WorldWideScience

Sample records for global water system

  1. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  2. Energy-Water-Land Nexus: The relative contributions of climate and human systems on global water scarcity

    Science.gov (United States)

    Hejazi, M. I.; Chen, M.; Turner, S. W. D.; Graham, N. T.; Vernon, C. R.; Li, X.; Kim, S. H.; Link, R. P.

    2017-12-01

    There is a growing consensus that energy, water, and land systems are interconnected and should be analyzed as such. New tools are required to represent the interactions between population, economic growth, energy, land, and water resources in a dynamically evolving system. Here we use the Global Change Assessment Model (GCAM) to investigate the relative contributions of climate and human systems on water scarcity regionally and globally under a wide range of scenarios. The model accounts for a variety of human activities, including changing demands for water for agriculture, power generation, industry, and public supply. We find that these activities exert a larger influence on water scarcity than climate in 93% of river basins globally. This work highlights the importance of accounting for human activities in hydrologic modeling applications and how they may change under different pathways of how land use and agricultural systems, energy systems, and economies may evolve in the future.

  3. Global water cycle

    Science.gov (United States)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  4. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  5. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  6. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  7. Water dependency and water exploitation at global scale as indicators of water security

    Science.gov (United States)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  8. Growing water scarcity in agriculture: future challenge to global water security.

    Science.gov (United States)

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  9. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    Science.gov (United States)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  10. Observing the Global Water Cycle from Space

    Science.gov (United States)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  11. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    Science.gov (United States)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  12. Ecological network analysis on global virtual water trade.

    Science.gov (United States)

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  13. Establishing the Global Fresh Water Sensor Web

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    This paper presents an approach to measuring the major components of the water cycle from space using the concept of a sensor-web of satellites that are linked to a data assimilation system. This topic is of increasing importance, due to the need for fresh water to support the growing human population, coupled with climate variability and change. The net effect is that water is an increasingly valuable commodity. The distribution of fresh water is highly uneven over the Earth, with both strong latitudinal distributions due to the atmospheric general circulation, and even larger variability due to landforms and the interaction of land with global weather systems. The annual global fresh water budget is largely a balance between evaporation, atmospheric transport, precipitation and runoff. Although the available volume of fresh water on land is small, the short residence time of water in these fresh water reservoirs causes the flux of fresh water - through evaporation, atmospheric transport, precipitation and runoff - to be large. With a total atmospheric water store of approx. 13 x 10(exp 12)cu m, and an annual flux of approx. 460 x 10(exp 12)cu m/y, the mean atmospheric residence time of water is approx. 10 days. River residence times are similar, biological are approx. 1 week, soil moisture is approx. 2 months, and lakes and aquifers are highly variable, extending from weeks to years. The hypothesized potential for redistribution and acceleration of the global hydrological cycle is therefore of concern. This hypothesized speed-up - thought to be associated with global warming - adds to the pressure placed upon water resources by the burgeoning human population, the variability of weather and climate, and concerns about anthropogenic impacts on global fresh water availability.

  14. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  15. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  16. An enhanced model of land water and energy for global hydrologic and earth-system studies

    Science.gov (United States)

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  17. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  18. Challenges in global ballast water management

    International Nuclear Information System (INIS)

    Endresen, Oyvind; Lee Behrens, Hanna; Brynestad, Sigrid; Bjoern Andersen, Aage; Skjong, Rolf

    2004-01-01

    Ballast water management is a complex issue raising the challenge of merging international regulations, ship's specific configurations along with ecological conservation. This complexity is illustrated in this paper by considering ballast water volume, discharge frequency, ship safety and operational issues aligned with regional characteristics to address ecological risk for selected routes. A re-estimation of ballast water volumes gives a global annual level of 3500 Mton. Global ballast water volume discharged into open sea originating from ballast water exchange operations is estimated to approximately 2800 Mton. Risk based decision support systems coupled to databases for different ports and invasive species characteristics and distributions can allow for differentiated treatment levels while maintaining low risk levels. On certain routes, the risk is estimated to be unacceptable and some kind of ballast water treatment or management should be applied

  19. Are water markets globally applicable?

    Science.gov (United States)

    Endo, Takahiro; Kakinuma, Kaoru; Yoshikawa, Sayaka; Kanae, Shinjiro

    2018-03-01

    Water scarcity is a global concern that necessitates a global perspective, but it is also the product of multiple regional issues that require regional solutions. Water markets constitute a regionally applicable non-structural measure to counter water scarcity that has received the attention of academics and policy-makers, but there is no global view on their applicability. We present the global distribution of potential nations and states where water markets could be instituted in a legal sense, by investigating 296 water laws internationally, with special reference to a minimum set of key rules: legalization of water reallocation, the separation of water rights and landownership, and the modification of the cancellation rule for non-use. We also suggest two additional globally distributed prerequisites and policy implications: the predictability of the available water before irrigation periods and public control of groundwater pumping throughout its jurisdiction.

  20. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    Science.gov (United States)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  1. Global water resources: vulnerability from climate change and population growth.

    Science.gov (United States)

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  2. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  3. A Data Analysis Toolbox for Modeling the Global Food-Energy-Water Nexus

    Science.gov (United States)

    AghaKouchak, A.; Sadegh, M.; Mallakpour, I.

    2017-12-01

    Water, Food and energy systems are highly interconnected. More than seventy percent of global water resource is used for food production. Water withdrawal, purification, and transfer systems are energy intensive. Furthermore, energy generation strongly depends on water availability. Therefore, considering the interactions in the nexus of water, food and energy is crucial for sustainable management of available resources. In this presentation, we introduce a user-friendly data analysis toolbox that mines the available global data on food, energy and water, and analyzes their interactions. This toolbox provides estimates of water footprint for a wide range of food types in different countries and also approximates the required energy and water resources. The toolbox also provides estimates of the corresponding emissions and biofuel production of different crops. In summary, this toolbox allows evaluating dependencies of the food, energy, and water systems at the country scale. We present global analysis of the interactions between water, food and energy from different perspectives including efficiency and diversity of resources use.

  4. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Conclusions GloWPa-Crypto is the first global model that can be used to analyse dynamics in surface water pathogen concentrations worldwide. Global human Cryptosporidium emissions are estimated at 1 x 10^17 oocysts/ year for the year 2010.We estimated future emissions for SSP1 and SSP3. Preliminary results show that for SSP1human emissions are approximately halved by 2050. The SSP3 human emissions are 1.5 times higher than the 2010 emissions due to increased population growth and urbanisation. Livestock Cryptosporidium emissions are expected to increase under both SSP1 and SSP3, as meat consumption continues to rise. We conclude that population growth, urbanization, changes in sanitation systems and treatment, and changes in livestock consumption and production systems are important processes that determine future Cryptosporidium emissions to surface water. References Hofstra N, Bouwman A F, Beusen A H W and Medema G J 2013 Exploring global Cryptosporidium emissions to surface water Sci. Total Environ. 442 10-9 Kiulia N M, Hofstra N, Vermeulen L C, Obara M A, Medema G J and Rose J B 2015 Global occurrence and emission of rotaviruses to surface waters Pathogens 4 229-55 Vermeulen L C, De Kraker J, Hofstra N, Kroeze C and Medema G J 2015 Modelling the impact of sanitation, population and urbanization estimates on human emissions of Cryptosporidium to surface waters - a case study for Bangladesh and India Environ. Res. Lett. 10

  5. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    Science.gov (United States)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  6. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.

  7. Global Water Cycle Diagrams Minimize Human Influence and Over-represent Water Security

    Science.gov (United States)

    Abbott, B. W.; Bishop, K.; Zarnetske, J. P.; Minaudo, C.; Chapin, F. S., III; Plont, S.; Marçais, J.; Ellison, D.; Roy Chowdhury, S.; Kolbe, T.; Ursache, O.; Hampton, T. B.; GU, S.; Chapin, M.; Krause, S.; Henderson, K. D.; Hannah, D. M.; Pinay, G.

    2017-12-01

    The diagram of the global water cycle is the central icon of hydrology, and for many people, the point of entry to thinking about key scientific concepts such as conservation of mass, teleconnections, and human dependence on ecological systems. Because humans now dominate critical components of the hydrosphere, improving our understanding of the global water cycle has graduated from an academic exercise to an urgent priority. To assess how the water cycle is conceptualized by researchers and the general public, we analyzed 455 water cycle diagrams from textbooks, scientific articles, and online image searches performed in different languages. Only 15% of diagrams integrated human activity into the water cycle and 77% showed no sign of humans whatsoever, although representation of humans varied substantially by region (lowest in China, N. America, and Australia; highest in Western Europe). The abundance and accessibility of freshwater resources were overrepresented, with 98% of diagrams omitting water pollution and climate change, and over 90% of diagrams making no distinction for saline groundwater and lakes. Oceanic aspects of the water cycle (i.e. ocean size, circulation, and precipitation) and related teleconnections were nearly always underrepresented. These patterns held across disciplinary boundaries and through time. We explore the historical and contemporary reasons for some of these biases and present a revised version of the global water cycle based on research from natural and social sciences. We conclude that current depictions of the global water cycle convey a false sense of water security and that reintegrating humans into water cycle diagrams is an important first step towards understanding and sustaining the hydrosocial cycle.

  8. Agricultural Water Use under Global Change

    Science.gov (United States)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  9. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2012-03-01

    Full Text Available Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1 shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  10. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    Science.gov (United States)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  11. The Global Politics of Water Grabbing

    NARCIS (Netherlands)

    Franco, J.; Mehta, L.; Veldwisch, G.J.A.

    2013-01-01

    The contestation and appropriation of water is not new, but it has been highlighted by recent global debates on land grabbing. Water grabbing takes place in a field that is locally and globally plural-legal. Formal law has been fostering both land and water grabs but formal water and land management

  12. The global politics of water grabbing

    NARCIS (Netherlands)

    Franco, Jennifer; Mehta, Lyla; Veldwisch, Gert Jan

    2016-01-01

    The contestation and appropriation of water is not new, but it has been highlighted by recent global debates on land grabbing. Water grabbing takes place in a field that is locally and globally plural-legal. Formal law has been fostering both land and water grabs but formal water and land

  13. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  14. A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change

    Science.gov (United States)

    Del Vasto-Terrientes, L.; Kumar, V.; Chao, T.-C.; Valls, A.

    2016-03-01

    Global change refers to climate changes, but also demographic, technological and economic changes. Predicted water scarcity will be critical in the coastal Mediterranean region, especially for provision to mid-sized and large-sized cities. This paper studies the case of the city of Tarragona, located at the Mediterranean area of north-eastern Spain (Catalonia). Several scenarios have been constructed to evaluate different sectorial water allocation policies to mitigate the water scarcity induced by global change. Future water supply and demand predictions have been made for three time spans. The decision support system presented is based on the outranking model, which constructs a partial pre-order based on pairwise preference relations among all the possible actions. The system analyses a hierarchical structure of criteria, including environmental and economic criteria. We compare several adaptation measures including alternative water sources, inter-basin water transfer and sectorial demand management coming from industry, agriculture and domestic sectors. Results indicate that the most appropriate water allocation strategies depend on the severity of the global change effects.

  15. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  16. Global Water Governance in the Context of Global and Multilevel Governance: Its Need, Form, and Challenges

    Directory of Open Access Journals (Sweden)

    Joyeeta Gupta

    2013-12-01

    Full Text Available To complement this Special Feature on global water governance, we focused on a generic challenge at the global level, namely, the degree to which water issues need to be dealt with in a centralized, concentrated, and hierarchical manner. We examined water ecosystem services and their impact on human well-being, the role of policies, indirect and direct drivers in influencing these services, and the administrative level(s at which the provision of services and potential trade-offs can be dealt with. We applied a politics of scale perspective to understand motivations for defining a problem at the global or local level and show that the multilevel approach to water governance is evolving and inevitable. We argue that a centralized overarching governance system for water is unlikely and possibly undesirable; however, there is a need for a high-level think tank and leadership to develop a cosmopolitan perspective to promote sustainable water development.

  17. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Science.gov (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  18. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  19. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  20. Global effects of local food-production crises: a virtual water perspective.

    Science.gov (United States)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2016-01-25

    By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.

  1. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study

    Science.gov (United States)

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-01-01

    We estimate the global anthropogenic phosphorus (P) loads to freshwater and the associated grey water footprints (GWFs) for the period 2002-2010, at a spatial resolution of 5 × 5 arc min, and compare the GWF per river basin to runoff to assess the P-related water pollution level (WPL). The global anthropogenic P load to freshwater systems from both diffuse and point sources is estimated at 1.5 Tg/yr. More than half of this total load was in Asia, followed by Europe (19%) and Latin America and the Caribbean (13%). The domestic sector contributed 54% to the total, agriculture 38%, and industry 8%. In agriculture, cereals production had the largest contribution to the P load (31%), followed by fruits, vegetables, and oil crops, each contributing 15%. The global total GWF related to anthropogenic P loads is estimated to be 147 × 1012 m3/yr, with China contributing 30%, India 8%, USA 7%, and Spain and Brazil 6% each. The basins with WPL > 1 (where GWF exceeds the basin's assimilation capacity) together cover about 38% of the global land area, 37% of the global river discharge, and provide residence to about 90% of the global population.

  2. Saving water through global trade

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  3. Global water governance. Conceptual design of global institutional arrangements

    NARCIS (Netherlands)

    Verkerk, M.P.; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2008-01-01

    This study builds upon the explorative study of Hoekstra (2006), who puts forward an argument for coordination at the global level in ‘water governance’. Water governance is understood here in the broad sense as ‘the way people use and maintain water resources’. One of the factors that give water

  4. Evolution of the global virtual water trade network.

    Science.gov (United States)

    Dalin, Carole; Konar, Megan; Hanasaki, Naota; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-04-17

    Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.

  5. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  6. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    International Nuclear Information System (INIS)

    Brauman, Kate A; Foley, Jonathan A; Siebert, Stefan

    2013-01-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people. (letter)

  7. Sub-seasonal predictability of water scarcity at global and local scale

    Science.gov (United States)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  8. Perspectives : How global food traders manage our water

    NARCIS (Netherlands)

    Warner, J.F.; Keulertz, M.; Sojamo, S.

    2015-01-01

    To many analysts, global water governance is about getting the institutions right: more accountable water users and more public participation in decisions. But are we barking up the right tree? In this analysis, we argue that when analysing global water governance, one needs to look at the global

  9. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    Science.gov (United States)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  10. The Community Water Model (CWATM) / Development of a community driven global water model

    Science.gov (United States)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  11. Local flow regulation and irrigation raise global human water consumption and footprint.

    Science.gov (United States)

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-04

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling. Copyright © 2015, American Association for the Advancement of Science.

  12. Water requirements for livestock production: a global perspective.

    Science.gov (United States)

    Schlink, A C; Nguyen, M L; Viljoen, G J

    2010-12-01

    Water is a vital but poorly studied component of livestock production. It is estimated that livestock industries consume 8% of the global water supply, with most of that water being used for intensive, feed-based production. This study takes a broad perspective of livestock production as a component of the human food chain, and considers the efficiency of its water use. Global models are in the early stages of development and do not distinguish between developing and developed countries, or the production systems within them. However, preliminary indications are that, when protein production is adjusted for biological value in the human diet, no plant protein is significantly more efficient at using water than protein produced from eggs, and only soybean is more water efficient than milk and goat and chicken meat. In some regions, especially developing countries, animals are not used solely for food production but also provide draught power, fibre and fertiliser for crops. In addition, animals make use of crop by-products that would otherwise go to waste. The livestock sector is the fastest-growing agricultural sector, which has led to increasing industrialisation and, in some cases, reduced environmental constraints. In emerging economies, increasing involvement in livestock is related to improving rural wealth and increasing consumption of animal protein. Water usage for livestock production should be considered an integral part of agricultural water resource management, taking into account the type of production system (e.g. grain-fed or mixed crop-livestock) and scale (intensive or extensive), the species and breeds of livestock, and the social and cultural aspects of livestock farming in various countries.

  13. Aqueduct: a methodology to measure and communicate global water risks

    Science.gov (United States)

    Gassert, Francis; Reig, Paul

    2013-04-01

    The Aqueduct Water Risk Atlas (Aqueduct) is a publicly available, global database and interactive tool that maps indicators of water related risks for decision makers worldwide. Aqueduct makes use of the latest geo-statistical modeling techniques to compute a composite index and translate the most recently available hydrological data into practical information on water related risks for companies, investors, and governments alike. Twelve global indicators are grouped into a Water Risk Framework designed in response to the growing concerns from private sector actors around water scarcity, water quality, climate change, and increasing demand for freshwater. The Aqueduct framework organizes indicators into three categories of risk that bring together multiple dimensions of water related risk into comprehensive aggregated scores and includes indicators of water stress, variability in supply, storage, flood, drought, groundwater, water quality and social conflict, addressing both spatial and temporal variation in water hazards. Indicators are selected based on relevance to water users, availability and robustness of global data sources, and expert consultation, and are collected from existing datasets or derived from a Global Land Data Assimilation System (GLDAS) based integrated water balance model. Indicators are normalized using a threshold approach, and composite scores are computed using a linear aggregation scheme that allows for dynamic weighting to capture users' unique exposure to water hazards. By providing consistent scores across the globe, the Aqueduct Water Risk Atlas enables rapid comparison across diverse aspects of water risk. Companies can use this information to prioritize actions, investors to leverage financial interest to improve water management, and governments to engage with the private sector to seek solutions for more equitable and sustainable water governance. The Aqueduct Water Risk Atlas enables practical applications of scientific data

  14. Globalization of water and food through international trade: impacts on food security, resilience and justice

    Science.gov (United States)

    D'Odorico, P.; Carr, J. A.; Seekell, D. A.; Suweis, S. S.

    2015-12-01

    The global distribution of water resources in general depends on geographic conditions but can be (virtually) modified by humans through mechanisms of globalization, such as trade, that make food commodities available to populations living far from the production regions. While trade is expected to improve access to food and (virtual) water, its impact on the global food system and its vulnerability to shocks remains poorly understood. It is also unclear who benefits from trade and whether it contributes to inequality and justice in resource redistribution. We reconstruct the global patterns of food trade and show with a simple model how the ongoing intensification of imports and exports has eroded the resilience of the global food system. Drawing on human rights theory, we investigate the relationship between inequality and injustice in access to water and food. We assess the fulfillment of positive and negative water and food rights and evaluate the obligations arising from the need to ensure that these rights are met throughout the world. We find that trade enhances the vulnerability to shocks but overall increase the number of people whose water and food rights are met.

  15. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  16. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  17. Modern Estimates of Global Water Cycle Fluxes

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  18. National water resource management as a global problem: The example of Egypt

    Science.gov (United States)

    Elshorbagy, A. A.; Abdelkader, A. A.; Tuninetti, M.; Laio, F.; Ridolfi, L.; Fahmy, H.

    2017-12-01

    The engineering redistribution of water remains limited in its spatial scope, when compared with the socioeconomic redistribution of water in its virtual form. Virtual water (VW) embedded in products has its own human-induced cycle by moving across the globe. There is a significant body of literature on global VW trade networks (VWTN), with most studies focused on the network structure and the variables controlling its behavior. It was shown that the importing nations will play an important role in the evolution of the network dynamics. The increased connectivity of the global network highlights the risk of systemic disruptions and the vulnerability of the global food, especially when exporting countries change to non-exporting ones. The existing models of VWTN characterize the properties of the network, along with its nodes and links. Acknowledging its contribution to understand the global redistribution of virtual water, hardly can this approach attract potential users to adopt it. The VW trade (VWT) modeling needs to be repositioned to allow resource managers and policy makers at various scales to benefit from it and link global VW dynamics to their local decisions. The aim of this research is to introduce a new modeling approach for the VWT where detailed national scale water management is nested within the coarser global VWTN. The case study of Egypt, the world biggest importer of wheat, is considered here because its population growth and limitations of water and arable land position it as a significant node in the global network. A set of potential scenarios of Egypt's future, driven by population growth, development plans, consumption patterns, technology change, and water availability are developed. The annual national food and water balance in every scenario is calculated to estimate the potential for VW export and import of Egypt. The results indicate that Egypt's demand for food might cause unexpectedly higher demands on other countries' water resources

  19. Rethinking Global Water Governance for the 21st Century

    Science.gov (United States)

    Ajami, N. K.; Cooley, H.

    2012-12-01

    Growing pressure on the world's water resources is having major impacts on our social and economic well-being. According to the United Nations, today, at least 1.1 billion people do not have access to clean drinking water. Pressures on water resources are likely to continue to worsen in response to decaying and crumbling infrastructure, continued population growth, climate change, degradation of water quality, and other challenges. If these challenges are not addressed, they pose future risks for many countries around the world, making it urgent that efforts are made to understand both the nature of the problems and the possible solutions that can effectively reduce the associated risks. There is growing understanding of the need to rethink governance to meet the 21st century water challenges. More and more water problems extend over traditional national boundaries and to the global community and the types and numbers of organizations addressing water issues are large and growing. Economic globalization and transnational organizations and activities point to the need for improving coordination and integration on addressing water issues, which are increasingly tied to food and energy security, trade, global climate change, and other international policies. We will present some of the key limitations of global water governance institutions and provide recommendations for improving these institutions to address 21st century global water challenges more effectively.

  20. Mobilization strategy to overcome global crisis of water consumption

    Science.gov (United States)

    Suzdaleva, Antonina; Goryunova, Svetlana; Marchuk, Aleksey; Borovkov, Valery

    2017-10-01

    Today, the global water consumption crisis is one of the main threats that can disrupt socio-economic and environmental conditions of life of the majority of the world’s population. The water consumption mobilization strategy is based on the idea of increasing the available water resources. The main direction for the implementation of this strategy is the construction of anti-rivers - the systems for inter-basin (interregional) water resources redistribution. Antirivers are intended for controlled redistribution of water resources from regions with their catastrophic excess to regions with their critical shortage. The creation of anti-rivers, taking into account the requirements of environmental safety, will form large-scale managed natural- engineering systems and implement the principle of sustainable development adopted by the United Nations. The aim of the article is to substantiate a new methodological approach to address the problem, where the implementation of this approach can prevent large-scale humanitarian and environmental disasters expected in the coming years.

  1. Drivers And Uncertainties Of Increasing Global Water Scarcity

    Science.gov (United States)

    Scherer, L.; Pfister, S.

    2015-12-01

    Water scarcity threatens ecosystems and human health and hampers economic development. It generally depends on the ratio of water consumption to availability. We calculated global, spatially explicit water stress indices (WSIs) which describe the vulnerability to additional water consumption on a scale from 0 (low) to 1 (high) and compare them for the decades 1981-1990 and 2001-2010. Input data are obtained from a multi-model ensemble at a resolution of 0.5 degrees. The variability among the models was used to run 1000 Monte Carlo simulations (latin hypercube sampling) and to subsequently estimate uncertainties of the WSIs. Globally, a trend of increasing water scarcity can be observed, however, uncertainties are large. The probability that this trend is actually occurring is as low as 53%. The increase in WSIs is rather driven by higher water use than lower water availability. Water availability is only 40% likely to decrease whereas water consumption is 67% likely to increase. Independent from the trend, we are already living under water scarce conditions, which is reflected in a consumption-weighted average of monthly WSIs of 0.51 in the recent decade. Its coefficient of variation points with 0.8 to the high uncertainties entailed, which might still hide poor model performance where all models consistently over- or underestimate water availability or use. Especially in arid areas, models generally overestimate availability. Although we do not traverse the planetary boundary of freshwater use as global water availability is sufficient, local water scarcity might be high. Therefore the regionalized assessment of WSIs under uncertainty helps to focus on specific regions to optimise water consumption. These global results can also help to raise awareness of water scarcity, and to suggest relevant measures such as more water efficient technologies to international companies, which have to deal with complex and distributed supply chains (e.g. in food production).

