Text Available Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity. Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors.

  11. Global Disparities Since 1800: Trends and Regional Patterns

    M. Shahid Alam

    2015-08-01

    Full Text Available This paper reviews the growing body of evidence on the relative economic standing of different regions of the world in the late eighteenth and early nineteenth centuries. In general, it does not find support for Euro-centric claims regarding Western Europe’s early economic lead. The Eurocentric claims are based primarily on estimates of per capita income, which are plagued by conceptual problems, make demands on historical data that are generally unavailable, and use questionable assumptions to reconstruct early per capita income. A careful examination of these conjectural estimates of per capita income, however, does not support claims that Western Europe had a substantial lead over the rest of the world at the beginning of the nineteenth century. An examination of several alternative indices of living standards in the late eighteenth or early nineteenth centuries—such as real wages, labor productivity in agriculture, and urbanization—also fails to confirm claims of European superiority. In addition, this paper examines the progress of global disparities—including the presence of regional patterns—using estimates of per capita income.

  12. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    Mendis, D. A.; Horányi, M.

    2014-01-01

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ≤ 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ≅ 15, 000 km at perihelion (d ≅ 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ≤1.61 AU, though its size is expected to be only ≅25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  13. Projected changes in prevailing winds for transatlantic migratory birds under global warming.

    La Sorte, Frank A; Fink, Daniel

    2017-03-01

    A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or

  14. Global adaptation patterns of Australian and CIMMYT spring bread wheat.

    Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark

    2007-10-01

    The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.

  15. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  16. A global three dimensional hybrid simulation of the interaction between a weakly magnetized obstacle and the solar wind

    Trávníček, Pavel; Hellinger, Petr; Schiver, D.

    2003-01-01

    Roč. 679, CP679 (2003), s. 485-488 ISSN 1551-7616. [Solar wind ten. Pisa, 17.06.2002-21.06.2002] Grant - others:ESA(NL) Prodex14529/00/NL/SFe; NSF(US) INT-0010111 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetized obstacle * solar wind * global hybrid simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Curl

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  18. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  19. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  20. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  1. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  2. The Determination of Children's Knowledge of Global Lunar Patterns from Online Essays Using Text Mining Analysis

    Cheon, Jongpil; Lee, Sangno; Smith, Walter; Song, Jaeki; Kim, Yongjin

    2013-01-01

    The purpose of this study was to use text mining analysis of early adolescents' online essays to determine their knowledge of global lunar patterns. Australian and American students in grades five to seven wrote about global lunar patterns they had discovered by sharing observations with each other via the Internet. These essays were analyzed for…

  3. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  4. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  5. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  6. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  7. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  8. A Global Online Handwriting Recognition Approach Based on Frequent Patterns

    C. Gmati

    2018-06-01

    Full Text Available In this article, the handwriting signals are represented based on geometric and spatio-temporal characteristics to increase the feature vectors relevance of each object. The main goal was to extract features in the form of a numeric vector based on the extraction of frequent patterns. We used two types of frequent motifs (closed frequent patterns and maximal frequent patterns that can represent handwritten characters pertinently. These common features patterns are generated from a raw data transformation method to achieve high relevance. A database of words consisting of two different letters was created. The proposed application gives promising results and highlights the advantages that frequent pattern extraction algorithms can achieve, as well as the central role played by the “minimum threshold” parameter in the overall description of the characters.

  9. Tornado Damage Assessment: Reconstructing the Wind Through Debris Tracking and Treefall Pattern Analysis

    Godfrey, C. M.; Peterson, C. J.; Lombardo, F.

    2017-12-01

    Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.

  10. An analysis of rainfall patterns in Nigeria | Odjugo | Global Journal of ...

    The rainfall pattern has also enhanced wind erosion/desertification, soil erosion and coastal flooding in the north, east and coastal areas of Nigeria respectively. With these impacts, the paper therefore recommends some adaptive and mitigation measures that could help to revert the current situation. Keywords: changing ...

  11. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean

    2017-11-01

    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  12. Global patterns of Leptospira prevalence in vertebrate reservoir hosts

    Andersen-Ranberg, Emilie U.; Pipper, Christian Bressen; Jensen, Per Moestrup

    2016-01-01

    leptospirosis requires more detailed information on animal reservoirs that are the source of human infection. We evaluated the prevalence of Leptospira in vertebrates worldwide and its association with taxonomy, geographic region, host biology, ambient temperature, and precipitation patterns. A multivariate...

  13. Comoving frame models of hot star winds II. Reduction of O star wind mass-loss rates in global models

    Krtička, J.; Kubát, Jiří

    2017-01-01

    Roč. 606, October (2017), A31/1-A31/12 E-ISSN 1432-0746 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  14. Computational study: The influence of omni-directional guide vane on the flow pattern characteristic around Savonius wind turbine

    Wicaksono, Yoga Arob; Tjahjana, D. D. D. P.

    2017-01-01

    Standart Savonius wind turbine have a low performance such as low coefficient of power and low coefficient of torque compared with another type of wind turbine. This phenomenon occurs because the wind stream can cause the negative pressure at the returning rotor. To solve this problem, standard Savonius combined with Omni Directional Guide Vane (ODGV) proposed. The aim of this research is to study the influence of ODGV on the flow pattern characteristic around of Savonius wind turbine. The numerical model is based on the Navier-Stokes equations with the standard k-ɛ turbulent model. This equation solved by a finite volume discretization method. This case was analyzed by commercial computational fluid dynamics solver such as SolidWorks Flow Simulations. Simulations were performed at the different wind directions; there are 0°, 30°,60° at 4 m/s wind speed. The numerical method validated with the past experimental data. The result indicated that the ODGV able to augment air flow to advancing rotor and decrease the negative pressure in the upstream of returning rotor compared to the bare Savonius wind turbine.

  15. Evolution and patterns of global health financing 1995-2014

    Dieleman, Joseph; Campbell, Madeline; Chapin, Abigail; Eldrenkamp, Erika; Fan, Victoria Y.; Haakenstad, Annie; Kates, Jennifer; Liu, Yingying; Matyasz, Taylor; Micah, Angela; Reynolds, Alex; Sadat, Nafis; Schneider, Matthew T.; Sorensen, Reed; Evans, Tim; Evans, David; Kurowski, Christoph; Tandon, Ajay; Abbas, Kaja M.; Abera, Semaw Ferede; Ahmad Kiadaliri, Aliasghar; Ahmed, Kedir Yimam; Ahmed, Muktar Beshir; Alam, Khurshid; Alizadeh-Navaei, Reza; Alkerwi, A.; Amini, Erfan; Ammar, Walid; Amrock, Stephen Marc; Antonio, Carl Abelardo T.; Atey, Tesfay Mehari; Avila-Burgos, Leticia; Awasthi, Ashish; Barac, Aleksandra; Bernal, Oscar Alberto; Beyene, Addisu Shunu; Beyene, Tariku Jibat; Birungi, Charles; Bizuayehu, Habtamu Mellie; Breitborde, Nicholas J.K.; Cahuana-Hurtado, Lucero; Castro, Ruben Estanislao; Catalá-López, Ferran; Dalal, Koustuv; Dandona, Lalit; Dandona, Rakhi; Jager, De Pieter; Dharmaratne, Samath D.; Dubey, Manisha; Sa Farinha, Carla Sofia E.; Faro, Andre; Feigl, Andrea B.; Fischer, Florian; Fitchett, Joseph Robert Anderson; Foigt, Nataliya; Giref, Ababi Zergaw; Gupta, Rahul; Hamidi, Samer; Harb, Hilda L.; Hay, Simon I.; Hendrie, Delia; Horino, Masako; Jürisson, Mikk; Jakovljevic, Mihajlo B.; Javanbakht, Mehdi; John, Denny; Jonas, Jost B.; Karimi, Seyed M.; Khang, Young Ho; Khubchandani, Jagdish; Kim, Yun Jin; Kinge, Jonas M.; Krohn, Kristopher J.; Kumar, G.A.; Magdy Abd El Razek, Hassan; Magdy Abd El Razek, Mohammed; Majeed, Azeem; Malekzadeh, Reza; Masiye, Felix; Meier, Toni; Meretoja, Atte; Miller, Ted R.; Mirrakhimov, Erkin M.; Mohammed, Shafiu; Nangia, Vinay; Olgiati, Stefano; Osman, Abdalla Sidahmed; Owolabi, Mayowa O.; Patel, Tejas; Paternina Caicedo, Angel J.; Pereira, David M.; Perelman, Julian; Polinder, Suzanne; Rafay, Anwar; Rahimi-Movaghar, Vafa; Rai, Rajesh Kumar; Ram, Usha; Ranabhat, Chhabi Lal; Roba, Hirbo Shore; Salama, Joseph; Savic, Miloje; Sepanlou, Sadaf G.; Shrime, Mark G.; Talongwa, Roberto Tchio; Ao, Te Braden J.; Tediosi, Fabrizio; Tesema, Azeb Gebresilassie; Thomson, Alan J.; Tobe-Gai, Ruoyan; Topor-Madry, Roman; Undurraga, Eduardo A.; Vasankari, Tommi; Violante, Francesco S.; Werdecker, Andrea; Wijeratne, Tissa; Xu, Gelin; Yonemoto, Naohiro; Younis, Mustafa Z.; Yu, Chuanhua; Zaidi, Zoubida; Sayed Zaki, El Maysaa; Murray, Christopher J.L.

    2017-01-01

    Background: An adequate amount of prepaid resources for health is important to ensure access to health services and for the pursuit of universal health coverage. Previous studies on global health financing have described the relationship between economic development and health financing. In this

  16. Global patterns of current and future road infrastructure

    Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.

    2018-06-01

    Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

  17. Wind reduction patterns around isolated biomass for wind erosion control in a desertified area of Central Sudan

    Nasr Al-amin, N.K.; Stigter, C.J.; El-Tayeb Mohammed, A.

    2010-01-01

    The aim of this study was to assess the effectiveness of sparse vegetation, feature common in arid zone, to reduce wind force (velocity) and hence protect the surface and regions downwind from drifting sand and their consequences. Respectively 4 (with heights h of 4, 3.2, 2 and 1.66 m), 2 (with h of

  18. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  19. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  20. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  1. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  2. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.

    Thaxter, Chris B; Buchanan, Graeme M; Carr, Jamie; Butchart, Stuart H M; Newbold, Tim; Green, Rhys E; Tobias, Joseph A; Foden, Wendy B; O'Brien, Sue; Pearce-Higgins, James W

    2017-09-13

    Mitigation of anthropogenic climate change involves deployments of renewable energy worldwide, including wind farms, which can pose a significant collision risk to volant animals. Most studies into the collision risk between species and wind turbines, however, have taken place in industrialized countries. Potential effects for many locations and species therefore remain unclear. To redress this gap, we conducted a systematic literature review of recorded collisions between birds and bats and wind turbines within developed countries. We related collision rate to species-level traits and turbine characteristics to quantify the potential vulnerability of 9538 bird and 888 bat species globally. Avian collision rate was affected by migratory strategy, dispersal distance and habitat associations, and bat collision rates were influenced by dispersal distance. For birds and bats, larger turbine capacity (megawatts) increased collision rates; however, deploying a smaller number of large turbines with greater energy output reduced total collision risk per unit energy output, although bat mortality increased again with the largest turbines. Areas with high concentrations of vulnerable species were also identified, including migration corridors. Our results can therefore guide wind farm design and location to reduce the risk of large-scale animal mortality. This is the first quantitative global assessment of the relative collision vulnerability of species groups with wind turbines, providing valuable guidance for minimizing potentially serious negative impacts on biodiversity. © 2017 The Author(s).

  3. Global Warming and Changing Temperature Patterns over Mauritius ...

    This paper discusses the changing temperature pattern over Mauritius. We observe an increase of the annual mean temperature at Pamplemousses since 1876 with an average rate of 0.009oC per year with a significant correlation coefficient of 0.67. Compared to the mean temperature for the period of 1951 to 1960, we ...

  4. National Income, Inequality and Global Patterns of Cigarette Use

    Pampel, Fred

    2007-01-01

    Declining tobacco use in high-income nations and rising tobacco use in low- and middle-income nations raises questions about the sources of worldwide patterns of smoking. Theories posit a curvilinear influence of national income based on the balance of affordability and health-cost effects. In addition, however, economic inequality, gender…

  5. Characteristics of diurnal pattern of global photosynthetically-active ...

    A two year data (September 1992 August 1994) on photosynhetically-active radiation (PAR) measured at Ilorin (Lat.: 832´N. Long.:434´E) using LI-190SA quantum sensor are analysed both on daily and monthly mean diurnal bases. This was done with the aim of characterizing the diurnal pattern of this radiation at this ...

  6. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  7. Hydropower versus irrigation—an analysis of global patterns

    Zeng, Ruijie; Cai, Ximing; Ringler, Claudia; Zhu, Tingju

    2017-03-01

    Numerous reservoirs around the world provide multiple flow regulation functions; key among these are hydroelectricity production and water releases for irrigation. These functions contribute to energy and food security at national, regional and global levels. While reservoir operations for hydroelectricity production might support irrigation, there are also well-known cases where hydroelectricity production reduces water availability for irrigated food production. This study assesses these relationships at the global level using machine-learning techniques and multi-source datasets. We find that 54% of global installed hydropower capacity (around 507 thousand Megawatt) competes with irrigation. Regions where such competition exists include the Central United States, northern Europe, India, Central Asia and Oceania. On the other hand, 8% of global installed hydropower capacity (around 79 thousand Megawatt) complements irrigation, particularly in the Yellow and Yangtze River Basins of China, the East and West Coasts of the United States and most river basins of Southeast Asia, Canada and Russia. No significant relationship is found for the rest of the world. We further analyze the impact of climate variables on the relationships between hydropower and irrigation. Reservoir flood control functions that operate under increased precipitation levels appear to constrain hydroelectricity production in various river basins of the United States, South China and most basins in Europe and Oceania. On the other hand, increased reservoir evaporative losses and higher irrigation requirements due to higher potential evaporation levels may lead to increased tradeoffs between irrigation and hydropower due to reduced water availability in regions with warmer climates, such as India, South China, and the Southern United States. With most reservoirs today being built for multiple purposes, it is important for policymakers to understand and plan for growing tradeoffs between key

  8. Global patterns of aboveground carbon stock and sequestration in mangroves

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  9. Wind Speed Pattern in Nigeria (A Case Study of Some Coastal and ...

    ADOWIE PERE

    Department of Physics and Solar Energy, Bowen University Iwo, Osun State, Nigeria ... ABSTRACT: In this study, wind speeds were analysed using the daily wind data obtained from Nigeria ..... Selected sites from Three Geopolitical Zones in.

  10. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE

    Poljak, Mario; Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Stuck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie; Alexiev, Ivailo

    2016-01-01

    Background. Human immunodeficiency virus type 1 (HIV-1) subtype CRF01_AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01_AE, little is known about its subsequent dispersal pattern. Methods. We assembled a global data set of 2736 CRF01_AE sequences by pooling sequences from public databases and patient-cohort studies. We estimated viral dispersal patterns, using statistical phylogeographic analysis run over bootstrap...

  11. Renewable energy from wind and sun. Status quo and development perspectives at the global level; Erneuerbare Energie aus Sonne und Wind. Status quo und Entwicklungsperspektiven weltweit

    Graichen, Patrick; Grotewold, Lars [Agora Energiewende, Berlin (Germany); Kordowski, Klaus; Wesemann, Philipp [Stiftung Mercator, Essen (Germany)

    2015-01-15

    The global market for renewable energy technologies has experienced strong growth since the year 2000. In 2013 newly installed electricity production plants based on renewable energy for the first time outnumbered the aggregate of newly installed plants based on coal, gas or nuclear energy. In more and more parts of the world, wind and solar energy plants are becoming the most cost-effective means of electricity production. As renewable energy resources begin to claim significant shares in the energy mix they also become more system-relevant, resulting in a need for more investment as well as regulatory changes. Due to their specific features (high capital intensity, low incremental costs, fluctuating electricity production), and in spite of the marked decline in costs, wind and solar energy are still dependent on proactive policies in support of renewable energy.

  12. Mortality of marine planktonic copepods : global rates and patterns

    Hirst, A.G.; Kiørboe, Thomas

    2002-01-01

    Using life history theory we make predictions of mortality rates in marine epi-pelagic copepods from field estimates of adult fecundity, development times and adult sex ratios. Predicted mortality increases with temperature in both broadcast and sac spawning copepods, and declines with body weight...... in broadcast spawners, while mortality in sac spawners is invariant with body size. Although the magnitude of copepod mortality does lie close to the overall general pattern for pelagic animals, copepod mortality scaling is much weaker, implying that small copepods are avoiding some mortality agent....../s that other pelagic animals of a similar size do not, We compile direct in situ estimates of copepod mortality and compare these with our indirect predictions; we find the predictions generally match the field measurements well with respect to average rates and patterns. Finally, by comparing in situ adult...

  13. Global patterns of terrestrial vertebrate diversity and conservation

    Jenkins, Clinton N.; Pimm, Stuart L.; Joppa, Lucas N.

    2013-01-01

    Identifying priority areas for biodiversity is essential for directing conservation resources. Fundamentally, we must know where individual species live, which ones are vulnerable, where human actions threaten them, and their levels of protection. As conservation knowledge and threats change, we must reevaluate priorities. We mapped priority areas for vertebrates using newly updated data on >21,000 species of mammals, amphibians, and birds. For each taxon, we identified centers of richness for all species, small-ranged species, and threatened species listed with the International Union for the Conservation of Nature. Importantly, all analyses were at a spatial grain of 10 × 10 km, 100 times finer than previous assessments. This fine scale is a significant methodological improvement, because it brings mapping to scales comparable with regional decisions on where to place protected areas. We also mapped recent species discoveries, because they suggest where as-yet-unknown species might be living. To assess the protection of the priority areas, we calculated the percentage of priority areas within protected areas using the latest data from the World Database of Protected Areas, providing a snapshot of how well the planet’s protected area system encompasses vertebrate biodiversity. Although the priority areas do have more protection than the global average, the level of protection still is insufficient given the importance of these areas for preventing vertebrate extinctions. We also found substantial differences between our identified vertebrate priorities and the leading map of global conservation priorities, the biodiversity hotspots. Our findings suggest a need to reassess the global allocation of conservation resources to reflect today’s improved knowledge of biodiversity and conservation. PMID:23803854

  14. Global timber trade pattern: the cards have changed

    Roda Jean-Marc; Rohana Abd Rahman; Ismariah Ahmad; Lim Hin Fui; Mohd Parid Mamat

    2011-01-01

    Since the 1960s, the global timber trade has gradually evolved from a South-North trade to a South-South trade, with an acceleration of the phenomenon in the mid 1990s. Nowadays, Asia consumes more than 70% (in round wood equivalent) of the forest products originating from the tropics. Africa becomes the new frontier for the supplies of wood material for Asian giants, which now source raw wood from all over the world. Since the mid 1990s, the dynamics of the tropical timber trade have been in...

  15. Global trends in significant wave height and marine wind speed from the ERA-20CM

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  16. The Globalization of Food Systems: A Conceptual Framework and Empirical Patterns

    Senauer, Benjamin; Venturini, Luciano

    2005-01-01

    This paper discusses a number of stylized facts and empirical patterns regarding agri-food trade flows as well as foreign direct investments in food processing and retailing. This evidence supports the hypothesis of an increasingly global food system. We identify the main factors at work such as push/supply side, pull/demand-side, and enabling/external factors. We show how the shift from national to global retailing is a recent phenomenon whose relevance for the globalization of upstream sect...

  17. The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea

    Semedo, Alvaro

    2015-04-01

    Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and

  18. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  19. Global patterns of materials use. A socioeconomic and geophysical analysis

    Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)

    2010-03-15

    Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)

  20. Systematic change in global patterns of streamflow following volcanic eruptions.

    Iles, Carley E; Hegerl, Gabriele C

    2015-11-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  1. The DELPHI Silicon Tracker in the global pattern recognition

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  2. The DELPHI Silicon Tracker in the global pattern recognition

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  3. Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface

    Madjid Soltani

    2018-04-01

    Full Text Available Passive cooling systems, such as wind towers, can help to reduce energy consumption in buildings and at the same time reduce greenhouse gas (GHG emissions. Wind towers can naturally ventilate buildings and also can create enhanced thermal comfort for occupants during the warm months. This study proposes a modern wind tower design with a moistened pad. The new design includes a fixed column, a rotating and movable head, an air opening with a screen, and two windows at the end of the column. The wind tower can be installed on roof-tops to take advantage of ambient airflow. The wind tower’s head can be controlled manually or automatically to capture optimum wind velocity based on desired thermal condition. To maximize its performance, a small pump was considered to circulate and spray water on an evaporative cooling pad. A computational fluid dynamics (CFD simulation of airflow around and inside the proposed wind tower is conducted to analyze the ventilation performance of this new design of wind tower. Thereby, the velocity, total pressure, and pressure coefficient distributions around and within the wind tower for different wind velocities are examined. The simulation results illustrate that the new wind tower design with a moistened pad can be a reasonable solution to improve naturally the thermal comfort of buildings in hot and dry climates.

  4. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  5. Global Research Patterns on Ground Penetrating Radar (GPR)

    Gizzi, Fabrizio Terenzio; Leucci, Giovanni

    2018-05-01

    The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995-2014. To do this, the Thomson Reuters' Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical-mathematical, sedimentological-stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.

  6. Patterns and Features of Global Uranium Resources and Production

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  7. Global patterns of interaction specialization in bird-flower networks

    Zanata, Thais B.; Dalsgaard, Bo; Passos, Fernando C.