  2. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  3. Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions

    Science.gov (United States)

    Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.

    2017-12-01

    Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.

  4. Global Changes of the Water Cycle Intensity

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  5. Impacts on quality-induced water scarcity: drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009

    Science.gov (United States)

    Wan, Liyang; Cai, Wenjia; Jiang, Yongkai; Wang, Can

    2016-07-01

    Globalization enables the transfer of impacts on water availability. We argue that the threat should be evaluated not only by decrease of quantity, but more importantly by the degradation of water quality in exporting countries. Grouping the world into fourteen regions, this paper establishes a multi-region input-output framework to calculate the nitrogen-related grey water footprint and a water quality-induced scarcity index caused by pollution, for the period of 1995 to 2009. It is discovered that grey water embodied in international trade has been growing faster than total grey water footprint. China, the USA and India were the three top grey water exporters which accounted for more than half the total traded grey water. Dilemma rose when China and India were facing highest grey water scarcity. The EU and the USA were biggest grey water importers that alleviated their water stress by outsourcing water pollution. A structural decomposition analysis is conducted to study the drivers to the evolution of virtual flows of grey water under globalization during the period of 1995 to 2009. The results show that despite the technical progress that offset the growth of traded grey water, structural effects under globalization including both evolution in the globalized economic system and consumption structure, together with consumption volume made a positive contribution. It is found that the structural effect intensified the pollution-induced water scarcity of exporters as it generally increased all nations’ imported grey water while resulting in increases in only a few nations’ exported grey water, such as Brazil, China and Indonesia. At last, drawing from the ‘cap-and-trade’ and ‘boarder-tax-adjustment’ schemes, we propose policy recommendations that ensure water security and achieve environmentally sustainable trade from both the sides of production and consumption.

  6. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  7. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  8. Closing of water circuits - a global benchmark on sustainable water management

    Science.gov (United States)

    Fröhlich, Siegmund

    2017-11-01

    Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: "The wars of the 21st century will be fought not over oil, they will be fought over water." [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  9. Numerical modeling and remote sensing of global water management systems: Applications for land surface modeling, satellite missions, and sustainable water resources

    Science.gov (United States)

    Solander, Kurt C.

    The ability to accurately quantify water storages and fluxes in water management systems through observations or models is of increasing importance due to the expected impacts from climate change and population growth worldwide. Here, I describe three innovative techniques developed to better understand this problem. First, a model was created to represent reservoir storage and outflow with the objective of integration into a Land Surface Model (LSM) to simulate the impacts of reservoir management on the climate system. Given this goal, storage capacity represented the lone model input required that is not already available to an LSM user. Model parameterization was linked to air temperature to allow future simulations to adapt to a changing climate, making it the first such model to mimic the potential response of a reservoir operator to climate change. Second, spatial and temporal error properties of future NASA Surface Water and Ocean Topography (SWOT) satellite reservoir operations were quantified. This work invoked the use of the SWOTsim instrument simulator, which was run over a number of synthetic and actual reservoirs so the resulting error properties could be extrapolated to the global scale. The results provide eventual users of SWOT data with a blueprint of expected reservoir error properties so such characteristics can be determined a priori for a reservoir given knowledge about its topology and anticipated repeat orbit pass over its location. Finally, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission was used in conjunction with in-situ water use records to evaluate sustainable water use at the two-digit HUC basin scale over the contiguous United States. Results indicate that the least sustainable water management region is centered in the southwest, where consumptive water use exceeded water availability by over 100% on average for some of these basins. This work represents the first attempt at evaluating sustainable

  10. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  11. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains.

    Science.gov (United States)

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q

    2018-02-01

    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Global assessment of water policy vulnerability under uncertainty in water scarcity projections

    Science.gov (United States)

    Greve, Peter; Kahil, Taher; Satoh, Yusuke; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Byers, Edward; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Langan, Simon; Wada, Yoshihide

    2017-04-01

    Water scarcity is a critical environmental issue worldwide, which has been driven by the significant increase in water extractions during the last century. In the coming decades, climate change is projected to further exacerbate water scarcity conditions in many regions around the world. At present, one important question for policy debate is the identification of water policy interventions that could address the mounting water scarcity problems. Main interventions include investing in water storage infrastructures, water transfer canals, efficient irrigation systems, and desalination plants, among many others. This type of interventions involve long-term planning, long-lived investments and some irreversibility in choices which can shape development of countries for decades. Making decisions on these water infrastructures requires anticipating the long term environmental conditions, needs and constraints under which they will function. This brings large uncertainty in the decision-making process, for instance from demographic or economic projections. But today, climate change is bringing another layer of uncertainty that make decisions even more complex. In this study, we assess in a probabilistic approach the uncertainty in global water scarcity projections following different socioeconomic pathways (SSPs) and climate scenarios (RCPs) within the first half of the 21st century. By utilizing an ensemble of 45 future water scarcity projections based on (i) three state-of-the-art global hydrological models (PCR-GLOBWB, H08, and WaterGAP), (ii) five climate models, and (iii) three water scenarios, we have assessed changes in water scarcity and the associated uncertainty distribution worldwide. The water scenarios used here are developed by IIASA's Water Futures and Solutions (WFaS) Initiative. The main objective of this study is to improve the contribution of hydro-climatic information to effective policymaking by identifying spatial and temporal policy

  13. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  14. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    Science.gov (United States)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  15. A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2013-07-01

    Full Text Available A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs, which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment, and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr−1, and municipal water between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  16. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    OpenAIRE

    A. Gnanadesikan; J. P. Dunne; J. John

    2012-01-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., su...

  17. A global conservation system for climate-change adaptation.

    Science.gov (United States)

    Hannah, Lee

    2010-02-01

    Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.

  18. Surface water change as a significant contributor to global evapotranspiration change

    Science.gov (United States)

    Zhan, S.; Song, C.

    2017-12-01

    Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in

  19. Enhancing the water management schemes of H08 global hydrological model to attribute human water use to six major water sources

    Science.gov (United States)

    Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y. N.; Kanae, S.

    2017-12-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water management, but the representation and performance of these schemes remain limited. We substantially enhanced the human water management schemes of the H08 GHM by incorporating the latest data and techniques. The model enables us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. All the interactions were simulated in a single computer program and the water balance was always strictly closed at any place and time during the simulation period. Using this model, we first conducted a historical global hydrological simulation at a spatial resolution of 0.5 x 0.5 degree to specify the sources of water for humanity. The results indicated that, in 2000, of the 3628 km3yr-1 global freshwater requirement, 2839 km3yr-1 was taken from surface water and 789 km3yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786, 199, 106, and 1.8 km3yr-1 of the surface water, respectively. The remaining 747 km3yr-1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607 and 182 km3yr-1 of the groundwater total, respectively. Second, we evaluated the water stress using our simulations and contrasted it with earlier global assessments based on empirical water scarcity indicators, namely, the Withdrawal to Availability ratio and the Falkenmark index (annual renewable water resources per capita). We found that inclusion of water infrastructures in our model diminished water stress in some parts of the world, on

  20. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    Science.gov (United States)

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.

  1. Closing of water circuits – a global benchmark on sustainable water management

    Directory of Open Access Journals (Sweden)

    Fröhlich Siegmund

    2017-01-01

    Full Text Available Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: “The wars of the 21st century will be fought not over oil, they will be fought over water.” [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  2. Sustainable water future with global implications: everyone's responsibility.

    Science.gov (United States)

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning.

  3. Measuring global water security towards sustainable development goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  4. Measuring Global Water Security Towards Sustainable Development Goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  5. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Directory of Open Access Journals (Sweden)

    Joe LoBuglio

    2012-03-01

    Full Text Available Monitoring of progress towards the Millennium Development Goal (MDG drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11% use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18% use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  6. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Science.gov (United States)

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-01-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety. PMID:22690170

  7. Hydrological impacts of global land cover change and human water use

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2017-11-01

    Full Text Available Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.. When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

  8. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    Science.gov (United States)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  9. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  10. Modelling water use in global hydrological models: review, challenges and directions

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  11. GEWEX - The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  12. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  13. Salinity Remote Sensing and the Study of the Global Water Cycle

    Science.gov (United States)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    influence of the oceanic water cycle requires more accurately resolving the net air-sea water flux. Measuring global SSS trends on seasonal to interannual timescales by satellite is fundamental to this problem because the SSS trends represent detectable time-integrated signals of the variable marine hydrological cycle. Satellite measurements, coupled with an array of in situ observations, will provide global synoptic SSS fields for the first time history. These data will provide a strong constraint on climate models and data assimilation efforts, which must properly represent the freshwater budget in terms of E-P, ocean advection and surface layer mixing in order to accurately simulate the true ocean state. The SSS fields will allow us to quantify the covariability between the SSS and the strong seasonal E-P cycle in the tropics and high latitudes. Field measurement campaigns to exploit satellite and in situ measurements to close the seasonal E-P cycle over an ocean region are being considered. Lastly the satellite systems will monitor and trace the large long-lived SSS anomalies from year to year that have the potential to influence El Nino and the large scale ocean circulation.

  14. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  15. The Challenges of Developing a Framework for Global Water Cycle Monitoring and Prediction (Alfred Wegener Medal Lecture)

    Science.gov (United States)

    Wood, Eric F.

    2014-05-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ("From Observations to Decisions") recognizes that "water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity", and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the developments at Princeton University towards a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict

  16. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  17. Greenlandic water and sanitation systems-identifying system constellation and challenges

    DEFF Research Database (Denmark)

    Hendriksen, Kåre; Hoffmann, Birgitte

    2017-01-01

    " (United Nations 2015). This obviously raises the question of how this can be achieved considering the very different conditions and cultures around the globe. This article presents the Greenlandic context and elucidates the current Greenland water supply system and wastewater management system from......A good water supply and wastewater management is essential for a local sustainable community development. This is emphasized in the new global goals of the UN Sustainable Development, where the sixth objective is to: "Ensure availability and sustainable management of water and sanitation for all...... a socio-technical approach, focusing on the geographic, climatic and cultural challenges. The article identifies a diverse set of system constellations in different parts of Greenland and concludes with a discussion of health and quality of life implications....

  18. The genetic algorithm for the nonlinear programming of water pollution control system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Zhang, J. [China University of Geosciences (China)

    1999-08-01

    In the programming of water pollution control system the combined method of optimization with simulation is used generally. It is not only laborious in calculation, but also the global optimum of the obtained solution is guaranteed difficult. In this paper, the genetic algorithm (GA) used in the nonlinear programming of water pollution control system is given, by which the preferred conception for the programming of waste water system is found in once-through operation. It is more succinct than the conventional method and the global optimum of the obtained solution could be ensured. 6 refs., 4 figs., 3 tabs.

  19. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  20. A global water supply reservoir yield model with uncertainty analysis

    International Nuclear Information System (INIS)

    Kuria, Faith W; Vogel, Richard M

    2014-01-01

    Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)

  1. Implications of various land use change scenarios on global water scarcity over the 21st century

    Science.gov (United States)

    Liu, Y.; Hejazi, M. I.; Vernon, C. R.; Li, X.; Le Page, Y.; Calvin, K. V.

    2017-12-01

    While the effects of land use and land cover change (LULCC) on hydrological processes (e.g., runoff, peak flow and discharge) and water availability have been extensively researched, the impacts of LULCC on water scarcity has been rarely investigated. Water scarcity, usually defined as the ratio of water demand to available renewable water supply. The involved water demand is an important human-dimension factor, which is affected by both socio-economic conditions (e.g., population, income) as well as LULCC (e.g., the amount of land we dedicate for food, feed, and fuel crops). Recent studies have assessed the combined effects of climate change and human interventions (e.g., dams, water withdrawals and LULCC) on water scarcity, but none to date has focused on the implications of different pathways of LULCC alone on water scarcity. We establish a set of LULCC scenarios under changing climate and socioeconomic pathways using an integrated assessment model - Global Change Assessment Model (GCAM), which integrates natural systems (e.g., water supply, ecosystems, climate) and human systems (e.g., water demand, land use, economy, food, energy, population). The LULCC scenarios encompass varying degrees of protected areas, different magnitudes of crop/bioenergy production and subsidies, and whether to penalize potential land use emissions from bioenergy production (e.g., loss of wood carbon stock from land conversion). Then we investigate how water scarcity responds to LULCC and how the distribution of global population under severe water stress varies in the 21st century. Preliminary results indicate that the LULCC-induced changes in water scarcity are overall small at the global scale (water stress and population being affected. Findings from this research could be used to inform strategies focused on alleviating water stress around the world.

  2. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  3. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    Science.gov (United States)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss

  4. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  5. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  6. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Strategies for ensuring global consistency/comparability of water-quality data

    Science.gov (United States)

    Klein, J.M.

    1999-01-01

    In the past 20 years the water quality of the United States has improved remarkably-the waters are safer for drinking, swimming, and fishing. However, despite many accomplishments, it is still difficult to answer such basic questions as: 'How clean is the water?' and 'How is it changing over time?' These same questions exist on a global scale as well. In order to focus water-data issues in the United States, a national Intergovernmental Task Force on Monitoring Water Quality (ITFM) was initiated for public and private organizations, whereby key elements involved in data collection, analysis, storage, and management could be made consistent and comparable. The ITFM recommended and its members are implementing a nationwide strategy to improve water-quality monitoring, assessment, and reporting activities. The intent of this paper is to suggest that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. Consistent, long-term data sets that are comparable are necessary in order to formulate ideas regarding regional and global trends in water quantity and quality. The author recommends that a voluntary effort similar to the ITFM effort be utilized. The strategy proposed would involve voluntary representation from countries and international organizations (e.g. World Health Organization) involved in drinking-water assessments and/or ambient water-quality monitoring. Voluntary partnerships such as this will improve curability to reduce health risks and achieve a better return on public and private investments in monitoring, environmental protection, and natural resource management, and result in a collaborative process that will save millions of dollars.In this work it is suggested that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. The strategy proposed would involve voluntary representation from countries and international organizations involved in

  8. Does global progress on sanitation really lag behind water? An analysis of global progress on community- and household-level access to safe water and sanitation.

    Science.gov (United States)

    Cumming, Oliver; Elliott, Mark; Overbo, Alycia; Bartram, Jamie

    2014-01-01

    Safe drinking water and sanitation are important determinants of human health and wellbeing and have recently been declared human rights by the international community. Increased access to both were included in the Millennium Development Goals under a single dedicated target for 2015. This target was reached in 2010 for water but sanitation will fall short; however, there is an important difference in the benchmarks used for assessing global access. For drinking water the benchmark is community-level access whilst for sanitation it is household-level access, so a pit latrine shared between households does not count toward the Millennium Development Goal (MDG) target. We estimated global progress for water and sanitation under two scenarios: with equivalent household- and community-level benchmarks. Our results demonstrate that the "sanitation deficit" is apparent only when household-level sanitation access is contrasted with community-level water access. When equivalent benchmarks are used for water and sanitation, the global deficit is as great for water as it is for sanitation, and sanitation progress in the MDG-period (1990-2015) outstrips that in water. As both drinking water and sanitation access yield greater benefits at the household-level than at the community-level, we conclude that any post-2015 goals should consider a household-level benchmark for both.

  9. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies

    Science.gov (United States)

    Srinivasan, V.; Lambin, E. F.; Gorelick, S. M.; Thompson, B. H.; Rozelle, S.

    2012-10-01

    Freshwater scarcity has been cited as the major crisis of the 21st century, but it is surprisingly hard to describe the nature of the global water crisis. We conducted a meta-analysis of 22 coupled human-water system case studies, using qualitative comparison analysis (QCA) to identify water resource system outcomes and the factors that drive them. The cases exhibited different outcomes for human wellbeing that could be grouped into a six "syndromes": groundwater depletion, ecological destruction, drought-driven conflicts, unmet subsistence needs, resource capture by elite, and water reallocation to nature. For syndromes that were not successful adaptations, three characteristics gave cause for concern: (1) unsustainability—a decline in the water stock or ecosystem function that could result in a long-term steep decline in future human wellbeing; (2) vulnerability—high variability in water resource availability combined with inadequate coping capacity, leading to temporary drops in human wellbeing; (3) chronic scarcity—persistent inadequate access and hence low conditions of human wellbeing. All syndromes could be explained by a limited set of causal factors that fell into four categories: demand changes, supply changes, governance systems, and infrastructure/technology. By considering basins as members of syndrome classes and tracing common causal pathways of water crises, water resource analysts and planners might develop improved water policies aimed at reducing vulnerability, inequity, and unsustainability of freshwater systems.

  10. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    Science.gov (United States)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  11. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  12. Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing

    NARCIS (Netherlands)

    Candogan Yossef, N.; Winsemius, H.C.; Weerts, A.; Van Beek, R.; Bierkens, M.F.P.

    2013-01-01

    We investigate the relative contributions of initial conditions (ICs) and meteorological forcing (MF) to the skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCRaster Global Water Balance. Potential improvement in forecasting skill through

  13. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  14. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  15. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  16. Assessment of human-natural system characteristics influencing global freshwater supply vulnerability

    Science.gov (United States)

    Padowski, Julie C.; Gorelick, Steven M.; Thompson, Barton H.; Rozelle, Scott; Fendorf, Scott

    2015-10-01

    Global freshwater vulnerability is a product of environmental and human dimensions, however, it is rarely assessed as such. Our approach identifies freshwater vulnerability using four broad categories: endowment, demand, infrastructure, and institutions, to capture impacts on natural and managed water systems within the coupled human-hydrologic environment. These categories are represented by 19 different endogenous and exogenous characteristics affecting water supply vulnerability. By evaluating 119 lower per capita income countries (Yemen and Djibouti nearly as vulnerable. Surprising similarities in vulnerability were also found among geographically disparate nations such as Vietnam, Sri Lanka, and Guatemala. Determining shared patterns of freshwater vulnerability provides insights into why water supply vulnerabilities are manifested in human-water systems at the national scale.

  17. Virtual water transfers unlikely to redress inequality in global water use

    International Nuclear Information System (INIS)

    Seekell, D A; D'Odorico, P; Pace, M L

    2011-01-01

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  18. Virtual water transfers unlikely to redress inequality in global water use

    Energy Technology Data Exchange (ETDEWEB)

    Seekell, D A; D' Odorico, P; Pace, M L [Department of Environmental Sciences, University of Virginia, Charlottesville, VA (United States)

    2011-04-15

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  19. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    Science.gov (United States)

    Wang, Ranran; Zimmerman, Julie

    2016-05-17

    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy).

  20. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Science.gov (United States)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  1. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    International Nuclear Information System (INIS)

    Norwood, Zack; Kammen, Daniel

    2012-01-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25 kWh −1 electricity and $0.03 kWh −1 thermal, for a system with a life cycle global warming potential of ∼80 gCO 2 eq kWh −1 of electricity and ∼10 gCO 2 eq kWh −1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40 m −3 , water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40–$1.90 m −3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions. (letter)

  2. Hydrological impacts of global land cover change and human water use

    NARCIS (Netherlands)

    Bosmans, J.H.C.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P.

    2017-01-01

    Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or

  3. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    International Nuclear Information System (INIS)

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  4. Trade in water and commodities as adaptations to global change

    Science.gov (United States)

    Lammers, R. B.; Hertel, T. W.; Prousevitch, A.; Baldos, U. L. C.; Frolking, S. E.; Liu, J.; Grogan, D. S.

    2015-12-01

    The human capacity for altering the water cycle has been well documented and given the expected change due to population, income growth, biofuels, climate, and associated land use change, there remains great uncertainty in both the degree of increased pressure on land and water resources and in our ability to adapt to these changes. Alleviating regional shortages in water supply can be carried out in a spatial hierarchy through i) direct trade of water between all regions, ii) development of infrastructure to improve water availability within regions (e.g. impounding rivers), iii) via inter-basin hydrological transfer between neighboring regions and, iv) via virtual water trade. These adaptation strategies can be managed via market trade in water and commodities to identify those strategies most likely to be adopted. This work combines the physically-based University of New Hampshire Water Balance Model (WBM) with the macro-scale Purdue University Simplified International Model of agricultural Prices Land use and the Environment (SIMPLE) to explore the interaction of supply and demand for fresh water globally. In this work we use a newly developed grid cell-based version of SIMPLE to achieve a more direct connection between the two modeling paradigms of physically-based models with optimization-driven approaches characteristic of economic models. We explore questions related to the global and regional impact of water scarcity and water surplus on the ability of regions to adapt to future change. Allowing for a variety of adaptation strategies such as direct trade of water and expanding the built water infrastructure, as well as indirect trade in commodities, will reduce overall global water stress and, in some regions, significantly reduce their vulnerability to these future changes.

  5. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  6. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  7. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  8. Global Data Assimilation System (GDAS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Data Assimilation System (GDAS) is the system used by the Global Forecast System (GFS) model to place observations into a gridded model space for the...

  9. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia

    International Nuclear Information System (INIS)

    Kummu, Matti; Varis, Olli; Ward, Philip J; De Moel, Hans

    2010-01-01

    In this letter we analyse the temporal development of physical population-driven water scarcity, i.e. water shortage, over the period 0 AD to 2005 AD. This was done using population data derived from the HYDE dataset, and water resource availability based on the WaterGAP model results for the period 1961-90. Changes in historical water resources availability were simulated with the STREAM model, forced by climate output data of the ECBilt-CLIO-VECODE climate model. The water crowding index, i.e. Falkenmark water stress indicator, was used to identify water shortage in 284 sub-basins. Although our results show a few areas with moderate water shortage (1000-1700 m 3 /capita/yr) around the year 1800, water shortage began in earnest at around 1900, when 2% of the world population was under chronic water shortage ( 3 /capita/yr). By 1960, this percentage had risen to 9%. From then on, the number of people under water shortage increased rapidly to the year 2005, by which time 35% of the world population lived in areas with chronic water shortage. In this study, the effects of changes in population on water shortage are roughly four times more important than changes in water availability as a result of long-term climatic change. Global trends in adaptation measures to cope with reduced water resources per capita, such as irrigated area, reservoir storage, groundwater abstraction, and global trade of agricultural products, closely follow the recent increase in global water shortage.

  10. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  11. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    Science.gov (United States)

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  12. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  13. A global, 30-m resolution land-surface water body dataset for 2000

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large

  14. Agricultural production and water use scenarios in Cyprus under global change

    Science.gov (United States)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  15. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  16. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    Science.gov (United States)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and

  17. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay

  18. Aqueduct: an interactive tool to empower global water risk assessment

    Science.gov (United States)

    Reig, Paul; Gassert, Francis

    2013-04-01

    The Aqueduct Water Risk Atlas (Aqueduct) is a publicly available, global database and interactive tool that maps indicators of water related risks for decision makers worldwide. Aqueduct makes use of the latest geo-statistical modeling techniques to compute a composite index and translate the most recently available hydrological data into practical information on water related risks for companies, investors, and governments alike. Twelve global indicators are grouped into a Water Risk Framework designed in response to the growing concerns from private sector actors around water scarcity, water quality, climate change, and increasing demand for freshwater. The Aqueduct framework includes indicators of water stress, variability in supply, storage, flood, drought, groundwater, water quality and social conflict, addressing both spatial and temporal variation in water hazards. It organizes indicators into three categories of risk that bring together multiple dimensions of water related risk into comprehensive aggregated scores, which allow for dynamic weighting to capture users' unique exposure to water hazards. All information is compiled into an online, open access platform, from which decision-makers can view indicators, scores, and maps, conduct global risk assessments, and export data and shape files for further analysis. Companies can use this tool to evaluate their exposure to water risks across operations and supply chains, investors to assess water-related risks in their portfolio, and public-sector actors to better understand water security. Additionally, the open nature of the data and maps allow other organizations to build off of this effort with new research, for example in the areas of water-energy or water-food relationships. This presentation will showcase the Aqueduct Water Risk Atlas online tool and the features and functionalities it offers, as well as explain how it can be used for both private and public sector applications. The session will

  19. Global burden of diarrheal disease attributable to the water supply and sanitation system in the State of Minas Gerais, Brazil: 2005

    Directory of Open Access Journals (Sweden)

    Andreia Ferreira de Oliveira

    2015-04-01

    Full Text Available Advances have occurred in relation to the coverage of water supply and sanitation in Brazil, however inequalities are still observed in relation to the coverage of these services, reflecting the importance of diarrheal disease in the Brazilian epidemiological context. The aim of this study was to measure the impact of the water supply and sanitation system on diarrheal diseases among children aged under five. The global burden of diarrhea was calculated based on the attributable population fraction, using information on prevalence and relative risks from the 2000/2010 censuses and a study by Pruss et al. The north of the State of Minas Gerais, the Northeast and Jequitinhonha regions had the highest disability-adjusted life year (DALY rates and ratios. The fraction of diarrhea attributable to the water supply and sanitation system was 83%, decreasing to 78.3% where sanitation had 100% coverage. An inverse relationship was found between DALY rates and attributable fractions and per capita GDP. Broadening the scope and coverage of services and improving the quality of water available in homes is an urgent requirement. These measures will bring economic and social benefits related to the reduction of diarrheal diseases and consequent improvement of the quality of life of children aged under five.

  20. Watch: Current knowledge of the terrestrial Global Water Cycle"

    NARCIS (Netherlands)

    Harding, R.; Best, M.; Hagemann, S.; Kabat, P.; Tallaksen, L.M.; Warnaars, T.; Wiberg, D.; Weedon, G.P.; Lanen, van H.A.J.; Ludwig, F.; Haddeland, I.

    2011-01-01

    Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and

  1. Dark production of carbon monoxide (CO) from dissolved organic matter in the St. Lawrence estuarine system: Implication for the global coastal and blue water CO budgets

    Science.gov (United States)

    Zhang, Yong; Xie, Huixiang; Fichot, CéDric G.; Chen, Guohua

    2008-12-01

    We investigated the thermal (dark) production of carbon monoxide (CO) from dissolved organic matter (DOM) in the water column of the St. Lawrence estuarine system in spring 2007. The production rate, Qco, decreased seaward horizontally and downward vertically. Qco exhibited a positive, linear correlation with the abundance of chromophoric dissolved organic matter (CDOM). Terrestrial DOM was more efficient at producing CO than marine DOM. The temperature dependence of Qco can be characterized by the Arrhenius equation with the activation energies of freshwater samples being higher than those of salty samples. Qco remained relatively constant between pH 4-6, increased slowly between pH 6-8 and then rapidly with further rising pH. Ionic strength and iron chemistry had little influence on Qco. An empirical equation, describing Qco as a function of CDOM abundance, temperature, pH, and salinity, was established to evaluate CO dark production in the global coastal waters (depth carbon from CO a-1). We speculated the global oceanic (coastal plus open ocean) CO dark production to be in the range from 4.87 to 15.8 Tg CO-C a-1 by extrapolating the coastal water-based results to blue waters (depth > 200 m). Both the coastal and global dark source strengths are significant compared to the corresponding photochemical CO source strengths (coastal: ˜2.9 Tg CO-C a-1; global: ˜50 Tg CO-C a-1). Steady state deepwater CO concentrations inferred from Qco and microbial CO uptake rates are <0.1 nmol L-1.

  2. HydroGrid: Technologies for Global Water Quality and Sustainability

    Science.gov (United States)

    Yeghiazarian, L.

    2017-12-01

    Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.

  3. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  4. Global Water Availability and Requirements for Future Food Production

    NARCIS (Netherlands)

    Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K.

    2011-01-01

    This study compares, spatially explicitly and at global scale, per capita water availability and water requirements for food production presently (1971-2000) and in the future given climate and population change (2070-99). A vegetation and hydrology model Lund-Potsdam-Jena managed Land (LPJmL) was

  5. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  6. Spacebased Observation of Water Balance Over Global Oceans

    Science.gov (United States)

    Liu, W.; Xie, X.

    2008-12-01

    We demonstrated that ocean surface fresh water flux less the water discharge into the ocean from river and ice melt balances the mass loss in the ocean both in magnitude and in the phase of annual variation. The surface water flux was computed from the divergence of the water transport integrated over the depth of the atmosphere. The atmospheric water transport is estimated from the precipitable water measured by Special Sensor Microwave Imager, the surface wind vector by QuikSCAT, and the NOAA cloud drift wind through a statistical model. The transport has been extensively validated using global radiosonde and data and operational numerical weather prediction results. Its divergence has been shown to agree with the difference between evaporation estimated from the Advanced Microwave Scanning Radiometer data and the precipitation measured by Tropical Rain Measuring Mission over the global tropical and subtropical oceans both in magnitude and geographical distribution for temporal scales ranging from intraseasonal to interannual. The water loss rate in the ocean is estimated by two methods, one is from Gravity Recovery and Climate Experiment and the other is by subtracting the climatological steric change from the sea level change measured by radar altimeter on Jason. Only climatological river discharge and ice melt from in situ measurements are available and the lack of temporal variation may contribute to discrepancies in the balance. We have successfully used the spacebased surface fluxes to estimate to climatological mean heat transport in the Atlantic ocean and is attempting to estimate the meridional fresh water (or salt) transport from the surface flux. The approximate closure of the water balance gives a powerful indirect validation of the spacebased products.

  7. A global assessment of wildfire risks to human and environmental water security

    Science.gov (United States)

    Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.

    2017-04-01

    Extreme wildfire events extensively affect hydrosystem stability and generate an important threat to the reliability of the water supply for human and natural communities. While actively studied at the watershed scale, the development of a global vision of wildfire risk to water security has only been undertaken recently, pointing at potential water security concerns in an era of global changes. In order to address this concern, we propose a global-scale analysis of the wildfire risk to surface water supplies based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. Based on the literature, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. Each indicator was assigned a DPSIR category. Then, we collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the wildfire-water risk (WWR). For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, for analysis. Overall, our results show a distinct pattern of medium-to-high risk levels in areas where sizeable wildfire activity, water resources, and water consumption are concomitant, which mainly encompasses temperate and sub-tropical zones. A closer look at hydrobelts reveals differences in the factors driving the risk, with fire activity being the primary factor of risk in the circumboreal forest, and freshwater resource density being prevalent in tropical areas. We also identified major urban areas across the world whose source waters should be protected from extreme fire events, particularly when

  8. A global flash flood forecasting system

    Science.gov (United States)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  9. Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis

    Science.gov (United States)

    Wang, Weiguang; Fu, Jianyu

    2018-02-01

    Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.

  10. A new approach to inventorying bodies of water, from local to global scale

    Directory of Open Access Journals (Sweden)

    Bartout, Pascal

    2015-12-01

    Full Text Available Having reliable estimates of the number of water bodies on different geographical scales is of great importance to better understand biogeochemical cycles and to tackle the social issues related to the economic and cultural use of water bodies. However, limnological research suffers from a lack of reliable inventories; the available scientific references are predominately based on water bodies of natural origin, large in size and preferentially located in previously glaciated areas. Artificial, small and randomly distributed water bodies, especially ponds, are usually not inventoried. Following Wetzel’s theory (1990, some authors included them in global inventories by using remote sensing or mathematical extrapolation, but fieldwork on the ground has been done on a very limited amount of territory. These studies have resulted in an explosive increase in the estimated number of water bodies, going from 8.44 million lakes (Meybeck 1995 to 3.5 billion water bodies (Downing 2010. These numbers raise several questions, especially about the methodology used for counting small-sized water bodies and the methodological treatment of spatial variables. In this study, we use inventories of water bodies for Sweden, Finland, Estonia and France to show incoherencies generated by the “global to local” approach. We demonstrate that one universal relationship does not suffice for generating the regional or global inventories of water bodies because local conditions vary greatly from one region to another and cannot be offset adequately by each other. The current paradigm for global estimates of water bodies in limnology, which is based on one representative model applied to different territories, does not produce sufficiently exact global inventories. The step-wise progression from the local to the global scale requires the development of many regional equations based on fieldwork; a specific equation that adequately reflects the actual relationship

  11. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model.

    Science.gov (United States)

    Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki

    2018-03-07

    Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

  12. GLOBALIZATION: A WORLD-SYSTEMS PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Christopher Chase-Dunn

    2015-08-01

    Full Text Available Using the world-systems perspective, this essay discusses the trajectories of several types of globalization over the last 100 years and the recent surge in public cognizance of global processes. It is found that different types of global-ization have different temporal characteristics. Some are long-term upward trends, while others display large cyclical oscillations. The factors that explain the recent emergence of the globalization discourse are examined, and this phenomenon is analyzed in terms of the contradictory interests of powerful and less-powerful groups. I contend that there is a lag between economic and political/cultural globalization, and that the latter needs to catch up if we are to convert the contemporary world-system of "casino capitalism" in to a more humane, democratic, balanced and sustainable world society.

  13. Combined simulation of carbon and water isotopes in a global ocean model

    Science.gov (United States)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  14. The role of scarcity in global virtual water flows

    OpenAIRE

    Lenzen, Manfred; Bhaduri, Anik; Moran, Daniel; Kanemoto, Keiichiro; Bekchanov, Maksud

    2012-01-01

    Recent analyses of the evolution and structure of trade in virtual water revealed that the number of trade connections and volume of virtual water trade have more than doubled over the past two decades, and that developed countries increasingly draw on the rest of the world to alleviate the pressure on their domestic water resources. Our work builds on these studies, but fills three important gaps in the research on global virtual water trade. First, we note that in previous studies virtual w...

  15. Modeling Global Water Use for the 21st Century: Water Futures and Solutions (WFaS) Initiative and Its Approaches

    Science.gov (United States)

    Wada, Y.; Florke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M. T. H.; Yillia, P.; Ringler, C.; hide

    2016-01-01

    To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years, and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity conditions already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of the world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.

  16. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  17. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  18. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  19. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  20. The Global Enery and Water Cycle Experiment Science Strategy

    Science.gov (United States)

    Chahine, M. T.

    1997-01-01

    The distribution of water in the atmosphere and at the surface of the Earth is the most influential factor regulating our environment, not only because water is essential for life but also because through phase transitions it is the main energy source that control clouds and radiation and drives the global circulation of the atmosphere.

  1. Temporal and spatial variability of global water balance

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  2. Global Peace through the Global University System

    Directory of Open Access Journals (Sweden)

    Cengiz Hakan AYDIN

    2006-01-01

    Full Text Available Utopia is defined in Encarta Dictionary as “an ideal and perfect place or state, where everyone lives in harmony and everything is for the best.” Developments all around the world especially in the last decade have supported the idea that global peace is nothing but just a utopian dream. However, for centuries a group of believers have always been in search of global peace via different means. This book, titled as “Global Peace through the Global University System”, can be considered as one of the artifacts of this search.Actually this book is a collection of papers presented in working conference on the Global University System (GUS hosted by the University of Tampere, Finland in 1999. The main goal of the conference was bringing international experts to share their philosophy, past and present experiences about the GUS. The conference was held by the University of Tampere because UNESCO has an agreement with the University to establish the UNESCOChair in Global e-Learning.

  3. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Diffuse radiation increases global ecosystem-level water-use efficiency

    Science.gov (United States)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  5. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  6. Investigating Food and Agribusiness Corporations as Global Water Security, Management and Governance Agents: The case of Nestlé, Bunge and Cargill

    Directory of Open Access Journals (Sweden)

    Suvi Sojamo

    2012-10-01

    Full Text Available This article investigates the agency of the world’s largest food and agribusiness corporations in global water security via case studies of Nestlé, Bunge and Cargill by analysing their position in the political economy of the world agro-food system and the ways they intentionally and non-intentionally manage and govern water in their value chains and wider networks of influence. The concentrated power of a few corporations in global agro-food value chains and their ability to influence the agro-food market dynamics and networks throughout the world pose asymmetric conditions for reaching not only global food security but also water security. The article will analyse the different forms of power exercised by the corporations in focus in relation to global water security and the emerging transnational water governance regime, and the extent to which their value chain position and stakeholder interaction reflect or drive their actions. Due to their vast infrastructural and technological capacity and major role in the global agro-food political economy, food and agribusiness corporations cannot avoid increasingly engaging, for endogenous and exogenous reasons, in multi-stakeholder initiatives and partnerships to devise methods of managing the agro-food value chains and markets to promote global water security. However, their asymmetric position in relation to their stakeholders demands continuous scrutiny.

  7. Financial tools to induce cooperation in power asymmetrical water systems

    Science.gov (United States)

    Denaro, Simona; Castelletti, Andrea; Giuliani, Matteo; Characklis, Gregory W.

    2017-04-01

    In multi-purpose water systems, power asymmetry is often responsible of inefficient and inequitable water allocations. Climate Change and anthropogenic pressure are expected to exacerbate such disparities at the expense of already disadvantaged groups. The intervention of a third party, charged with redefining water sharing policies to give greater consideration to equity and social justice, may be desirable. Nevertheless, to be accepted by private actors, this interposition should be coupled with some form of compensation. For a public agency, compensation measures may be burdensome, especially when the allowance is triggered by natural events whose timing and magnitude are subject to uncertainty. In this context, index based insurance contracts may represent a viable alternative option and reduce the cost of achieving socially desirable outcomes. In this study we explore soft measures to achieve global change mitigation by designing a hybrid coordination mechanism composed of i) a direct normative constraint and ii) an indirect financial compensatory tool. The performance of an index-based insurance (i.e. hedging) contract to be used as a compensation tool is evaluated relative to more traditional alternatives. First, the performance of the status quo system, or baseline (BL), is contrasted to an idealized scenario in which a central planner (CP) maximizes global efficiency. Then, the CP management is analyzed in order to identify an efficient water rights redistribution to be legally imposed on the advantaged stakeholders in the BL scenario. Finally, a hedging contract is designed to compensate those stakeholders more negatively affected by the legal constraint. The approach is demonstrated on a multi-purpose water system in Italy, where different decision makers individually manage the same resource. The system is characterized by a manifest power asymmetry: the upstream users, i.e., hydropower companies, are free to release their stored water in time

  8. How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?

    Science.gov (United States)

    Solander, Kurt C.; Reager, John T.; Famiglietti, James S.

    2016-03-01

    Accurate observations of global reservoir storage are critical to understand the availability of managed water resources. By enabling estimates of surface water area and height for reservoir sizes exceeding 250 m2 at a maximum repeat orbit of up to 21 days, the NASA Surface Water and Ocean Topography (SWOT) satellite mission (anticipated launch date 2020) is expected to greatly improve upon existing reservoir monitoring capabilities. It is thus essential that spatial and temporal measurement uncertainty for water bodies is known a priori to maximize the utility of SWOT observations as the data are acquired. In this study, we evaluate SWOT reservoir observations using a three-pronged approach that assesses temporal aliasing, errors due to specific reservoir spatial properties, and SWOT performance over actual reservoirs using a combination of in situ and simulated reservoir observations from the SWOTsim instrument simulator. Results indicate temporal errors to be less than 5% for the smallest reservoir sizes (100 km2). Surface area and height errors were found to be minimal (area SWOT, this study will be have important implications for future applications of SWOT reservoir measurements in global monitoring systems and models.

  9. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems

    International Nuclear Information System (INIS)

    Raptis, Catherine E.; Pfister, Stephan

    2016-01-01

    Large quantities of heat are rejected into freshwater bodies from power plants employing once-through cooling systems, often leading to temperature increases that disturb aquatic ecosystems. The objective of this work was to produce a high resolution global picture of power-related freshwater thermal emissions and to analyse the technological, geographical and chronological patterns behind them. The Rankine cycle was systematically solved for ∼2400 generating units with once-through cooling systems, distinguishing between simple and cogenerative cycles, giving the rejected heat as a direct output. With large unit sizes, low efficiencies, and high capacity factors, nuclear power plants reject 3.7 GW heat into freshwater on average, contrasting with 480 MW rejected from coal and gas power plants. Together, nuclear and coal-fuelled power plants from the 1970s and 1980s account for almost 50% of the rejected heat worldwide, offering motivation for their phasing out in the future. Globally, 56% of the emissions are rejected into rivers, pointing to potential areas of high thermal pollution, with the rest entering lakes and reservoirs. The outcome of this work can be used to further investigate the identified thermal emission hotspots, and to calculate regionalized water temperature increase and related impacts in environmental, energy-water nexus studies and beyond. - Highlights: • The thermodynamic cycles of ∼2400 power units with once-through cooling were solved. • Global freshwater heat emissions depend on technology, geography & chronology. • Half the global emissions come from nuclear and coal plants from the 70s & 80s. • Hotspots of freshwater thermal emissions were identified globally. • Global georeferenced emissions are available for use in water temperature models.

  10. Global Change and the Earth System

    Science.gov (United States)

    Pollack, Henry N.

    2004-08-01

    The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''

  11. Integrated assessment and scenarios simulation of urban water security system in the southwest of China with system dynamics analysis.

    Science.gov (United States)

    Yin, Su; Dongjie, Guan; Weici, Su; Weijun, Gao

    2017-11-01

    The demand for global freshwater is growing, while global freshwater available for human use is limited within a certain time and space. Its security has significant impacts on both the socio-economic system and ecological system. Recently, studies have focused on the urban water security system (UWSS) in terms of either water quantity or water quality. In this study, water resources, water environment, and water disaster issues in the UWSS were combined to establish an evaluation index system with system dynamics (SD) and geographic information systems (GIS). The GIS method performs qualitative analysis from the perspective of the spatial dimension; meanwhile, the SD method performs quantitative calculation about related water security problems from the perspective of the temporal dimension. We established a UWSS model for Guizhou province, China to analyze influencing factors, main driving factors, and system variation law, by using the SD method. We simulated the water security system from 2005 to 2025 under four scenarios (Guiyang scenario, Zunyi scenario, Bijie scenario and combined scenario). The results demonstrate that: (1) the severity of water security in cities is ranked as follows: three cities are secure in Guizhou province, four cities are in basic security and two cities are in a situation of insecurity from the spatial dimension of GIS through water security synthesis; and (2) the major driving factors of UWSS in Guizhou province include agricultural irrigation water demand, soil and water losses area, a ratio increase to the standard of water quality, and investment in environmental protection. A combined scenario is the best solution for UWSS by 2025 in Guizhou province under the four scenarios from the temporal dimension of SD. The results of this study provide a useful suggestion for the management of freshwater for the cities of Guizhou province in southwest China.

  12. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Science.gov (United States)

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    Half of the planet's population is severely impacted by severe water issues including absent or unreliable water supply, sanitation, poor water quality, unmitigated floods and droughts, and degraded water environments. In recent years, global water security has been highlighted not only by the science community but also by business leaders as one of the greatest threats to sustainable human development for different generations. How can we ensure the well-being of people and ecosystems with limited water, technology and financial resources? To evaluate this, IIASA's Water Futures and Solutions Initiative (WFaS) is identifying a portfolios of robust and cost-effective options across different economic sectors including agriculture, energy, manufacturing, households, and environment and ecosystems. Options to increase water supply and accessibility are evaluated together with water demand management and water governance options. To test these solution-portfolios in order to obtain a clear picture of the opportunities but also of the risks and the trade-offs we have developed the Community Water Model (CWATM) which joins IIASA's integrated assessment modeling framework, coupling hydrology with hydro-economics (ECHO model), energy (MESSAGE model) and land use (GLOBIOM model). CWATM has been developed to work flexibly with varying spatial resolutions from global to regional levels. The model is open source and community-driven to promote our work amongst the wider water and other science community worldwide, with flexibility to link to other models and integrate newly developed modules such as water quality. In order to identify the solution portfolios, we present a global hotspots assessment of water-related risks with the ability to zoom in at regional scale using the example of the Lake Victoria basin in E. Africa. We show how socio-economic and climate change will alter spatial patterns of the hydrological cycle and have regional impacts on water availability. At

  13. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    International Nuclear Information System (INIS)

    Jakosky, B.M.; Farmer, C.B.

    1982-01-01

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data

  14. The Global Dimension of Water Governance: Why the River Basin Approach Is No Longer Sufficient and Why Cooperative Action at Global Level Is Needed

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2010-12-01

    Full Text Available When water problems extend beyond the borders of local communities, the river basin is generally seen as the most appropriate unit for analysis, planning, and institutional arrangements. In this paper it is argued that addressing water problems at the river basin level is not always sufficient. Many of today’s seemingly local water issues carry a (subcontinental or even global dimension, which urges for a governance approach that comprises institutional arrangements at a level beyond that of the river basin. This paper examines a number of arguments for the thesis that good water governance requires a global approach complementary to the river basin approach. Subsequently, it identifies four major issues to be addressed at global scale: Efficiency, equity, sustainability and security of water supply in a globalised world. Finally, the paper raises the question of what kind of institutional arrangements could be developed to cope with the global dimension of water issues. A few possible directions are explored, ranging from an international protocol on full-cost water pricing and a water label for water-intensive products to the implementation of water footprint quotas and the water-neutral concept.

  15. Syndromes of the global water crisis - exploring the emergent dynamics through socio-hydrological modeling

    Science.gov (United States)

    Kuil, Linda; Levy, Morgan; Pavao-Zuckerman, Mitch; Penny, Gopal; Scott, Christopher; Srinivasan, Veena; Thompson, Sally; Troy, Tara

    2014-05-01

    There is a great variety of human water systems at the global scale due to the types and timing of water supply/availability, and the high diversity in water use, management, and abstraction methods. Importantly, this is largely driven by differences in welfare, social values, institutional frameworks, and cultural traditions of communities. The observed trend of a growing world population in combination with changing habits that generally increase our water consumption per capita implies that an increasing number of communities will face water scarcity. Over the years much research has been done in order to increase our understanding of human water systems and their associated water problems, using both top-down and bottom-up approaches. Despite these efforts, the challenge has remained to generalize findings beyond the areas of interests and to establish a common framework in order to compare and learn from different cases as a basis for finding solutions. In a recent analysis of multiple interdisciplinary subnational water resources case studies, it was shown that a suite of distinct resources utilization patterns leading to a water crisis can be identified, namely: 1) groundwater depletion, 2) ecological destruction, 3) drought-driven conflicts, 4) unmet subsistence needs, 5) resource capture by elite and 6) water reallocation to nature (Srinivasan et al., 2012). The effects of these syndromes on long-lasting human wellbeing can be grouped in the following outcomes: unsustainability, vulnerability, chronic scarcity and adaptation. The aim of this group collaboration is to build on this work through the development of a socio-hydrological model that is capable of reproducing the above syndromes and outcomes, ultimately giving insight in the different pathways leading to the syndromes. The resulting model will be distinct compared to existing model frameworks for two reasons. First of all, feedback loops between the hydrological, the environmental and the human

  16. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  17. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  18. Global Water Scarcity Assessment under Post-SRES Scenarios

    Science.gov (United States)

    Hanasaki, N.; Fujimori, S.