    2017-01-01

    , such as plant species richness, asymmetry, latitude, insularity, topography, sampling methods and intensity. Results: Hummingbird–flower networks were more specialized than honeyeater–flower networks. Specifically, hummingbird–flower networks had a lower proportion of realized interactions (lower C), decreased...... in the interaction patterns with their floral resources. Location: Americas, Africa, Asia and Oceania/Australia. Methods: We compiled interaction networks between birds and floral resources for 79 hummingbird, nine sunbird and 33 honeyeater communities. Interaction specialization was quantified through connectance...... (C), complementary specialization (H2′), binary (QB) and weighted modularity (Q), with both observed and null-model corrected values. We compared interaction specialization among the three types of bird–flower communities, both independently and while controlling for potential confounding variables...

  8. Windy Prospects: An approach to strategic foresight in the global wind turbine industry

    Wied, Morten

    2007-01-01

    This report explores the forces of change which will influence the competitive environment of the wind turbine industry over the coming decade. It further explores the strategic consequences of such change for wind turbine manufacturers and investigates possibilities for adaptation, pre-emption and early warning. This report explores the forces of change which will influence the competitive environment of the wind turbine industry over the coming decade. It further explores the strategic c...

  9. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades

    Jialin Tang

    2017-11-01

    Full Text Available The identification of particular types of damage in wind turbine blades using acoustic emission (AE techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope. The results show that these parameters are representative for the classification of the failure modes.

  10. Preliminary development of a global 3-D magnetohydrodynamic computational model for solar wind-cometary and planetary interactions

    Stahara, S.S.

    1986-05-01

    This is the final summary report by Resource Management Associates, Inc., of the first year's work under Contract No. NASW-4011 to the National Aeronautics and Space Administration. The work under this initial phase of the contract relates to the preliminary development of a global, 3-D magnetohydrodynamic computational model to quantitatively describe the detailed continuum field and plasma interaction process of the solar wind with cometary and planetary bodies throughout the solar system. The work extends a highly-successful, observationally-verified computational model previously developed by the author, and is appropriate for the global determination of supersonic, super-Alfvenic solar wind flows past planetary obstacles. This report provides a concise description of the problems studied, a summary of all the important research results, and copies of the publications

  11. Global patterns in threats to vertebrates by biological invasions

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  12. Global patterns in human consumption of net primary production

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  13. Patterns of change: whose fingerprint is seen in global warming?

    Hegerl, Gabriele; Zwiers, Francis; Tebaldi, Claudia

    2011-01-01

    Attributing observed climate change to causes is challenging. This letter communicates the physical arguments used in attribution, and the statistical methods applied to explore to what extent different possible causes can be used to explain the recent climate records. The methods use fingerprints of climate change that are identified on the basis of the physics governing our climate system, and through the use of climate model experiments. These fingerprints characterize the geographical and vertical pattern of the expected changes caused by external influences, for example, greenhouse gas increases and changes in solar radiation, taking also into account how these forcings and their effects vary over time. These time–space fingerprints can be used to discriminate between observed climate changes caused by different external factors. Attribution assessments necessarily take the natural variability of the climate system into account as well, evaluating whether an observed change can be explained in terms of this internal variability alone, and estimating the contribution of this source of variability to the observed change. Hence the assessment that a large part of the observed recent warming is anthropogenic is based on a rigorous quantitative analysis of these joint drivers and their effects, and proceeds through a much more comprehensive and layered analysis than a comparison at face value of model simulations with observations.

  14. Global patterns in the poleward expansion of mangrove forests

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  15. Global patterns of protection of elevational gradients in mountain ranges.

    Elsen, Paul R; Monahan, William B; Merenlender, Adina M

    2018-05-21

    Protected areas (PAs) that span elevational gradients enhance protection for taxonomic and phylogenetic diversity and facilitate species range shifts under climate change. We quantified the global protection of elevational gradients by analyzing the elevational distributions of 44,155 PAs in 1,010 mountain ranges using the highest resolution digital elevation models available. We show that, on average, mountain ranges in Africa and Asia have the lowest elevational protection, ranges in Europe and South America have intermediate elevational protection, and ranges in North America and Oceania have the highest elevational protection. We use the Convention on Biological Diversity's Aichi Target 11 to assess the proportion of elevational gradients meeting the 17% suggested minimum target and examine how different protection categories contribute to elevational protection. When considering only strict PAs [International Union for Conservation of Nature (IUCN) categories I-IV, n = 24,706], nearly 40% of ranges do not contain any PAs, roughly half fail to meet the 17% target at any elevation, and ∼75% fail to meet the target throughout ≥50% of the elevational gradient. Observed elevational protection is well below optimal, and frequently below a null model of elevational protection. Including less stringent PAs (IUCN categories V-VI and nondesignated PAs, n = 19,449) significantly enhances elevational protection for most continents, but several highly biodiverse ranges require new or expanded PAs to increase elevational protection. Ensuring conservation outcomes for PAs with lower IUCN designations as well as strategically placing PAs to better represent and connect elevational gradients will enhance ecological representation and facilitate species range shifts under climate change. Copyright © 2018 the Author(s). Published by PNAS.

  16. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  17. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  18. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  19. The U.S. Navy's Global Wind-Wave Models: An Investigation into Sources of Errors in Low-Frequency Energy Predictions

    Rogers, W

    2002-01-01

    This report describes an investigation to determine the relative importance of various sources of error in the two global-scale models of wind-generated surface waves used operationally by the U.S. Navy...

  20. Competition, transmission and pattern evolution: A network analysis of global oil trade

    Zhang, Hai-Ying; Ji, Qiang; Fan, Ying

    2014-01-01

    This paper studies the competition among oil importers using complex network theory, combined with several alternative measures of competition intensity, to analyze the evolution of the pattern and transmission of oil-trading competition. The results indicate that oil trade has formed a global competition pattern and that the role played by the Asian-Pacific region in the evolution of this competition pattern is becoming increasingly prominent. In addition, global competition intensity has continued to rise, and non-OECD countries have become the main driving force for this increase in global competition intensity. The large oil importers are the most significant parts of the global oil-trading competition pattern. They are not only the major participants in the competition for oil resources but also play important roles in the transmission of oil-trading competition. China and the United States especially display the feature of globalization, whose impacts of transmission reach across the whole oil-trading competition network. Finally, a “5C” (changeability, contestability, cooperation, commitment and circumstances) policy framework is put forward to maintain the stability of oil trade and improve the energy security of oil importers in various aspects. - Highlights: • An oil-trading competition network is constructed using complex network theory. • Oil trade has formed a global competition pattern and its intensity has kept rising. • The status of the Asian-Pacific region in the competition pattern becomes prominent. • Large oil importers play important roles in transmitting the trading competition. • A “5C” policy framework is put forward to cope with the intensive competition

  1. Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers

    Hachey Mark

    2009-10-01

    Full Text Available Abstract Background The ability to evaluate geographic heterogeneity of cancer incidence and mortality is important in cancer surveillance. Many statistical methods for evaluating global clustering and local cluster patterns are developed and have been examined by many simulation studies. However, the performance of these methods on two extreme cases (global clustering evaluation and local anomaly (outlier detection has not been thoroughly investigated. Methods We compare methods for global clustering evaluation including Tango's Index, Moran's I, and Oden's I*pop; and cluster detection methods such as local Moran's I and SaTScan elliptic version on simulated count data that mimic global clustering patterns and outliers for cancer cases in the continental United States. We examine the power and precision of the selected methods in the purely spatial analysis. We illustrate Tango's MEET and SaTScan elliptic version on a 1987-2004 HIV and a 1950-1969 lung cancer mortality data in the United States. Results For simulated data with outlier patterns, Tango's MEET, Moran's I and I*pop had powers less than 0.2, and SaTScan had powers around 0.97. For simulated data with global clustering patterns, Tango's MEET and I*pop (with 50% of total population as the maximum search window had powers close to 1. SaTScan had powers around 0.7-0.8 and Moran's I has powers around 0.2-0.3. In the real data example, Tango's MEET indicated the existence of global clustering patterns in both the HIV and lung cancer mortality data. SaTScan found a large cluster for HIV mortality rates, which is consistent with the finding from Tango's MEET. SaTScan also found clusters and outliers in the lung cancer mortality data. Conclusion SaTScan elliptic version is more efficient for outlier detection compared with the other methods evaluated in this article. Tango's MEET and Oden's I*pop perform best in global clustering scenarios among the selected methods. The use of SaTScan for

  2. Patterns of migrating soaring migrants indicate attraction to marine wind farms.

    Skov, Henrik; Desholm, Mark; Heinänen, Stefan; Kahlert, Johnny A; Laubek, Bjarke; Jensen, Niels Einar; Žydelis, Ramūnas; Jensen, Bo Præstegaard

    2016-12-01

    Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed. © 2016 The Author(s).

  3. Allocating Scarce Resources Strategically - An Evaluation and Discussion of the Global Fund's Pattern of Disbursements

    McCoy, David; Kinyua, Kelvin

    2012-01-01

    Background The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE), government health expenditure (GHE), income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. Methods This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. Findings Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support). Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. Discussion The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a) reduce the extent to which funds are allocated on a demand-driven basis; and b) align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases. PMID:22590496

  4. Allocating scarce resources strategically--an evaluation and discussion of the Global Fund's pattern of disbursements.

    David McCoy

    Full Text Available BACKGROUND: The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE, government health expenditure (GHE, income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. METHODS: This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. FINDINGS: Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support. Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. DISCUSSION: The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a reduce the extent to which funds are allocated on a demand-driven basis; and b align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases.

  5. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  6. Ekman Upwelling, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  7. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  8. Wind energy. From the garage workshop to a global market. 25 years scientific accompaniment

    Hahn, Berthold; Stuebig, Cornelia; Ponick, Bernd; Keller, Sarina; Felder, Martin; Jachmann, Henning

    2015-01-01

    The plant technology for the use of wind energy on land is so sophisticated that the WEA can be operated as ''normal'' power plants to the grid. Of course, there are still potential for development, for example, in terms of improved reliability, or concerning the fledgling offshore use, always with an emphasis on the simultaneous reduction in costs. Although from the former garages workshops is little remaining, the production techniques are another major issue in terms of quality and costs. The cost of electricity from wind energy is taking account of external costs are already competitive with conventional power generation. To limit the costs of the energy transition one to expect from the wind energy as of the other technologies cost reduction. Various studies show that the wind energy supply in the balance is sufficient several times to provide the expected contribution to supply. [de

  9. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  10. Wind energy

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  11. A global analysis of bird plumage patterns reveals no association between habitat and camouflage

    Marius Somveille

    2016-11-01

    Full Text Available Evidence suggests that animal patterns (motifs function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types—mottled (irregular, scales, bars and spots (regular—and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species’ geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world’s birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world’s eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  12. A global analysis of bird plumage patterns reveals no association between habitat and camouflage.

    Somveille, Marius; Marshall, Kate L A; Gluckman, Thanh-Lan

    2016-01-01

    Evidence suggests that animal patterns (motifs) function in camouflage. Irregular mottled patterns can facilitate concealment when stationary in cluttered habitats, whereas regular patterns typically prevent capture during movement in open habitats. Bird plumage patterns have predominantly converged on just four types-mottled (irregular), scales, bars and spots (regular)-and habitat could be driving convergent evolution in avian patterning. Based on sensory ecology, we therefore predict that irregular patterns would be associated with visually noisy closed habitats and that regular patterns would be associated with open habitats. Regular patterns have also been shown to function in communication for sexually competing males to stand-out and attract females, so we predict that male breeding plumage patterns evolved in both open and closed habitats. Here, taking phylogenetic relatedness into account, we investigate ecological selection for bird plumage patterns across the class Aves. We surveyed plumage patterns in 80% of all avian species worldwide. Of these, 2,756 bird species have regular and irregular plumage patterns as well as habitat information. In this subset, we tested whether adult breeding/non-breeding plumages in each sex, and juvenile plumages, were associated with the habitat types found within the species' geographical distributions. We found no evidence for an association between habitat and plumage patterns across the world's birds and little phylogenetic signal. We also found that species with regular and irregular plumage patterns were distributed randomly across the world's eco-regions without being affected by habitat type. These results indicate that at the global spatial and taxonomic scale, habitat does not predict convergent evolution in bird plumage patterns, contrary to the camouflage hypothesis.

  13. Wind: new wind markets

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  14. Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building–Tree Grouping Patterns

    Bo Hong

    2018-01-01

    Full Text Available Airflow behavior and indoor/outdoor PM2.5 dispersion in different building–tree grouping patterns depend significantly on the building–tree layouts and orientation towards the prevailing wind. By using a standard k-ε model and a revised generalized drift flux model, this study evaluated airflow fields and indoor/outdoor relationships for PM2.5 resulting from partly wind-induced natural ventilation in four hypothetical building–tree grouping patterns. Results showed that: (1 Patterns provide a variety of natural ventilation potential that relies on the wind influence, and buildings that deflect wind on the windward facade and separate airflow on the leeward facade have better ventilation potential; (2 Patterns where buildings and trees form a central space and a windward opening side towards the prevailing wind offer the best ventilation conditions; (3 Under the assumption that transported pollution sources are diluted through the inlet, the aerodynamics and deposition effects of trees cause the lower floors of a multi-storey building to be exposed to lower PM2.5 compared with upper floors, and lower indoor PM2.5 values were found close to the tree canopy; (4 Wind pressure differences across each flat showed a poor correlation (R2 = 0.059, with indoor PM2.5 concentrations; and (5 Patterns with the long facade of buildings and trees perpendicular to the prevailing wind have the lowest indoor PM2.5 concentrations.

  15. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt

    2012-01-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi—microbial symbionts that play key roles in plant...... nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting...... with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM...

  16. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    James, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-12

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing, and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  17. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data

    Hedin, A. E.; Spencer, N. W.; Killeen, T. L.

    1988-01-01

    Thermospheric wind data obtained from the Atmosphere Explorer E and Dynamics Explorer 2 satellites have been used to generate an empirical wind model for the upper thermosphere, analogous to the MSIS model for temperature and density, using a limited set of vector spherical harmonics. The model is limited to above approximately 220 km where the data coverage is best and wind variations with height are reduced by viscosity. The data base is not adequate to detect solar cycle (F10.7) effects at this time but does include magnetic activity effects. Mid- and low-latitude data are reproduced quite well by the model and compare favorably with published ground-based results. The polar vortices are present, but not to full detail.

  18. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  19. Estimation of the mid-century Etesians wind pattern from EURO-CORDEX models

    Dafka, Stella; Toreti, Andrea; Luterbacher, Juerg; Zanis, Prodromos; Tyrlis, Evangelos; Xoplaki, Elena

    2017-04-01

    The Etesians are one of the major and most prominent wind system, prevailing over the Aegean Sea during summer and early autumn. Here, projections of changes in 30-year (2021-2050) wind speeds relative to 1971-2000, under the 8.5 and 4.5 Representative Concentration Pathways, have been produced for Etesians. Future changes in the number of Etesian days and the associated large scale dynamics are also considered. We analyze seven simulations from three EURO-CORDEX regional climate models at a 12 km grid resolution. Both scenarios indicate that in most RCMs daily wind speeds are projected to increase by 1-1.5m/s over the Aegean Sea, suggesting that the current estimate of wind power potential for Aegean Sea will be increased with the greenhouse gas forcing in the coming decades (2021-2050). Wind direction at 10-m as well as the number of Etesian days have shown to undergo minor changes. The projected changes in sea level pressure and geopotential height anomalies at 500 hPa have a large spread among the seven simulations with a disperse tendency of strengthening of the ridge over the Balkans.

  20. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  1. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  2. Análise dos padrões de vento no Estado de Alagoas Wind patterns analysis in Alagoas State

    Gabriel Brito Costa

    2012-03-01

    Full Text Available Com o objetivo de identificar áreas do Estado de Alagoas com boas perspectivas de aproveitamento eólico, comparou-se dados de velocidade e direção do vento observados por torres anemométricas do projeto Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas. A série utilizada é de 12/2007 a 11/2008 e o estudo focou três regiões distintas: Litoral, Agreste e Sertão. Os padrões médios com maiores velocidades do vento ocorreram na região do Agreste (7,1 ±1,2 ms-1 mensal, seguido do Sertão (6,8 ±0,9 ms-1 mensal e Litoral ( 5,3 ±0,8 ms-1 mensal. A regularidade da velocidade e a pouca variabilidade de direção do vento torna Alagoas uma ótima opção para a instalação de aerogeradores.Aiming to evaluate areas with good prospects for harnessing wind power, the patterns of wind speed and direction measured at anemometric towers within the Atlas Eólico e Disseminação da Tecnologia Eólica no Estado de Alagoas project were compared for the period from 12/2007 to 11/2008, at Alagoas State. We analyzed three distinct regions: Coast, Agreste and Sertão. The patterns with higher average wind speeds were in the Agreste regions (7.1 ± 1.2 ms-1 monthly followed by Sertão (6.8 ± 0.9 ms- 1 monthly and by Coast (5.3 ± 0.8 ms-1 monthly. The regularity of the wind speed and the low variability of wind direction make Alagoas be a great option for the installation of wind turbines.

  3. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  4. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    B. V. Chubarenko

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.

    Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  5. Barotropic wind-driven circulation patterns in a closed rectangular basin of variable depth influenced by a peninsula or an island

    B. V. Chubarenko

    2000-06-01

    Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents

  6. Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition

    Colone, L.; Hovgaard, K.; Glavind, Lars

    2018-01-01

    A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Ana...

  7. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  8. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  9. Wind energy in China. Current scenario and future perspectives

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  10. Global and Regional Patterns in Riverine Fish Species Richness: A Review

    Thierry Oberdorff

    2011-01-01

    Full Text Available We integrate the respective role of global and regional factors driving riverine fish species richness patterns, to develop a synthetic model of potential mechanisms and processes generating these patterns. This framework allows species richness to be broken down into different components specific to each spatial extent and to establish links between these components and the processes involved. This framework should help to answer the questions that are currently being asked by society, including the effects of species invasions, habitat loss, or fragmentation and climate change on freshwater biodiversity.

  11. Identification of global oil trade patterns: An empirical research based on complex network theory

    Ji, Qiang; Zhang, Hai-Ying; Fan, Ying

    2014-01-01

    Highlights: • A global oil trade core network is analyzed using complex network theory. • The global oil export core network displays a scale-free behaviour. • The current global oil trade network can be divided into three trading blocs. • The global oil trade network presents a ‘robust and yet fragile’ characteristic. - Abstract: The Global oil trade pattern becomes increasingly complex, which has become one of the most important factors affecting every country’s energy strategy and economic development. In this paper, a global oil trade core network is constructed to analyze the overall features, regional characteristics and stability of the oil trade using complex network theory. The results indicate that the global oil export core network displays a scale-free behaviour, in which the trade position of nodes presents obvious heterogeneity and the ‘hub nodes’ play a ‘bridge’ role in the formation process of the trade network. The current global oil trade network can be divided into three trading blocs, including the ‘South America-West Africa-North America’ trading bloc, the ‘Middle East–Asian–Pacific region’ trading bloc, and ‘the former Soviet Union–North Africa–Europe’ trading bloc. Geopolitics and diplomatic relations are the two main reasons for this regional oil trade structure. Moreover, the global oil trade network presents a ‘robust but yet fragile’ characteristic, and the impacts of trade interruption always tend to spread throughout the whole network even if the occurrence of export disruptions is localised

  12. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  13. Local control of globally competing patterns in coupled Swift-Hohenberg equations

    Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus

    2018-04-01

    We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.

  14. A theory of local and global processes which affect solar wind electrons. 2. Experimental support

    Scudder, J.D.; Olbert, S.

    1979-05-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU

  15. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 Grant - others:ESA(XE) PECS 98068; AVO(CZ) IAA300420702 Program:IA Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind * ion kinetics * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.519, year: 2012

  16. Theory of local and global processes which affect solar wind electrons. 2. Experimental support

    Scudder, J.D.; Olbert, S.

    1979-01-01

    We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component

  17. A modelling framework to predict bat activity patterns on wind farms: An outline of possible applications on mountain ridges of North Portugal.

    Silva, Carmen; Cabral, João Alexandre; Hughes, Samantha Jane; Santos, Mário

    2017-03-01

    Worldwide ecological impact assessments of wind farms have gathered relevant information on bat activity patterns. Since conventional bat study methods require intensive field work, the prediction of bat activity might prove useful by anticipating activity patterns and estimating attractiveness concomitant with the wind farm location. A novel framework was developed, based on the stochastic dynamic methodology (StDM) principles, to predict bat activity on mountain ridges with wind farms. We illustrate the framework application using regional data from North Portugal by merging information from several environmental monitoring programmes associated with diverse wind energy facilities that enable integrating the multifactorial influences of meteorological conditions, land cover and geographical variables on bat activity patterns. Output from this innovative methodology can anticipate episodes of exceptional bat activity, which, if correlated with collision probability, can be used to guide wind farm management strategy such as halting wind turbines during hazardous periods. If properly calibrated with regional gradients of environmental variables from mountain ridges with windfarms, the proposed methodology can be used as a complementary tool in environmental impact assessments and ecological monitoring, using predicted bat activity to assist decision making concerning the future location of wind farms and the implementation of effective mitigation measures. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  19. Global diversity patterns of freshwater fishes - potential victims of their own success

    Pelayo-Villamil, P.; Guisande, C.; Vari, R. P.; Manjarres-Hernandez, A.; Garcia-Rosello, E.; Gonzalez-Dacosta, J.; Heine, J.; Vilas, L. G.; Patti, B.; Quinci, E. M.; Jimenez, L. F.; Granado-Lorencio, C.; Tedesco, Pablo; Lobo, J. M.