    2011-12-01

    A large number of future projections contributed to the fourth Assessment Report of IPCC were based on Special Report on Emission Scenarios (SRES). Processes toward the fifth Assessment Report are under way, and post-SRES scenarios, called Shared Socio-economic Pathways (SSP) are being prepared. One of the key challenges of SSP is provision of detailed socio-economic scenarios compared to SRES for impact, adaptation and vulnerability studies. In this study, a comprehensive global water scarcity assessment was conducted, using a state of the art global water resources model H08 (Hanasaki et al., 2008a, 2008b, 2010). We used a prototype of SSP developed by National Institute for Environmental Studies, Japan. Two sets of socio economic scenarios and two sets of climate scenarios were prepared to run H08 for the period 2001-2100. Socio-economic scenarios include Business As Usual and High Mitigation Capacity. Climate scenarios include Reference and Mitigation which stabilizes green house gas concentration at a certain level. We analyzed the simulation results of four combinations, particularly focusing on the sensitivity of socio-economic scenarios to major water resources indices.

  19. An updated view of global water cycling

    Science.gov (United States)

    Houser, P. R.; Schlosser, A.; Lehr, J.

    2009-04-01

    Unprecedented new observation capacities combined with revolutions in modeling, we are poised to make huge advances in water cycle assessment, understanding, and prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. A brief history of the lineage of the conventional water balance and a summary accounting of all major parameters of the water balance using highly respected secondary sources will be presented. Principally, recently published peer reviewed papers reporting results of original work involving direct measurements and new data generated by high-tech devices (e.g. satellite / airborne instruments, supercomputers, geophysical tools) will be employed. This work lends credence to the conventional water balance ideas, but also reveals anachronistic scientific concepts/models, questionable underlying data, longstanding oversights and outright errors in the water balance.

  20. The risk of water scarcity at different levels of global warming

    Science.gov (United States)

    Schewe, Jacob; Sharpe, Simon

    2015-04-01

    Water scarcity is a threat to human well-being and economic development in many countries today. Future climate change is expected to exacerbate the global water crisis by reducing renewable freshwater resources different world regions, many of which are already dry. Studies of future water scarcity often focus on most-likely, or highest-confidence, scenarios. However, multi-model projections of water resources reveal large uncertainty ranges, which are due to different types of processes (climate, hydrology, human) and are therefore not easy to reduce. Thus, central estimates or multi-model mean results may be insufficient to inform policy and management. Here we present an alternative, risk-based approach. We use an ensemble of multiple global climate and hydrological models to quantify the likelihood of crossing a given water scarcity threshold under different levels of global warming. This approach allows assessing the risk associated with any particular, pre-defined threshold (or magnitude of change that must be avoided), regardless of whether it lies in the center or in the tails of the uncertainty distribution. We show applications of this method on the country and river basin scale, illustrate the effects of societal processes on the resulting risk estimates, and discuss the further potential of this approach for research and stakeholder dialogue.

  1. A global hydrological simulation to specify the sources of water used by humans

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Pokhrel, Yadu; Kanae, Shinjiro

    2018-01-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979-2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr-1 global freshwater requirement, 2839±50 km3 yr-1 was taken from surface water and 789±30 km3 yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8

  2. Closing the 21st century global water gap: costs and effectiveness of adaptation measures

    Science.gov (United States)

    Bierkens, M. F.; Droogers, P.; Hunink, J.; Buitink, J.; Sutanudjaja, E.; Karssenberg, D.; Van Beek, L. P.; Straatsma, M. W.

    2017-12-01

    Water scarcity affects a major part of the globe, and is expected to increase significantly until 2100 as a result of climate change and socioeconomic developments. Yet, global projections are unavailable on the effectiveness and costs of adaptation measures to close the future water gap under global change. Here, we present a 21st century projection of the closure of the water gap under two contrasting climate and socio-economic scenarios: RCP2.6/SSP1(s1) and RCP8.5/SSP5(s5). We coupled a global hydrological model to water demand and redistribution model, and forced them with five General Circulation Models (GCMs) to assess the future water gap for 1604 water provinces covering most of the global land mass. Subsequently, using so-called water availability cost curves, we determined the water gap reduction that could be achieved by increasingly aggressive and expensive sets of adaptation measures, respectively aimed at improving agriculture, increasing water supply, and reducing water demands. Our results show that for s1, the water gap peaks around 2050 and declines towards 2100. Contrastingly, for s5, the gap increases linearly. Hotspots in water scarcity are found in the USA, India, and China. The proposed adaptation sets reduce the water gap, but for the majority of the hotspots are not sufficient to close the water gap completely. The median annual adaptation costs for the proposed measures amount to less than 2% of the GDP of the affected water provinces. Although these costs are already substantial, they do leave room for additional unorthodox adaptation measures.

  3. Determining water reservoir characteristics with global elevation data

    NARCIS (Netherlands)

    van Bemmelen, C. W T; Mann, M.; de Ridder, M.P.; Rutten, M.M.; van de Giesen, N.C.

    2016-01-01

    Quantification of human impact on water, sediment, and nutrient fluxes at the global scale demands characterization of reservoirs with an accuracy that is presently unavailable. This letter presents a new method, based on virtual dam placement, to make accurate estimations of area-volume

  4. The water-energy-food nexus of biofuels in a globalized world

    Science.gov (United States)

    D'Odorico, P.; Rulli, M. C.

    2016-12-01

    New renewable energy policies, investment opportunities, and energy security needs, have recently led to an escalation in the reliance on first generation biofuels. This phenomenon is contributing to changes in land use, market dynamics, property rights, and systems of agricultural production, with important impacts on rural livelihoods. Despite these effects of biofuels on food security, their nexus with land and water use remains poorly understood. We investigate recent production trends of bioenergy crops, their patterns of trade, and evaluate the associated displacement of water and land use. We find that bioethanol is produced with domestic crops while biodiesel production relies also on international trade and large scale land acquisitions in the developing world, particularly in Southeast Asia. Altogether, biofuels account for about 2-3% of the global water and land use in agriculture, and 30% of the food required to eradicate malnourishment worldwide. We evaluate the food-energy tradeoffs of biofuels and their impact of the number of people the plant can feed.

  5. 76 FR 55060 - Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi-Stressor...

    Science.gov (United States)

    2011-09-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9459-7] Aquatic Ecosystems, Water Quality, and Global Change... entitled, Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi- stressor... vulnerability of water quality and aquatic ecosystems across the United States to the potential impacts of...

  6. The global event system

    International Nuclear Information System (INIS)

    Winans, J.

    1994-01-01

    The support for the global event system has been designed to allow an application developer to control the APS event generator and receiver boards. This is done by the use of four new record types. These records are customized and are only supported by the device support modules for the APS event generator and receiver boards. The use of the global event system and its associated records should not be confused with the vanilla EPICS events and the associated event records. They are very different

  7. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  8. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    Science.gov (United States)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K

  9. Global terrestrial water storage connectivity revealed using complex climate network analyses

    Science.gov (United States)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  10. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  11. Global hydrobelts: improved reporting scale for water-related issues?

    Science.gov (United States)

    Meybeck, M.; Kummu, M.; Dürr, H. H.

    2012-08-01

    Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr-1 and the average T between -9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km-2 for the North American Boreal and some Australian hydroregions to 280 p km-2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more

  12. Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.

    Science.gov (United States)

    Stoler, Justin

    2012-12-01

    The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.

  13. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  14. Reliability analysis of water distribution systems under uncertainty

    International Nuclear Information System (INIS)

    Kansal, M.L.; Kumar, Arun; Sharma, P.B.

    1995-01-01

    In most of the developing countries, the Water Distribution Networks (WDN) are of intermittent type because of the shortage of safe drinking water. Failure of a pipeline(s) in such cases will cause not only the fall in one or more nodal heads but also the poor connectivity of source with various demand nodes of the system. Most of the previous works have used the two-step algorithm based on pathset or cutset approach for connectivity analysis. The computations become more cumbersome when connectivity of all demand nodes taken together with that of supply is carried out. In the present paper, network connectivity based on the concept of Appended Spanning Tree (AST) is suggested to compute global network connectivity which is defined as the probability of the source node being connected with all the demand nodes simultaneously. The concept of AST has distinct advantages as it attacks the problem directly rather than in an indirect way as most of the studies so far have done. Since the water distribution system is a repairable one, a general expression for pipeline avialability using the failure/repair rate is considered. Furthermore, the sensitivity of global reliability estimates due to the likely error in the estimation of failure/repair rates of various pipelines is also studied

  15. Local and global perspectives on the virtual water trade

    Directory of Open Access Journals (Sweden)

    S. Tamea

    2013-03-01

    Full Text Available Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986–2010. The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury food, and non-edible. The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plant-based products, and luxury products taking an increasingly larger share (26% in 2010. In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986, a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km, with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.

  16. Local and global perspectives on the virtual water trade

    Science.gov (United States)

    Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.

    2013-03-01

    Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury food, and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plant-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.

  17. Global Tobacco Surveillance System (GTSS) - Global Adult Tobacco Survey (GATS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2008-2012. Centers for Disease Control and Prevention (CDC). Office on Smoking and Health (OSH) – Global Tobacco Surveillance System (GTSS) - Global Adult Tobacco...

  18. The Global Drought Information System - A Decision Support Tool with Global Applications

    Science.gov (United States)

    Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.

    2014-12-01

    Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are

  19. Evaluating the Long-term Water Cycle Trends at a Global-scale using Satellite and Assimilation Datasets

    Science.gov (United States)

    Kim, H.; Lakshmi, V.

    2017-12-01

    Global-scale soil moisture and rainfall products retrieved from remotely sensed and assimilation datasets provide an effective way to monitor near surface soil moisture content and precipitation with sub-daily temporal resolution. In the present study, we employed the concept of the stored precipitation fraction Fp(f) in order to examine the long-term water cycle trends at a global-scale. The analysis was done for Fp(f) trends with the various geophysical aspects such as climate zone, land use classifications, amount of vegetation, and soil properties. Furthermore, we compared a global-scale Fp(f) using different microwave-based satellite soil moisture datasets. The Fp(f) is calculated by utilized surface soil moisture dataset from Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity, Advanced Scatterometer, Advanced Microwave Scanning Radiometer 2, and precipitation information from Global Precipitation Measurement Mission and Global Land Data Assimilation System. Different results from microwave-based soil moisture dataset showed discordant results particularly over arid and highly vegetated regions. The results of this study provide us new insights of the long-term water cycle trends over different land surface areas. Thereby also highlighting the advantages of the recently available GPM and SMAP datasets for the uses in various hydrometeorological applications.

  20. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    Science.gov (United States)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  1. Towards a Global Water Scarcity Risk Assessment Framework: Incorporation of Probability Distributions and Hydro-Climatic Variability

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2016-01-01

    Changing hydro-climatic and socioeconomic conditions increasingly put pressure on fresh water resources and are expected to aggravate water scarcity conditions towards the future. Despite numerous calls for risk-based water scarcity assessments, a global-scale framework that includes UNISDR's definition of risk does not yet exist. This study provides a first step towards such a risk based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change and population growth scenarios. Our study highlights that water scarcity risk, expressed in terms of expected annual exposed population, increases given all future scenarios, up to greater than 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels.

  2. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-08-01

    During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress) due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba) some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate-induced. In those countries, it can be seen

  3. The International Center for Integrated Water Resources Management (ICIWaRM): The United States' Contribution to UNESCO IHP's Global Network of Water Centers

    Science.gov (United States)

    Logan, W. S.

    2015-12-01

    The concept of a "category 2 center"—i.e., one that is closely affiliated with UNESCO, but not legally part of UNESCO—dates back many decades. However, only in the last decade has the concept been fully developed. Within UNESCO, the International Hydrological Programme (IHP) has led the way in creating a network of regional and global water-related centers.ICIWaRM—the International Center for Integrated Water Resources Management—is one member of this network. Approved by UNESCO's General Conference, the center has been operating since 2009. It was designed to fill a niche in the system for a center that was backed by an institution with on-the-ground water management experience, but that also had strong connections to academia, NGOs and other governmental agencies. Thus, ICIWaRM is hosted by the US Army Corps of Engineers' Institute for Water Resources (IWR), but established with an internal network of partner institutions. Three main factors have contributed to any success that ICIWaRM has achieved in its global work: A focus on practical science and technology which can be readily transferred. This includes the Corps' own methodologies and models for planning and water management, and those of our university and government partners. Collaboration with other UNESCO Centers on joint applied research, capacity-building and training. A network of centers needs to function as a network, and ICIWaRM has worked together with UNESCO-affiliated centers in Chile, Brazil, Paraguay, the Dominican Republic, Japan, China, and elsewhere. Partnering with and supporting existing UNESCO-IHP programs. ICIWaRM serves as the Global Technical Secretariat for IHP's Global Network on Water and Development Information in Arid Lands (G-WADI). In addition to directly supporting IHP, work through G-WADI helps the center to frame, prioritize and integrate its activities. With the recent release of the United Nation's 2030 Agenda for Sustainable Development, it is clear that

  4. Agricultural insecticides threaten surface waters at the global scale.

    Science.gov (United States)

    Stehle, Sebastian; Schulz, Ralf

    2015-05-05

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  5. The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System

    Science.gov (United States)

    Leung, C. W. S.; Rafkin, S. C.

    2017-12-01

    The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.

  6. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater,

  7. Achieving sustainable irrigation water withdrawals: global impacts on food security and land use

    Science.gov (United States)

    Liu, Jing; Hertel, Thomas W.; Lammers, Richard B.; Prusevich, Alexander; Baldos, Uris Lantz C.; Grogan, Danielle S.; Frolking, Steve

    2017-10-01

    Unsustainable water use challenges the capacity of water resources to ensure food security and continued growth of the economy. Adaptation policies targeting future water security can easily overlook its interaction with other sustainability metrics and unanticipated local responses to the larger-scale policy interventions. Using a global partial equilibrium grid-resolving model SIMPLE-G, and coupling it with the global Water Balance Model, we simulate the consequences of reducing unsustainable irrigation for food security, land use change, and terrestrial carbon. A variety of future (2050) scenarios are considered that interact irrigation productivity with two policy interventions— inter-basin water transfers and international commodity market integration. We find that pursuing sustainable irrigation may erode other development and environmental goals due to higher food prices and cropland expansion. This results in over 800 000 more undernourished people and 0.87 GtC additional emissions. Faster total factor productivity growth in irrigated sectors will encourage more aggressive irrigation water use in the basins where irrigation vulnerability is expected to be reduced by inter-basin water transfer. By allowing for a systematic comparison of these alternative adaptations to future irrigation vulnerability, the global gridded modeling approach offers unique insights into the multiscale nature of the water scarcity challenge.

  8. Navigating Troubled Waters. An analysis of how urban water regimes in the global South reproduce inequality

    OpenAIRE

    Nastar, Maryam

    2014-01-01

    This research is an attempt to conceptualize the underlying forces behind persistent and ubiquitous problems of inequality in access to water in cities of the global south. Inequality in water access is hypothesized to result from urban water regimes that tend to prioritize the right to water access or to provide preferential terms of access for some groups in society, while marginalizing others. By employing a critical realist approach, different theories in relation to inequality are app...

  9. Land Use, Climate, and Water Resources—Global Stages of Interaction

    Directory of Open Access Journals (Sweden)

    Sujay S. Kaushal

    2017-10-01

    Full Text Available Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization. During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs. During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability. During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  10. Land Use, Climate, and Water Resources-Global Stages of Interaction.

    Science.gov (United States)

    Kaushal, Sujay S; Gold, Arthur J; Mayer, Paul M

    2017-10-24

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  11. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

    NARCIS (Netherlands)

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y.; Liu, Junguo; Schulin, Rainer

    2018-01-01

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We

  12. Modeling of the Global Water Cycle - Analytical Models

    Science.gov (United States)

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  13. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  14. A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoubi, A.; Mechlouch, R. F.; Brahim, A. B. [National School of Engineering of Gabes, Gabes University, Chemical and Processes Engineering Department, Gabes (Tunisia)

    2011-07-01

    This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system's hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet. (authors)

  15. Global opportunities in land and water use while staying within the safe (and just) operating space: quantifications of interactions and tradeoffs

    Science.gov (United States)

    Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera

    2016-04-01

    Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should

  16. Global water risks and national security: Building resilience (Invited)

    Science.gov (United States)

    Pulwarty, R. S.

    2013-12-01

    The UN defines water security as the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability. This definition highlights complex and interconnected challenges and underscores the centrality of water for environmental services and human aactivities. Global risks are expressed at the national level. The 2010 Quadrennial Defense Review and the 2010 National Security Strategy identify climate change as likely to trigger outcomes that will threaten U.S. security including how freshwater resources can become a security issue. Impacts will be felt on the National Security interest through water, food and energy security, and critical infrastructure. This recognition focuses the need to consider the rates of change in climate extremes, in the context of more traditional political, economic, and social indicators that inform security analyses. There is a long-standing academic debate over the extent to which resource constraints and environmental challenges lead to inter-state conflict. It is generally recognized that water resources as a security issue to date exists mainly at the substate level and has not led to physical conflict between nation states. In conflict and disaster zones, threats to water security increase through inequitable and difficult access to water supply and related services, which may aggravate existing social fragility, tensions, violence, and conflict. This paper will (1) Outline the dimensions of water security and its links to national security (2) Analyze water footprints and management risks for key basins in the US and around the world, (3) map the link between global water security and national concerns, drawing lessons from the drought of 2012 and elsewhere

  17. The water footprint of human-made reservoirs for hydropower, irrigation, water supply, flood prevention, fishing and recreation on a global scale

    Science.gov (United States)

    Hogeboom, Rick; Knook, Luuk; Hoekstra, Arjen

    2017-04-01

    Increasing the availability of freshwater to meet growing and competing demands is on many policy agendas. The Sustainable Development Goals (SDGs) prescribe sustainable management of water for human consumption. For centuries humans have resorted to building dams to store water in periods of excess for use in times of shortage. Although dams and their reservoirs have made important contributions to human development, it is increasingly acknowledged that reservoirs can be substantial water consumers as well. We estimated the water footprint of human-made reservoirs on a global scale and attributed it to the various reservoir purposes (hydropower generation, residential and industrial water supply, irrigation water supply, flood protection, fishing and recreation) based on their economic value. We found that economic benefits from derived products and services from 2235 reservoirs globally, amount to 311 billion US dollar annually, with residential and industrial water supply and hydropower generation as major contributors. The water footprint associated with these benefits is the sum of the water footprint of dam construction (footprint of reservoirs globally adds up to ˜104 km3yr-1. Attribution per purpose shows that, with a global average water footprint of 21,5 m3GJ,-1 hydropower on average is a water intensive form of energy. We contextualized the water footprint of reservoirs and their purposes with regard to the water scarcity level of the river basin in which they occur. We found the lion's share (55%) of the water footprint is located in non-water scarce basins and only 1% in year-round scarce basins. The purpose for which the reservoir is primarily used changes with increasing water scarcity, from mainly hydropower generation in non-scarce basins, to the (more essential) purposes residential and industrial water supply, irrigation and flood control in scarcer areas. The quantitative explication of how the burden of water consumption from reservoirs is

  18. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  19. Is the available cropland and water enough for food demand? A global perspective of the Land-Water-Food nexus

    Science.gov (United States)

    Ibarrola-Rivas, M. J.; Granados-Ramírez, R.; Nonhebel, S.

    2017-12-01

    Land and water are essential local resources for food production but are limited. The main drivers of increasing food demand are population growth and dietary changes, which depend on the socioeconomic situation of the population. These two factors affect the availability of local resources: population growth reduces the land and water per person; and adoption of affluent diets increases the demand for land and water per person. This study shows potentials of global food supply by linking food demand drivers with national land and water availability. Whether the available land and water is enough to meet national food demand was calculated for 187 countries. The calculations were performed for the past situation (1960 and 2010) and to assess four future scenarios (2050) to discuss different paths of diets, population numbers and agricultural expansion. Inclusion of the demand perspective in the analysis has shown stronger challenges for future global food supply than have other studies. The results show that with the "business as usual" scenario, 40% of the global population in 2050 will live in countries with not enough land nor water to meet the demands of their population. Restriction to basic diets will be the most effective in lowering both land and water constraints. Our results identify both food production and food demand factors, and the regions that may experience the strongest challenges in 2050.

  20. LOCALIZATION OF THE GLOBAL ECONOMIC SYSTEM IN GLOBAL CITIES

    Directory of Open Access Journals (Sweden)

    I. A. Vershinina

    2017-01-01

    Full Text Available The article deals with the S. Sassen’s research and writing focuses on globalization (including social, economic and political dimensions, global cities, migration, the new networked technologies, and changes within the liberal state that result from current transnational conditions. The main features of the global cities are examined on examples. The global economy is far from being placeless, has and needs very specific territorial insertions, and that this need is sharpest in the case of highly globalized and electronic sectors such as finance. Large corporate firms needed access to a whole new mix of complex specialized services almost impossible to produce in-house as had been the practice. This new economic logic would generate high-level jobs and lowwage jobs; it would need far fewer middle-range jobs than traditional corporations. The transformation of the socio-economic systems at the global and national levels, the associated changes of urban communities life is considered.

  1. Earth Observations for Global Water Security

    Science.gov (United States)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  2. Assessing the impacts of global change on water quantity and quality

    OpenAIRE

    Malsy, Marcus

    2016-01-01

    Water resources in the semi-arid to arid areas of Central Asia are often limited by low precipitation, and hence vulnerable to impacts of global change, i.e. socio-economic development and climate change. Both, socio-economic development and climate change are very likely causing significant changes as water resources are affected by two main effects: Firstly, growing population and industrial activities in the region raise the pressure on water resources due to increasing water abstractions....

  3. The Impact of Globalization on the Formation of a Global Political System

    Science.gov (United States)

    Ilyin, Ilya V.; Rozanov, Alexander Sergeevich

    2013-01-01

    Purpose: The purpose of this paper is to analyze the impact of globalization on the formation of a global political system. Design/methodology/approach: Taking into account the fact of global political evolution, the authors of the paper point out that the global political structures tend to change. Findings: During the past millennium the global…

  4. A summary of global 129I in marine waters

    International Nuclear Information System (INIS)

    He Peng; Aldahan, A.; Possnert, G.; Hou, X.L.

    2013-01-01

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic 129 I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on 129 I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on 129 I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic 129 I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about 129 I distribution in the marine waters.

  5. Cooperative water network system to reduce carbon footprint.

    Science.gov (United States)

    Lim, Seong-Rin; Park, Jong Moon

    2008-08-15

    Much effort has been made in reducing the carbon footprint to mitigate climate change. However, water network synthesis has been focused on reducing the consumption and cost of freshwater within each industrial plant. The objective of this study is to illustrate the necessity of the cooperation of industrial plants to reduce the total carbon footprint of their water supply systems. A mathematical optimization model to minimize global warming potentials is developed to synthesize (1) a cooperative water network system (WNS) integrated over two plants and (2) an individual WNS consisting of two WNSs separated for each plant. The cooperative WNS is compared to the individual WNS. The cooperation reduces their carbon footprint and is economically feasible and profitable. A strategy for implementing the cooperation is suggested for the fair distribution of costs and benefits. As a consequence, industrial plants should cooperate with their neighbor plants to further reduce the carbon footprint.

  6. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  7. An integrated model for the assessment of global water resources – Part 2: Applications and assessments

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2008-07-01

    Full Text Available To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3 and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to

  8. Groundwater development stress: Global-scale indices compared to regional modeling

    Science.gov (United States)

    Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia

    2018-01-01

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.

  9. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  10. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  11. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter

    2009-01-01

    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  12. Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model

    Science.gov (United States)

    Xin, Y.

    2017-12-01

    Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that: 1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. 2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. 3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. 4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along 30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of

  13. An Evolutionary Approach to Water Innovation: Comparing the Water Innovation Systems in China and Europe

    DEFF Research Database (Denmark)

    Moro, Mariú Abritta

    The recent rise of the ‘green economy’ agenda has increased the attention to eco-innovations globally, with issues related to water stress identified as one of the major bottlenecks for sustainable economic growth. Water being a critical resource, more and more countries worldwide are recognizing...... the need for increasing their innovative capacity within the water sector. Using evolutionary economic theory, this thesis undertakes a longitudinal and comparative analysis of the water innovation dynamics in Europe and China, representing respectively a developed, green early mover economy......, and a centrally-planned economy and green late mover. The thesis aims to assess the similarities and differences in the mechanisms applied across these two regions, with a focus on outlining what drives eco-innovation development in the water sector. The thesis builds more specifically on the innovation system...

  14. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs.

  15. Analysis of key thresholds leading to upstream dependencies in global transboundary water bodies

    Science.gov (United States)

    Munia, Hafsa Ahmed; Guillaume, Joseph; Kummu, Matti; Mirumachi, Naho; Wada, Yoshihide

    2017-04-01

    Transboundary water bodies supply 60% of global fresh water flow and are home to about 1/3 of the world's population; creating hydrological, social and economic interdependencies between countries. Trade-offs between water users are delimited by certain thresholds, that, when crossed, result in changes in system behavior, often related to undesirable impacts. A wide variety of thresholds are potentially related to water availability and scarcity. Scarcity can occur because of the country's own water use, and that is potentially intensified by upstream water use. In general, increased water scarcity escalates the reliance on shared water resources, which increases interdependencies between riparian states. In this paper the upstream dependencies of global transboundary river basins are examined at the scale of sub-basin areas. We aim to assess how upstream water withdrawals cause changes in the scarcity categories, such that crossing thresholds is interpreted in terms of downstream dependency on upstream water availability. The thresholds are defined for different types of water availability on which a sub-basin relies: - reliable local runoff (available even in a dry year), - less reliable local water (available in the wet year), - reliable dry year inflows from possible upstream area, and - less reliable wet year inflows from upstream. Possible upstream withdrawals reduce available water downstream, influencing the latter two water availabilities. Upstream dependencies have then been categorized by comparing a sub-basin's scarcity category across different water availability types. When population (or water consumption) grows, the sub-basin satisfies its needs using less reliable water. Thus, the factors affecting the type of water availability being used are different not only for each type of dependency category, but also possibly for every sub- basin. Our results show that, in the case of stress (impacts from high use of water), in 104 (12%) sub- basins out of

  16. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  17. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration

    Science.gov (United States)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin

    2015-04-01

    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  18. Water within the Shared Socioeconomic Pathways: Constraints and the Impact on Future Global Change Scenarios

    Science.gov (United States)

    Graham, N. T.; Hejazi, M. I.; Davies, E. G.; Calvin, K. V.; Kim, S. H.; Miralles-Wilhelm, F.

    2017-12-01

    The Shared Socioeconomic Pathways (SSPs) represent the next generation of future global change scenarios and their inclusion in the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios reinforces the importance of a complete understanding of the SSPs. This study uses the Global Change Assessment Model (GCAM) to investigate the effects of limited water supplies on future withdrawals at regional and water basin scales across all SSPs in combination with various climate mitigation scenarios. Water supply is calculated using a global hydrologic model and water data from five ISI-MIP models across the four RCP scenarios. When water constraints are incorporated, our results show that water withdrawals are reduced by as much as 40% across all SSP scenarios without climate policies. As climate policies are imposed and become more stringent, water withdrawals increase in regions already affected by water stress in order to allow for greater biomass production. The results of this research show the importance of including water resource constraints within the SSP scenarios for establishing water withdrawal scenarios under a wide range of scenarios including different climate policies. The results will also provide data products - such as gridded land use and water demand estimates - of potential interest to the impact, adaptation, and vulnerability community following the SSP scenarios.

  19. Globalization and localization of Management Control Systems

    DEFF Research Database (Denmark)

    Toldbod, Thomas; Israelsen, Poul

    2014-01-01

    Through an empirical case study this article examines the operation of multiple management control systems as a package in a Danish manufacturing company. The analysis focuses on four different management control systems; cybernetic controls, planning controls, reward controls, and administrative...... have more particular characteristics. Specifically, this study finds that cybernetic controls and administrative controls are designed as global management control systems. Planning controls are glocal systems and reward & compensation controls assume local characteristics. The finding leads...... controls, through the theoretical lens of globalization, localization, and glocalization. The analysis documents that these different management control systems are affected differently by the processes of globalization and localization, whereby some are universal throughout the organization and others...

  20. Facing global environmental change. Environmental, human, energy, food, health and water security concepts

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, Hans Guenter [Freie Univ. Berlin (Germany). Dept. of Political and Social Sciences; United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); AFES-Press, Mosbach (Germany); Oswald Spring, Ursula [National Univ. of Mexico (UNAM), Cuernavaca, MOR (MX). Centro Regional de Investigaciones Multidiscipinarias (CRIM); United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); Grin, John [Amsterdam Univ. (Netherlands). Amsterdam School for Social Science Research; Mesjasz, Czeslaw [Cracow Univ. of Economics (Poland). Faculty of Management; Kameri-Mbote, Patricia [Nairobi Univ. (Kenya). School of Law; International Environmental Law Research Centre, Nairobi (Kenya); Behera, Navnita Chadha [Jamia Millia Islamia Univ., New Delhi (India). Nelson Mandela Center for Peace and Conflict Resolution; Chourou, Bechir [Tunis-Carthage Univ., Hammam-Chatt (Tunisia); Krummenacher, Heinz (eds.) [swisspeace, Bern (Switzerland). FAST International

    2009-07-01

    This policy-focused, global and multidisciplinary security handbook on Facing Global Environmental Change addresses new security threats of the 21st century posed by climate change, desertification, water stress, population growth and urbanization. These security dangers and concerns lead to migration, crises and conflicts. They are on the agenda of the UN, OECD, OSCE, NATO and EU. In 100 chapters, 132 authors from 49 countries analyze the global debate on environmental, human and gender, energy, food, livelihood, health and water security concepts and policy problems. In 10 parts they discuss the context and the securitization of global environmental change and of extreme natural and societal outcomes. They suggest a new research programme to move from knowledge to action, from reactive to proactive policies and to explore the opportunities of environ-mental cooperation for a new peace policy. (orig.)

  1. The Global Emergency Observation and Warning System

    Science.gov (United States)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  2. Globally significant greenhouse-gas emissions from African inland waters

    Science.gov (United States)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  3. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  4. Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-11-01

    To provide more accurate ice cloud microphysical properties, the multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems globally over oceans using combined instrument data from Aqua. The liquid water path (LWP) of lower-layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. The properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by matching simulated radiances from a two-cloud-layer radiative transfer model. The results show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and IWP retrievals for ice-over-water cloud systems. The mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over oceans from Aqua are 7.6 and 146.4 gm-2, respectively, down from the initial single-layer retrievals of 17.3 and 322.3 gm-2. The mean IWP for actual single-layer clouds is 128.2 gm-2.

  5. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    Science.gov (United States)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, pretrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  6. Applications of geographic information system and expert system for urban runoff and water quality management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Beum-Hee [Pai Chai University, Taejeon(Korea)

    2001-06-30

    It is very important to select appropriate methods of collecting, predicting, and analyzing information for the development of urban water resources and the prevention of disasters. Thus, in this study an accurate data generation method is developed using Geographic Information System (GIS) and Remote Sensing (RS). The methods of development and application of an expert system are suggested to solve more efficiently the problems of water resources and quality induced by the rapid urbanization. The time-varying data in a large region, the An-Yang Cheon watershed, were reasonably obtained by the application of the GIS using ARC/INFO and RS data. The ESPE (Expert System for Parameter Estimation), an expert system is developed using the CLIPS 6.0. The simulated results showed agreement with the measured data globally. These methods are expected to efficiently simulate the runoff and water quality in the rapidly varying urban area. (author). 10 refs., 4 tabs., 10 figs.

  7. Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options.

    Science.gov (United States)

    Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J

    2017-02-01

    We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  9. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  10. Global water cycle amplifying at less than the Clausius-Clapeyron rate

    OpenAIRE

    Skliris, Nikolaos; Zika, Jan D.; Nurser, George; Josey, Simon A.; Marsh, Robert

    2016-01-01

    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7%?°C?1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for...

  11. NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE

    International Nuclear Information System (INIS)

    Dikpati, Mausumi

    2012-01-01

    We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.

  12. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  13. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  14. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  15. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    Science.gov (United States)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  16. The Creation of Differential Correction Systems and the Systems of Global Navigation Satellite System Monitoring

    National Research Council Canada - National Science Library

    Polishchuk, G. M; Kozlov, V. I; Urlichich, Y. M; Dvorkin, V. V; Gvozdev, V. V

    2002-01-01

    ... for the Russian Federation and a system of global navigation satellite system monitoring. These projects are some of the basic ones in the Federal program "Global Navigation System," aimed at maintenance and development of the GLONASS system...

  17. The Spanish Food Industry on Global Supply Chains and Its Impact on Water Resources

    Directory of Open Access Journals (Sweden)

    Rosa Duarte

    2014-12-01

    Full Text Available The study of the impact of economic activities on natural resources through global supply chains is increasingly demanded in the context of the growing globalization of economies and product fragmentation. Taking Spain as a case study and a sector with significant economic and environmental impacts, the agri-food industry, the objective of this work is two-fold. First, we estimate the associated water impact, both from the production and consumption perspectives, paying special attention to the water embodied in production exchanges among countries and sectors. To that aim, we use an environmentally-extended multiregional input-output model (MRIO. Second, we assess the main driving factors behind changes in direct and embodied water consumption between the years 1995 and 2009 by means of a structural decomposition analysis. The MRIO model provides a comprehensive estimate of the economic linkages among regions and economic sectors and, therefore, allows calculating the environmental impacts over international value chains. The results indicate that the food industry exerts large impacts on global water resources, particularly given the remarkable interactions with the domestic and foreign agricultural sectors, These growing linkages show how consumption patterns, and, therefore, lifestyles, involve large environmental impacts through the whole and global supply chains.

  18. Linked Open Data in the Global Change Information System (GCIS)

    Science.gov (United States)

    Tilmes, Curt A.

    2012-01-01

    The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will centralize access to data and information related to global change across the U.S. federal government. The first implementation will focus on the 2013 National Climate Assessment (NCA) . (http://assessment.globalchange.gov) The NCA integrates, evaluates, and interprets the findings of the USGCRP; analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of individuals around the federal, state and local governments, academic institutions and non-governmental organizations. The GCIS will present a web-based version of the NCA including annotations linking the findings and content of the NCA with the scientific research, datasets, models, observations, etc. that led to its conclusions. It will use semantic tagging and a linked data approach, assigning globally unique, persistent, resolvable identifiers to all of the related entities and capturing and presenting the relationships between them, both internally and referencing out to other linked data sources and back to agency data centers. The developing W3C PROV Data Model and ontology will be used to capture the provenance trail and present it in both human readable web pages and machine readable formats such as RDF and SPARQL. This will improve visibility into the assessment process, increase

  19. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply.

    Science.gov (United States)

    Hutton, Guy

    2013-03-01

    Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.

  20. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Bierkens, M.F.P.

    2011-01-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate

  1. Testing of Model Water Chiller System with Hidrokarbon as a Primer Refrigeran

    Directory of Open Access Journals (Sweden)

    Nengah Suarnadwipa

    2012-11-01

    Full Text Available Now days, there are two issues that give a negative impact on the environment due to the uses of synthetic refrigerant on therefrigeration system and air conditioning system. The first issue was the Ozon Layer Depletion and the second issue was theGlobal Warming. Regarding those condition, it will be investigated the design and examination of performance the use of thesplit type AC system as water chiller system and using hydrocarbon as a primer refrigerant. As a result, in the examination ofthe standard split type AC system using refrigerant R-22, it founded that the cooling rate of 1958 Watt and COP of 5.29.While the examination on the modified split type AC system into water chiller system using hydrocarbon (hycool 22, hasgiven cooling rate of 1832 Watt and COP of 4.19. Finally, it could be councluded that the split type AC system could be usedas water chiller system.

  2. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data

    Science.gov (United States)

    Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y.; van Beek, Ludovicus P. H.; Wiese, David N.; Reedy, Robert C.; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F. P.

    2018-01-01

    Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (−71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km3/y) but negative for models (−450 to −12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. PMID:29358394

  3. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  4. Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere.

    Science.gov (United States)

    Nelson, M; Allen, J; Alling, A; Dempster, W F; Silverstone, S

    2003-01-01

    The parallels between the challenges facing bioregenerative life support in artificial closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and expanding human population, it is increasingly obvious that the biosphere can no longer safely buffer and absorb technogenic and anthropogenic pollutants. The loss of biodiversity, reliance on non-renewable natural resources, and conversion of once wild ecosystems for human use with attendant desertification/soil erosion, has led to a shift of consciousness and the widespread call for sustainability of human activities. For researchers working on bioregenerative life support in closed systems, the small volumes and faster cycling times than in the Earth's biosphere make it starkly clear that systems must be designed to ensure renewal of water and atmosphere, nutrient recycling, production of healthy food, and safe environmental methods of maintaining technical systems. The development of technical systems that can be fully integrated and supportive of living systems is a harbinger of new perspectives as well as technologies in the global environment. In addition, closed system bioregenerative life support offers opportunities for public education and consciousness changing of how to live with our global biosphere. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    Science.gov (United States)

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    with NOAA stations and that MSWEP slightly overestimated precipitation amounts. On a daily basis, there were discrepancies in the peak timing and magnitude between measured precipitation and the global products. A bias between EU-WATCH and WFDEI temperature and potential evaporation was observed and to model the water balance correctly, it was needed to correct EU-WATCH to WFDEI mean monthly values. Overall, the available sources enabled rapid set-up of a hydrological model including the forcing of the model with a relatively good performance to assess water resources in Azerbaijan with a limited calibration effort and allow for a similar set-up anywhere in the world. Timing and quantification of peak volume remains a weakness in global data, making it difficult to be used for some applications (flooding) and for detailed calibration. Selecting and comparing different sources of global meteorological data is important to have a reliable set which improves model performance. - Beck et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2014) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. Discuss. - Dai Y. et al. ,2013. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology - Harding, R. et al., 2011., WATCH: Current knowledge of the Terrestrial global water cycle, J. Hydrometeorol. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Wang-Erlandsson L. et al., 2016. Global Root Zone Storage Capacity from Satellite-Based Evaporation. Hydrology and Earth System Sciences - Weedon, G. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research.

  6. Consistency of Estimated Global Water Cycle Variations Over the Satellite Era

    Science.gov (United States)

    Robertson, F. R.; Bosilovich, M. G.; Roberts, J. B.; Reichle, R. H.; Adler, R.; Ricciardulli, L.; Berg, W.; Huffman, G. J.

    2013-01-01

    Motivated by the question of whether recent indications of decadal climate variability and a possible "climate shift" may have affected the global water balance, we examine evaporation minus precipitation (E-P) variability integrated over the global oceans and global land from three points of view-remotely sensed retrievals / objective analyses over the oceans, reanalysis vertically-integrated moisture convergence (MFC) over land, and land surface models forced with observations-based precipitation, radiation and near-surface meteorology. Because monthly variations in area-averaged atmospheric moisture storage are small and the global integral of moisture convergence must approach zero, area-integrated E-P over ocean should essentially equal precipitation minus evapotranspiration (P-ET) over land (after adjusting for ocean and land areas). Our analysis reveals considerable uncertainty in the decadal variations of ocean evaporation when integrated to global scales. This is due to differences among datasets in 10m wind speed and near-surface atmospheric specific humidity (2m qa) used in bulk aerodynamic retrievals. Precipitation variations, all relying substantially on passive microwave retrievals over ocean, still have uncertainties in decadal variability, but not to the degree present with ocean evaporation estimates. Reanalysis MFC and P-ET over land from several observationally forced diagnostic and land surface models agree best on interannual variations. However, upward MFC (i.e. P-ET) reanalysis trends are likely related in part to observing system changes affecting atmospheric assimilation models. While some evidence for a low-frequency E-P maximum near 2000 is found, consistent with a recent apparent pause in sea-surface temperature (SST) rise, uncertainties in the datasets used here remain significant. Prospects for further reducing uncertainties are discussed. The results are interpreted in the context of recent climate variability (Pacific Decadal

  7. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been

  8. Grey mullet (Mugilidae) as possible indicators of global warming in South African estuaries and coastal waters.

    Science.gov (United States)

    James, Nicola C; Whitfield, Alan K; Harrison, Trevor D

    2016-12-01

    The grey mullet usually occur in large numbers and biomass in the estuaries of all three South African biogeographic regions, thus making it an ideal family to use in terms of possibly acting as an environmental indicator of global warming. In this analysis the relative estuarine abundance of the dominant three groups of mugilids, namely tropical, warm-water and cool-water endemics, were related to sea surface coastal temperatures. The study suggests a strong link between temperature and the distribution and abundance of the three mullet groups within estuaries and indicates the potential of this family to act as an indicator for future climate change within these systems and adjacent coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A global sensitivity analysis of crop virtual water content

    Science.gov (United States)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  10. Analysis of Radiosonde Daily Bias by Comparing Precipitable Water Vapor Obtained from Global Positioning System and Radiosonde

    Directory of Open Access Journals (Sweden)

    Chang-Geun Park

    2010-12-01

    Full Text Available In this study, we compared the precipitable water vapor (PWV data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS Observatory provided by Korea Astronomy and Space Science Institute, from 0000 UTC, June 1, 2007 to 1200 UTC, May 31, 2009, and analyzed the radiosonde bias between the day and the night. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. In addition, for all the rainfall events, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased was significantly less distinctive in nighttime than in daytime. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the second year, regardless of nighttime or daytime rainfall, and the non-rainfall root mean square error (RMSE was similar to that of the previous studies, while the rainfall RMSE was larger to a certain extent.

  11. Water security-National and global issues

    Science.gov (United States)

    Tindall, James A.; Campbell, Andrew A.

    2010-01-01

    Potable or clean freshwater availability is crucial to life and economic, environmental, and social systems. The amount of freshwater is finite and makes up approximately 2.5 percent of all water on the Earth. Freshwater supplies are small and randomly distributed, so water resources can become points of conflict. Freshwater availability depends upon precipitation patterns, changing climate, and whether the source of consumed water comes directly from desalination, precipitation, or surface and (or) groundwater. At local to national levels, difficulties in securing potable water sources increase with growing populations and economies. Available water improves living standards and drives urbanization, which increases average water consumption per capita. Commonly, disruptions in sustainable supplies and distribution of potable water and conflicts over water resources become major security issues for Government officials. Disruptions are often influenced by land use, human population, use patterns, technological advances, environmental impacts, management processes and decisions, transnational boundaries, and so forth.

  12. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Wisser, D.; Bierkens, M.F.P.

    2013-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been

  13. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    Science.gov (United States)

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  14. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers

    Science.gov (United States)

    Bruce, Alex; Faunce, Thomas

    2015-01-01

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen–consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power. PMID:26052427

  15. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers.

    Science.gov (United States)

    Bruce, Alex; Faunce, Thomas

    2015-06-06

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen-consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power.

  16. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    Science.gov (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  17. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  18. Assessing the value of the ATL13 inland water level product for the Global Flood Partnership

    Science.gov (United States)

    Schumann, G.; Pappenberger, F.; Bates, P. D.; Neal, J. C.; Jasinski, M. F.

    2015-12-01

    This paper reports on the activities and first results of an our ICESat-2 Early Adopter (EA) project for inland water observations. Our team will assess the value of the ICESat-2 water level product using two flood model use cases, one over the California Bay Delta and one over the Niger Inland Delta. Application of the ALT13 product into routine operations will be ensured via an ALT13 database integrated into the pillar "Global Flood Service and Toolbox" (GFST) of the Global Flood Partnership (GFP). GFP is a cooperation framework between scientific organizations and flood disaster managers worldwide to develop flood observational and modelling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. GFP is hosted as an Expert Working Group by the Global Disaster Alert and Coordination System (GDACS). The objective of this EA project is to make the ICESat-2 water level data available to the international GFP community. The EA team believes that the ALT13 product, after successful demonstration of its value in model calibration/validation and monitoring of large floodplain inundation dynamics, should be made easily accessible to the GFP. The GFST will host data outputs and tools from different flood models and for different applications and regions. All these models can benefit from ALT13 if made available to GFP through GFST. Here, we will introduce both test cases and their model setups and report on first preliminary "capabilities" test runs with the Niger model and ICESat-1 as well as radar altimeter data. Based on our results, we will also reflect on expected capabilities and potential of the ICESat-2 mission for river observations.

  19. Global consensus for discrete-time competitive systems

    International Nuclear Information System (INIS)

    Shih, C.-W.; Tseng, J.-P.

    2009-01-01

    Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the Grossberg's model. Through developing an extended component-competing analysis for the coupled system, without knowing a Lyapunov function and applying the LaSalle's invariance principle, the global pattern formation or the so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present theory.

  20. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  1. A water management decision support system contributing to sustainability

    Science.gov (United States)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  2. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  3. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  4. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  5. A summary of global {sup 129}I in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    He Peng, E-mail: peng.he@geo.uu.se [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Aldahan, A. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551, Al Ain (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, P.O. Box 529, 751 20 Uppsala (Sweden); Hou, X.L. [Riso National Laboratory for Sustainable Energy, NUK-202, Technical University of Denmark, DK-4000 Roskilde (Denmark)

    2013-01-15

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic {sup 129}I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on {sup 129}I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on {sup 129}I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic {sup 129}I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about {sup 129}I distribution in the marine waters.

  6. Concepts for a global resources information system

    Science.gov (United States)

    Billingsley, F. C.; Urena, J. L.

    1984-01-01

    The objective of the Global Resources Information System (GRIS) is to establish an effective and efficient information management system to meet the data access requirements of NASA and NASA-related scientists conducting large-scale, multi-disciplinary, multi-mission scientific investigations. Using standard interfaces and operating guidelines, diverse data systems can be integrated to provide the capabilities to access and process multiple geographically dispersed data sets and to develop the necessary procedures and algorithms to derive global resource information.