    2015-01-01

    AimTo examine the pattern and cumulative curve of descriptions of freshwater fishes world-wide, the geographical biases in the available information on that fauna, the relationship between species richness and geographical rarity of such fishes, as well as to assess the relative contributions of different environmental factors on these variables. LocationGlobal. MethodsModestR was used to summarize the geographical distribution of freshwater fish species using information available from data-...

  20. Assessing the drivers shaping global patterns of urban vegetation landscape structure.

    Dobbs, C; Nitschke, C; Kendal, D

    2017-08-15

    Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  2. Investigation on the Patterns of Global Vegetation Change Using a Satellite-Sensed Vegetation Index

    Ainong Li

    2010-06-01

    Full Text Available The pattern of vegetation change in response to global change still remains a controversial issue. A Normalized Difference Vegetation Index (NDVI dataset compiled by the Global Inventory Modeling and Mapping Studies (GIMMS was used for analysis. For the period 1982–2006, GIMMS-NDVI analysis indicated that monthly NDVI changes show homogenous trends in middle and high latitude areas in the northern hemisphere and within, or near, the Tropic of Cancer and Capricorn; with obvious spatio-temporal heterogeneity on a global scale over the past two decades. The former areas featured increasing vegetation activity during growth seasons, and the latter areas experienced an even greater amplitude in places where precipitation is adequate. The discussion suggests that one should be cautious of using the NDVI time-series to analyze local vegetation dynamics because of its coarse resolution and uncertainties.

  3. Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns

    Yali Si

    2009-11-01

    Full Text Available The global spread of highly pathogenic avian influenza H5N1 in poultry, wild birds and humans, poses a significant pandemic threat and a serious public health risk. An efficient surveillance and disease control system relies on the understanding of the dispersion patterns and spreading mechanisms of the virus. A space-time cluster analysis of H5N1 outbreaks was used to identify spatio-temporal patterns at a global scale and over an extended period of time. Potential mechanisms explaining the spread of the H5N1 virus, and the role of wild birds, were analyzed. Between December 2003 and December 2006, three global epidemic phases of H5N1 influenza were identified. These H5N1 outbreaks showed a clear seasonal pattern, with a high density of outbreaks in winter and early spring (i.e., October to March. In phase I and II only the East Asia Australian flyway was affected. During phase III, the H5N1 viruses started to appear in four other flyways: the Central Asian flyway, the Black Sea Mediterranean flyway, the East Atlantic flyway and the East Africa West Asian flyway. Six disease cluster patterns along these flyways were found to be associated with the seasonal migration of wild birds. The spread of the H5N1 virus, as demonstrated by the space-time clusters, was associated with the patterns of migration of wild birds. Wild birds may therefore play an important role in the spread of H5N1 over long distances. Disease clusters were also detected at sites where wild birds are known to overwinter and at times when migratory birds were present. This leads to the suggestion that wild birds may also be involved in spreading the H5N1 virus over short distances.

  4. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  6. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

  7. Patterns of spatial variation of assemblages associated with intertidal rocky shores: a global perspective.

    Juan José Cruz-Motta

    2010-12-01

    Full Text Available Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org. There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs; however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution, we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses.

  8. Wind Loads on Structures

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  9. Global control of colored moiré pattern in layered optical structures

    Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying

    2018-05-01

    Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.

  10. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 R&D Projects: GA AV ČR IAA300420702 Grant - others:ESA(XE) PECS 98068 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Solar wind * Ion kinetics * Numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.519, year: 2012 http://link.springer.com/article/10.1007%2Fs11214-011-9774-z#

  11. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  12. Global Patterns of the Isotopic Composition of Soil and Plant Nitrogen

    Amundson, R.; Yoo, K.

    2014-12-01

    From a societal perspective, soil N follows only soil C in the importance of soil to 21st century environmental issues. Amundson et al (2003) developed a mass balance model for soil N and the ratio of 15N/14N, and provided the first global projections of the spatial patterns of soil and plant δ15N values. It was hypothesized that state factors, particularly climate, should drive broad patterns of soil and plant δ15N values in a manner analogous to the known patterns of total soil N (e.g. Post et al., 1984). At that time, the N isotope data available to explore the effect of individual factors was modest. In the past decade, numerous papers from a broad spectrum of locations have created a rich database that can be used to further refine the initial projections made more than a decade ago. In this paper, hundreds of published measurements will be used to more deeply examine the climatic impacts on soil and plant δ15N values. Additionally, we will focus on the local controls of topography on ecosystem N cycling, which can create local isotopic variation that is similar in magnitude to the global effects of climate. The adoption of process-based models from the hillslope geomorphology community appears to be a powerful tool for explaining some existing data from toposequences, designing new studies of topographic controls on biogeochemistry, and particularly for parameterization in global models. Amundson, R., A.T. Austin, E.A.G. Schuur, K. Yoo, V. Matzek, C. Kendall, A. Uebersax, D. Brenner, and W.T. Baisden. 2003. Global Biogeochemical Cycles 17(1):1031.

  13. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  14. Seasonality of cholera from 1974 to 2005: a review of global patterns

    Feldacker Caryl

    2008-06-01

    Full Text Available Abstract Background The seasonality of cholera is described in various study areas throughout the world. However, no study examines how temporal cycles of the disease vary around the world or reviews its hypothesized causes. This paper reviews the literature on the seasonality of cholera and describes its temporal cycles by compiling and analyzing 32 years of global cholera data. This paper also provides a detailed literature review on regional patterns and environmental and climatic drivers of cholera patterns. Data, Methods, and Results Cholera data are compiled from 1974 to 2005 from the World Health Organization Weekly Epidemiological Reports, a database that includes all reported cholera cases in 140 countries. The data are analyzed to measure whether season, latitude, and their interaction are significantly associated with the country-level number of outbreaks in each of the 12 preceding months using separate negative binomial regression models for northern, southern, and combined hemispheres. Likelihood ratios tests are used to determine the model of best fit. The results suggest that cholera outbreaks demonstrate seasonal patterns in higher absolute latitudes, but closer to the equator, cholera outbreaks do not follow a clear seasonal pattern. Conclusion The findings suggest that environmental and climatic factors partially control the temporal variability of cholera. These results also indirectly contribute to the growing debate about the effects of climate change and global warming. As climate change threatens to increase global temperature, resulting rises in sea levels and temperatures may influence the temporal fluctuations of cholera, potentially increasing the frequency and duration of cholera outbreaks.

  15. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  16. Global Observations of the 630-nm Nightglow and Patterns of Brightness Measured by ISUAL

    Chih-Yu Chiang

    2013-01-01

    Full Text Available This study investigates the distributions and occurrence mechanisms of the global local-midnight airglow brightness through FORMOSAT-2/ISUAL satellite imaging observations. We focus on the OI 630.0 nm nightglow emission at altitudes of ~250 km along equatorial space. The database used in this study included data from 2007 to 2008 under solar minimum conditions. The data were classified into four specified types in the statistical study. We found that the occurrence of equatorial brightness was often in the vicinity of the geographic equator and mostly at equinoxes with a tendency to move toward the summer hemisphere as the season changes. Conjugate brightness occurring simultaneously on both sides of the geomagnetic equator was observed predominantly in the northern winter. Furthermore, midnight brightness appeared to have lower luminosity from May to July. We suggest that the global midnight brightness associated with the locations and seasons was the result of several effects which include the influence of the thermospheric midnight temperature maximum (MTM, summer-to-winter neutral wind, and ionospheric anomalies.

  17. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  18. Methods for simultaneously identifying coherent local clusters with smooth global patterns in gene expression profiles

    Lee Yun-Shien

    2008-03-01

    Full Text Available Abstract Background The hierarchical clustering tree (HCT with a dendrogram 1 and the singular value decomposition (SVD with a dimension-reduced representative map 2 are popular methods for two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually identify better global grouping and transitional structures. Results This study proposes a flipping mechanism for a conventional agglomerative HCT using a rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose seriation by Chen 3 as an external reference. While HCTs always produce permutations with good local behaviour, the rank-two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The resulting algorithm automatically integrates the desirable properties of each method so that users have access to a clustering and visualization environment for gene expression profiles that preserves coherent local clusters and identifies global grouping trends. Conclusion We demonstrate, through four examples, that the proposed method not only possesses better numerical and statistical properties, it also provides more meaningful biomedical insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for comprehensive understanding of gene expression structures. Software for the proposed methods can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

  19. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  20. Regional mantle upwelling on Venus: The Beta-Atla-Themis anomaly and correlation with global tectonic patterns

    Crumpler, L. S.; Head, J. W.; Aubele, Jayne C.

    1993-01-01

    The morphology and global distribution of volcanic centers and their association with other geological characteristics offers significant insight into the global patterns of geology, tectonic style, thermal state, and interior dynamics of Venus. Magellan data permit the detailed geological interpretation necessary to address questions about interior dynamics of Venus particularly as they reflect relatively physical, chemical, and thermal conditions of the interior. This paper focuses on the distribution of anomalous concentrations of volcanic centers on Venus and regional patterns of tectonic deformation as it may relate to the identification of global internal anomalies, including mantle dynamic, petrological, or thermal patterns.

  1. Centennial eolian cyclicity in the Great Plains, USA: A dominant pattern of wind transport over the past 4000 years?

    Schwalb, Antje; Dean, Walter E.; Fritz, C. Sherilyn; Geiss, Christoph E.; Kromer, Bernd

    2010-01-01

    Proxy evidence at decadal resolution from Late Holocene sediments from Pickerel Lake, northeastern South Dakota, shows distinct centennial cycles (400-700 years) in magnetic susceptibility; contents of carbonate, organic carbon, and major elements; abundance in ostracodes; and delta18O and delta13C values in calcite. Proxies indicate cyclic changes in eolian input, productivity, and temperature. Maxima in magnetic susceptibility are accompanied by maxima in aluminum and iron mass accumulation rates (MARs), and in abundances of the ostracode Fabaeformiscandona rawsoni. This indicates variable windy, and dry conditions with westerly wind dominance, including during the Medieval Climate Anomaly. Maxima in carbonates, organic carbon, phosphorous, and high delta13C values of endogenic calcite indicate moister and less windy periods with increased lake productivity, including during the Little Ice Age, and alternate with maxima of eolian transport. Times of the Maunder, Sporer and Wolf sunspot minima are characterized by maxima in delta18O values and aluminum MARs, and minima in delta13C values and organic carbon content. We interpret these lake conditions during sunspot minima to indicate decreases in lake surface water temperatures of up to 4-5 degrees C associated with decreases in epilimnetic productivity during summer. We propose that the centennial cycles are triggered by solar activity, originate in the tropical Pacific, and their onset during the Late Holocene is associated with insolation conditions driven by precession. The cyclic pattern is transmitted from the tropical Pacific into the atmosphere and transported by westerly winds into the North Atlantic realm where they strengthen the Atlantic Meridional Overturning Circulation during periods of northern Great Plains wind maxima. This consequently leads to moister climates in Central and Northern Europe. Thus, Pickerel Lake provides evidence for mechanisms of teleconnections including an atmospheric link

  2. The Influence of Low-carbon Economy on Global Trade Pattern

    Xiao-jing, Guo

    Since global warming has seriously endangered the living environment of human being and their health and safety, the development of low-carbon economy has become an irreversible global trend. Under the background of economic globalization, low-carbon economy will surely exert a significant impact on global trade pattern. Countries are paying more and more attention to the green trade. The emission permits trade of carbon between the developed countries and the developing countries has become more mature than ever. The carbon tariff caused by the distribution of the "big cake" will make the low-cost advantage in developing countries cease to exist, which will, in turn, affect the foreign trade, economic development, employment and people's living in developing countries. Therefore, under the background of this trend, we should perfect the relevant laws and regulations on trade and environment as soon as possible, optimize trade structure, promote greatly the development of service trade, transform thoroughly the mode of development in foreign trade, take advantage of the international carbon trading market by increasing the added value of export products resulted from technological innovation to achieve mutual benefit and win-win results and promote common development.

  3. Cancers of the Brain and CNS: Global Patterns and Trends in Incidence.

    Mortazavi, S M J; Mortazavi, S A R; Paknahad, M

    2018-03-01

    Miranda-Filho et al. in their recently published paper entitled "Cancers of the brain and CNS: global patterns and trends in incidence" provided a global status report of the geographic and temporal variations in the incidence of brain and CNS cancers in different countries across continents worldwide. While the authors confirm the role of genetic risk factors and ionizing radiation exposures, they claimed that no firm conclusion could be drawn about the role of exposure to non-ionizing radiation. The paper authored by Miranda-Filho et al. not only addresses a challenging issue, it can be considered as a good contribution in the field of brain and CNS cancers. However, our correspondence addresses a basic shortcoming of this paper about the role of electromagnetic fields and cancers and provides evidence showing that exposure to radiofrequency electromagnetic fields (RF-EMFs), at least at high levels and long durations, can increases the risk of cancer.

  4. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  5. Relation of major volcanic center concentration on Venus to global tectonic patterns

    Crumpler, L. S.; Head, James W.; Aubele, Jayne C.

    1993-01-01

    Global analysis of Magellan image data indicates that a major concentration of volcanic centers covering about 40 percent of the surface of Venus occurs between the Beta, Atla, and Themis regions. Associated with this enhanced concentration are geological characteristics commonly interpreted as rifting and mantle upwelling. Interconnected low plains in an annulus around this concentration are characterized by crustal shortening and infrequent volcanic centers that may represent sites of mantle return flow and net downwelling. Together, these observations suggest the existence of relatively simple, large-scale patterns of mantle circulation similar to those associated with concentrations of intraplate volcanism on earth.

  6. Experience drives innovation of new migration patterns of whooping cranes in response to global change.

    Teitelbaum, Claire S; Converse, Sarah J; Fagan, William F; Böhning-Gaese, Katrin; O'Hara, Robert B; Lacy, Anne E; Mueller, Thomas

    2016-09-06

    Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.

  7. Emerging pattern of global change in the upper atmosphere and ionosphere

    J. Laštovička

    2008-05-01

    Full Text Available In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

  8. Experience drives innovation of new migration patterns of whooping cranes in response to global change

    Teitelbaum, Claire S.; Converse, Sarah J.; Fagan, William F.; Böhning-Gaese, Katrin; O'Hara, Robert B.; Lacy, Anne E; Mueller, Thomas

    2016-01-01

    Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.

  9. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

    Dapeng Zhang

    Full Text Available BACKGROUND: Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning, sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h typical of the springtime breeding season (May, we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. CONCLUSIONS/SIGNIFICANCE: Using both

  10. Global patterns in post-dispersal seed removal by invertebrates and vertebrates.

    Peco, Begoña; Laffan, Shawn W; Moles, Angela T

    2014-01-01

    It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant

  11. Spatial patterns and temporal dynamics of global scale climate-groundwater interactions

    Cuthbert, M. O.; Gleeson, T. P.; Moosdorf, N.; Schneider, A. C.; Hartmann, J.; Befus, K. M.; Lehner, B.

    2017-12-01

    The interactions between groundwater and climate are important to resolve in both space and time as they influence mass and energy transfers at Earth's land surface. Despite the significance of these processes, little is known about the spatio-temporal distribution of such interactions globally, and many large-scale climate, hydrological and land surface models oversimplify groundwater or exclude it completely. In this study we bring together diverse global geomatic data sets to map spatial patterns in the sensitivity and degree of connectedness between the water table and the land surface, and use the output from a global groundwater model to assess the locations where the lateral import or export of groundwater is significant. We also quantify the groundwater response time, the characteristic time for groundwater systems to respond to a change in boundary conditions, and map its distribution globally to assess the likely dynamics of groundwater's interaction with climate. We find that more than half of the global land surface significantly exports or imports groundwater laterally. Nearly 40% of Earth's landmass has water tables that are strongly coupled to topography with water tables shallow enough to enable a bi-directional exchange of moisture with the climate system. However, only a small proportion (around 12%) of such regions have groundwater response times of 100 years or less and have groundwater fluxes that would significantly respond to rapid environmental changes over this timescale. We last explore fundamental relationships between aridity, groundwater response times and groundwater turnover times. Our results have wide ranging implications for understanding and modelling changes in Earth's water and energy balance and for informing robust future water management and security decisions.

  12. Wind Power Meteorology

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  13. The global pattern of urbanization and economic growth: evidence from the last three decades.

    Chen, Mingxing; Zhang, Hua; Liu, Weidong; Zhang, Wenzhong

    2014-01-01

    The relationship between urbanization and economic growth has been perplexing. In this paper, we identify the pattern of global change and the correlation of urbanization and economic growth, using cross-sectional, panel estimation and geographic information systems (GIS) methods. The analysis has been carried out on a global geographical scale, while the timescale of the study spans the last 30 years. The data shows that urbanization levels have changed substantially during these three decades. Empirical findings from cross-sectional data and panel data support the general notion of close links between urbanization levels and GDP per capita. However, we also present significant evidence that there is no correlation between urbanization speed and economic growth rate at the global level. Hence, we conclude that a given country cannot obtain the expected economic benefits from accelerated urbanization, especially if it takes the form of government-led urbanization. In addition, only when all facets are taken into consideration can we fully assess the urbanization process.

  14. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  15. The global pattern of urbanization and economic growth: evidence from the last three decades.

    Mingxing Chen

    Full Text Available The relationship between urbanization and economic growth has been perplexing. In this paper, we identify the pattern of global change and the correlation of urbanization and economic growth, using cross-sectional, panel estimation and geographic information systems (GIS methods. The analysis has been carried out on a global geographical scale, while the timescale of the study spans the last 30 years. The data shows that urbanization levels have changed substantially during these three decades. Empirical findings from cross-sectional data and panel data support the general notion of close links between urbanization levels and GDP per capita. However, we also present significant evidence that there is no correlation between urbanization speed and economic growth rate at the global level. Hence, we conclude that a given country cannot obtain the expected economic benefits from accelerated urbanization, especially if it takes the form of government-led urbanization. In addition, only when all facets are taken into consideration can we fully assess the urbanization process.

  16. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  17. Pneumonia’s second wind? A case study of the global health network for childhood pneumonia

    Berlan, David

    2016-01-01

    Advocacy, policy, research and intervention efforts against childhood pneumonia have lagged behind other health issues, including malaria, measles and tuberculosis. Accelerating progress on the issue began in 2008, following decades of efforts by individuals and organizations to address the leading cause of childhood mortality and establish a global health network. This article traces the history of this network’s formation and evolution to identify lessons for other global health issues. Through document review and interviews with current, former and potential network members, this case study identifies five distinct eras of activity against childhood pneumonia: a period of isolation (post WWII to 1984), the duration of WHO’s Acute Respiratory Infections (ARI) Programme (1984–1995), Integrated Management of Childhood illness’s (IMCI) early years (1995–2003), a brief period of network re-emergence (2003–2008) and recent accelerating progress (2008 on). Analysis of these eras reveals the critical importance of building a shared identity in order to form an effective network and take advantage of emerging opportunities. During the ARI era, an initial network formed around a relatively narrow shared identity focused on community-level care. The shift to IMCI led to the partial dissolution of this network, stalled progress on addressing pneumonia in communities and missed opportunities. Frustrated with lack of progress on the issue, actors began forming a network and shared identity that included a broad spectrum of those whose interests overlap with pneumonia. As the network coalesced and expanded, its members coordinated and collaborated on conducting and sharing research on severity and tractability, crafting comprehensive strategies and conducting advocacy. These network activities exerted indirect influence leading to increased attention, funding, policies and some implementation. PMID:26438780

  18. Pneumonia's second wind? A case study of the global health network for childhood pneumonia.

    Berlan, David

    2016-04-01

    Advocacy, policy, research and intervention efforts against childhood pneumonia have lagged behind other health issues, including malaria, measles and tuberculosis. Accelerating progress on the issue began in 2008, following decades of efforts by individuals and organizations to address the leading cause of childhood mortality and establish a global health network. This article traces the history of this network's formation and evolution to identify lessons for other global health issues. Through document review and interviews with current, former and potential network members, this case study identifies five distinct eras of activity against childhood pneumonia: a period of isolation (post WWII to 1984), the duration of WHO's Acute Respiratory Infections (ARI) Programme (1984-1995), Integrated Management of Childhood illness's (IMCI) early years (1995-2003), a brief period of network re-emergence (2003-2008) and recent accelerating progress (2008 on). Analysis of these eras reveals the critical importance of building a shared identity in order to form an effective network and take advantage of emerging opportunities. During the ARI era, an initial network formed around a relatively narrow shared identity focused on community-level care. The shift to IMCI led to the partial dissolution of this network, stalled progress on addressing pneumonia in communities and missed opportunities. Frustrated with lack of progress on the issue, actors began forming a network and shared identity that included a broad spectrum of those whose interests overlap with pneumonia. As the network coalesced and expanded, its members coordinated and collaborated on conducting and sharing research on severity and tractability, crafting comprehensive strategies and conducting advocacy. These network activities exerted indirect influence leading to increased attention, funding, policies and some implementation. Published by Oxford University Press in association with The London School of

  19. CO2 emissions driven by wind are produced at global scale

    Rosario Moya, M.; Sánchez-Cañete, Enrique P.; Kowalski, Andrew S.; Serrano-Ortiz, Penélope; López-Ballesteros, Ana; Oyonarte, Cecilio; Domingo, Francisco

    2017-04-01

    emissions occur globally and therefore, their contribution to the global NEE requires further investigation in order to better understand its drivers.

  20. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    Fernando A Villanea

    Full Text Available The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e ≤ 50 and much smaller (N(e ≤ 25 for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  1. Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors

    Pasquaud, Stéphanie; Vasconcelos, Rita P.; França, Susana; Henriques, Sofia; Costa, Maria José; Cabral, Henrique

    2015-03-01

    The main ecological patterns and the functioning of estuarine ecosystems are difficult to evaluate due to natural and human induced complexity and variability. Broad geographical approaches appear particularly useful. This study tested, at a worldwide scale, the influence of global and local variables in fish species richness in estuaries, aiming to determine the latitudinal pattern of species richness, and patterns which could be driven by local features such as estuary area, estuary mouth width, river flow and intertidal area. Seventy one estuarine systems were considered with data obtained from the literature and geographical information system. Correlation tests and generalized linear models (GLM) were used in data analyses. Species richness varied from 23 to 153 fish species. GLM results showed that estuary area was the most important factor explaining species richness, followed by latitude and mouth width. Species richness increased towards the equator, and higher values were found in larger estuaries and with a wide mouth. All these trends showed a high variability. A larger estuary area probably reflects a higher diversity of habitats and/or productivity, which are key features for estuarine ecosystem functioning and biota. The mouth width effect is particularly notorious for marine and diadromous fish species, enhancing connectivity between marine and freshwater realms. The effects of river flow and intertidal area on the fish species richness appear to be less evident. These two factors may have a marked influence in the trophic structure of fish assemblages.

  2. On the relative importance of loads acting on a floating vertical axis wind turbine system when evaluating the global system response

    Collu, Maurizio; Borg, Michael; Manuel, Lance

    2016-01-01

    Interest in offshore floating wind turbines has been growing over the last decade. While a number of studies have been conducted to model the dynamics of offshore floating HAWT systems (e.g. OC3-Phase IV, OC4-Phase II), relatively few studies have been conducted on floating VAWT systems, despite...... offshore floating VAWT, considering a turbulent wind field and stochastically generated waves, to assess the more critical loads and distinguish them from those with negligible effect, when estimating the global system response. The floating VAWT system considered is comprised of a 5MW rotor supported...

  3. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  4. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    Max Lafontan

    2015-01-01

    Full Text Available Summary: Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity, water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols.

  5. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    Lafontan, Max; Visscher, Tommy L.S.; Farpour-Lambert, Nathalie; Yumuk, Volkan

    2015-01-01

    Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity), water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols. PMID:25765164

  6. Global fishery development patterns are driven by profit but not trophic level.

    Sethi, Suresh A; Branch, Trevor A; Watson, Reg

    2010-07-06

    Successful ocean management needs to consider not only fishing impacts but drivers of harvest. Consolidating post-1950 global catch and economic data, we assess which attributes of fisheries are good indicators for fishery development. Surprisingly, year of development and economic value are not correlated with fishery trophic levels. Instead, patterns emerge of profit-driven fishing for attributes related to costs and revenues. Post-1950 fisheries initially developed on shallow ranging species with large catch, high price, and big body size, and then expanded to less desirable species. Revenues expected from developed fisheries declined 95% from 1951 to 1999, and few high catch or valuable fishing opportunities remain. These results highlight the importance of economic attributes of species as leading indicators for harvest-related impacts in ocean ecosystems.

  7. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  8. Linking Global Patterns of Nitrogen Resorption with Nitrogen Mineralization During Litter Decomposition

    Deng, M.; Liu, L.; Jiang, L.

    2017-12-01

    The nitrogen (N) cycle in terrestrial ecosystems is strongly influenced by resorption prior to litter fall and by mineralization after litter fall. Although both resorption and mineralization make N available to plants and are influenced by climate, their linkage in a changing environment remains largely unknown. Here, we show that, at the global scale, increasing N resorption efficiency has a negative effect on the N mineralization rate. With increasing temperature and precipitation, the increasing rate of the N cycle is closely related to the shift from the more conservative resorption pathway to an acquiring mineralization pathway. Furthermore, systems with faster N-cycle rates support plants with higher foliar N:P ratios and microbes with lower fungi:bacteria ratios. We highlight the importance of considering the geographic pattern and the dynamic interaction between N resorption and N mineralization, which should be incorporated into earth-system models to improve the simulation of nutrient constraints on ecosystem productivity.

  9. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  10. Global Pattern of The Evolutions of the Sub-Auroral Polarization Streams

    He, F.; Zhang, X.; Wang, W.; Wan, W.

    2017-12-01

    Due to the spatial and temporal limitations of the in-situ measurements from the low altitude polar orbiting satellites or the ionospheric scan by incoherent scatter radars, the global configuration and evolution of SAPS are still not very clear. Here, we present multi-satellite observations of the evolution of subauroral polarization streams (SAPS) during the main phase of a server geomagnetic storm occurred on 31 March 2001. DMSP F12 to F15 observations indicate that the SAPS were first generated in the dusk sector at the beginning of the main phase. Then the SAPS channel expanded towards the midnight and moved to lower latitudes as the main phase went on. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channels were highly dynamic during the storm main phase. The global evolution of the SAPS corresponds well with that of the region-2 field-aligned currents, which are mainly determined by the azimuthal pressure gradient of the ring current. Further studies on 37 storms and 30 isolated substorms indicate that the lifetime of the SAPS channel was proportional to the period of time for southward interplanetary magnetic field (IMF). The SAPS channel disappeared after northward turning of the IMF. During the recovery phase, if the IMF kept northward, no SAPS channel was generated, if the IMF turned to southward again, however, SAPS channel will be generated again with lifetime proportional to the duration of the southward IMF. During isolated substorms, the SAPS channel was also controlled by IMF. The SAPS channel was generated after substorm onset and the peak drift velocity of the SAPS channel achieved its maximum during the recovery phase of the substorm. It is suggested that, SAPS channel were mainly controlled by IMF, more works should be done with observations or simulations of investigate the global patterns of the SAPS and the magnetosphere-ionosphere couplings.

  11. A second life for old data: Global patterns in pollution ecology revealed from published observational studies

    Kozlov, Mikhail V., E-mail: mikoz@utu.fi [Section of Ecology, University of Turku, 20014 Turku (Finland); Zvereva, Elena L. [Section of Ecology, University of Turku, 20014 Turku (Finland)

    2011-05-15

    A synthesis of research on the responses of terrestrial biota (1095 effect sizes) to industrial pollution (206 point emission sources) was conducted to reveal regional and global patterns from small-scale observational studies. A meta-analysis, in combination with other statistical methods, showed that the effects of pollution depend on characteristics of the specific polluter (type, amount of emission, duration of impact on biota), the affected organism (trophic group, life history), the level at which the response was measured (organism, population, community), and the environment (biome, climate). In spite of high heterogeneity in responses, we have detected several general patterns. We suggest that the development of evolutionary adaptations to pollution is a common phenomenon and that the harmful effects of pollution on terrestrial ecosystems are likely to increase as the climate warms. We argue that community- and ecosystem-level responses to pollution should be explored directly, rather than deduced from organism-level studies. - Research synthesis demonstrated that the harmful effects of pollution on terrestrial ecosystems are likely to increase as the climate warms.

  12. A second life for old data: Global patterns in pollution ecology revealed from published observational studies

    Kozlov, Mikhail V.; Zvereva, Elena L.

    2011-01-01

    A synthesis of research on the responses of terrestrial biota (1095 effect sizes) to industrial pollution (206 point emission sources) was conducted to reveal regional and global patterns from small-scale observational studies. A meta-analysis, in combination with other statistical methods, showed that the effects of pollution depend on characteristics of the specific polluter (type, amount of emission, duration of impact on biota), the affected organism (trophic group, life history), the level at which the response was measured (organism, population, community), and the environment (biome, climate). In spite of high heterogeneity in responses, we have detected several general patterns. We suggest that the development of evolutionary adaptations to pollution is a common phenomenon and that the harmful effects of pollution on terrestrial ecosystems are likely to increase as the climate warms. We argue that community- and ecosystem-level responses to pollution should be explored directly, rather than deduced from organism-level studies. - Research synthesis demonstrated that the harmful effects of pollution on terrestrial ecosystems are likely to increase as the climate warms.

  13. Global pattern of trends in streamflow and water availability in a changing climate

    Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V.

    2005-01-01

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10–40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10–30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  14. Simple vs. Complex Carbohydrate Dietary Patterns and the Global Overweight and Obesity Pandemic.

    Ferretti, Fabrizio; Mariani, Michele

    2017-10-04

    Nowadays, obesity and being overweight are among the major global health concerns. Many, diet-related diseases impose high tangible and intangible costs, and threaten the sustainability of health-care systems worldwide. In this study, we model, at the macroeconomic level, the impact of energy intake from different types of carbohydrates on the population's BMI (body mass index). We proceed in three steps. First, we develop a framework to analyse both the consumption choices between simple and complex carbohydrates and the effects of these choices on people health conditions. Second, we collect figures for 185 countries (over the period 2012-2014) regarding the shares of simple (sugar and sweetener) and complex (cereal) carbohydrates in each country's total dietary energy supply. Third, we use regression techniques to: (1) estimate the impact of these shares on the country's prevalence of obesity and being overweight; (2) compute for each country an indicator of dietary pattern based on the ratio between simple and complex carbohydrates, weighted by their estimated effects on the prevalence of obesity and being overweight; and (3) measure the elasticity of the prevalence of obesity and being overweight with respect to changes in both carbohydrate dietary pattern and income per capita. We find that unhealthy eating habits and the associated prevalence of excessive body fat accumulation tend to behave as a 'normal good' in low, medium- and high-HDI (Human Development Index) countries, but as an 'inferior good' in very high-HDI countries.

  15. Human Development Inequality Index and Cancer Pattern: a Global Distributive Study.

    Rezaeian, Shahab; Khazaei, Salman; Khazaei, Somayeh; Mansori, Kamyar; Sanjari Moghaddam, Ali; Ayubi, Erfan

    2016-01-01

    This study aimed to quantify associations of the human development inequality (HDI) index with incidence, mortality, and mortality to incidence ratios for eight common cancers among different countries. In this ecological study, data about incidence and mortality rates of cancers was obtained from the Global Cancer Project for 169 countries. HDI indices for the same countries was obtained from the United Nations Development Program (UNDP) database. The concentration index was defined as the covariance between cumulative percentage of cancer indicators (incidence, mortality and mortality to incidence ratio) and the cumulative percentage of economic indicators (country economic rank). Results indicated that incidences of cancers of liver, cervix and esophagus were mainly concentrated in countries with a low HDI index while cancers of lung, breast, colorectum, prostate and stomach were concentrated mainly in countries with a high HDI index. The same pattern was observed for mortality from cancer except for prostate cancer that was more concentrated in countries with a low HDI index. Higher MIRs for all cancers were more concentrated in countries with a low HDI index. It was concluded that patterns of cancer occurrence correlate with care disparities at the country level.

  16. Global pattern of trends in streamflow and water availability in a changing climate.

    Milly, P C D; Dunne, K A; Vecchia, A V

    2005-11-17

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  17. The Global Precipitation Patterns Associated with Short-Term Extratropical Climate Fluctuations

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.

    1999-01-01

    Two globally-complete, observation-only precipitation datasets have recently been developed for the Global Precipitation Climatology Project (GPCP). Both depend heavily on a variety of satellite input, as well as gauge data over land. The first, Version 2x79, provides monthly estimates on a 2.5 deg. x 2.5 deg. lat/long grid for the period 1979 through late 1999 (by the time of the conference). The second, the One-Degree Daily (1DD), provides daily estimates on a 1 deg. x l deg. grid for the period 1997 through late 1999 (by the time of the conference). Both are in beta test preparatory to release as official GPCP products. These datasets provide a unique perspective on the hydrological effects of the various atmospheric flow anomalies that have been identified by meteorologists. In this paper we discuss the regional precipitation effects that result from persistent extratropical flow anomalies. We will focus on the Pacific-North America (PNA) and North Atlantic Oscillation (NAO) patterns. Each characteristically becomes established on synoptic time scales, but then persists for periods that can exceed a month. The onset phase of each appears to have systematic mobile features, while the mature phase tend to be more stationary. Accordingly, composites of monthly data for outstanding positive and negative events (separately) contained in the 20-year record reveal the climatological structure of the precipitation during the mature phase. The climatological anomalies of the positive, negative, and (positive-negative) composites show the expected storm-track-related shifts in precipitation, and provide the advantage of putting the known precipitation effects over land in the context of the total pattern over land and ocean. As well, this global perspective points out some unexpected areas of correlation. Day-by-day composites of daily data anchored to the onset date demonstrate the systematic features during the onset. Although the 1DD has a fairly short record, some

  18. Modeling urbanization patterns at a global scale with generative adversarial networks

    Albert, A. T.; Strano, E.; Gonzalez, M.

    2017-12-01

    Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a

  19. Spatial And Temporal Patterns As Well As Major Influencing Factors Of Global And Diffuse Horizontal Irradiance Over China: 1960-2014

    Wang, H.; Sun, F.

    2017-12-01

    Global Horizontal Irradiance (GHI) on Earth is a central element of climate systems. With changes in the climate and regional development, the patterns and influencing factors of GHI, in addition to presenting global consistency, are increasingly showing regional particularities. Based on data for GHI, Diffuse Horizontal Irradiance (DHI) and potential impact factors (geographical position, elevation, cloud cover, water vapor, and ground atmospheric transparency related variables) from 1960 to 2014 in China, we analyzed the pattern and major influencing factors of GHI and DHI. The results showed that the major influencing factors of the GHI spatial pattern were the total cloud cover (TCC) and relative humidity (RH) in China. Dividing all of China into two regions, the major factors were the water vapor pressure (WVP) in the northern region and TCC in the southern region. And we divided the GHI and DHI data into two periods (1960-1987 and 1988-2014) due to global dimming and brightening observed in China in the late 1980's. The temporal GHI showed that 31 of 58 decreased significantly with an average decreasing rate of 95 MJ.10yr-1 during the periods of 1960-2014 and 49 of 76 stations decreased significantly with an rate of 342 MJ.10yr-1 during 1960-1987, whereas 57 of 88 stations did not change and 24 stations increased significantly with an rate of 201 MJ.10yr-1 during the period of 1988-2014. The temporal DHI showed that 40 of 61sites did not change significantly from 1960 to 1987. The major influencing factors for temporal changes of GHI in nine typical cities from 1960 to 2013 were as follows: air quality-related variables in super cities, sandstorms and wind in desert oasis cities, clouds in cities with good air quality and a low cloud amount (LCA) and annual fog days (FD) in Chengdu. Overall, we identified characteristics of GHI and DHI based on global climate change and regional urban development and found that the spatial characteristics of GHI results for

  20. Spherical Harmonics Analysis of the ECMWF Global Wind Fields at the 10-Meter Height Level During 1985: A Collection of Figures Illustrating Results

    Sanchez, Braulio V.; Nishihama, Masahiro

    1997-01-01

    Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.

  1. Application of global weather and climate model output to the design and operation of wind-energy systems

    Curry, Judith [Climate Forecast Applications Network, Atlanta, GA (United States)

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  2. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    Seeland, D.A.

    1978-01-01

    Paleocurrent maps of the fluvial lower Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium- and hydrocarbon-exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains, as in the channel-sandstone bodies deposited in Eocene time by a 40-kilometer segment of the eastward-flowing paleo-Wind River that exended westward from near the town of Powder River on the east edge of the basin. Channel-sandstone bodies with a Granite Mountains source occur south of this segment of the paleo-Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district, but the channel-sandstone bodies between the Gas Hills district and the 40-kilometer segment of the paleo-Wind River may also be mineralized. This area includes the southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel-sandstone bodies derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the paleo-Wind River in Paleocene time flowed eastward and had approximately the same location as the eastward-flowing paleo-Wind River of Eocene time. The channel-sandstone bodies of the paleo-Wind Rivers are potential hydrocarbon reservoirs, particularly where they are underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation. If leaks of sulfur-containing gas have created a reducing environment in the Eocene paleo-Wind River channel-sandstone bodies, then I speculate that the areas of overlap of the channel-sandstone bodies and natural-gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits

  3. Eocene fluvial drainage patterns and their implications for uranium and hydrocarbon exploration in the Wind River Basin, Wyoming

    Seeland, D.A.

    1975-01-01

    Paleocurrent maps of the fluvial early Eocene Wind River Formation in the Wind River Basin of central Wyoming define promising uranium and hydrocarbon exploration target areas. The Wind River Formation is thought to have the greatest potential for uranium mineralization in areas where it includes arkosic channel sandstones derived from the granitic core of the Granite Mountains as in the channel sandstones deposited by the 25-mile segment of the Eocene Wind River extending westward from near the town of Powder River on the east edge of the basin. Channel sandstones with a Granite Mountain source occur south of this segment of the Eocene Wind River and north of the Granite Mountains. The southwestern part of this area includes the Gas Hills uranium district but channel sandstones between the Gas Hills district and the 25-mile segment of the Eocene Wind River are potentially mineralized. This area includes the entire southeasternmost part of the Wind River Basin southeast of Powder River and contains northeasterly trending channel sandstones derived from the Granite Mountains. Limited paleocurrent information from the margins of the Wind River Basin suggests that the Paleocene Wind River flowed eastward and had approximately the same location as the eastward-flowing Eocene Wind River. If leaks of sulfur-containing gas have created a reducing environment in the Eocene Wind River channel sandstones, then I speculate that the areas of overlap of the channel sandstones and natural gas fields in the underlying rocks may be particularly favorable areas in which to search for uranium deposits. The channel sandstones of the Paleocene and Eocene Wind Rivers are potential hydrocarbon reservoirs, particularly where underlain or overlain by the organic-rich shale and siltstone of the Waltman Shale Member of the Fort Union Formation

  4. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.

    2017-01-01

    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems thro...

  5. The Electric Wind of Venus: A Global and Persistent Polar Wind -Like Ambipolar Electric Field Sufficient for the Direct Escape of Heavy Ionospheric Ions

    Collinson, Glyn A.; Frahm, Rudy A.; Glocer, Alex; Coates, Andrew J.; Grebowsky, Joseph M.; Barabash, Stas; Domagal-Goldman, Shawn D.; Federov, Andrei; Futaana, Yoshifumi; Gilbert, Lin K.; hide

    2016-01-01

    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an ambipolar electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earths similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an electric wind must be considered when studying the evolution and potential habitability of any planet in any star system.

  6. Global temporal patterns of pancreatic cancer and association with socioeconomic development.

    Wong, Martin C S; Jiang, Johnny Y; Liang, Miaoyin; Fang, Yuan; Yeung, Ming Sze; Sung, Joseph J Y

    2017-06-09

    Pancreatic cancer induces a substantial global burden. We examined its global incidence/mortality rates and their correlation with socioeconomic development (Human Development Index [HDI] and Gross Domestic Product [GDP] in 2000 as proxy measures). Data on age-standardized incidence/mortality rates in 2012 were retrieved from the GLOBOCAN database. Temporal patterns in 1998-2007 were assessed for 39 countries according to gender. The Average Annual Percent Change (AAPC) of the incidence/mortality trends was evaluated using joinpoint regression analysis. The age-standardized incidence ranged between 0.8-8.9/100,000. When compared among countries, Brazil (AAPC = 10.4, 95%C.I. = 0.8,21) and France (AAPC = 4.7, 95%C.I. = 3.6,5.9) reported the highest incidence rise in men. The greatest increase in women was reported in Thailand (AAPC = 7, 95%C.I. = 2.1,12.1) and Ecuador (AAPC = 4.3, 95%C.I. = 1.3,7.3). For mortality, the Philippines (APCC = 4.3, 95%C.I. = 2,6.6) and Croatia (AAPC = 2, 95% C.I. = 0,3.9) reported the biggest increase among men. The Philippines (AAPC = 5.8, 95% C.I. 4.5,7.2) and Slovakia (AAPC = 3.1, 95% C.I. 0.9,5.3) showed the most prominent rise among women. Its incidence was positively correlated with HDI (men: r = 0.66; women: r = 0.70) and GDP (men: r = 0.29; women: r = 0.28, all p GDP]). In summary, the incidence and mortality of pancreatic cancer were rising in many countries, requiring regular surveillance.

  7. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    M. Rubey

    2017-09-01

    Full Text Available We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific. Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii regions far away from convergent margins feature long-term positive dynamic topography; and (iii rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

  8. Global patterns and clines in the growth of common carp Cyprinus carpio.

    Vilizzi, L; Copp, G H

    2017-07-01

    This review provides a meta-analytical assessment of the global patterns and clines in the growth of Cyprinus carpio as measured by length-at-age (L t ) or von Bertalanffy growth function (VBGF) parameters, mass-length relationship (W-L t ) and condition factor, based on literature data. In total, 284 studies were retrieved spanning 91 years of research and carried out on 381 waterbodies-locations in 50 countries in all five continents. Although native C. carpio achieved larger (asymptotic) size relative to its non-native counterpart, the latter grew faster during the first 7 years of life. Lentic populations (especially in natural lakes) also achieved larger sizes relative to lotic ones and the same was true for populations in cold and temperate v. arid climates. Unlike previous studies (on much more restricted datasets), only weak latitudinal clines in instantaneous growth rate, L t at age 3 and mortality were observed globally and this was probably due to the presence of counter-gradient growth variation at all representative age classes (i.e. 1-10 years). Slightly negative allometry was revealed by the W-L t and the related form factor tended to distinguish the more elongated and torpedo-shaped body typical of the wild form from the deeper body of feral-domesticated C. carpio. Existing population dynamics models for C. carpio will benefit from the comprehensive range of waterbody type × climate class-specific VBGF parameters provided in the present study; whereas, more studies are needed on the species' growth in tropical regions and to unravel the possibility of confounding effects on age estimation due to both historical and methodological reasons. © 2017 The Fisheries Society of the British Isles.