  7. Comparison of Decadal Water Storage Trends from Global Hydrological Models and GRACE Satellite Data

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z. Z.; Save, H.; Sun, A. Y.; Mueller Schmied, H.; Van Beek, L. P.; Wiese, D. N.; Wada, Y.; Long, D.; Reedy, R. C.; Doll, P. M.; Longuevergne, L.

    2017-12-01

    Global hydrology is increasingly being evaluated using models; however, the reliability of these global models is not well known. In this study we compared decadal trends (2002-2014) in land water storage from 7 global models (WGHM, PCR-GLOBWB, and GLDAS: NOAH, MOSAIC, VIC, CLM, and CLSM) to storage trends from new GRACE satellite mascon solutions (CSR-M and JPL-M). The analysis was conducted over 186 river basins, representing about 60% of the global land area. Modeled total water storage trends agree with those from GRACE-derived trends that are within ±0.5 km3/yr but greatly underestimate large declining and rising trends outside this range. Large declining trends are found mostly in intensively irrigated basins and in some basins in northern latitudes. Rising trends are found in basins with little or no irrigation and are generally related to increasing trends in precipitation. The largest decline is found in the Ganges (-12 km3/yr) and the largest rise in the Amazon (43 km3/yr). Differences between models and GRACE are greatest in large basins (>0.5x106 km2) mostly in humid regions. There is very little agreement in storage trends between models and GRACE and among the models with values of r2 mostly store water over decadal timescales that is underrepresented by the models. The storage capacity in the modeled soil and groundwater compartments may be insufficient to accommodate the range in water storage variations shown by GRACE data. The inability of the models to capture the large storage trends indicates that model projections of climate and human-induced changes in water storage may be mostly underestimated. Future GRACE and model studies should try to reduce the various sources of uncertainty in water storage trends and should consider expanding the modeled storage capacity of the soil profiles and their interaction with groundwater.

  8. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  9. Net global warming potential and greenhouse gas intensity as affected by different water management strategies in Chinese double rice-cropping systems.

    Science.gov (United States)

    Wu, Xiaohong; Wang, Wei; Xie, Xiaoli; Yin, Chunmei; Hou, Haijun; Yan, Wende; Wang, Guangjun

    2018-01-15

    This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH 4 and N 2 O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH 4 emissions, reduced N 2 O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO 2 -equivalent ha -1 yr -1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO 2 -equivalent kg -1 grain yr -1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

  10. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Science.gov (United States)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  11. WHO's role in the global health system: what can be learned from global R&D debates?

    Science.gov (United States)

    Moon, Suerie

    2014-02-01

    Recent global debates on the research and development (R&D) of health technologies, such as drugs, diagnostics and vaccines, can be seen as a microcosm of discussions on the role of the World Health Organization (WHO) in the global health system more broadly. The global R&D system has come under heightened scrutiny with the publication of a 2012 report by the WHO Consultative Expert Working Group on Research and Development (CEWG), which made a number of recommendations to more equitably meet global health needs. The CEWG report followed a decade-long process of debate at the WHO on the weaknesses of the global R&D system, which include problems of affordability, limited research where market returns are small or uncertain (such as the 'neglected diseases' that predominantly affect the world's poorest), inefficient overlap of research efforts, and overuse of medicines such as antibiotics. The CEWG report called on WHO Member States to develop a global framework to improve monitoring, coordination and financing of R&D efforts through the establishment of a Global Health R&D Observatory and the negotiation of a binding treaty on R&D. While the treaty option has been put on the back-burner for several years, Member States nevertheless agreed at the 2013 World Health Assembly (WHA) on concrete steps towards a global framework. Progress at the 2013 WHA reaffirmed the central role of WHO as a convener, and the WHA's decision to create the Observatory within the WHO Secretariat underscored the organization's role as a source of strategic knowledge in the global health system. However, despite WHO's constitutional mandate as the 'directing and coordinating authority on international health work', in reality it faces major challenges in coordinating autonomous R&D actors such as states, firms and foundations in the global system. Strengthening its ability to do so requires, at a minimum, reforming its financing arrangements to provide it with a greater degree of

  12. Application of the NAVSTAR/GLOBAL positioning system on instrumented ranges

    OpenAIRE

    Reinhart, William L.

    1981-01-01

    Approved for public release; distribution is unlimited This report treats the application of the NAVSTAR/Global Positioning System as the Position/Location System in Real Time Casualty Assessment experiments. The desirable characteristics of a position/location system are listed. A current position/location system, the Range Measuring System, is used as a comparison reference for the Global Positioning System. Operation and parameters of the Global Positioning System are presented. A d...

  13. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    Directory of Open Access Journals (Sweden)

    H. Herbin

    2007-07-01

    Full Text Available The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205–1228 cm−1; 2004–2032 cm−1 and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM. Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4–5 km, and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability

  14. Four billion people facing severe water scarcity

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2016-01-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue

  15. Unraveling the nexus between water and food security in Latin America and the Caribbean: regional and global implications

    Science.gov (United States)

    Willaarts, Barbara; Garrido, Alberto; Soriano, Barbara; De Stefano, Lucia; López Gunn, Elena; Aldaya, Maite; Martínez-Santos, Pedro; Llamas, Ramon

    2014-05-01

    Latin American and the Caribbean (LAC) is a water and land abundant region, and plays a key role in meeting global food and water security. During the last decade, LAC has experience a rapid socio-economic growth, largely sustained by its competitive advantage in the production and exports of agricultural and mining products and by the high commodity prices in the global market. This study seeks to quantify the contribution of LAC's agriculture to global food and water security, i.e. virtual water trade, and evaluate the environmental and societal implications for regional development. Results show that between 2000 and 2011, LAC has increase its agricultural production 27%, and it now accounts for nearly 18% of the global agricultural market. As a result, the agricultural water footprint (WF) of LAC was augmented 65%; and yet, nearly 19% to 44% of the actual agricultural WF - depending on the countries - is virtual water exported to third countries. In fact, almost 50% of the increase in global virtual water trade during the last decade, corresponds to LAC. Such global contribution has significant implications for regional water and food security. From an environmental perspective, crop expansion (mostly rain-fed) resulted in the deforestation of nearly 1 million km2, turning this region into the second most important deforestation hotspots worldwide. This land clearing is having large impacts of ecosystem services, e.g. carbon sequestration, water quality or biodiversity conservation. From a socio-economic perspective, increasing agricultural production has improved regional food security indicators, although one every seven children is still stunted in LAC and nearly 10% of the population remains undernourished. Dietary shifts and socio-cultural factors also lag behind the growing problem of malnutrition in the region, i.e. overweight and obesity. Improvements of water access and sanitation, have had a positive impact on food security indicators, especially

  16. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  17. 76 FR 10892 - Aquatic Ecosystems, Water Quality, and Global Change: Challenges of Conducting Multi-Stressor...

    Science.gov (United States)

    2011-02-28

    ...: EPA is announcing the release of the draft report titled, ``Aquatic Ecosystems, Water Quality, and... relative vulnerability of water quality and aquatic ecosystems, across the United States, to the potential... mailing address, and the document title, ``Aquatic Ecosystems, Water Quality, and Global Change...

  18. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    International Nuclear Information System (INIS)

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-01-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  20. The Global Positioning System: Theory and operation

    Science.gov (United States)

    Tucker, Lester Plunkett

    Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.

  1. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  2. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  3. Perspectives of Complexity in Water Governance: Local Experiences of Global Trends

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2013-10-01

    Full Text Available Those responsible for water governance face great complexity. However, the conceptualisations of what comprises that complexity have been broad and inconsistent. When efforts are made to address the complexity in water governance, it is unclear whether the problems and the related solutions will be understood across the actors and institutions involved. This paper provides a review of the literature focused on global water governance to discern core themes that commonly characterise discussions of complexity. It then considers how the consequences of these issues are manifested at the local scale through an examination of empirical research of the Murray-Darling Basin Authority and the Prachinburi River Basin Committee. The results demonstrate that a history of a technical, depoliticised discourse is often perceived to contribute to complexity. The consequence is that when a severe ecological disturbance occurs within a river basin with poorly understood causes, few tools are available to support river basin organisations to address the political nature of these challenges. Additionally, a lack of clear authority structures has been recognised globally, but locally this can contribute to conflict amongst the 'governors' of water. Finally, a range of contested definitions and governance frameworks exists that contributes to complexity, but confronting the diversity of perspectives can lead to ethical dilemmas given that the decisions will affect the health and livelihoods of basin communities.

  4. Global water balances reconstructed by multi-model offline simulations of land surface models under GSWP3 (Invited)

    Science.gov (United States)

    Oki, T.; KIM, H.; Ferguson, C. R.; Dirmeyer, P.; Seneviratne, S. I.

    2013-12-01

    As the climate warms, the frequency and severity of flood and drought events is projected to increase. Understanding the role that the land surface will play in reinforcing or diminishing these extremes at regional scales will become critical. In fact, the current development path from atmospheric (GCM) to coupled atmosphere-ocean (AOGCM) to fully-coupled dynamic earth system models (ESMs) has brought new awareness to the climate modeling community of the abundance of uncertainty in land surface parameterizations. One way to test the representativeness of a land surface scheme is to do so in off-line (uncoupled) mode with controlled, high quality meteorological forcing. When multiple land schemes are run in-parallel (with the same forcing data), an inter-comparison of their outputs can provide the basis for model confidence estimates and future model refinements. In 2003, the Global Soil Wetness Project Phase 2 (GSWP2) provided the first global multi-model analysis of land surface state variables and fluxes. It spanned the decade of 1986-1995. While it was state-of-the art at the time, physical schemes have since been enhanced, a number of additional processes and components in the water-energy-eco-systems nexus can now be simulated, , and the availability of global, long-term observationally-based datasets that can be used for forcing and validating models has grown. Today, the data exists to support century-scale off-line experiments. The ongoing follow-on to GSWP2, named GSWP3, capitalizes on these new feasibilities and model functionalities. The project's cornerstone is its century-scale (1901-2010), 3-hourly, 0.5° meteorological forcing dataset that has been dynamically downscaled from the Twentieth Century Reanalysis and bias-corrected using monthly Climate Research Unit (CRU) temperature and Global Precipitation Climatology Centre (GPCC) precipitation data. However, GSWP3 also has an important long-term future climate component that spans the 21st century

  5. Economic assessment of different mulches in conventional and water-saving rice production systems.

    Science.gov (United States)

    Jabran, Khawar; Hussain, Mubshar; Fahad, Shah; Farooq, Muhammad; Bajwa, Ali Ahsan; Alharrby, Hesham; Nasim, Wajid

    2016-05-01

    Water-saving rice production systems including alternate wetting and drying (AWD) and aerobic rice (AR) are being increasingly adopted by growers due to global water crises. Application of natural and artificial mulches may further improve water economy of water-saving rice production systems. Conventionally flooded rice (CFR) system has been rarely compared with AWD and AR in terms of economic returns. In this 2-year field study, we compared CFR with AWD and AR (with and without straw and plastic mulches) for the cost of production and economic benefits. Results indicated that CFR had a higher production cost than AWD and AR. However, application of mulches increased the cost of production of AWD and AR production systems where plastic mulch was expensive than straw mulch. Although the mulching increased the cost of production for AWD and AR, the gross income of these systems was also improved significantly. The gross income from mulched plots of AWD and AR was higher than non-mulched plots of the same systems. In conclusion, AWD and AR effectively reduce cost of production by economizing the water use. However, the use of natural and artificial mulches in such water-saving environments further increased the economic returns. The maximized economic returns by using straw mulch in water-saving rice production systems definitely have pragmatic implications for sustainable agriculture.

  6. Evaluation of water stress and groundwater storage using a global hydrological model

    Science.gov (United States)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  7. Earth Applications of Closed Ecological Systems: Relevance to the Development of Sustainability in our Global Biosphere

    Science.gov (United States)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The parallels between the challenges facing bioregenerative life support and closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and human population, it is increasingly obvious that the biosphere can no longer be counted on to be vast enough to safely buffer and absorb technogenic and anthropogenic pollutants. With an increasing percentage of the world's natural resources and primary productivity being dictated by, and directed to, humans, our species is starting to appreciate its survival and quality of life depends on regulating its activities, and insuring that crucial biogeochemical cycles continue to function. This shift of consciousness has led to the widespread call for moving towards the sustainability of human activities. For researchers working on bioreenerative life support, the small volumes and faster cycling times have made it obvious that systems must be created in to ensure renewal of water and atmosphere, nutrient recycling, and where all technical systems can be safely integrated with the maintenance of safe environmental conditions. The development of technical systems that can be fully integrated with the living systems that they support should be a harbinger of new perspectives in the global environment. The paper will review some of these environmental technologies which are emerging from bioregenerative life support system research such as high-yield intensive agricultural methods, waste treatment and nutrient recycling, air purification, modeling, sensor and control systems and their potential applications in the global biosphere. In addition, a review of the human experience in closed ecological systems shows that these can offer opportunities for public education and consciousness-changing of how humans regard our global biosphere.

  8. Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development

    DEFF Research Database (Denmark)

    This book presents the energy system roadmaps necessary to limit global temperature increase to below 2°C, in order to avoid the catastrophic impacts of climate change. It provides a unique perspective on and critical understanding of the feasibility of a well-below-2°C world by exploring energy...... and at a global scale to offer scientific evidence to underpin complex policy decisions relating to climate change mitigation and interrelated issues like energy security and the energy–water nexus. It includes several chapters directly related to the Nationally Determined Contributions proposed in the context...

  9. Strengthening the Global Refugee Protection System: Recommendations for the Global Compact on Refugees

    Directory of Open Access Journals (Sweden)

    Kevin Appleby

    2017-12-01

    • the adoption of coherent strategies, involving all sectors, to address large movements of refugees. This paper draws heavily, albeit not exclusively, from a series of papers published as a special collection in the Journal on Migration and Human Security[1] on strengthening the global system of refugee protection. [1] Rethinking the Global Refugee Protection System, Journal on Migration and Human Security, Center for Migration Studies, 2016-2017. See http://cmsny.org/cms_research/refugeeproject/.

  10. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    Science.gov (United States)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-12-01

    Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science

  11. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  12. Creating a spatially-explicit index: a method for assessing the global wildfire-water risk

    Science.gov (United States)

    Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.

    2017-04-01

    The wildfire-water risk (WWR) has been defined as the potential for wildfires to adversely affect water resources that are important for downstream ecosystems and human water needs for adequate water quantity and quality, therefore compromising the security of their water supply. While tools and methods are numerous for watershed-scale risk analysis, the development of a toolbox for the large-scale evaluation of the wildfire risk to water security has only started recently. In order to provide managers and policy-makers with an adequate tool, we implemented a method for the spatial analysis of the global WWR based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. As this approach heavily relies on data, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. When appropriate, we applied a hydrological routing function to our indicators in order to simulate downstream accumulation of potentially harmful material. Each indicator was then assigned a DPSIR category. We collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the WWR. A thorough sensitivity analysis has been performed in order to understand the relationship between the final risk values and the spatial pattern of each category used during the indexation. For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, to get a sense of regional DPSIR specificities. This rather simple method does not necessitate the use of complex physical models and provides a scalable and efficient tool

  13. A Decision Support System for Drinking Water Production Integrating Health Risks Assessment

    Science.gov (United States)

    Delpla, Ianis; Monteith, Donald T.; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G.; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2014-01-01

    The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation. PMID:25046634

  14. On the reliable use of satellite-derived surface water products for global flood monitoring

    Science.gov (United States)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  15. THE NEED FOR A WATER INFORMATION SYSTEM FOR THE REPUBLIC OF MOLDOVA

    OpenAIRE

    Ion BOTNARENCO; Ala BOSCAN; Efim ZUBCO

    2015-01-01

    Novelty. Insuficient information on water resources is an important issue at both national and global levels. This issue becomes even more important under the conditions of clmate change of the last decades. Aim. The aim is to analyze the existing situation in the field and to formulate a scientific argument by means of convincing examples, to argue the need to implement an information system of water cadastre, to arise social interest as a whole towards the problem whose solution determines ...

  16. Global Water Surface Dynamics: Toward a Near Real Time Monitoring Using Landsat and Sentinel Data

    Science.gov (United States)

    Pekel, J. F.; Belward, A.; Gorelick, N.

    2017-12-01

    Global surface water dynamics and its long-term changes have been documented at 30m spatial resolution using the entire multi-temporal orthorectified Landsat 5, 7 and 8 archive for the years 1984 to 2015. This validated dataset recorded the months and years when water was present, where occurrence changed and what form changes took (in terms of seasonality), documents inter-annual variability, and multi-annual trends. This information is freely available from the global surface water explorer https://global-surface-water.appspot.com. Here we extend this work (doi:10.1038/nature20584 ) by combining post 2015 Landsat 7 and 8 data with imagery from the Copernicus program's Sentinel 2a and b satellites. Using these data in combination improves the spatial resolution (from 30m to a nominal 10m) and temporal resolution (from 8 days to 4 days revisit time at the equator). The improved geographic and temporal completeness of the combined Landsat / Sentinel dataset also offers new opportunities for the identification and characterization of seasonally occurring waterbodies. These improvements are also being examined in the light of reporting progress against Agenda 2030's Sustainable Development Goal 6, especially the indicator used to measure 'change in the extent of water-related ecosystems over time'.

  17. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  18. Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyelim [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Li, Zhanqing [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing (China)

    2012-12-15

    Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth's radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds. (orig.)

  19. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    Science.gov (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  20. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  1. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  2. Deglobalization and Its Discontents in Interconnected Regional Food, Energy, and Water Systems

    Science.gov (United States)

    Bielicki, J. M.; Irwin, E.; Bakshi, B.; Cai, Y.; Jackson-Smith, D.; Martin, J.; Randall, A.; Sheldon, I.; Wilson, R. S.; Fiksel, J.

    2017-12-01

    Increased trade has generated substantial wealth in the United States over the past 50 years, but these gains have also been accompanied by losses in manufacturing jobs, growing inequality, environmental impacts abroad, and growing support to limit U.S. integration with global markets. A policy shift towards deglobalization would alter global flows of resources and goods and impact food, energy, and water (FEW) resources and the well-being of U.S. FEW producers and consumers. This project examines the potential effects of deglobalization on the sustainability of regional FEW systems and well-being of FEW producers and consumers in the United States under various physical and policy situations. We develop a Dynamic Regional Food, Energy, and Water Systems (DR-FEWS) modeling framework that considers how uncertain changes in environmental, economic, or policy conditions at a national or global scale may influence how farmers produce food and energy, and the implications for regional land, energy, and water resources, food and energy markets, and water quality. We apply DR-FEWS to five states in the Great Lakes region (GLR) of the United States (IL, IN, MI, OH, and WI) and account for local heterogeneities using individual farmer behavioral and spatially explicit land data from the Maumee River basin. DR-FEWS is applied to a set of baseline and alternative deglobalization scenarios to evaluate the influence of various environmental, economic, and policy conditions and uncertainties on the sustainability of the GLR. We will also engage local and regional stakeholders to improve the models, develop deglobalization scenarios, and advance sustainability metrics by comparing different valued-based and physical-based sustainability criteria. In so doing, this research will generate important innovations in how scientific knowledge is created, disseminated, and applied to the management of regional FEWS in the United States with specific application to the GLR.

  3. Global Operational Remotely Sensed Evapotranspiration System for Water Resources Management: Case Study for the State of New Mexico

    Science.gov (United States)

    Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.

    2017-12-01

    An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.

  4. Assessing the evolving fragility of the global food system

    Science.gov (United States)

    Puma, Michael J.; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.

    2015-02-01

    The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18 year study period, we show that the global food system is relatively homogeneous (85% of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90%, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9% (3.8%) for 1992-1996, increasing to 11% (5.7%) for 2005-2009. Over the same intervals, rice losses increase from 8.2% (2.2%) to 14% (5.2%). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.

  5. Assessing the evolving fragility of the global food system

    International Nuclear Information System (INIS)

    Puma, Michael J; Bose, Satyajit; Chon, So Young; Cook, Benjamin I

    2015-01-01

    The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992–2009 to analyse the changing properties of the global food system. Over the 18 year study period, we show that the global food system is relatively homogeneous (85% of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90%, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9% (3.8%) for 1992–1996, increasing to 11% (5.7%) for 2005–2009. Over the same intervals, rice losses increase from 8.2% (2.2%) to 14% (5.2%). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity. (letter)

  6. Assessing the Evolving Fragility of the Global Food System

    Science.gov (United States)

    Puma, Michael Joseph; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.

    2015-01-01

    The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18-year study period, we show that the global food system is relatively homogeneous (85 of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9 (3.8) for 1992-1996, increasing to 11 (5.7) for 20052009. Over the same intervals, rice losses increase from 8.2 (2.2) to 14 (5.2). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.

  7. Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks

    Directory of Open Access Journals (Sweden)

    H. Andersen

    2017-08-01

    Full Text Available The role of aerosols, clouds and their interactions with radiation remain among the largest unknowns in the climate system. Even though the processes involved are complex, aerosol–cloud interactions are often analyzed by means of bivariate relationships. In this study, 15 years (2001–2015 of monthly satellite-retrieved near-global aerosol products are combined with reanalysis data of various meteorological parameters to predict satellite-derived marine liquid-water cloud occurrence and properties by means of region-specific artificial neural networks. The statistical models used are shown to be capable of predicting clouds, especially in regions of high cloud variability. On this monthly scale, lower-tropospheric stability is shown to be the main determinant of cloud fraction and droplet size, especially in stratocumulus regions, while boundary layer height controls the liquid-water amount and thus the optical thickness of clouds. While aerosols show the expected impact on clouds, at this scale they are less relevant than some meteorological factors. Global patterns of the derived sensitivities point to regional characteristics of aerosol and cloud processes.

  8. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, Matthew C.; Hirsch, R.M.

    2010-01-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  9. Global fluctuations of cerebral blood flow indicate a global brain network independent of systemic factors.

    Science.gov (United States)

    Zhao, Li; Alsop, David C; Detre, John A; Dai, Weiying

    2017-01-01

    Global synchronization across specialized brain networks is a common feature of network models and in-vivo electrical measurements. Although the imaging of specialized brain networks with blood oxygenation sensitive resting state functional magnetic resonance imaging (rsfMRI) has enabled detailed study of regional networks, the study of globally correlated fluctuations with rsfMRI is confounded by spurious contributions to the global signal from systemic physiologic factors and other noise sources. Here we use an alternative rsfMRI method, arterial spin labeled perfusion MRI, to characterize global correlations and their relationship to correlations and anti-correlations between regional networks. Global fluctuations that cannot be explained by systemic factors dominate the fluctuations in cerebral blood flow. Power spectra of these fluctuations are band limited to below 0.05 Hz, similar to prior measurements of regional network fluctuations in the brain. Removal of these global fluctuations prior to measurement of regional networks reduces all regional network fluctuation amplitudes to below the global fluctuation amplitude and changes the strength and sign of inter network correlations. Our findings support large amplitude, globally synchronized activity across networks that require a reassessment of regional network amplitude and correlation measures.

  10. Improved Hydrology over Peatlands in a Global Land Modeling System

    Science.gov (United States)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  11. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  12. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  13. An approach to regional wetland digital elevation model development using a differential global positioning system and a custom-built helicopter-based surveying system

    Science.gov (United States)

    Jones, J.W.; Desmond, G.B.; Henkle, C.; Glover, R.