  9. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  10. Simple vs. Complex Carbohydrate Dietary Patterns and the Global Overweight and Obesity Pandemic

    Fabrizio Ferretti

    2017-10-01

    Full Text Available Nowadays, obesity and being overweight are among the major global health concerns. Many, diet-related diseases impose high tangible and intangible costs, and threaten the sustainability of health-care systems worldwide. In this study, we model, at the macroeconomic level, the impact of energy intake from different types of carbohydrates on the population’s BMI (body mass index. We proceed in three steps. First, we develop a framework to analyse both the consumption choices between simple and complex carbohydrates and the effects of these choices on people health conditions. Second, we collect figures for 185 countries (over the period 2012–2014 regarding the shares of simple (sugar and sweetener and complex (cereal carbohydrates in each country’s total dietary energy supply. Third, we use regression techniques to: (1 estimate the impact of these shares on the country’s prevalence of obesity and being overweight; (2 compute for each country an indicator of dietary pattern based on the ratio between simple and complex carbohydrates, weighted by their estimated effects on the prevalence of obesity and being overweight; and (3 measure the elasticity of the prevalence of obesity and being overweight with respect to changes in both carbohydrate dietary pattern and income per capita. We find that unhealthy eating habits and the associated prevalence of excessive body fat accumulation tend to behave as a ‘normal good’ in low, medium- and high-HDI (Human Development Index countries, but as an ‘inferior good’ in very high-HDI countries.

  11. Global Incidence and Mortality for Prostate Cancer: Analysis of Temporal Patterns and Trends in 36 Countries.

    Wong, Martin C S; Goggins, William B; Wang, Harry H X; Fung, Franklin D H; Leung, Colette; Wong, Samuel Y S; Ng, Chi Fai; Sung, Joseph J Y

    2016-11-01

    Prostate cancer (PCa) is a leading cause of mortality and morbidity globally, but its specific geographic patterns and temporal trends are under-researched. To test the hypotheses that PCa incidence is higher and PCa mortality is lower in countries with higher socioeconomic development, and that temporal trends for PCa incidence have increased while mortality has decreased over time. Data on age-standardized incidence and mortality rates in 2012 were retrieved from the GLOBOCAN database. Temporal patterns were assessed for 36 countries using data obtained from Cancer incidence in five continents volumes I-X and the World Health Organization mortality database. Correlations between incidence or mortality rates and socioeconomic indicators (human development index [HDI] and gross domestic product [GDP]) were evaluated. The average annual percent change in PCa incidence and mortality in the most recent 10 yr according to join-point regression. Reported PCa incidence rates varied more than 25-fold worldwide in 2012, with the highest incidence rates observed in Micronesia/Polynesia, the USA, and European countries. Mortality rates paralleled the incidence rates except for Africa, where PCa mortality rates were the highest. Countries with higher HDI (r=0.58) and per capita GDP (r=0.62) reported greater incidence rates. According to the most recent 10-yr temporal data available, most countries experienced increases in incidence, with sharp rises in incidence rates in Asia and Northern and Western Europe. A substantial reduction in mortality rates was reported in most countries, except in some Asian countries and Eastern Europe, where mortality increased. Data in regional registries could be underestimated. PCa incidence has increased while PCa mortality has decreased in most countries. The reported incidence was higher in countries with higher socioeconomic development. The incidence of prostate cancer has shown high variations geographically and over time, with smaller

  12. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  13. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  14. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  15. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  16. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  17. Wind power

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  18. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  19. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  20. Wind power soars

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  1. The ecology of methane in streams and rivers: Patterns, controls, and global significance

    Stanley, Emily H.; Casson, Nora J.; Christel, Samuel T.; Crawford, John T.; Loken, Luke C.; Oliver, Samantha K.

    2016-01-01

    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO2) is the major end-product of ecosystem respiration, methane (CH4) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH4, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global-scale estimate of fluvial CH4 efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH4 dynamics. Current understanding of CH4 in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH4 to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH4 production and loss. CH4 makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH4 sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH4 and we estimate an annual global emission of 26.8 Tg CH4, equivalent to ~15-40% of wetland and lake effluxes, respectively. Less clear is the role of CH4 oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH4 generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its

  2. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  3. Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data.

    Wu, Jun; Jiang, Chengsheng; Jaimes, Guillermo; Bartell, Scott; Dang, Andy; Baker, Dean; Delfino, Ralph J

    2013-10-09

    Maternal exposures to traffic-related air pollution have been associated with adverse pregnancy outcomes. Exposures to traffic-related air pollutants are strongly influenced by time spent near traffic. However, little is known about women's travel activities during pregnancy and whether questionnaire-based data can provide reliable information on travel patterns during pregnancy. Examine women's in-vehicle travel behavior during pregnancy and examine the difference in travel data collected by questionnaire and global positioning system (GPS) and their potential for exposure error. We measured work-related travel patterns in 56 pregnant women using a questionnaire and one-week GPS tracking three times during pregnancy (30 weeks of gestation). We compared self-reported activities with GPS-derived trip distance and duration, and examined potentially influential factors that may contribute to differences. We also described in-vehicle travel behavior by pregnancy periods and influences of demographic and personal factors on daily travel times. Finally, we estimated personal exposure to particle-bound polycyclic aromatic hydrocarbon (PB-PAH) and examined the magnitude of exposure misclassification using self-reported vs. GPS travel data. Subjects overestimated both trip duration and trip distance compared to the GPS data. We observed moderately high correlations between self-reported and GPS-recorded travel distance (home to work trips: r = 0.88; work to home trips: r = 0.80). Better agreement was observed between the GPS and the self-reported travel time for home to work trips (r = 0.77) than work to home trips (r = 0.64). The subjects on average spent 69 and 93 minutes traveling in vehicles daily based on the GPS and self-reported data, respectively. Longer daily travel time was observed among participants in early pregnancy, and during certain pregnancy periods in women with higher education attainment, higher income, and no children. When comparing

  4. Long-term global response analysis of a vertical axis wind turbine supported on a semi-submersible floating platform: Comparison between operating and non-operating wind turbine load cases

    Collu, Maurizio; Manuel, Lance; Borg, Michael

    2015-01-01

    This study continues [1] the examination of the long-term global response of a floating vertical axis wind turbine (VAWT) situated off the Portuguese coast in the Atlantic Ocean. The VAWT, which consists of a 5-MW 3-bladed H-type rotor developed as part of the EU-FP7 H2OCEAN project, is assumed...... is adopted, as well as also taking into account the drag generated by the wind turbine tower. Short-term turbine load and platform motion statistics are established for individual sea states that are analysed. The long-term reliability yields estimates of 50-year loads and platform motions that takes...... to be mounted on the OC4 semi-submersible floating platform. Adding a non-operational load case (wind speed 35m/s), the sea states identified are used to carry out coupled dynamics simulations using the FloVAWT design tool, for which an improved wave elevation and relative force/moment time signals approach...

  5. Wind farm project economics : value of wind

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  6. Sauces, spices, and condiments: definitions, potential benefits, consumption patterns, and global markets.

    García-Casal, Maria Nieves; Peña-Rosas, Juan Pablo; Malavé, Heber Gómez-

    2016-09-01

    Spices and condiments are an important part of human history and nutrition, and have played an important role in the development of most cultures around the world. According to the Codex Alimentarius, the category of salts, spices, soups, sauces, salads, and protein products includes substances added to foods to enhance aroma and taste. Spices have been reported to have health benefits as antioxidant, antibiotic, antiviral, anticoagulant, anticarcinogenic, and anti-inflammatory agents. Health claims about the benefits of condiments for disease prevention or health improvement need to be science based and extensively supported by evidence; data on their preventive or protective potential in humans are currently limited. The condiments market has been growing continuously over the last few years, with the quantity of products sold under the category of sauces, dressings, and condiments during the period 2008-2013 increasing from 31,749,000 to 35,795,000 metric tons. About 50 of the 86 spices produced in the world are grown in India. From 2008 to 2013, the United States was the largest importer of spices, followed by Australia, the United Kingdom, Canada, and Russia. The main buyers of fish sauce are Vietnam and Thailand, with purchases of 333,000 and 284,000 metric tons in 2013, respectively. The sauces and condiments category is dynamic, with large differences in consumption in habits and practices among countries. This paper aims to establish definitions and discuss potential health benefits, consumption patterns, and global markets for sauces, spices, and condiments. © 2016 New York Academy of Sciences.

  7. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition

    Hung Hsieh-Chuan

    2006-12-01

    Full Text Available Abstract Background Biomedical named entity recognition (Bio-NER is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized and at least one class tag (e.g., B-protein, the beginning of a protein name. However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2 cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words. We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. Results To develop our ML

  8. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.

    Tsai, Richard Tzong-Han; Sung, Cheng-Lung; Dai, Hong-Jie; Hung, Hsieh-Chuan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-18

    Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. To develop our ML-based Bio-NER system, we employ conditional

  9. GIS-supported analysis of global patterns of anthropogenic forest degradation. A sectoral application of the syndrome concept

    Cassel-Gintz, M.

    2001-06-01

    The geographical analysis of a Syndrome is performed in several steps integrating GIS with concepts of fuzzy logic and qualitative reasoning. In the first step a syndrome specific network of interactions is formulated by analysing case studies, theories and expert assessments. Based on this systemic representation the natural and socio-economic conditions under which the syndrome specific mechanisms can be active are identified. This evaluation is called the disposition of a region towards a specific Syndrome. The resulting indicator can be used as an early warning indicator for the possible germination of a non-sustainable development. Based on the constituting elements of the Syndrome, a complex indicator for the intensity of the active Syndrome is derived in the next step of the analysis. This indicator assesses the critical states in the dynamical evolution of the non-sustainable patterns of civilisation nature interaction. Complete Syndrome analyses are performed for the main Syndromes of deforestation. The resulting spatial distribution of the combined dispositions and intensities of the different Syndromes present a unique global assessment describing the current damage and future regional threats to forests by their underlying global cause-effect patterns of civilisation-nature interaction. Specially the assessment of the threat by coupling of momentarily active and potentially active cause-effect patterns provides a previously not achieved systematic insight into the complex interaction of different patterns of global deforestation and forest degradation. (orig.)

  10. Accounting for sampling patterns reverses the relative importance of trade and climate for the global sharing of exotic plants

    Sofaer, Helen R.; Jarnevich, Catherine S.

    2017-01-01

    AimThe distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.LocationGlobal.Time periodMuseum records, generally from the 1800s up to 2015.Major taxa studiedPlant species exotic to the United States.MethodsWe used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.ResultsAccounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.Main conclusionsOur work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the

  11. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  12. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  13. The impact of tropical wind data on the analysis and forcasts of the GLA GCM for the global weather experiment

    Paegle, Jan; Baker, W. E.

    1985-01-01

    It is well-known that divergent wind estimates are much more dependent upon the analysis system than are estimates of the rotational wind. This conclusion is supported in recent analyses of FGGE SOP1 data produced by the Goddard Laboratory for Atmospheres (GLA), the Geophysical Fluid Dynamics Laboratory (GFDL) and the European Center for Medium Range Weather Forecasting (ECMWF). These analyses differ in the forecast models that are used for the four-dimensional assimilation, in the data rejection criteria, and, to a certain extent, in the data density. Because the final divergent wind is a product of both model constraints and observation, it is relevant to inquire how much of each goes into the final product. We presently investigate this question through a systematic analysis of tropical data that are sampled at different densities by the GLA GCM.

  14. General aspects of meteorology and wind flow patterns at the National Medical Cyclotron site, Camperdown, NSW, Australia

    Clark, G.H.; Bartsch, F.J.K.

    1994-06-01

    As part of an assessment into the consequences of a potential accident at the National Medical Cyclotron, Camperdown, NSW., Australia, two meteorological stations were installed to monitor the winds, temperatures and atmospheric dispersion conditions. The data will be used to assess environmental impacts of the Cyclotron's operation. In spite of the relatively poor performance of the stations, the wind data indicated significant effects of local buildings and the general urban surface roughness features. The prevailing winds during the study were from the north-north-west at night and south-south-west or north-east sea breezes during the day. Atmospheric stability/dispersion categories were typical of an urban heat island location. 11 refs., 10 tabs, 6 figs

  15. Direct Global Measurements of Tropspheric Winds Employing a Simplified Coherent Laser Radar using Fully Scalable Technology and Technique

    Kavaya, Michael J.; Spiers, Gary D.; Lobl, Elena S.; Rothermel, Jeff; Keller, Vernon W.

    1996-01-01

    Innovative designs of a space-based laser remote sensing 'wind machine' are presented. These designs seek compatibility with the traditionally conflicting constraints of high scientific value and low total mission cost. Mission cost is reduced by moving to smaller, lighter, more off-the-shelf instrument designs which can be accommodated on smaller launch vehicles.

  16. An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns.

    Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Montávez, J.P.; Garcia-Bustamante, E.; Navarro, J.; Vilà-Guerau de Arellano, J.; Munoz-Roldán, A.

    2013-01-01

    [1] The performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13¿year period (1992 to 2005) over a complex terrain region

  17. Global biogeographical pattern of ecosystem functional types derived from earth observation data

    Ivits, Eva; Cherlet, Michael; Horion, Stéphanie Marie Anne F

    2013-01-01

    correspondence of the EFTs to global climate and also to land use classification. The results show the great potential of Earth Observation derived parameters for the quantification of ecosystem functional dynamics and for providing reference status information for future assessments of ecosystem changes........ The association of the EFTs with existing climate and land cover classifications was demonstrated via Detrended Correspondence Analysis (DCA). The ordination indicated good description of the global environmental gradient by the EFTs, supporting the understanding of phenological and productivity dynamics...... of global ecosystems. Climatic constraints of vegetation growth explained 50% of variation in the phenological data along the EFTs showing that part of the variation in the global phenological gradient is not climate related but is unique to the Earth Observation derived variables. DCA demonstrated good...

  18. [Playing of wind instruments is associated with an obstructive pattern in the spirometry of adolescents with a good aerobic resistance capacity].

    Granell, Javier; Granell, Jose; Ruiz, Diana; Tapias, Jose A

    2011-03-01

    There is controversy in the medical literature regarding the beneficial or detrimental effects of playing wind musical instruments on the respiratory system. The aim of this study is to analyse this relationship, taking the physical condition of the subjects into consideration. Cross-sectional observational study. Public institution with coordinated medium grade musical instruction and primary and secondary education. Young performers (between 13 and 17 years). We collected basic epidemiological parameters (gender, age, weight, size, heath status), and each subject underwent a fitness test ("course navette" cardiorespiratory fitness test) and a forced spirometry. We included 90 students, 53 females and 37 males. Thirty two were wind instrument players and 58 studied other instruments. The two groups were homogeneous with respect to gender, age and body mass index. The maximum oxygen uptake showed no significant difference (P=0.255), further demonstrating an adequate level of fitness compared to the general population. FVC was normal and similar in both groups (P=0.197). The FEV(1) percentage and the FEV(1)/FVC ratio were significantly lower (Pstudy of wind instruments was associated with an obstructive spirometric pattern in young musicians with a normal level of physical fitness. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  19. Combining dispersion modelling with synoptic patterns to understand the wind-borne transport into the UK of the bluetongue disease vector.

    Burgin, Laura; Ekström, Marie; Dessai, Suraje

    2017-07-01

    Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.

  20. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  1. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere

    Tinsley, Brian A.

    2000-11-01

    There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J_z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J_z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm^3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud. The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J_z, giving a rate of electroscavenging responsive to the solar wind inputs. There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled

  2. The potential of wind farms

    Hauge Madsen, P.; Lundsager, P.

    1992-09-01

    Papers presented at the European wind energy conference on the potential of wind farms are presented. The aim of the conference was to bring into focus the problems, experiences and potential of the application of wind power in wind power farms as a contribution to the European and global energy supply. It was considered that the interchange of experience among representatives of science, utilities, industry, environment and energy planning, together with those who represent financial and insurance interests, would create a better understanding of all aspects of wind power for its future successful development. The subjects covered concern surveys of national planning and policies regarding wind energy utilization and national and global development of wind turbine arrays. The performance of some individual wind farms is described. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigues, wakes, noise and control. (AB)

  3. The potential of wind farms

    Hauge Madsen, P.; Lundsager, P.

    1992-09-01

    Papers presented at the European wind energy conference on the potential of wind farms are presented. The aim of the conference was to bring into focus the problems, experiences and potential of the application of wind power in wind power farms as a contribution to the European and global energy supply. It was considered that the interchange of experience among representatives of science, utilities, industry, environment and energy planning, together with those who represent financial and insurance interests, would create a better understanding of all aspects of wind power for its future successful development. The subjects covered concern surveys of national planning and policies regarding wind energy utilization and national and global development of wind turbine arrays. The performance of some individual wind farms is described. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigus, wakes, noise and control. (AB)

  4. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  5. The role of trees and plantation agriculture in mitigating global ...

    Climate change refers to a paradigm shift in the climatic pattern of a location, region or planet which is linked with average weather components, such as temperature, wind patterns and precipitations. Climate change results in erratic events such as rising global temperature, intensified drought, flooding, cyclones, low or ...

  6. Performance of spanish wind turbines

    Lago, C.

    1995-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1994, going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  7. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.

    Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon

    2016-01-01

    Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.

  8. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    S. Harrison

    2018-04-01

    Full Text Available Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity – rather unexpectedly – have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  9. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C.

    2015-01-01

    Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant

  10. The sequential patterning of tactics: Activism in the global sports apparel industry, 1988–2002

    den Hond, F.; de Bakker, F.G.A.; de Haan, P.

    2010-01-01

    Purpose – Activist groups apply a range of tactics in order to improve labour conditions in the global sports and apparel industry. The accumulation of these tactics leads to the build-up of pressure on firms within this industry (brands, retailers) to change their policies and activities on labour

  11. Predicting changes in alluvial channel patterns in North-European Russia under conditions of global warming.

    Anisimov, O.; Vandenberghe, J.; Lobanov, V.; Kondratiev, A.

    2008-01-01

    Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river

  12. Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Harrison, Stephan; Kargel, Jeffrey S.; Huggel, Christian; Reynolds, John; Shugar, Dan H.; Betts, Richard A.; Emmer, Adam; Glasser, Neil; Haritashya, Umesh K.; Klimeš, Jan; Reinhardt, Liam; Schaub, Yvonne; Wiltshire, Andy; Regmi, Dhananjay; Vilímek, Vít

    2018-04-01

    Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste. GLOFs can have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the rapid drainage of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and regularity - rather unexpectedly - have declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From an assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine-dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.

  13. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  14. Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide

    2018-04-01

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual

  15. Extreme wind estimate for Hornsea wind farm

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  16. VHF radar observation of atmospheric winds, associated shears and C2n at a tropical location: interdependence and seasonal pattern

    A. R. Jain

    Full Text Available The turbulence refractivity structure constant (C2n is an important parameter of the atmosphere. VHF radars have been used extensively for the measurements of C2n. Presently, most of such observations are from mid and high latitudes and only very limited observations are available for equatorial and tropical latitudes. Indian MST radar is an excellent tool for making high-resolution measurements of atmospheric winds, associated shears and turbulence refractivity structure constant (C2n. This radar is located at Gadanki (13.45° N, 79.18° E, a tropical station in India. The objective of this paper is to bring out the height structure of C2n for different seasons using the long series of data (September 1995 – August 1999 from Indian MST radar. An attempt is also made to understand such changes in the height structure of C2n in relation to background atmospheric parameters such as horizontal winds and associated shears. The height structure of C2n, during the summer monsoon and post-monsoon season, shows specific height features that are found to be related to Tropical Easterly Jet (TEJ winds. It is important to examine the nature of the radar back-scatterers and also to understand the causative mechanism of such scatterers. Aspect sensitivity of the received radar echo is examined for this purpose. It is observed that radar back-scatterers at the upper tropospheric and lower stratospheric heights are more anisotropic, with horizontal correlation length of 10–20 m, as compared to those observed at lower and middle tropospheric heights.Key words. Meteorology and atmospheric dynamics (climatology; tropical meteorology; turbulence

  17. A first look at the SAPFLUXNET database: global patterns in whole-plant transpiration and implications for ecohydrological research

    Poyatos, R.; Granda, V.; Mencuccini, M.; Flo, V.; Oren, R.; Molowny-Horas, R.; Katul, G. G.; Mahecha, M. D.; Steppe, K.; Cabon, A.; De Cáceres, M.; Martínez-Vilalta, J.

    2017-12-01

    Plant transpiration is the fundamental process linking water and vegetation and it is therefore a central topic in ecohydrological research. Globally, plants display a huge variety of coordinated adjustments in their physiology and structure to regulate transpiration in response to fluctuations of water demand and supply at multiple temporal scales. Sap flow measured in plant stems reveals the temporal patterns of these responses but sap flow data have remained fragmentary and generally unavailable for syntheses of regional to global scope. Here we present the first global database of sap flow measurements from individual plants (SAPFLUXNET, http://sapfluxnet.creaf.cat/), which has been compiled from > 150 datasets contributed by researchers worldwide. Received datasets were harmonised and conveniently stored in custom-designed R objects holding sap flow and environmental data time series, together with several ancillary metadata, enabling data access for synthesis activities. SAPFLUXNET covers most vegetated biomes and holds data for > 1500 individual plants, mostly trees, belonging to >100 species and > 50 genera. We retrieved water use traits indicative of maximum transpiration rates and of transpiration sensitivity to vapour pressure deficit using quantile regression approaches and moving window analyses. Global patterns of these water use traits were then analysed as a function of climate, plant functional type and stand characteristics. For example, maximum transpiration rates at a given plant diameter or sapwood area tended to be higher for Angiosperms compared to Gymnosperms, but this relationships converged to a more similar scaling between transpiration and leaf area across these groups. SAPFLUXNET is also a valuable tool to evaluate water balance components in ecosystem models. We combined SAPFLUXNET data with the MEDFATE model (https://cran.r-project.org/web/packages/medfate/index.html) to validate an ecohydrological optimisation approach to retrieve

  18. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    Kim, E.; Sohn, C.-H.; Chang, K.-H.; Chang, H.-W.; Lee, D.H.

    2011-01-01

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  19. Tidal winds from the mesosphere, lower thermosphere global radar network during the second LTCS campaign: December 1988

    Manson, A.H.; Meek, C.E.; Avery, S.K.; Fraser, G.J.; Vincent, R.A.; Phillips, A.; Clark, R.R.; Schminder, R.; Kurschner, D.; Kazimirovsky, E.S.

    1991-01-01

    Winds and tides were measured by nine MLT (mesophere, lower thermosphere) radars with locations between 70 degree N and 78 degree S, including an equatorial station at Christmas Island, 2 degree N (Avery et al., 1990). The mean winds were eastward (westward) in the northern (southern) hemisphere mesophere, consistent with midwinter circulations. For the 12-hour (semidiurnal) tide, observations and the model of Forbes and Vial (1989) were in generally good agreement: in both cases northward components were closer to being in phase in the two hemispheres, and winter wavelengths were shorter than those of the midlatitude summer. Major differences were large (small) amplitudes at 70 degree N for model(observations); and poor agreement of equatorial tidal profiles. For the 24-hour (diurnal tide), the radar observations and model of Forbes and Hagan (1988) were in useful agreement in the summer hemisphere. However, the short (long) wavelengths at mid (high) latitudes of the model's winter hemisphere were not observed during LTCS (lower Thermosphere Coupling Study) 2, nor in climatologies for December. Suggestions as to the reason for this disparity are presented

  20. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  1. In-Class Quantification of the Mentos and Diet Coke Analogue Experiment: Effects of Wind on Volcanic Isopach Patterns

    Quane, S.; Klos, Z.; Jacobsen, R.

    2009-05-01

    The Mentos and Diet Coke experiment, where instantaneous emplacement of Mentos candy in Diet Coke creates a soda/CO2 eruptive plume, is a common educational analogue for a volcanic eruption. In this paper, we quantify the effects of varying directional wind speeds on the eruptive plume as a learning tool in advanced Introductory Geology and Volcanology courses. The Mentos and Diet Coke reaction is a fun, safe and affordable analogue for explosive, single pulse, basaltic eruptions (e.g., Strombolian eruptions). Specifically, the physical and chemical reaction nucleating CO2 bubbles on the pitted surface of Mentos candy is directly analogous to the collapsing foam eruption regime described by Parfitt (2004) where inertia driven fragmentation of the liquid (Namiki and Manga, 2008) leads to basaltic pyroclastic eruptions. Often, in these systems, the pyroclasts are carried downwind, resulting lopsided (downwind side taller) cinder cones. In our experiments, we create a single pulse eruption by simultaneously dropping four Mentos candies into a 16.9 oz. bottle of Diet Coke. The experiments are run under different wind conditions created by three stacked box fans in the off (control experiment) low, medium and high settings. Wind speed is measured using a hand held anemometer. The pyroclast dispersal is recorded by degree of liquid saturation through four layers of newspaper. The liquid is allowed to soak in for thirty seconds post eruption and then the individual layers of newspaper are separated and the saturation envelope is traced with a black marker and digitally photographed. The pyroclast dispersal envelope (or saturation area) is then quantified from the photos by image analysis in Adobe Photoshop. In addition, the experiments are videotaped to quantify ejection velocity using frame by frame analysis in iMovie. The resulting isopach ("deposit thickness") maps indicate a strong tightening of dispersal envelopes with increasing wind speed as seen in natural

  2. Trade Policies and the Changing Patterns of Protectionism during the Global Financial and Economic Crisis

    Agnes Ghibuțiu

    2012-01-01

    Full Text Available The Great Recession of 2008–09 provided a fertile ground for protectionist pressures to increase. It caused a negative shock to the global economy that is comparable with the Great Depression of the 1930s. International trade suffered a historical collapse in 2009, but trade flows quickly rebounded thereafter. And unlike the Great Depression of the 1930s, the recent global economic contraction did not trigger a massive wave of protectionism as expected. Despite important adjustments in many countries’ trade policies during the crisis and, hence, a quite notable increase in the incidence of protectionist measures, there is a widely shared belief that crisis related protectionism has been kept under control, being rather modest and limited compared with both the negative effects of the crisis and the initial concerns. A large agreement emerged also among analysts on the important role of WTO’s multilateral rules and disciplines in preventing exacerbation of economic nationalism and protectionism. The views on intensity, dynamics and potential impact of current contemporary protectionism continue, however, to diverge as they reflect in part the significant differences between the results of the different monitoring exercises, carried out particularly by the WTO and Global Trade Alert. But beyond these differences, the latest monitoring reports contain alarming signs of escalating protectionism over the post-crisis years due to the growing difficulties in the world economy. This paper takes a look at the main trends in global protectionism during and after the crisis and some of its potential implications. In doing so, the paper starts by contrasting protectionism that accompanied the Great Depression of the 1930s with the present-day protectionist phenomenon in order to briefly outline the peculiarities of the latter. Then it addresses the main factors contributing to staving off trade protectionism during the recent crisis. Relying on the

  3. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA

    Ebeling, C. W.; Coon, C.

    2017-12-01

    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost Marshall Islands), in August 2017. During the next 6 months infrasound capability will be extended to IDA GSN stations BORG (Borganes, Iceland), EFI (Mount Kent, East Falkland Islands), and SACV (Santiago Island, Cape Verde).As with other data from GSN stations, real-time infrasound data are freely available from the Incorporated Research Institutions for Seismology-Data Management Center (IRIS-DMC).

  4. A pilot study using global positioning systems (GPS) devices and surveys to ascertain older adults' travel patterns.

    Yen, Irene H; Leung, Cindy W; Lan, Mars; Sarrafzadeh, Majid; Kayekjian, Karen C; Duru, O Kenrik

    2015-04-01

    Some studies indicate that older adults lead active lives and travel to many destinations including those not in their immediate residential neighborhoods. We used global positioning system (GPS) devices to track the travel patterns of 40 older adults (mean age: 69) in San Francisco and Los Angeles. Study participants wore the GPS devices for 7 days in fall 2010 and winter 2011. We collected survey responses concurrently about travel patterns. GPS data showed a mean of four trips/day, and a mean trip distance of 7.6 km. Survey data indicated that older adults commonly made trips for four activities (e.g., volunteering, work, visiting friends) at least once each week. Older adults regularly travel outside their residential neighborhoods. GPS can document the mode of travel, the path of travel, and the destinations. Surveys can document the purpose of the travel and the impressions or experiences in the specific locations. © The Author(s) 2013.

  5. Toward Global Communication Networks: How Television is Forging New Thinking Patterns.

    Adams, Dennis M.; Fuchs, Mary

    1986-01-01

    Recent alliances between communication providers and computer manufacturers will lead to new technological combinations that will deliver visually-based ideas and information to a worldwide audience. Urges that those in charge of future video programs to consider their effects on children's language skills, thinking patterns, and intellectual…

  6. Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus

    The European green crab Carcinus maenas is one of the world's most successful aquatic invaders, having established populations on every continent with temperate shores. Here we describe patterns of genetic diversity across both the native and introduced ranges of C. maenas and it...

  7. Towards an ethnographic understanding of the European Marriage Pattern: Global correlates and links with female status

    Carmichael, S.G.; van Zanden, J.L.

    2015-01-01

    This contribution compares the EMP, and the associated Western European family system (inheritance practices, intergenerational co-residence and exogamy), with what is known about family systems and marriage patterns in the rest of the world, with a special focus on the consequences of these family

  8. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  9. Global spatio-temporal patterns in human migration: a complex network perspective.

    Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2013-01-01

    Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.

  10. Global spatio-temporal patterns in human migration: a complex network perspective.

    Kyle F Davis

    Full Text Available Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node, a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.

  11. Global patterns of socioeconomic biomass flows in the year 2000. A comprehensive assessment of supply, consumption and constraints

    Krausmann, Fridolin; Erb, Karl-Heinz; Gingrich, Simone; Lauk, Christian; Haberl, Helmut

    2008-01-01

    Human use of biomass has become a major component of the global biogeochemical cycles of carbon and nitrogen. The use of land for biomass production (e.g. cropland) is among the most important pressures on biodiversity. At the same time, biomass is indispensable for humans as food, animal feed, raw material and energy source. In order to support research into these complex issues, we here present a comprehensive assessment of global socioeconomic biomass harvest, use and trade for the year 2000. We developed country-level livestock balances and a consistent set of factors to estimate flows of used biomass not covered by international statistics (e.g. grazed biomass, crop residues) and indirect flows (i.e. biomass destroyed during harvest but not used). We found that current global terrestrial biomass appropriation amounted to 18.7 billion tonnes dry matter per year (Pg/yr) or 16% of global terrestrial NPP of which 6.6 Pg/yr were indirect flows. Only 12% of the economically used plant biomass (12.1 Pg/yr) directly served as human food, while 58% were used as feed for livestock, 20% as raw material and 10% as fuelwood. There are considerable regional variations in biomass supply and use. Distinguishing 11 world regions, we found that extraction of used biomass ranged from 0.3 to 2.8 t/ha/yr, per-capita values varied between 1.2 and 11.7 t/cap/yr (dry matter). Aggregate global biomass trade amounted to 7.5% of all extracted biomass. An analysis of these regional patterns revealed that the level of biomass use per capita is determined by historically evolved patterns of land use and population density rather than by affluence or economic development status. Regions with low population density have the highest level of per-capita biomass use, high-density regions the lowest. Livestock, consuming 30-75% of all harvested biomass, is another important factor explaining regional variations in biomass use. Global biomass demand is expected to grow during the next decades

  12. Wind energy

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  13. Global and Regional Patterns of Tobacco Smoking and Tobacco Control Policies.

    Islami, Farhad; Stoklosa, Michal; Drope, Jeffrey; Jemal, Ahmedin

    2015-08-01

    Tobacco smoking is a major worldwide cause of morbidity and mortality from various diseases, including urologic diseases. We reviewed, at global and regional levels, the prevalence and trends of tobacco smoking and legislative and regulatory efforts around tobacco control. We also provided information about electronic cigarette (e-cigarette) use. We used several sources to present the most up-to-date information from national surveys, including the Global Adult Tobacco Survey, the Global Tobacco Control Report, and the Global Youth Tobacco Survey. Smoking prevalence has been decreasing globally, although trends in smoking vary substantially across countries and by gender. Among men, smoking prevalence in most high-income countries started to decrease in the mid-1990s, followed after a few decades by generally smaller decreases in some low- and middle-income countries (LMICs). However, there has been no change, or there has even been an increase, in smoking prevalence in many other LMICs. Countries with the highest male smoking prevalence are located in East Asia, Southeast Asia, and Eastern Europe. Similar to men, smoking prevalence for women has been decreasing in most high-income countries and some LMICs, although the decrease began later and was slower than that for men. Except in a few countries, smoking is much less common for women than for men. Most countries with the highest smoking prevalence in women are in Europe. Countries that have implemented the best practices for tobacco control, including monitoring, smoke-free policies, cessation programs, health warnings, advertising bans, and taxation, have been able to reduce smoking rates and related harms. E-cigarette use has rapidly increased since its introduction to the market. Health care providers should advise smoking patients about quitting smoking. Countries must improve the implementation and enforcement of tobacco control policies. Particular attention should be paid to preventing an increase in

  14. Global vegetation-fire pattern under different land use and climate conditions

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  15. Wind energy

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  16. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  17. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  18. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    Lu, Huijie; Ulanov, Alexander V.; Nobu, Masaru; Liu, Wen-Tso

    2015-01-01

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  19. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns.

    Lu, Huijie; Ulanov, Alexander V; Nobu, Masaru; Liu, Wen-Tso

    2016-02-01

    The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three studies on N. europaea were compared to achieve a

  20. Compare local pocket and global protein structure models by small structure patterns

    Cui, Xuefeng

    2015-09-09

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/

  1. Global dispersal pattern of HIV type 1 subtype CRF01-AE : A genetic trace of human mobility related to heterosexual sexual activities centralized in southeast Asia

    Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J.; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G.; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne Mieke; Paraskevis, Dimitrios

    2015-01-01

    Background. Human immunodeficiency virus type 1 (HIV-1) subtype CRF01-AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01-AE, little is known about its subsequent dispersal pattern. Methods. We assembled a global data set

  2. Patterns of globalized reproduction: Egg cells regulation in Israel and Austria

    Shalev Carmel

    2012-04-01

    Full Text Available Abstract Since the successful introduction of in vitro fertilization in 1978, medically assisted reproduction (MAR has proliferated in multiple clinical innovations. Consequently, egg cells have become an object of demand for both infertility treatment and stem cell research, and this raises complex legal, ethical, social and economic issues. In this paper we compare how the procurement and use of human egg cells is regulated in two countries: Israel and Austria. Israel is known for its scientific leadership, generous public funding, high utilization and liberal regulation of assisted reproductive technology (ART. Austria lies at the other extreme of the regulatory spectrum in terms of restrictions on reproductive interventions. In both countries, however, there is a constant increase in the use of the technology, and recent legal developments make egg cells more accessible. Also, in both countries the scarcity of egg cells in concert with the rising demand for donations has led to the emergence of cross-border markets and global 'reproductive tourism' practices. In Israel, in particular, a scandal known as the 'eggs affair' was followed by regulation that allowed egg cell donations from outside the country under certain conditions. Cross-border markets are developed by medical entrepreneurs, driven by global economic gaps, made possible by trans-national regulatory lacunae and find expression as consumer demand. The transnational practice of egg cell donations indicates the emergence of a global public health issue, but there is a general lack of medical and epidemiological data on its efficacy and safety. We conclude that there is need for harmonisation of domestic laws and formulation of new instruments for international governance.

  3. Patterns of globalized reproduction: Egg cells regulation in Israel and Austria.

    Shalev, Carmel; Werner-Felmayer, Gabriele

    2012-04-18

    Since the successful introduction of in vitro fertilization in 1978, medically assisted reproduction (MAR) has proliferated in multiple clinical innovations. Consequently, egg cells have become an object of demand for both infertility treatment and stem cell research, and this raises complex legal, ethical, social and economic issues.In this paper we compare how the procurement and use of human egg cells is regulated in two countries: Israel and Austria. Israel is known for its scientific leadership, generous public funding, high utilization and liberal regulation of assisted reproductive technology (ART). Austria lies at the other extreme of the regulatory spectrum in terms of restrictions on reproductive interventions.In both countries, however, there is a constant increase in the use of the technology, and recent legal developments make egg cells more accessible. Also, in both countries the scarcity of egg cells in concert with the rising demand for donations has led to the emergence of cross-border markets and global 'reproductive tourism' practices. In Israel, in particular, a scandal known as the 'eggs affair' was followed by regulation that allowed egg cell donations from outside the country under certain conditions.Cross-border markets are developed by medical entrepreneurs, driven by global economic gaps, made possible by trans-national regulatory lacunae and find expression as consumer demand. The transnational practice of egg cell donations indicates the emergence of a global public health issue, but there is a general lack of medical and epidemiological data on its efficacy and safety. We conclude that there is need for harmonisation of domestic laws and formulation of new instruments for international governance.

  4. Canadian small wind market

    Moorhouse, E.

    2010-01-01

    This PowerPoint presentation discussed initiatives and strategies adopted by the Canadian Wind Energy Association (CanWEA) to support the development of Canada's small wind market. The general public has shown a significant interest in small wind projects of 300 kW. Studies have demonstrated that familiarity and comfort with small wind projects can help to ensure the successful implementation of larger wind projects. Small wind markets include residential, farming and commercial, and remote community applications. The results of CanWEA market survey show that the small wind market grew by 78 percent in 2008 over 2007, and again in 2009 by 32 percent over 2008. The average turbine size is 1 kW. A total of 11,000 turbines were purchased in 2007 and 2008. Global small wind market growth increased by 110 percent in 2008, and the average turbine size was 2.4 kW. Eighty-seven percent of the turbines made by Canadian mid-size wind turbine manufacturers are exported, and there is now a significant risk that Canada will lose its competitive advantage in small wind manufacturing as financial incentives have not been implemented. American and Canadian-based small wind manufacturers were listed, and small wind policies were reviewed. The presentation concluded with a set of recommendations for future incentives, educational programs and legislation. tabs., figs.

  5. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    Wang Peng-Fei; Xu Zhong-Bin; Ruan Xiao-Dong; Fu Xin

    2015-01-01

    The Hong–Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott–Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. (paper)

  6. Spatial and temporal patterns of global H5N1 outbreaks

    Si, YL

    2008-07-01

    Full Text Available -96. Walter, C., Mcbratney, A. B., Rossel, R. A. V. and Markus, J. A., 2005. Spatial point-process statistics: concepts and application to the analysis of lead contamination in urban soil. Environmetrics, 16, pp. 339-355. Ward, M. P., Maftei, D., Apostu... OF GLOBAL H5N1 OUTBREAKS Y.L. Si a,c, *, P. Debba b, A. K. Skidmore a, A. G. Toxopeus a, L. Li c a ITC, Department of Natural Resources, 7500AA Enschede, The Netherlands – (yali, skidmore, toxopeus)@itc.nl b Council for Scientific and Industrial...

  7. Global and local approaches to population analysis: Bonding patterns in superheavy element compounds

    Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.

    2018-03-01

    Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.

  8. Assessing historical global sulfur emission patterns for the period 1850--1990

    Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  9. Staying in the Global City: Patterns of Luxury Hotel Localization in Santiago de Chile

    Rodrigo Hidalgo

    2016-07-01

    Full Text Available Chile, for a long time a backwater of international tourism, is about to turn itself into a top–end destination, with the capital Santiago taking a leading role. In recent decades, international chains have constructed numerous luxury hotels aimed at the requirements of international city and business tourists. The continuing bicentric orientation of the city (core city and ‘modern town’, which has withstood all fragmentation processes, has led to a polycentric distribution of luxury hotels, with the largest, most expensive and most luxurious hotels situated in the ‘modern town’. The airport, the innovation centers and business parks, as well as the city center, have also seen investment. When compared with models of hotel localization in cities, it is evident that Santiago has overcome the traditional model of city tourism under the influence of globalization trends. Today the needs of global travelers, both city and business tourists, transport links and the surroundings of the hotels play an important role. This is reflected in the pricing structure and the distribution of luxury hotels across the city.

  10. [Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China].

    Li, Yao; Zhang, Xing-wang; Fang, Yan-ming

    2014-12-01

    The geographical distribution of Quercus variabilis in China with its climate characteristics was analyzed based on DIVA-GIS which was also used to estimate the response of future potential distribution to global warming by Bioclim and Domain models. Analysis results showed the geographical distribution of Q. variabilis could be divided into 7 subregions: Henduan Mountains, Yunnan-Guizhou Plateau, North China, East China, Liaodong-Shandong Peninsula, Taiwan Island, and Qinling-Daba Mountains. These subregions are across 7 temperature zones, 2 moisture regions and 17 climatic subregions, including 8 climate types. The modern abundance center of Q. variabilis is Qinling, Daba and Funiu mountains. The condition of mean annual temperature 7.5-19.8 degrees C annual precipitation 471-1511 mm, is suitable for Q. variabilis. Areas under the receiver operating characteristic curve (AUC values), of Domain and Boiclim models were 0.910, 0.779; the former predicted that the potential regions of high suitability for Q. variabilis are Qinling, Daba, Funiu, Tongbai, and Dabie mountains, eastern and western Yunnan-Guizhou Plateau, hills of southern Jiangsu and Anhui, part of the mountains in North China. Global warming might lead to the shrinking in suitable region and retreating from the south for Q. variabilis.

  11. Patterns of inequality: Dynamics of income distribution in USA and global energy consumption distribution

    Banerjee, Anand; Yakovenko, Victor

    2010-03-01

    Applying the principle of entropy maximization, we argued that the distribution of money in a closed economic system should be exponential [1], see also recent review [2]. In this talk, we show that income distribution in USA is exponential for the majority of population (about 97%). However, the high-income tail follows a power law and is highly dynamical, i.e., out of equilibrium. The fraction of income going to the tail swelled to 20% of all income in 2000 and 2006 at the peaks of speculative bubbles followed by spectacular crashes. Next, we analyze the global distribution of energy consumption per capita among different countries. In the first approximation, it is reasonably well captured by the exponential function. Comparing the data for 1990 and 2005, we observe that the distribution is getting closer to the exponential, presumably as a result of globalization of the world economy.[4pt] [1] A. A. Dragulescu and V. M. Yakovenko, Eur. Phys. J. B 17, 723 (2000). [2] V. M. Yakovenko and J. B. Rosser, to appear in Rev. Mod. Phys. (2009), arXiv:0905.1518.

  12. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  13. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  14. Seasonal patterns in human A (H5N1 virus infection: analysis of global cases.

    Maya B Mathur

    Full Text Available Human cases of highly pathogenic avian influenza (HPAI A (H5N1 have high mortality. Despite abundant data on seasonal patterns in influenza epidemics, it is unknown whether similar patterns exist for human HPAI H5N1 cases worldwide. Such knowledge could help decrease avian-to-human transmission through increased prevention and control activities during peak periods.We performed a systematic search of published human HPAI H5N1 cases to date, collecting month, year, country, season, hemisphere, and climate data. We used negative binomial regression to predict changes in case incidence as a function of season. To investigate hemisphere as a potential moderator, we used AIC and the likelihood-ratio test to compare the season-only model to nested models including a main effect or interaction with hemisphere. Finally, we visually assessed replication of seasonal patterns across climate groups based on the Köppen-Geiger climate classification.We identified 617 human cases (611 with complete seasonal data occurring in 15 countries in Southeast Asia, Africa, and the Middle East. Case occurrence was much higher in winter (n = 285, p = 0.03 than summer (n = 64, and the winter peak occurred across diverse climate groups. There was no significant interaction between hemisphere and season.Across diverse climates, HPAI H5N1 virus infection in humans increases significantly in winter. This is consistent with increased poultry outbreaks and HPAI H5N1 virus transmission during cold and dry conditions. Prioritizing prevention and control activities among poultry and focusing public health messaging to reduce poultry exposures during winter months may help to reduce zoonotic transmission of HPAI H5N1 virus in resource-limited settings.