    2012-01-01

    Accurate topographic data are critical to restoration science and planning for the Everglades region of South Florida, USA. They are needed to monitor and simulate water level, water depth and hydroperiod and are used in scientific research on hydrologic and biologic processes. Because large wetland environments and data acquisition challenge conventional ground-based and remotely sensed data collection methods, the United States Geological Survey (USGS) adapted a classical data collection instrument to global positioning system (GPS) and geographic information system (GIS) technologies. Data acquired with this instrument were processed using geostatistics to yield sub-water level elevation values with centimetre accuracy (??15 cm). The developed database framework, modelling philosophy and metadata protocol allow for continued, collaborative model revision and expansion, given additional elevation or other ancillary data. ?? 2012 Taylor & Francis.

  14. Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain)

    NARCIS (Netherlands)

    Graveline, N.; Majone, B.; van Duinen, Rianne; Ansink, E.

    2014-01-01

    Integrated approaches are needed to assess the effects of global changes on the future state of water resources at regional scales. We develop a hydro-economic model of the Gállego catchment, Spain, to assess how global change and policy options affect the catchment’s water scarcity and the economic

  15. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  16. A high-resolution global-scale groundwater model

    Science.gov (United States)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  17. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    Science.gov (United States)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  18. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  19. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  20. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  1. Global Drought Services: Collaborations Toward an Information System for Early Warning

    Science.gov (United States)

    Hayes, M. J.; Pulwarty, R. S.; Svoboda, M.

    2014-12-01

    Drought is a hazard that lends itself well to diligent, sustained monitoring and early warning. However, unlike most hazards, the fact that droughts typically evolve slowly, can last for months or years and cover vast areas spanning multiple political boundaries/jurisdictions and economic sectors can make it a daunting task to monitor, develop plans for, and identify appropriate, proactive mitigation strategies. The National Drought Mitigation Center (NDMC) and National Integrated Drought Information System (NIDIS) have been working together to reduce societal vulnerability to drought by helping decision makers at all levels to: 1) implement drought early warning/forecasting and decision support systems; 2) support and advocate for better collection of, and understanding of drought impacts; and 3) increase long-term resilience to drought through proactive planning. The NDMC and NIDIS risk management approach has been the basis from which many partners around the world are developing a collaboration and coordination nexus with an ultimate goal of building comprehensive global drought early warning information systems (GDEWIS). The core emphasis of this model is on developing and applying useful and usable information that can be integrated and transferred freely to other regions around the globe. The High-Level Ministerial Declaration on Drought, the Integrated Drought Management Programme (IDMP) co-led by the WMO and the Global Water Partnership (GWP), and the Global Framework for Climate Services are drawing extensively from the integrated NDMC-NIDIS risk management framework. This presentation will describe, in detail, the various drought resources, tools, services, and collaborations already being provided and undertaken at the national and regional scales by the NDMC, NIDIS, and their partners. The presentation will be forward-looking, identifying improvements in existing and proposed mechanisms to help strengthen national and international drought early

  2. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion

    Science.gov (United States)

    Fewtrell, Lorna

    2004-01-01

    On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727

  3. Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8

    Science.gov (United States)

    Hudson, A.; Hansen, M.

    2015-12-01

    Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.

  4. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    OpenAIRE

    Y. Hu; M. Vaughan; C. McClain; M. Behrenfeld; H. Maring; D. Anderson; S. Sun-Mack; D. Flittner; J. Huang; B. Wielicki; P. Minnis; C. Weimer; C. Trepte; R. Kuehn

    2007-01-01

    International audience; This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water...

  5. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

    Directory of Open Access Journals (Sweden)

    Christopher A. Scott

    2015-08-01

    Full Text Available The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life-cycle impacts of thermoelectric generation and biofuel production, and freshwater availability and sectoral allocations from the U.N. Food and Agriculture Organization and the World Bank. Emerging, energy-related water scarcity flashpoints include the world’s largest, most diversified economies (Brazil, India, China, and USA among others, while physical water scarcity continues to pose limits to energy development in the Middle East and small-island states. Findings include the following: (a technological obstacles to alleviate water scarcity driven by energy demand are surmountable; (b resource conservation is inevitable, driven by financial limitations and efficiency gains; and (c institutional arrangements play a pivotal role in the virtuous water-energy-climate cycle. We conclude by making reference to coupled energy-water policy alternatives including water-conserving energy portfolios, intersectoral water transfers, virtual water for energy, hydropower tradeoffs, and use of impaired waters for energy development.

  6. Global health initiative investments and health systems strengthening: a content analysis of global fund investments.

    Science.gov (United States)

    Warren, Ashley E; Wyss, Kaspar; Shakarishvili, George; Atun, Rifat; de Savigny, Don

    2013-07-26

    Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific activities - through conventional 'vertical-programming' approach. Such funding can be channelled to one or more of the health system building blocks while targeting disease(s) or explicitly to system-wide activities. We operationalized the World Health Organization health system framework of the six building blocks to conduct a detailed assessment of Global Fund health system investments. Our application of this framework framework provides a comprehensive quantification of system-level interventions. We applied this systematically to a random subset of 52 of the 139 grants funded in Round 8 of the Global Fund to Fight AIDS, Tuberculosis and Malaria (totalling approximately US$1 billion). According to the analysis, 37% (US$ 362 million) of the Global Fund Round 8 funding was allocated to health systems strengthening. Of that, 38% (US$ 139 million) was for generic system-level interventions, rather than disease-specific system support. Around 82% of health systems strengthening funding (US$ 296 million) was allocated to service delivery, human resources, and medicines & technology, and within each of these to two to three interventions. Governance, financing, and information building blocks received relatively low funding. This study shows that a substantial portion of Global Fund's Round 8 funds was devoted to health systems strengthening. Dramatic skewing among the health system building blocks suggests opportunities for more balanced investments with regard to governance, financing, and

  7. Changing Foundations for Global Business Systems Solutions

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Gubi, Ebbe

    2011-01-01

    Companies are actively seeking new competitive advantages by changing the location and ownership of their manufacturing processes. This process results in increasing fragmentation and dispersion of global business systems of companies. The purpose of this paper is to identify how companies may...... improve the integration of such business systems. The paper draws on a case study of a Danish industrial equipment firm. The paper describes and analyzes the company’s operations network configurations, which lay at the foundations of the company’s global business system. It is demonstrated how...... the operations configurations have been changing over time and affecting the overall business system. The paper identifies the key determinants and outcomes of this change. Moreover, it proposes how the design of operations configurations can be improved through the development of a distinct systemic approach...

  8. Hybrid solution and pump-storage optimization in water supply system efficiency: A case study

    International Nuclear Information System (INIS)

    Vieira, F.; Ramos, H.M.

    2008-01-01

    Environmental targets and saving energy have become ones of the world main concerns over the last years and it will increase and become more important in a near future. The world population growth rate is the major factor contributing for the increase in global pollution and energy and water consumption. In 2005, the world population was approximately 6.5 billion and this number is expected to reach 9 billion by 2050 [United Nations, 2008. (www.un.org), accessed on July]. Water supply systems use energy for pumping water, so new strategies must be developed and implemented in order to reduce this consumption. In addition, if there is excess of hydraulic energy in a water system, some type of water power generation can be implemented. This paper presents an optimization model that determines the best hourly operation for 1 day, according to the electricity tariff, for a pumped storage system with water consumption and inlet discharge. Wind turbines are introduced in the system. The rules obtained as output of the optimization process are subsequently introduced in a hydraulic simulator, in order to verify the system behaviour. A comparison with the normal water supply operating mode is done and the energy cost savings with this hybrid solution are calculated

  9. Fairtrade, Food Security and Globalization: Building Alternative Food Systems

    Directory of Open Access Journals (Sweden)

    Martin Calisto Friant

    2016-05-01

    Full Text Available This article examines the politics and practices of Fairtrade certification in order to assess whether this alternative trading system could contribute to innovative solutions for global food security. The analysis begins by assessing the main challenges and problems characterizing the contemporary global food system. It then explores the history, vision and certification standards of the Fairtrade label. In the third section, the results of the impact studies of Fairtrade certification on producer livelihoods are discussed, analyzing the various strengths and weaknesses. Finally the article analyzes whether, and how, the Fairtrade system could positively contribute to improving global food security. To conclude this paper argues that the greatest strength of Fairtrate is not the certification mechanism itself but rather the social and environmental principles it represents. Fairtrade standards could serve to inform broader international policies, which could lead to a sustainable transformation of the global food system.

  10. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  11. Globalization and Localization of the Management Control System package

    DEFF Research Database (Denmark)

    Toldbod, Thomas; Israelsen, Poul

    2015-01-01

    Through an empirical case study, this article examines the operation of multiple management control systems as a package in a Danish manufacturing company. The analysis focuses on four different management control systems – cybernetic controls, planning controls, reward controls, and administrative...... the organization and others have more particular characteristics. Specifically, this study finds that cybernetic controls and administrative controls are designed as global management control systems. Planning controls and reward and compensation controls are glocal systems. The finding leads to the conclusion...... controls – through the theoretical lens of globalization, localization, and glocalization. Based on a single-case study, the analysis documents that these different management control systems are affected differently by the processes of globalization and localization, some of which are universal throughout...

  12. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  13. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  14. The Water Quality in Rio Highlights the Global Public Health Concern Over Untreated Sewage Disposal

    Science.gov (United States)

    Water quality issues in Rio have been widely publicized because of the 2016 Olympics. Recent concerns about polluted waters that athletes may be exposed to highlights the conditions that more than a billion people globally are exposed to daily. Despite these unhealthy conditions,...

  15. Global dynamics of a reaction-diffusion system

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2011-02-01

    Full Text Available In this work the existence of a global attractor for the semiflow of weak solutions of a two-cell Brusselator system is proved. The method of grouping estimation is exploited to deal with the challenge in proving the absorbing property and the asymptotic compactness of this type of coupled reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. It is proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite. Moreover, the existence of an exponential attractor for this solution semiflow is shown.

  16. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  17. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  18. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  19. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  20. Seminar Investigation of the effect of anthropogenic factors on water systems

    International Nuclear Information System (INIS)

    2004-01-01

    The present CD contains 59 presentations, presented on the seminar Investigation of the anthropogenic factors effect on water systems, held in Bratislava, Slovakia, 23-24 April 2003. The content of this Proceedings is divided into thematic groups: Precipitation, Global Climatic Changes, Rainfall-runoff Modelling, design Values; Quality of Water in Water streams; River Basin Management; Water Retention in River Basins, Effect of Forests, Urban Areas, River Training; Hydraulic Modelling of Flood Flow, Flood Plain Areas, Flood Maps; Sediment Transport in relation with Flood Discharges; Diffuse Sources of Pollution, Point Sources in River Basin; Surface Water and Groundwater Interaction; GIS Utilization for Problem Solution. Water management indirectly influences by its activities the social and economic development of Slovakia. Water as raw material for drinking water production as well as vital liquid and raw material enter almost all manufacturing processes. But water become also a destructive element that hit different locations of Slovak territory and cause damages on people and live animals as well as material damages. In economic utilizing of water and handling water, drainage and treatment, the principle of minimising negative impacts on the environment must be exercised having in mind sustaining, in for the future generations.Water management is struggling with a number of problems at the moment. The project Investigation of the anthropogenic factors effect on water systems is aiming to solve the most important issues like are surface and subsurface run, retention capacity of river basin. quality of surface and ground water, water interaction and other

  1. Global Changes and Drivers of the Water Footprint of Food Consumption: A Historical Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2014-05-01

    Full Text Available Water is one of the most important limiting resources for food production. How much water is needed for food depends on the size of the population, average food consumption patterns and food production per unit of water. These factors show large differences around the world. This paper analyzes sub-continental dynamics of the water footprint of consumption (WFcons for the prevailing diets from 1961 to 2009 using data from the Food and Agriculture Organization (FAO. The findings show that, in most regions, the water needed to feed one person decreased even if diets became richer, because of the increase in water use efficiency in food production during the past half-century. The logarithmic mean Divisia index (LMDI decomposition approach is used to analyze the contributions of the major drivers of WFcons for food: population, diet and agricultural practices (output per unit of water. We compare the contributions of these drivers through different subcontinents, and find that population growth still was the major driver behind increasing WFcons for food until now and that potential water savings through agricultural practice improvements were offset by population growth and diet change. The changes of the factors mentioned above were the largest in most developing areas with rapid economic development. With the development of globalization, the international food trade has brought more and more water savings in global water use over time. The results indicate that, in the near future and in many regions, diet change is likely to override population growth as the major driver behind WFcons for food.

  2. PHYSICS UPDATE: The global positioning system

    Science.gov (United States)

    Walton, Alan J.; Black, Richard J.

    1999-01-01

    A hand-held global positioning system receiver displays the operator's latitude, longitude and velocity. Knowledge of GCSE-level physics will allow the basic principles of the system to be understood; knowledge of A-level physics will allow many important aspects of their implementation to be comprehended. A discussion of the system provides many simple numerical calculations relevant to school and first-year undergraduate syllabuses.

  3. Multiprocessor Global Scheduling on Frame-Based DVFS Systems

    OpenAIRE

    Berten, Vandy; Goossens, Joël

    2008-01-01

    International audience; In this work, we are interested in multiprocessor energy efficient systems where task durations are not known in advance but are known stochastically. More precisely we consider global scheduling algorithms for frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency Scaling) systems. Moreover we consider processors with a discrete set of available frequencies. We provide a global scheduling algorithm, and formally show that no deadline will ever be mi...

  4. Evaluation of global monitoring and forecasting systems at Mercator Océan

    Directory of Open Access Journals (Sweden)

    J.-M. Lellouche

    2013-01-01

    dynamic topography corrects local biases in the Indonesian Throughflow and in the western tropical Pacific. This improves also the subsurface currents at the Equator. The global systems give an accurate description of water masses almost everywhere. Between 0 and 500 m, departures from in situ observations rarely exceed 1 °C and 0.2 psu. The assimilation of an improved sea surface temperature product aims to better represent the sea ice concentration and the sea ice edge. The systems under development are still suffering from a drift which can only be detected by means of a 5-yr hindcast, preventing us from upgrading them in real time. This emphasizes the need to pursue research while building future systems for MyOcean2 forecasting.

  5. Terrestrial water flux responses to global warming in tropical rainforest areas

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  6. Flexible riser global analysis for very shallow water

    OpenAIRE

    Karegar, Sadjad

    2013-01-01

    Master's thesis in Offshore technology Flexible risers are widely used for a range of water depths and can accommodate large floater motions when using a buoyant system. A wide range of buoyancy solutions have been developed for very shallow water (e.g. 30-50 m), shallow water (e.g. 90-110 m) and semi-deep water (e.g. 300-400 m) and in the ranges between these depths. Flexible risers can have different configurations. These different solutions have different characteristics which influe...

  7. Evaluation of globally available precipitation data products as input for water balance models

    Science.gov (United States)

    Lebrenz, H.; Bárdossy, A.

    2009-04-01

    Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.

  8. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  9. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Science.gov (United States)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  10. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since ~ 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  11. Cesium, iodine and tritium in NW Pacific waters - a comparison of the Fukushima impact with global fallout

    DEFF Research Database (Denmark)

    Povinec, P. P.; Aoyama, M.; Biddulph, D.

    2013-01-01

    Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the Ka’imikai-o-Kanaloa ......Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the Ka......-derived radionuclides downward to the depth of 300m has already occurred. The observed 137Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport...... the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima...

  12. Studying the Impacts of Globalization on Iranian Education System

    Science.gov (United States)

    Chahardahcheriki, Mitra Abdolahi; Shahi, Sakine

    2012-01-01

    The purpose of this study is to analyze the degree of globalization of important indicators of education system in Iran including teaching approaches, educational tools and facilities, curriculums and contents, and education management. Findings suggest that the situation of Iranian education system has some distance with the globalized level and…

  13. Global Forecast System (GFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  14. Water balance creates a threshold in soil pH at the global scale

    Science.gov (United States)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  15. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    Science.gov (United States)

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  16. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  17. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  18. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  19. Four billion people facing severe water scarcity.

    Science.gov (United States)

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-02-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare.

  20. Evaluation of global water quality - the potential of a data- and model-driven analysis

    Science.gov (United States)

    Bärlund, Ilona; Flörke, Martina; Alcamo, Joseph; Völker, Jeanette; Malsy, Marcus; Kaus, Andrew; Reder, Klara; Büttner, Olaf; Katterfeld, Christiane; Dietrich, Désirée; Borchardt, Dietrich

    2016-04-01

    The ongoing socio-economic development presents a new challenge for water quality worldwide, especially in developing and emerging countries. It is estimated that due to population growth and the extension of water supply networks, the amount of waste water will rise sharply. This can lead to an increased risk of surface water quality degradation, if the wastewater is not sufficiently treated. This development has impacts on ecosystems and human health, as well as food security. The United Nations Member States have adopted targets for sustainable development. They include, inter alia, sustainable protection of water quality and sustainable use of water resources. To achieve these goals, appropriate monitoring strategies and the development of indicators for water quality are required. Within the pre-study for a 'World Water Quality Assessment' (WWQA) led by United Nations Environment Programme (UNEP), a methodology for assessing water quality, taking into account the above-mentioned objectives has been developed. The novelty of this methodology is the linked model- and data-driven approach. The focus is on parameters reflecting the key water quality issues, such as increased waste water pollution, salinization or eutrophication. The results from the pre-study show, for example, that already about one seventh of all watercourses in Latin America, Africa and Asia show high organic pollution. This is of central importance for inland fisheries and associated food security. In addition, it could be demonstrated that global water quality databases have large gaps. These must be closed in the future in order to obtain an overall picture of global water quality and to target measures more efficiently. The aim of this presentation is to introduce the methodology developed within the WWQA pre-study and to show selected examples of application in Latin America, Africa and Asia.

  1. How close do we live to water? A global analysis of population distance to freshwater bodies.

    Directory of Open Access Journals (Sweden)

    Matti Kummu

    Full Text Available Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water.

  2. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  3. Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns

    Science.gov (United States)

    Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide

    2018-04-01

    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual

  4. Historical effects of CO2 and climate trends on global crop water demand

    Science.gov (United States)

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  5. Case Study of Urban Water Distribution Networks Districting Management Based on Water Leakage Control

    OpenAIRE

    Wu, S.; Li, Xiaohong; Tang, S.; Zhou, Y.; Diao, K.

    2009-01-01

    Globally, water demand is rising and resources are diminishing. Most of the world's water systems have been highly successful in delivering high-quality water to large populations. However, most of these systems also incur a notable amount of loss in their operations. Water loss from the water supply system has long been a feature of operations management, even in the countries with a well-developed infrastructure and good operating practices. There is no doubt that the sustainable management...

  6. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  7. Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    NARCIS (Netherlands)

    Ward, P.J.; Strzepek, K.; Pauw, W.P.; Brander, L.M.; Hughes, G.; Aerts, J.C.J.M.

    2010-01-01

    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a

  8. The Global File System

    Science.gov (United States)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  9. Does borazine–water behave like benzene-water? A matrix isolation infrared and ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, P. [Department of Chemistry, Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab 140306 (India); Purdue University, West Lafayette, Indiana 47907 (United States); Verma, K.; Bawari, D.; Viswanathan, K. S., E-mail: vish@iisermohali.ac.in [Department of Chemistry, Indian Institute of Science Education and Research, Sector 81, Mohali, Punjab 140306 (India)

    2016-06-21

    Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–H of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.

  10. Does borazine–water behave like benzene-water? A matrix isolation infrared and ab initio study

    International Nuclear Information System (INIS)

    Mishra, P.; Verma, K.; Bawari, D.; Viswanathan, K. S.

    2016-01-01

    Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–H of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.

  11. El reto ético del agua | The Global Water Crisis’ ethical challenge

    Directory of Open Access Journals (Sweden)

    Pedro ARROJO

    2009-10-01

    Full Text Available El vigente modelo neoliberal de globalización, ajeno a los más elementales principios éticos, lejos de frenar la degradación ecológica, reducir los gradientes de riqueza y garantizar a los más pobres derechos fundamentales, como el acceso al agua potable, ha abierto al mercado la gestión de aguas como espacio de negocio, acelerando la depredación de los recursos hídricos y aumentando la vulnerabilidad de los más débiles. En síntesis, afrontamos una crisis global del agua que sin duda se agravará por efecto del cambio climático en curso si no se adoptan adecuadas políticas de adaptación que amortigüen la vulnerabilidad de la población, particularmente de las comunidades más pobres, ante los riesgos de sequía y de fuertes precipitaciones, que aumentarán en intensidad y frecuencia. Se requiere un nuevo enfoque ético, basado en principios de sostenibilidad, equidad y no-violencia. Nos encontramos ante la necesidad de promover una “Nueva Cultura del Agua” que recupere, desde la modernidad, la vieja sabiduría de culturas ancestrales que se basaba en la prudencia y en el respeto a la naturaleza. The neoliberal globalization design, alien to the most elementary ethical principles, far from slowing down the environmental degradation, reduce the wealth inequalities and guarantee fundamental right to the most poor, as the access to drinkable water, has open the water management to the market, as a business space, fostering then the water resources depredation and making weak people more vulnerable. In sum, we face a global water crisis that will get worse, mostly for vulnerable populations and particularly for the poorest communities, if the right politics of adaption are not adopted against droughts and rainfall that are going to be more intense and frequent. We need a new ethic scope, based on sustainability, equity and non violent principles. We face the need to promote a New Water Culture that recovers, from modernity, the

  12. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  13. Design and Implementation of Remotely Monitoring System for Total Dissolved Solid in Baghdad Drinking Water Networks

    Directory of Open Access Journals (Sweden)

    Hussein Abdul-Ridha Mohammed

    2018-01-01

    Full Text Available he pollution of drinking water is a dangerous problem for the whole world, it can threaten the health of people and as people in developed society attaches more importance to environmental protection, it is of great research significance to intelligently and remotely monitoring the environment. Therefore in this paper, a remote water monitoring system for Baghdad drinking water system is suggested. The proposed system consists of data sensing and monitoring nodes at different locations in Baghdad to sensing and analyzes the data. These nodes are periodically measured Total Dissolved Solids (TDS. In case of measured value above TDS threshold which is 500 ppm, then an automated warning message will be sent to authorize persons in the maintenance center via Global Position System to take the correct action. This suggested structure has several advantages over traditional monitoring systems in terms of price, portability, reliability, applicability and takes a sample from a water tap in easy and real-time approach.