  15. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle

    Niu, Shuli; Classen, Aimee Taylor; Dukes, Jeffrey S.

    2016-01-01

    availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N...... substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate...

  16. E-book usage on a global scale: patterns, trends and opportunities

    Michael Levine-Clark

    2015-07-01

    Full Text Available This study examines worldwide usage of over 600,000 e-books from EBL and ebrary. Using multiple modes of analysis, the study shows that there are variations in usage by geographic region as well as by subject. The study examines usage in relation to availability of titles, different types of usage per session, usage of the top ten percent of titles, and intensive and extensive use. These patterns can be used for benchmarking and as a model for local e-book studies.

  17. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene.

    Turvey, Samuel T; Fritz, Susanne A

    2011-09-12

    Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.

  18. Design of Driving Behavior Pattern Measurements Using Smartphone Global Positioning System Data

    Xiaoyu Zhu

    2013-12-01

    Full Text Available The emergence of new technologies such as GPS, cellphone, Bluetooth device, etc. offers opportunities for collecting high-fidelity temporal-spatial travel data in a cost-effective manner. With the vehicle trajectory data achieved from a smartphone app Metropia, this study targets on exploring the trajectory data and designing the measurements of the driving pattern. Metropia is a recently available mobile traffic app that uses prediction and coordinating technology combined with user rewards to incentivize drivers to cooperate, balance traffic load on the network, and reduce traffic congestion. Speed and celeration (acceleration and deceleration are obtained from the Metropia platform directly and parameterized as individual and system measurements related to traffic, spatial and temporal conditions. A case study is provided in this paper to demonstrate the feasibility of this approach utilizing the trajectory data from the actual app usage. The driving behaviors at both individual and system levels are quantified from the microscopic speed and celeration records. The results from this study reveal distinct driving behavior pattern and shed lights for further opportunities to identify behavior characteristics beyond safety and environmental considerations.

  19. Author Correction: Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Lewis, Carolyn J. Ewers; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2018-03-01

    In the version of this Article originally published, the potential carbon loss from soils as a result of mangrove deforestation was incorrectly given as `2.0-75 Tg C yr-1'; this should have read `2-8 Tg C yr-1'. The corresponding emissions were incorrectly given as ` 7.3-275 Tg of CO2e'; this should have read ` 7-29 Tg of CO2e'. The corresponding percentage equivalent of these emissions compared with those from global terrestrial deforestation was incorrectly given as `0.2-6%'; this should have read `0.6-2.4%'. These errors have now been corrected in all versions of the Article.

  20. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin

    2015-11-01

    The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483

  1. Global Diffusion Pattern and Hot SPOT Analysis of Vaccine-Preventable Diseases

    Jiang, Y.; Fan, F.; Zanoni, I. Holly; Li, Y.

    2017-10-01

    Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.

  2. GLOBAL DIFFUSION PATTERN AND HOT SPOT ANALYSIS OF VACCINE-PREVENTABLE DISEASES

    Y. Jiang

    2017-10-01

    Full Text Available Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.

  3. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  4. Zonal wind observations during a geomagnetic storm

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  5. Initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    Van Buren, D.

    1985-01-01

    Using the Michigan HD catalog volumes I--III, the all-sky sample of O stars of Garmany, Conti, and Chiosi, Lucke's map of the distribution of obscuring material within 2 kpc, and an amalgam of recent stellar evolution calculations, the number of stars formed kpc -2 yr -1 [log (M/M/sub sun/)] -1 (IMF) is psi = 5.4 x 10 -4 (M/M/sub sun/)/sup -1.03/. A calibration of mass-loss rates with stellar parameters based on published data yields m = 2.0 x 10 -13 (L/L/sub sun/)/sup 1.25/M/sub sun/ yr -1 . Energy injection into the ISM by winds and supernovae balances mechanical energy dissipation via cloud-cloud collisions. For stars M>5 M/sub sun/ there is near balance between the rate at which mass is turned into stars and the rate at which it is lost from them, implying small remnant masses

  6. The potential of wind farms

    1992-01-01

    Summaries of papers presented at the European wind energy conference on the potential of wind farms are presented. It is stated that in Denmark today, wind energy provides about 3% to the Danish electricity consumption and the wind power capacity is, according to Danish wind energy policy, expected to increase substantially in the years to come. A number of countries in Europe and elsewhere are making significant progress in this repect. Descriptions of performance are given in relation to some individual wind farms. The subjects covered concern surveys of national planning and policies regarding wind utilization and national and global development of wind turbine arrays. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigue, wakes, noise and control. (AB).

  7. Phase analysis of regional and global ventricular contraction patterns in Wolff-Parkinson-White syndrome

    Konishi, Tokuji; Koyama, Takao; Ichikawa, Takehiko

    1989-01-01

    Multigated blood pool scintigraphy was performed in 20 normal subjects and 39 patients with various intraventricular conduction abnormalities, including 25 patients with Wolff-Parkinson-White (WPW) syndrome. Cardiac imaging was performed in the modified left anterior oblique, right anterior oblique, and left lateral projections. In WPW syndrome, early contraction sites which were not seen in normal subjects were detected at the ventricular base in phase images. These anomalous early contraction sites disappeared after successful suppression of conduction through an accessory pathway by intravenous procainamide. These sites are believed to correspond to the location of the bundle of Kent and were consistent with the electrocardiographic findings. Phase mapping is a suitable noninvasive method to locate the position of the bundle of Kent and evaluate the ventricular contraction pattern in WPW syndrome and other intraventricular conduction abnormalities. (author)

  8. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

    Z. Huang

    2018-04-01

    Full Text Available Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5° sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants, livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US, eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at

  9. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  10. Wind energy in Europe

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  11. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  12. Global land use patterns and the production of bioenergy to 2050

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    The results of a bottom-up analysis of the theoretical global bioenergy production potential are presented and discussed, with specific attention for the impact of underlying factors, existing studies on agriculture and forestry and gaps in the knowledge base that explain ranges in estimates. The impact of various factors is analysed by means of scenario analysis. Results indicate that the key factor for bioenergy production on surplus agricultural land is the type of agricultural management system. Theoretically, 70% of the present agricultural land use can be made available for bioenergy production, without further deforestation or endangering the future supply of food. The bioenergy potential from surplus agricultural land is estimated at 215 EJy -1 to 1471 EJy -1 in 2050. The bulk of this potential comes from the developing regions South America and the Carribean (47-221 EJy -1 ) and sub-Saharan Africa (31-317 EJy -1 ) and the transition economies of the CIS and Baltic States (45-199 EJy -1 )

  13. Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter

    Dodds, Peter Sheridan; Harris, Kameron Decker; Kloumann, Isabel M.; Bliss, Catherine A.; Danforth, Christopher M.

    2011-01-01

    Individual happiness is a fundamental societal metric. Normally measured through self-report, happiness has often been indirectly characterized and overshadowed by more readily quantifiable economic indicators such as gross domestic product. Here, we examine expressions made on the online, global microblog and social networking service Twitter, uncovering and explaining temporal variations in happiness and information levels over timescales ranging from hours to years. Our data set comprises over 46 billion words contained in nearly 4.6 billion expressions posted over a 33 month span by over 63 million unique users. In measuring happiness, we construct a tunable, real-time, remote-sensing, and non-invasive, text-based hedonometer. In building our metric, made available with this paper, we conducted a survey to obtain happiness evaluations of over 10,000 individual words, representing a tenfold size improvement over similar existing word sets. Rather than being ad hoc, our word list is chosen solely by frequency of usage, and we show how a highly robust and tunable metric can be constructed and defended. PMID:22163266

  14. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  15. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle.

    Niu, Shuli; Classen, Aimée T; Dukes, Jeffrey S; Kardol, Paul; Liu, Lingli; Luo, Yiqi; Rustad, Lindsey; Sun, Jian; Tang, Jianwu; Templer, Pamela H; Thomas, R Quinn; Tian, Dashuan; Vicca, Sara; Wang, Ying-Ping; Xia, Jianyang; Zaehle, Sönke

    2016-06-01

    Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, conceptual analysis and model simulations. Experimental and observational studies have revealed that the stimulation of plant N uptake and soil retention generally diminishes as N loading increases, while dissolved and gaseous losses of N occur at low N availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate availability using manipulative experiments, and incorporates the measured N saturation response functions into conceptual, theoretical and quantitative analyses. © 2016 John Wiley & Sons Ltd/CNRS.

  16. Confirmation of a change in the global shear velocity pattern at around 1000 km depth

    Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S.

    2017-12-01

    In this study, we confirm the existence of a change in the shear velocity spectrum around 1000 km depth based on a new shear velocity tomographic model of the Earth's mantle, SEISGLOB2. This model is based on Rayleigh surface wave phase velocities, self- and cross-coupling structure coefficients of spheroidal normal modes and body wave traveltimes which are, for the first time, combined in a tomographic inversion. SEISGLOB2 is developed up to spherical harmonic degree 40 and in 21 radial spline functions. The spectrum of SEISGLOB2 is the flattest (i.e. richest in 'short' wavelengths corresponding to spherical harmonic degrees greater than 10) around 1000 km depth and this flattening occurs between 670 and 1500 km depth. We also confirm various changes in the continuity of slabs and mantle plumes all around 1000 km depth where we also observed the upper boundary of Large Low Shear Velocity Provinces. The existence of a flatter spectrum, richer in short-wavelength heterogeneities, in a region of the mid-mantle can have great impacts on our understanding of the mantle dynamics and should thus be better understood in the future. Although a viscosity increase, a phase change or a compositional change can all concur to induce this change of pattern, its precise origin is still very uncertain.

  17. Not just a fallback food: global patterns of insect consumption related to geography, not agriculture.

    Lesnik, Julie J

    2017-07-08

    Insects as food are often viewed as fallback resources and associated with marginal environments. This study investigates the relationship between insect consumption and noncultivated landscapes as well as with other independent variables including latitude, area, population, and gross domestic product. Data were obtained from online databases including the World List of Edible Insects, the World Bank, and the World Factbook. A logistic regression model found that latitude could correctly predict the presence of edible insects 80% of the time and that arable land and gross domestic product showed no effect. Spearman rank-order correlation with number of insect species found significant relationships between area and population (but not density) and per capita gross domestic product as well as latitude. Further analysis of latitude using paired Mann-Whitney tests identified a general gradient pattern in reduction of edible insects with increased latitude. Results suggest that insect consumption represents a dynamic human-environment interaction, whereby insects are utilized in some of the world's lushest environments as well as areas where people have had great impact on the ecosystem. The concept that insects are a fallback food is an oversimplification that is likely rooted in Western bias against this food source. © 2017 Wiley Periodicals, Inc.

  18. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  19. Connectivity diagnostics in the Mediterranean obtained from Lagrangian Flow Networks; global patterns, sensitivity and robustness

    Monroy, Pedro; Rossi, Vincent; Ser-Giacomi, Enrico; López, Cristóbal; Hernández-García, Emilio

    2017-04-01

    Lagrangian Flow Network (LFN) is a modeling framework in which geographical sub-areas of the ocean are represented as nodes in a network and are interconnected by links representing the transport of water, substances or propagules (eggs and larvae) by currents. Here we compute for the surface of the whole Mediterranean basin four connectivity metrics derived from LFN that measure retention and exchange processes, thus providing a systematic characterization of propagule dispersal driven by the ocean circulation. Then we assess the sensitivity and robustness of the results with respect to the most relevant parameters: the density of released particles, the node size (spatial-scales of discretization), the Pelagic Larval Duration (PLD) and the modality of spawning. We find a threshold for the number of particles per node that guarantees reliable values for most of the metrics examined, independently of node size. For our setup, this threshold is 100 particles per node. We also find that the size of network nodes has a non-trivial influence on the spatial variability of both exchange and retention metrics. Although the spatio-temporal fluctuations of the circulation affect larval transport in a complex and unpredictable manner, our analyses evidence how specific biological parametrization impact the robustness of connectivity diagnostics. Connectivity estimates for long PLDs are more robust against biological uncertainties (PLD and spawning date) than for short PLDs. Furthermore, our model suggests that for mass-spawners that release propagules over short periods (≃ 2 to 10 days), daily release must be simulated to properly consider connectivity fluctuations. In contrast, average connectivity estimates for species that spawn repeatedly over longer duration (a few weeks to a few months) remain robust even using longer periodicity (5 to 10 days). Our results give a global view of the surface connectivity of the Mediterranean Sea and have implications for the design of

  20. Medical Information Exchange: Pattern of Global Mobile Messenger Usage among Otolaryngologists.

    Siegal, Gil; Dagan, Elad; Wolf, Michael; Duvdevani, Shay; Alon, Eran E

    2016-11-01

    Information technology has revolutionized health care. However, the development of dedicated mobile health software has been lagging, leading to the use of general mobile applications to fill in the void. The use of such applications has several legal, ethical, and regulatory implications. We examined the experience and practices governing the usage of a global mobile messenger application (WhatsApp) for mobile health purposes in a national cohort of practicing otolaryngologists in Israel, a known early adaptor information technology society. Cross-sectional data were collected from practicing otolaryngologists and otolaryngology residents via self-administered questionnaire. The questionnaire was composed of a demographic section, a section surveying the practices of mobile application use, mobile health application use, and knowledge regarding institutional policies governing the transmission of medical data. The sample included 22 otolaryngology residents and 47 practicing otolaryngologists. Of the physicians, 83% worked in academic centers, and 88% and 40% of the physicians who worked in a hospital setting or a community clinic used WhatsApp for medical use, respectively. Working with residents increased the medical usage of WhatsApp from 50% to 91% (P = .006). Finally, 72% were unfamiliar with any institutional policy regarding the transfer of medical information by personal smartphones. Mobile health is becoming an integral part of modern medical systems, improving accessibility, efficiency, and possibly quality of medical care. The need to incorporate personal mobile devices in the overall information technology standards, guidelines, and regulation is becoming more acute. Nonetheless, practices must be properly instituted to prevent unwanted consequences. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  1. Global patterns and trends in stomach cancer incidence: Age, period and birth cohort analysis.

    Luo, Ganfeng; Zhang, Yanting; Guo, Pi; Wang, Li; Huang, Yuanwei; Li, Ke

    2017-10-01

    The cases of stomach cancer (SC) incidence are increasing per year and the SC burden has remained very high in some countries. We aimed to evaluate the global geographical variation in SC incidence and temporal trends from 1978 to 2007, with an emphasis on the effect of birth cohort. Joinpoint regression and age-period-cohort model were applied. From 2003 to 2007, male rate were 1.5- to 3-fold higher than female in all countries. Rates were highest in Eastern Asian and South American countries. Except for Uganda, all countries showed favorable trends. Pronounced cohort-specific increases in risk for recent birth cohorts were seen in Brazil, Colombia, Iceland, New Zealand, Norway, Uganda and US white people for males and in Australia, Brazil, Colombia, Costa Rica, Czech Republic, Ecuador, Iceland, India, Malta, New Zealand, Norway, Switzerland, United Kingdom, Uganda, US black and white people for females. The cohort-specific ratio for male significantly decreased in Japan, Malta and Spain for cohorts born since 1950 and in Austria, China, Croatia, Ecuador, Russia, Switzerland and Thailand for cohorts born since 1960 and for female in Japan for cohorts born since 1950 and in Canada, China, Croatia, Latvia, Russia and Thailand for cohorts born since 1960. Disparities in incidence and carcinogenic risk persist worldwide. The favorable trends may be due to changes in environmental exposure and lifestyle, including decreased Helicobacter pylori prevalence, increased intake of fresh fruits and vegetables, the availability of refrigeration and decreased intake of salted and preserved food and smoking prevalence. © 2017 UICC.

  2. Global Simulation of Aviation Operations

    Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua

    2016-01-01

    The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.

  3. Coal and Oil: The Dark Monarchs of Global Energy: Understanding Supply and Extraction Patterns and their Importance for Future Production

    Hoeoek, Mikael

    2010-01-01

    The formation of modern society has been dominated by coal and oil, and together these two fossil fuels account for nearly two thirds of all primary energy used by mankind. This makes future production a key question for future social development and this thesis attempts to answer whether it is possible to rely on an assumption of ever increasing production of coal and oil. Both coal and oil are finite resources, created over long time scales by geological processes. It is thus impossible to extract more fossil fuels than geologically available. In other words, there are limits to growth imposed by nature. The concept of depletion and exhaustion of recoverable resources is a fundamental question for the future extraction of coal and oil. Historical experience shows that peaking is a well established phenomenon in production of various natural resources. Coal and oil are no exceptions, and historical data shows that easily exploitable resources are exhausted while more challenging deposits are left for the future. For oil, depletion can also be tied directly to the physical laws governing fluid flows in reservoirs. Understanding and predicting behaviour of individual fields, in particularly giant fields, are essential for understanding future production. Based on comprehensive databases with reserve and production data for hundreds of oilfields, typical patterns were found. Alternatively, depletion can manifest itself indirectly through various mechanisms. This has been studied for coal. Over 60% of the global crude oil production is derived from only around 330 giant oilfields, where many of them are becoming increasingly mature. The annual decline in existing oil production has been determined to be around 6% and it is unrealistic that this will be offset by new field developments, additional discoveries or unconventional oil. This implies that the peak of the oil age is here. For coal a similar picture emerges, where 90% of the global coal production originates

  4. On the relative importance of loads acting on a floating verticalaxis wind turbine system when evaluating the global system response

    Collu, Maurizio; Borg, Michael; Manuel, Lance

    2016-01-01

    of the VAWT aerodynamic forces, the platform hydrodynamic forces, and the mooring forces. The results help evaluate the relative importance of hydrodynamic with respect to aerodynamic forces, depending on the loading condition. A deeper insight into the aerodynamic forces is provided, which shows the impact...... their potential advantages. Due to the substantial differences between HAWT and VAWT systems, analysis procedures employed for a floating HAWT analyses cannot be extended to use for floating VAWT systems. Here, the main aim is to provide a systematic analysis and comparison of the forces acting on a reference...... by the OC4-Phase II semisubmersible. Using the coupled model of dynamics for VAWT "FloVAWT", the global response of the system is estimated for a set of load cases, allowing the assessment of the contributions of individual force components. In particular, the simulations allow us to assess the impact...

  5. Global patterns of extinction risk in marine and non-marine systems.

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

    Camille Mellin

    Full Text Available The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P and as the predictability of targets using surrogates (R(2. A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.

  7. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.

    2016-01-01

    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.

  8. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-03-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.

  9. Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-01-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830

  10. The Impact of Global Warming on Precipitation Patterns in Ilorin and the Hydrological Balance of the Awun Basin

    Ayanshola, Ayanniyi; Olofintoye, Oluwatosin; Obadofin, Ebenezer

    2018-03-01

    This study presents the impact of global warming on precipitation patterns in Ilorin, Nigeria, and its implications on the hydrological balance of the Awun basin under the prevailing climate conditions. The study analyzes 39 years of rainfall and temperature data of relevant stations within the study areas. Simulated data from the Coupled Global Climate model for historical and future datasets were investigated under the A2 emission scenario. Statistical regression and a Mann-Kendall analysis were performed to determine the nature of the trends in the hydrological variables and their significance levels, while a Soil and Water Assessment Tool (SWAT) was used to estimate the water balance and derive the stream flow and yield of the Awun basin. The study revealed that while minimum and maximum temperatures in Ilorin are increasing, rainfall is generally decreasing. The assessment of the trends in the water balance parameters in the basin indicates that there is no improvement in the water yield as the population increases. This may result in major stresses to the water supply in the near future.

  11. Posttraumatic stress disorder among refugees: Measurement invariance of Harvard Trauma Questionnaire scores across global regions and response patterns.

    Rasmussen, Andrew; Verkuilen, Jay; Ho, Emily; Fan, Yuyu

    2015-12-01

    Despite the central role of posttraumatic stress disorder (PTSD) in international humanitarian aid work, there has been little examination of the measurement invariance of PTSD measures across culturally defined refugee subgroups. This leaves mental health workers in disaster settings with little to support inferences made using the results of standard clinical assessment tools, such as the severity of symptoms and prevalence rates. We examined measurement invariance in scores from the most widely used PTSD measure in refugee populations, the Harvard Trauma Questionnaire (HTQ; Mollica et al., 1992), in a multinational and multilingual sample of asylum seekers from 81 countries of origin in 11 global regions. Clustering HTQ responses to justify grouping regional groups by response patterns resulted in 3 groups for testing measurement invariance: West Africans, Himalayans, and all others. Comparing log-likelihood ratios showed that while configural invariance seemed to hold, metric and scalar invariance did not. These findings call into question the common practice of using standard cut-off scores on PTSD measures across culturally dissimilar refugee populations. In addition, high correlation between factors suggests that the construct validity of scores from North American and European measures of PTSD may not hold globally. (c) 2015 APA, all rights reserved).

  12. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns.

    Dangal, Shree R S; Tian, Hanqin; Zhang, Bowen; Pan, Shufen; Lu, Chaoqun; Yang, Jia

    2017-10-01

    Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various scales from regional to global, but the long-term trend, regional variation and drivers of methane (CH 4 ) emission remain unclear. In this study, we use Intergovernmental Panel on Climate Change (IPCC) Tier II guidelines to quantify the evolution of CH 4 emissions from ruminant livestock during 1890-2014. We estimate that total CH 4 emissions in 2014 was 97.1 million tonnes (MT) CH 4 or 2.72 Gigatonnes (Gt) CO 2 -eq (1 MT = 10 12 g, 1 Gt = 10 15 g) from ruminant livestock, which accounted for 47%-54% of all non-CO 2 GHG emissions from the agricultural sector. Our estimate shows that CH 4 emissions from the ruminant livestock had increased by 332% (73.6 MT CH 4 or 2.06 Gt CO 2 -eq) since the 1890s. Our results further indicate that livestock sector in drylands had 36% higher emission intensity (CH 4 emissions/km 2 ) compared to that in nondrylands in 2014, due to the combined effect of higher rate of increase in livestock population and low feed quality. We also find that the contribution of developing regions (Africa, Asia and Latin America) to the total CH 4 emissions had increased from 51.7% in the 1890s to 72.5% in the 2010s. These changes were driven by increases in livestock numbers (LU units) by up to 121% in developing regions, but decreases in livestock numbers and emission intensity (emission/km 2 ) by up to 47% and 32%, respectively, in developed regions. Our results indicate that future increases in livestock production would likely contribute to higher CH 4 emissions, unless effective strategies to mitigate GHG emissions in livestock system are implemented. © 2017 John Wiley & Sons Ltd.

  13. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  14. Efficient, space-based, PM 100W thulium fiber laser for pumping Q-switched 2μm Ho:YLF for global winds and carbon dioxide lidar

    Engin, Doruk; Mathason, Brian; Storm, Mark

    2017-08-01

    Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.

  15. Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    , and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems. PMID:24763610

  16. Global patterns in ecological indicators of marine food webs: a modelling approach.

    Johanna Jacomina Heymans

    seagrass and macroalgae, and invertebrates. Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. CONCLUSION/SIGNIFICANCE: Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc. and not benchmarked against all other ecosystems.

  17. Wind Atlas of Bay of Bengal with Satellite Wind Measurement

    Nadi, Navila Rahman

    footstep towards offshore wind energy analysis for this region. Generally, it is difficult to find offshore wind data relative to the wind turbine hub heights, therefore a starting point is necessary to identify the possible wind power density of the region. In such scenario, Synthetic aperture radars (SAR......The objective of this study is to obtain appropriate offshore location in the Bay of Bengal, Bangladesh for further development of wind energy. Through analyzing the previous published works, no offshore wind energy estimation has been found here. That is why, this study can be claimed as the first......) have proven useful. In this study, SAR based dataset- ENVISAT ASAR has been used for Wind Atlas generation. Furthermore, a comparative study has been performed with Global Wind Atlas (GWA) to determine a potential offshore wind farm. Additionally, the annual energy production of that offshore windfarm...

  18. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  19. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  20. Environmental impact of wind energy

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  1. A Wind Forecasting System for Energy Application

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated

  2. Discovering New Global Climate Patterns: Curating a 21-Year High Temporal (Hourly) and Spatial (40km) Resolution Reanalysis Dataset

    Hou, C. Y.; Dattore, R.; Peng, G. S.

    2014-12-01

    The National Center for Atmospheric Research's Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40km Reanalysis dataset is a dynamically downscaled dataset with high temporal and spatial resolution. The dataset contains three-dimensional hourly analyses in netCDF format for the global atmospheric state from 1985 to 2005 on a 40km horizontal grid (0.4°grid increment) with 28 vertical levels, providing good representation of local forcing and diurnal variation of processes in the planetary boundary layer. This project aimed to make the dataset publicly available, accessible, and usable in order to provide a unique resource to allow and promote studies of new climate characteristics. When the curation project started, it had been five years since the data files were generated. Also, although the Principal Investigator (PI) had generated a user document at the end of the project in 2009, the document had not been maintained. Furthermore, the PI had moved to a new institution, and the remaining team members were reassigned to other projects. These factors made data curation in the areas of verifying data quality, harvest metadata descriptions, documenting provenance information especially challenging. As a result, the project's curation process found that: Data curator's skill and knowledge helped make decisions, such as file format and structure and workflow documentation, that had significant, positive impact on the ease of the dataset's management and long term preservation. Use of data curation tools, such as the Data Curation Profiles Toolkit's guidelines, revealed important information for promoting the data's usability and enhancing preservation planning. Involving data curators during each stage of the data curation life cycle instead of at the end could improve the curation process' efficiency. Overall, the project showed that proper resources invested in the curation process would give datasets the best chance to fulfill their potential to

  3. Wind Energy

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  4. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  5. Geomagnetic field, global pattern

    Macmillan, Susan

    2011-01-01

    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  6. A "Global Radiosonde and tracked-balloon Archive on Sixteen Pressure levels" (GRASP) going back to 1905 – Part 2: homogeneity adjustments for pilot balloon and radiosonde wind data

    L. Ramella Pralungo; L. Haimberger

    2014-01-01

    This paper describes the comprehensive homogenization of the "Global Radiosonde and tracked balloon Archive on Sixteen Pressure levels" (GRASP) wind records. Many of those records suffer from artificial shifts that need to be detected and adjusted before they are suitable for climate studies. Time series of departures between observations and the National Atmospheric and Oceanic Administration 20th-century (NOAA-20CR) surface pressure only reanalysis have been calculated...

  7. The pattern of complaints about Australian wind farms does not match the establishment and distribution of turbines: support for the psychogenic, 'communicated disease' hypothesis.

    Chapman, Simon; St George, Alexis; Waller, Karen; Cakic, Vince

    2013-01-01

    With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia. All Australian wind farms (51 with 1634 turbines) operating 1993-2012. Records of complaints about noise or health from residents living near 51 Australian wind farms were obtained from all wind farm companies, and corroborated with complaints in submissions to 3 government public enquiries and news media records and court affidavits. These are expressed as proportions of estimated populations residing within 5 km of wind farms. There are large historical and geographical variations in wind farm complaints. 33/51 (64.7%) of Australian wind farms including 18/34 (52.9%) with turbine size >1 MW have never been subject to noise or health complaints. These 33 farms have an estimated 21,633 residents within 5 km and have operated complaint-free for a cumulative 267 years. Western Australia and Tasmania have seen no complaints. 129 individuals across Australia (1 in 254 residents) appear to have ever complained, with 94 (73%) being residents near 6 wind farms targeted by anti wind farm groups. The large majority 116/129(90%) of complainants made their first complaint after 2009 when anti wind farm groups began to add health concerns to their wider opposition. In the preceding years, health or noise complaints were rare despite large and small-turbine wind farms having operated for many years. The reported historical and geographical variations in complaints are consistent with psychogenic hypotheses that expressed health problems are "communicated diseases" with nocebo effects likely to play an important role in the aetiology of complaints.

  8. The Pattern of Complaints about Australian Wind Farms Does Not Match the Establishment and Distribution of Turbines: Support for the Psychogenic, ‘Communicated Disease’ Hypothesis

    Chapman, Simon; St. George, Alexis; Waller, Karen; Cakic, Vince

    2013-01-01

    Background and Objectives With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia. Setting All Australian wind farms (51 with 1634 turbines) operating 1993–2012. Methods Records of complaints about noise or health from residents living near 51 Australian wind farms were obtained from all wind farm companies, and corroborated with complaints in submissions to 3 government public enquiries and news media records and court affidavits. These are expressed as proportions of estimated populations residing within 5 km of wind farms. Results There are large historical and geographical variations in wind farm complaints. 33/51 (64.7%) of Australian wind farms including 18/34 (52.9%) with turbine size >1 MW have never been subject to noise or health complaints. These 33 farms have an estimated 21,633 residents within 5 km and have operated complaint-free for a cumulative 267 years. Western Australia and Tasmania have seen no complaints. 129 individuals across Australia (1 in 254 residents) appear to have ever complained, with 94 (73%) being residents near 6 wind farms targeted by anti wind farm groups. The large majority 116/129(90%) of complainants made their first complaint after 2009 when anti wind farm groups began to add health concerns to their wider opposition. In the preceding years, health or noise complaints were rare despite large and small-turbine wind farms having operated for many years. Conclusions The reported historical and geographical variations in complaints are consistent with psychogenic hypotheses that expressed health problems are “communicated diseases” with nocebo effects likely to play an

  9. In Search of the Wind Energy Potential

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  10. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization.

    Aguirre, A Alonso

    2017-12-15

    The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.

  11. Future wind deployment scenarios for South Africa

    Wright, Jarrad G

    2017-11-01

    Full Text Available understood wind (and solar) resource in South Africa combined with large geographical land-area and technology cost reductions globally and domestically for wind and solar photovoltaics (PV) has made these technologies more than competitive with alternatives...

  12. Wind power barometer

    2014-01-01

    The worldwide wind power increased by 12.4% in 2013 to reach 318.6 GW but the world market globally decreased by losing 10 GW: only 35.6 GW have been installed in 2013 which is even less than was installed in 2009. This activity contraction is mainly due to the collapse of the American market, American authorities having been late to decide to maintain federal incentives. The European wind power market also contracted in 2013 because of the lack of trust of the investors in the new energy policies of the European governments. In the rest of the world wind energy has kept on growing particularly in China and Canada. At the end of 2013 the cumulated wind power reached 117,73 GW in Europe. About 1.5 MW out of 10 MW of wind power installed in Europe in 2013 come from off-shore wind farms, United-Kingdom and Denmark being the most important players by totalling more than 70% of the off-shore wind power installed at the end of 2013. Various charts and tables give the figures of the wind power cumulated and installed in 2013 in different parts of the world: Europe, North America and Asia, the time evolution of the worldwide wind power since 1995, the wind power cumulated and installed in 2013 for the different countries of Europe and the ratio between the cumulated wind power and the country population. A table lists the main manufacturers of wind turbines and gives their turnover and number of employees at the end of 2013

  13. Innovation paths in wind power

    Lema, Rasmus; Nordensvärd, Johan; Urban, Frauke

    Denmark and Germany both make substantial investments in low carbon innovation, not least in the wind power sector. These investments in wind energy are driven by the twin objectives of reducing carbon emissions and building up international competitive advantage. Support for wind power dates back....... The ‘Danish Design’ remains the global standard. The direct drive design, while uncommon in Denmark, dominates the German installation base. Direct drive technology has thus emerged as a distinctly German design and sub-trajectory within the overall technological innovation path. When it comes to organising...... global interconnectedness of wind technology markets and the role of emerging new players, such as China and India....

  14. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global

  15. Spatio-Temporal Patterns and Climate Variables Controlling of Biomass Carbon Stock of Global Grassland Ecosystems from 1982 to 2006

    Jiangzhou Xia

    2014-02-01

    Full Text Available Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production. The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  16. Performance of spanish wind turbines. Year 1995

    Lago, C.

    1997-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1995 going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author)

  17. Performance of spanish wind turbines. Year 1996

    Lago, C.

    1998-01-01

    In this document we can find a statistical evaluation for the wind energy generation from each spanish wind farm referred to 1996 going on with the work that has been carried out since 1992, by initiative of the Wind Energy Division from Renewable Energy Institute. The purpose of this work is to contribute with interesting information for the wind environment and offer a global view from monthly performances of different wind farms. (Author) 4 refs

  18. Wind energy, status and opportunities

    Van Wijk, A.

    1994-01-01

    Wind energy is diffuse but was widely used before the industrial revolution. The first oil crisis triggered renewed interest in wind energy technology in remote areas. Winds develop when solar radiation reaches the earth's highly varied surface unevenly, creating temperature density and pressure differences. The earth's atmosphere has to circulate to transport heat from the tropics towards the poles. On a global scale, these atmospheric currents work as an immense energy transfer medium. Three main applications can be distinguished: wind pumps, off-grid applications and grid-connected applications. The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime (the wind energy potential is proportional to v 3 where v is the wind speed), the efficiency and availability of the wind turbine. The main gains are achieved as a result of improved reliability. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives, it can be calculated by the avoided costs of damage to flora, fauna and mankind due to acid rain deposition, enhancement of the greenhouse effect. The environmental aspects are bird hindrance, noise, telecommunication interference and safety. 2 tabs., 1 fig

  19. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  20. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  1. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia.

    Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean-Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne-Mieke; Paraskevis, Dimitrios

    2015-06-01

    Human immunodeficiency virus type 1 (HIV-1) subtype CRF01_AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01_AE, little is known about its subsequent dispersal pattern. We assembled a global data set of 2736 CRF01_AE sequences by pooling sequences from public databases and patient-cohort studies. We estimated viral dispersal patterns, using statistical phylogeographic analysis run over bootstrap trees estimated by the maximum likelihood method. We show that Thailand has been the source of viral dispersal to most areas worldwide, including 17 of 20 sampled countries in Europe. Japan, Singapore, Vietnam, and other Asian countries have played a secondary role in the viral dissemination. In contrast, China and Taiwan have mainly imported strains from neighboring Asian countries, North America, and Africa without any significant viral exportation. The central role of Thailand in the global spread of CRF01_AE can be probably explained by the popularity of Thailand as a vacation destination characterized by sex tourism and by Thai emigration to the Western world. Our study highlights the unique case of CRF01_AE, the only globally distributed non-B clade whose global dispersal did not originate in Africa. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  3. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  4. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.

    Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin

    2017-07-01

    Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).

  5. Trends in Wind Energy Technology Development

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  6. Wind energy. To produce electricity with the wind

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  7. A Holocene temperature reconstruction from northern New Zealand: a test of North Atlantic Holocene climate patterns as a global template

    van den Bos, Valerie; Rees, Andrew; Newnham, Rewi; Augustinus, Paul

    2017-04-01

    Holocene climate variability has been well defined in the North Atlantic (Walker et al., 2012), but the global extent of this climate change stratigraphy is debatable. If the North Atlantic serves as a global template for Holocene climate, then New Zealand (NZ) is ideally positioned to test this assertion, as it is distal from the northern drivers. Additionally, it is one of the few landmasses in the Southern Hemisphere that is influenced by both sub-tropical and extra-tropical climatic regimes, which may be more important controls in the southern mid-latitudes. Although much work has been done to characterise the Holocene in NZ using pollen, most of these records lack the resolution or sensitivity to determine whether abrupt or short-lived events occurred. The NZ-INTIMATE climate event stratigraphy lacks a type section for the Holocene (Alloway et al., 2007). Records from northern NZ typically show little change, other than a possible early Holocene warming. Here, we present a combined pollen and chironomid temperature reconstruction from Lake Pupuke (northern NZ), the first of its kind in NZ that covers the entire Holocene. By comparing mean annual temperatures reconstructed from fossil pollen and mean summer temperatures inferred from chironomid remains, we can assess changes in seasonality. Mean summer temperature was reconstructed from the chironomid record using a weighted averaging partial least squares (WA-PLS) model (n comp = 2, r2booth = 0.77, RMSEP = 1.4°C) developed from an expanded version of Dieffenbacher-Krall et al. (2007)'s chironomid training set. Preliminary results show evidence for cool summers during the early Holocene as well as around the period of the Little Ice Age as defined in the North Atlantic region. These and other climate patterns determined from the Pupuke chironomid and pollen records will be compared with other evidence from northern New Zealand and with the North Atlantic record of Holocene climate variability. References

  8. Offshore wind energy prospects

    Gaudiosi, Gaetano

    1999-01-01

    In last two years offshore wind energy is becoming a focal point of national and non national organisations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity in shallow water of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10-20 km off the coasts of Netherlands, Denmark using large size wind turbine (1-2 MW). In 1997 an offshore proposal was supported in Netherlands by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of European offshore wind programs with trends in technology, economics and siting effects. (Author)

  9. Development of a methodology to assess the climate evolution and its impacts on wind energy

    Simard, I. [Moncton Univ., NB (Canada); Yu, W. [Moncton Univ., NB (Canada). Meteorological Research Div.; Gagnon, Y. [Moncton Univ., NB (Canada). K.C. Irving Chair in Sustainable Development

    2010-07-01

    Maps of wind resources were used to develop a method of evaluating climatic changes and their potential impacts on wind energy resources. Global IPCC climate change scenarios were used to predict climatic conditions for the future, while past wind resource availability was simulated and validated using NCEP and NCAR reanalysis data as well as observed meteorological data from Environment Canada. The simulations were used to compare each 5-year period with a 50-year reference period. Regional scale climate change impacts were evaluated using a statistical dynamic down-scaling method. Advanced meteorological models were used to predict wind flow patterns across specific landscapes. The evolution of past wind resource availability was then simulated. Five-year wind resource simulations for a 50-year period were simulated at 25 km{sup 2} wind speeds at 80 m above the ground. Average wind speed variations were then evaluated. The method has been used to simulate 5-year periods within a 50-year reference period in New Brunswick. Further studies will be conducted to simulate future wind resources availability. tabs., figs.

  10. Panorama 2016 - Offshore wind power

    Vinot, Simon

    2015-11-01

    While onshore wind power is a rapidly growing global industry, the offshore wind power market remains in its consolidation and globalization phase. This most mature of renewable marine energies continues to develop and can no longer be considered a niche industry. This fact sheet evaluates the market over the last several years, looking at its potential and its current rank in terms of electricity production costs. (author)

  11. Panorama 2013 - Offshore wind power

    Vinot, Simon

    2012-10-01

    While onshore wind power is already a well-developed global industry, offshore wind power is still in the consolidation and globalization phase. The most mature of marine renewable energies is beginning to venture off the European coast and even to other continents, driven by public policies and the ever increasing number of players joining this promising market, which should evolve into deeper waters thanks to floating structures. (author)

  12. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  13. Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage

    Yang, Tao; Wang, Chao; Yu, Zhongbo; Xu, Feng

    2013-10-01

    Since the launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided us with a new method to estimate terrestrial water storage (TWS) variations by measuring earth gravity change with unprecedented accuracy. Thus far, a number of standardized GRACE-born TWS products are published by different international research teams. However, no characterization of spatio-temporal patterns for different GRACE hydrology products from the global perspective could be found. It is still a big challenge for the science community to identify the reliable global measurement of TWS anomalies due to our limited knowledge on the true value. Hence, it is urgently necessary to evaluate the uncertainty for various global estimates of the GRACE-born TWS changes by a number of international research organizations. Toward this end, this article presents an in-depth analysis for various GRACE-born and GLDAS-based estimates for changes of global terrestrial water storage. The work characterizes the inter-annual and intra-annual variability, probability density variations, and spatial patterns among different GRACE-born TWS estimates over six major continents, and compares them with results from GLDAS simulations. The underlying causes of inconsistency between GRACE- and GLDAS-born TWS estimates are thoroughly analyzed with an aim to improve our current knowledge in monitoring global TWS change. With a comprehensive consideration of the advantages and disadvantages among GRACE- and GLDAS-born TWS anomalies, a summary is thereafter recommended as a rapid reference for scientists, end-users, and policy-makers in the practices of global TWS change research. To our best knowledge, this work is the first attempt to characterize difference and uncertainty among various GRACE-born terrestrial water storage changes over the major continents estimated by a number of international research organizations. The results can provide beneficial reference to usage of

  14. Epigenetic factors in cancer risk: effect of chemical carcinogens on global DNA methylation pattern in human TK6 cells.

    Ali M Tabish

    Full Text Available In the current study, we assessed the global DNA methylation changes in human lymphoblastoid (TK6 cells in vitro in response to 5 direct and 10 indirect-acting genotoxic agents. TK6 cells were exposed to the selected agents for 24 h in the presence and/or absence of S9 metabolic mix. Liquid chromatography-mass spectrometry was used for quantitative profiling of 5-methyl-2'-deoxycytidine. The effect of exposure on 5-methyl-2'-deoxycytidine between control and exposed cultures was assessed by applying the marginal model with correlated residuals on % global DNA methylation data. We reported the induction of global DNA hypomethylation in TK6 cells in response to S9 metabolic mix, under the current experimental settings. Benzene, hydroquinone, styrene, carbon tetrachloride and trichloroethylene induced global DNA hypomethylation in TK6 cells. Furthermore, we showed that dose did not have an effect on global DNA methylation in TK6 cells. In conclusion we report changes in global DNA methylation as an early event in response to agents traditionally considered as genotoxic.

  15. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  16. Wind Structure and Wind Loading

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  17. Wind energy power plants (wind farms) review and analysis

    Newbold, K B; McKeary, M [McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health

    2010-07-01

    Global wind power capacity has increased by an average cumulative rate of over 30 percent over the past 10 years. Although wind energy emits no air pollutants and facilities can often share spaces with other activities, public opposition to wind power development is an ongoing cause of concern. Development at the local level in Ontario has been met with fierce opposition on the basis of health concerns, aesthetic values, potential environmental impacts, and economic risks. This report was prepared for the Town of Wasaga Beach, and examined some of the controversy surrounding wind power developments through a review of evidence found in the scientific literature. The impacts of wind power developments related to noise, shadow flicker, avian mortality, bats, and real estate values were evaluated. The study included details of interviews conducted with individuals from Ontario localities where wind farms were located. 77 refs., 1 tab., 1 fig., 2 appendices.

  18. Wind power

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  19. Economic diversification: Explaining the pattern of diversification in the global economy and its implications for fostering diversification in poorer countries

    Freire Junior, Clovis

    2017-01-01

    Economic diversification is very relevant for poorer developing countries to create jobs and foster economic development. That need has been recognised in key internationally agreed development goals. The empirical economic literature has identified several stylised facts about the pattern of

  20. Wind energy and Turkey.

    Coskun, Aynur Aydin; Türker, Yavuz Özhan

    2012-03-01

    The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.

<