  14. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  15. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    Science.gov (United States)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  16. TRMM and Its Connection to the Global Water Cycle

    Science.gov (United States)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  17. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Science.gov (United States)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  18. Measurement of Iodine-129 concentration in environmental water samples around Fukushima area - Role of river system in the global iodine cycle

    Science.gov (United States)

    Matsuzaki, Hiroyuki; Tokuyama, Hironori; Miyake, Yasuto; Honda, Maki; Yamagata, Takeyasu; Muramatsu, Yasuyuki

    2013-04-01

    According to Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, vast amount of radioactive nuclides including radioactive iodine were spilled out into the environment. There is no question about that detailed observation of distribution of radioactive nuclides and evaluation of the radiation exposure of residents is extremely important. On the other hand, from the view of an elemental dynamics in the environment, this event can be considered as a spike of the radioactive isotope. It is also the case for the iodine. A rare isotope Iodine-129 was widely distributed in a very short time by the FDNPP accident. Iodine-129 directly landing on the soil surface had been trapped in the upper layer of the soil and the depth profile should indicate the migration in and the interaction with the soil. If Iodine-129 was trapped in the woods, it seems to take rather longer time to landing on the ground. Either way, a certain portion of the Iodine-129 should be moving downward and finally washed out by the groundwater or river with a certain rate and transported into the sea. The concentration of Iodine-129 in environmental water samples taken from rivers and ponds are considered to reflect the iodine transportation process by the fluvial system. For the detailed discussion of the role of the fluvial system in the global iodine cycle, Iodine-129 concentration of various water samples collected from Fukushima area was measured by means of Accelerator Mass Spectrometry. The results ranged from 3E06 atoms/L to 3E09 atoms/L. Samples from Abukuma area (South West of FDNPP) showed lower concentration. On the other hand, samples collected from North West part (Iitate village and Minami Soma region) showed higher concentration (more than 1E8 atoms/L). Delayed enhancement of Iodine-129 concentration over a year in river systems surrounded by woods was also observed which is considered to correspond to the delayed release from the woods.

  19. A Global Analysis of the Relationship between Concentrations of Microcystins in Water and Fish

    Directory of Open Access Journals (Sweden)

    Natalie M. Flores

    2018-02-01

    Full Text Available Cyanobacteria, the primary bloom-forming organisms in fresh water, elicit a spectrum of problems in lentic systems. The most immediate concern for people and animals are cyanobacterial toxins, which have been detected at variable concentrations in water and fish around the world. Cyanotoxins can transfer through food webs, potentially increasing the risk of exposure to people who eat fish from affected waters, yet little is known about how cyanotoxins fluctuate in wild fish tissues. We collated existing studies on cyanotoxins in fish and fresh water from lakes around the world into a global dataset to test the hypothesis that cyanotoxin concentrations in fish increase with water toxin concentrations. We limited our quantitative analysis to microcystins because data on other cyanotoxins in fish were sparse, but we provided a qualitative summary of other cyanotoxins reported in wild, freshwater fish tissues. We found a positive relationship between intracellular microcystin in water samples and microcystin in fish tissues that had been analyzed by assay methods (enzyme-linked immunosorbent assay and protein phosphatase inhibition assay. We expected microcystin to be found in increasingly higher concentrations from carnivorous to omnivorous to planktivorous fishes. We found, however, that omnivores generally had the highest tissue microcystin concentrations. Additionally, we found contrasting results for the level of microcystin in different tissue types depending on the toxin analysis method. Because microcystin and other cyanotoxins have the potential to impact public health, our results underline the current need for comprehensive and uniform detection methods for the analysis of cyanotoxins in complex matrices.

  20. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  1. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    Science.gov (United States)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  2. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  3. Thinking Globally, Acting Locally: Using the Local Environment to Explore Global Issues.

    Science.gov (United States)

    Simmons, Deborah

    1994-01-01

    Asserts that water pollution is a global problem and presents statistics indicating how much of the world's water is threatened. Presents three elementary school classroom activities on water quality and local water resources. Includes a figure describing the work of the Global Rivers Environmental Education Network. (CFR)

  4. Strategies for improving water use efficiency of livestock production in rain-fed systems.

    Science.gov (United States)

    Kebebe, E G; Oosting, S J; Haileslassie, A; Duncan, A J; de Boer, I J M

    2015-05-01

    Livestock production is a major consumer of fresh water, and the influence of livestock production on global fresh water resources is increasing because of the growing demand for livestock products. Increasing water use efficiency of livestock production, therefore, can contribute to the overall water use efficiency of agriculture. Previous studies have reported significant variation in livestock water productivity (LWP) within and among farming systems. Underlying causes of this variation in LWP require further investigation. The objective of this paper was to identify the factors that explain the variation in LWP within and among farming systems in Ethiopia. We quantified LWP for various farms in mixed-crop livestock systems and explored the effect of household demographic characteristics and farm assets on LWP using ANOVA and multilevel mixed-effect linear regression. We focused on water used to cultivate feeds on privately owned agricultural lands. There was a difference in LWP among farming systems and wealth categories. Better-off households followed by medium households had the highest LWP, whereas poor households had the lowest LWP. The variation in LWP among wealth categories could be explained by the differences in the ownership of livestock and availability of family labor. Regression results showed that the age of the household head, the size of the livestock holding and availability of family labor affected LWP positively. The results suggest that water use efficiency could be improved by alleviating resource constraints such as access to farm labor and livestock assets, oxen in particular.

  5. A Life-cycle Approach to Improve the Sustainability of Rural Water Systems in Resource-Limited Countries

    Directory of Open Access Journals (Sweden)

    Nicholas Stacey

    2012-11-01

    Full Text Available A WHO and UNICEF joint report states that in 2008, 884 million people lacked access to potable drinking water. A life-cycle approach to develop potable water systems may improve the sustainability for such systems, however, a review of the literature shows that such an approach has primarily been used for urban systems located in resourced countries. Although urbanization is increasing globally, over 40 percent of the world’s population is currently rural with many considered poor. In this paper, we present a first step towards using life-cycle assessment to develop sustainable rural water systems in resource-limited countries while pointing out the needs. For example, while there are few differences in costs and environmental impacts for many improved rural water system options, a system that uses groundwater with community standpipes is substantially lower in cost that other alternatives with a somewhat lower environmental inventory. However, a LCA approach shows that from institutional as well as community and managerial perspectives, sustainability includes many other factors besides cost and environment that are a function of the interdependent decision process used across the life cycle of a water system by aid organizations, water user committees, and household users. These factors often present the biggest challenge to designing sustainable rural water systems for resource-limited countries.

  6. Development and application of a large scale river system model for National Water Accounting in Australia

    Science.gov (United States)

    Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien

    2017-04-01

    Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).

  7. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    KAUST Repository

    Laruelle, G. G.; Dü rr, H. H.; Lauerwald, R.; Hartmann, J.; Slomp, C. P.; Regnier, P. A. G.

    2012-01-01

    files. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.

  8. Climate change, livelihoods and the multiple determinants of water adequacy: two approaches at regional to global scale

    Science.gov (United States)

    Lissner, Tabea; Reusser, Dominik

    2015-04-01

    Inadequate access to water is already a problem in many regions of the world and processes of global change are expected to further exacerbate the situation. Many aspects determine the adequacy of water resources: beside actual physical water stress, where the resource itself is limited, economic and social water stress can be experienced if access to resource is limited by inadequate infrastructure, political or financial constraints. To assess the adequacy of water availability for human use, integrated approaches are needed that allow to view the multiple determinants in conjunction and provide sound results as a basis for informed decisions. This contribution proposes two parts of an integrated approach to look at the multiple dimensions of water scarcity at regional to global scale. These were developed in a joint project with the German Development Agency (GIZ). It first outlines the AHEAD approach to measure Adequate Human livelihood conditions for wEll-being And Development, implemented at global scale and at national resolution. This first approach allows viewing impacts of climate change, e.g. changes in water availability, within the wider context of AHEAD conditions. A specific focus lies on the uncertainties in projections of climate change and future water availability. As adequate water access is not determined by water availability alone, in a second step we develop an approach to assess the water requirements for different sectors in more detail, including aspects of quantity, quality as well as access, in an integrated way. This more detailed approach is exemplified at region-scale in Indonesia and South Africa. Our results show that in many regions of the world, water scarcity is a limitation to AHEAD conditions in many countries, regardless of differing modelling output. The more detailed assessments highlight the relevance of additional aspects to assess the adequacy of water for human use, showing that in many regions, quality and

  9. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    Science.gov (United States)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark

    2014-11-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  10. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  11. Using Systems Thinking to train future leaders in global health.

    Science.gov (United States)

    Paxton, Anne; Frost, Laura J

    2017-07-09

    Systems Thinking provides a useful set of concepts and tools that can be used to train students to be effective and innovative global health leaders in an ever-changing and often chaotic world. This paper describes an experiential, multi-disciplinary curriculum that uses Systems Thinking to frame and analyse global health policies and practices. The curriculum uses case studies and hands-on activities to deepen students' understanding of the following concepts: complex adaptive systems, dynamic complexity, inter-relationships, feedback loops, policy resistance, mental models, boundary critique, leverage points, and multi-disciplinary, multi-sectoral, and multi-stakeholder thinking and action. A sample of Systems Thinking tools for analysing global health policies and practices are also introduced.

  12. Power Watch - A global, open database of power plants that supports research on climate, water and air pollution impact of the global power sector.

    Science.gov (United States)

    Friedrich, J.; Kressig, A.; Van Groenou, S.; McCormick, C.

    2017-12-01

    Challenge The lack of transparent, accessible, and centralized power sector data inhibits the ability to research the impact of the global power sector. information gaps for citizens, analysts, and decision makers worldwide create barriers to sustainable development efforts. The need for transparent, accessible, and centralized information is especially important to enhance the commitments outlined in the recently adopted Paris Agreement and Sustainable Development Goals. Offer Power Watch will address this challenge by creating a comprehensive, open-source platform on the world's power systems. The platform hosts data on 85% of global installed electrical capacity and for each power plant will include data points on installed capacity, fuel type, annual generation, commissioning year, with more characteristics like emissions, particulate matter, annual water demand and more added over time. Most of the data is reported from national level sources, but annual generation and other operational characteristiscs are estimated via Machine Learning modeling and remotely sensed data when not officially reported. In addition, Power Watch plans to provide a suite of tools that address specific decision maker needs, such as water risk assessments and air pollution modeling. Impact Through open data, the platform and its tools will allow reserachers to do more analysis of power sector impacts and perform energy modeling. It will help catalyze accountability for policy makers, businesses, and investors and will inform and drive the transition to a clean energy future while reaching development targets.

  13. Global structure of a polynomial autonomous system on the plane

    International Nuclear Information System (INIS)

    Nguyen Van Chau.

    1991-10-01

    This note is to study the global behaviour of a polynomial autonomous system on the plane with divergence non-positive outside a bounded set. It is shown that in some certain conditions the global structure of such system can be simple. The main result here can be seen as an improvement of the result of Olech and Meister concerning with the global asymptotical stable conjecture of Markur and Yamable and the Jacobian Conjecture. (author). 13 refs

  14. Global quantum discord in multipartite systems

    Energy Technology Data Exchange (ETDEWEB)

    Rulli, C. C.; Sarandy, M. S. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)

    2011-10-15

    We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.

  15. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    Science.gov (United States)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  17. A global renewable energy system: A modelling exercise in ETSAP/TIAM

    DEFF Research Database (Denmark)

    Føyn, Tullik Helene Ystanes; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2011-01-01

    This paper aims to test the ETSAP2-TIAM global energy system model and to try out how far it can go towards a global 100% renewable energy system with the existing model database. This will show where limits in global resources are met and where limits in the data fed to the model until now are met...

  18. GRIN-Global: An International Project to Develop a Global Plant Genebank Information Management System

    Science.gov (United States)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  19. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2018-04-01

    Full Text Available Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5° sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants, livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US, eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at

  20. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  1. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  2. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  3. Effects of globalization on state budgeting system in Ukraine

    Directory of Open Access Journals (Sweden)

    Bobukh S.О.

    2017-06-01

    Full Text Available When writing the scientific article the scientific approaches of scientists concerning the essence of budgeting have been described. The paper deals with the principles of budgeting on the basis of which three main methodological components are singled out. It also analyzes the budgeting goals. The author investigates the impact of globalization on the system of state budgeting in Ukraine, its positive and negative effects. Despite significant achievements it is necessary to explore the effects of globalization on the system of state budgeting in Ukraine. Budgeting is the management technology that provides the formation of budgets for the selected objects and their use to ensure optimal structure and correlation of profits and expenses, income and expenditure, assets and liabilities of the organization or its components to achieve the set goals taking into account the influence of the environment. It should be emphasized that budgeting in no way replaces the control system, but only creates a new approach to management from the standpoint of the balance of incomes and expenditures, profits and expenses, assets and liabilities of the organization as a whole or its components. The state budgeting of the country as the part of the financial system is the channel through which economic globalization, namely financial globalization, affects economic development of the state. Favorable global effect occurs, in particular, in terms of the impact on financial development. Therefore, it is necessary to + the nature of the relationship between these two processes.

  4. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  5. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  6. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Directory of Open Access Journals (Sweden)

    F. Lun

    2018-01-01

    Full Text Available The application of phosphorus (P fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  7. A global and high-resolution assessment of the green, blue and grey water footprint of wheat

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2010-01-01

    The aim of this study is to estimate the green, blue and grey water footprint of wheat in a spatially-explicit way, both from a production and consumption perspective. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of

  8. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    Science.gov (United States)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  9. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use.

    Directory of Open Access Journals (Sweden)

    Junguo Liu

    Full Text Available Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term and the 2090s (long term, respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental but lower on smaller spatial scales (e.g., national and grid cell. Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security.

  10. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use

    Science.gov (United States)

    Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J. B.

    2013-01-01

    Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901

  11. Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    International Nuclear Information System (INIS)

    Ward, Philip J; Pauw, W Pieter; Brander, Luke M; Aerts, Jeroen C J H; Strzepek, Kenneth M; Hughes, Gordon A

    2010-01-01

    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a limited number of adaptation strategies, and apply the method using results of two climate models. In this paper, adaptation costs are defined as those for providing enough raw water to meet future industrial and municipal water demand, based on country-level demand projections to 2050. We first estimate costs for a baseline scenario excluding climate change, and then additional climate change adaptation costs. Increased demand is assumed to be met through a combination of increased reservoir yield and alternative backstop measures. Under such controversial measures, we project global adaptation costs of $12 bn p.a., with 83-90% in developing countries; the highest costs are in Sub-Saharan Africa. Globally, adaptation costs are low compared to baseline costs ($73 bn p.a.), which supports the notion of mainstreaming climate change adaptation into broader policy aims. The method provides a tool for estimating broad costs at the global and regional scale; such information is of key importance in international negotiations.

  12. Partial costs of global climate change adaptation for the supply of raw industrial and municipal water: a methodology and application

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Philip J; Pauw, W Pieter; Brander, Luke M; Aerts, Jeroen C J H [Institute for Environmental Studies (IVM), VU University Amsterdam (Netherlands); Strzepek, Kenneth M [Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, MA (United States); Hughes, Gordon A, E-mail: philip.ward@ivm.vu.nl [School of Economics, University of Edinburgh (United Kingdom)

    2010-10-15

    Despite growing recognition of the importance of climate change adaptation, few global estimates of the costs involved are available for the water supply sector. We present a methodology for estimating partial global and regional adaptation costs for raw industrial and domestic water supply, for a limited number of adaptation strategies, and apply the method using results of two climate models. In this paper, adaptation costs are defined as those for providing enough raw water to meet future industrial and municipal water demand, based on country-level demand projections to 2050. We first estimate costs for a baseline scenario excluding climate change, and then additional climate change adaptation costs. Increased demand is assumed to be met through a combination of increased reservoir yield and alternative backstop measures. Under such controversial measures, we project global adaptation costs of $12 bn p.a., with 83-90% in developing countries; the highest costs are in Sub-Saharan Africa. Globally, adaptation costs are low compared to baseline costs ($73 bn p.a.), which supports the notion of mainstreaming climate change adaptation into broader policy aims. The method provides a tool for estimating broad costs at the global and regional scale; such information is of key importance in international negotiations.

  13. Agile Data Management with the Global Change Information System

    Science.gov (United States)

    Duggan, B.; Aulenbach, S.; Tilmes, C.; Goldstein, J.

    2013-12-01

    We describe experiences applying agile software development techniques to the realm of data management during the development of the Global Change Information System (GCIS), a web service and API for authoritative global change information under development by the US Global Change Research Program. Some of the challenges during system design and implementation have been : (1) balancing the need for a rigorous mechanism for ensuring information quality with the realities of large data sets whose contents are often in flux, (2) utilizing existing data to inform decisions about the scope and nature of new data, and (3) continuously incorporating new knowledge and concepts into a relational data model. The workflow for managing the content of the system has much in common with the development of the system itself. We examine various aspects of agile software development and discuss whether or how we have been able to use them for data curation as well as software development.

  14. The use and re-use of unsustainably mined groundwater: A global budget

    Science.gov (United States)

    Grogan, D. S.; Prousevitch, A.; Wisser, D.; Lammers, R. B.; Frolking, S. E.

    2015-12-01

    Many of the world's major groundwater aquifers are rapidly depleting due to unsustainable groundwater pumping, while demand for food production - and therefore demand for irrigation water ­- is increasing. While it is likely that groundwater users will be impacted by the future's inevitable reduction in groundwater availability, there is a major gap in our understanding of potential impacts downstream of pumping sites. Due to inefficiencies in irrigation systems, significant amounts of abstracted groundwater become runoff, entering surface waters and flowing downstream to be re-abstracted and used again. In this study, we use a gridded water balance model to calculate the amount of unsustainably pumped groundwater that enters surface water systems by way of irrigation runoff, and quantify the additional irrigation water supplied by the re-use of this water. We assess the global budget of unsustainable groundwater sources and sinks, including downstream re-use, groundwater recharge, and flow to the oceans. Globally, we find that 80% of unsustainable groundwater is re-abstracted for irrigation either downstream or locally from groundwater recharge. This re-abstracted water contributes the water equivalent needed to irrigate 200,000 km2 of cropland globally. Including irrigation runoff reuse in an assessment of irrigation efficiency, we see that the traditional concept of irrigation efficiency (net irrigation/gross irrigation) significantly overestimates water "waste". We define a basin efficiency for unsustainable groundwater use that includes re-use, and see that while global irrigation efficiency is often estimated at 50%, global average unsustainable water use efficiency is > 60%. Losing this re-use resource by increasing irrigation efficiency does little to alleviate unsustainable groundwater demands.

  15. The global environment: An overview

    International Nuclear Information System (INIS)

    Tolba, M.K.

    1992-01-01

    Global environmental chemistry today involves a rapidly expanding need both for new research and for the development of an interdiciplinary approach to the multiplicity of interconnected environmental problems. Every ecosystem shows signs of damage: growing quantities of wastes; decreasing water supplies; soil degradation; coastal zone deterioration; deforestation and climatic change; global warming due to ozone depletion. Solutions must involve a cooperative and holistic global effort in three areas: scientific understanding of how the interactive physical, chemical and biological processes regulate the total Earth system; public policy implications including closer liaison between scientists and policymakers;and understanding of the state of the global environment, what is going wrong, why, and whether it is getting worse

  16. Regional scaling of annual mean precipitation and water availability with global temperature change

    Science.gov (United States)

    Greve, Peter; Gudmundsson, Lukas; Seneviratne, Sonia I.

    2018-03-01

    Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.

  17. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  18. Representation of deforestation impacts on climate, water, and nutrient cycles in the ACME earth system model

    Science.gov (United States)

    Cai, X.; Riley, W. J.; Zhu, Q.

    2017-12-01

    Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.

  19. Using Systems Thinking to Advance Global Health Engagement in Education and Practice.

    Science.gov (United States)

    Phillips, Janet M; Stalter, Ann M

    2018-04-01

    The integration of global health into nursing practice within complex systems requires a strategic approach. The System-Level Awareness Model (SAM) can be used to guide the process of enhancing systems thinking for global health. The purpose of this article is to explain the SAM and how to use it for integrating systems thinking into nursing education in academic, professional development, and continuing education settings to promote global health across the nursing continuum. Tips are provided on how to teach systems thinking for global health in nursing education and practice, consistent with continuing education national learning competencies for health care professionals. J Contin Educ Nurs. 2018;49(4):154-156. Copyright 2018, SLACK Incorporated.

  20. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  1. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  2. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    Science.gov (United States)

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  3. Global Positioning System: Political Support, Directions of Development, and Expectations

    Directory of Open Access Journals (Sweden)

    Krzysztof Czaplewski

    2015-06-01

    Full Text Available Over the last decade the Global Positioning System has become a global, multifunctional tool which provides services that are an integral part of U.S. national security as well as the security of other highly developed countries. Economic development, transport security as well as homeland security are important elements of the global economic infrastructure. In 2000 the United States acknowledged the growing significance of GPS for civilian users and stopped intentionally degrading accuracy for non-military signals that are known as “Selective Availability”. Since then, commercial applications of satellite systems have been proliferating even more rapidly, and therefore, their importance in everyday life has greatly increased. Currently, services that depend on information obtained from the Global Positioning System are the driving force behind economic growth, economic development and the improvement in life safety. This economic development would not be possible without the financial and political support of the US government to maintain the operation of the GPS system. Therefore it is important to have knowledge about the intentions of the US government how system GPS will be developed in the future. Decisions taken in the last 3 months are the subject of this article.

  4. A high resolution global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  5. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  6. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  7. Roundtable discussion on the Third Global Symposium on Health Systems Research

    DEFF Research Database (Denmark)

    Lazarus, Jeffrey V; Balabanova, Dina; Safreed-Harmon, Kelly

    2015-01-01

    Health systems experts from around the world discuss why they were meeting at the Third Global Symposium on Health Systems Research while people were dying of Ebola in West Africa.......Health systems experts from around the world discuss why they were meeting at the Third Global Symposium on Health Systems Research while people were dying of Ebola in West Africa....

  8. Mobility induces global synchronization of oscillators in periodic extended systems

    International Nuclear Information System (INIS)

    Peruani, Fernando; Nicola, Ernesto M; Morelli, Luis G

    2010-01-01

    We study the synchronization of locally coupled noisy phase oscillators that move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits wave-like states displaying local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical mobility above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by a shift in the relative size of attractor basins associated with wave-like states. Mobility disrupts these states and paves the way for the system to attain global synchronization.

  9. Globally asymptotically stable analysis in a discrete time eco-epidemiological system

    International Nuclear Information System (INIS)

    Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi

    2017-01-01

    Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.

  10. Global Forecast System (GFS) [0.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) is a weather forecast model produced by the National Centers for Environmental Prediction (NCEP). Dozens of atmospheric and...

  11. Estimation of the Carbon Footprint and Global Warming Potential in Rice Production Systems

    International Nuclear Information System (INIS)

    Dastan, S.; Soltani, F.; Noormohamadi, G.; Madani, H.; Yadi, R.

    2016-01-01

    Optimal management approaches can be adopted in order to increase crop productivity and lower the carbon footprint of grain products. The objective of this study was to estimate the carbon (C) footprint and global warming potential of rice production systems. In this experiment, rice production systems (including SRI, improved and conventional) were studied. All activities, field operations and data in production methods and at different input rates were monitored and recorded during 2012. Results showed that average global warming potential across production systems was equal to 2803.25 kg CO 2 -eq ha-1. The highest and least global warming potential were observed in the SRI and conventional systems, respectively. global warming potential per unit energy input was the least and most in SRI and conventional systems, respectively. Also, the SRI and conventional systems had the maximum and minimum global warming potential per unit energy output, respectively. SRI and conventional system had the greatest and least global warming potential per unit energy output, respectively. Therefore, the optimal management approach found in SRI resulted in a reduction in GHGs, global warming potential and the carbon footprint.

  12. How does ocean ventilation change under global warming?

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2007-01-01

    Full Text Available Since the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes, Northwest Atlantic, and parts of the Arctic Ocean become younger under global warming. This paper reconciles these apparently contradictory trends, showing that the decreases result from changes in the relative contributions of old deep waters and younger surface waters. Implications for the tropical oxygen minimum zones, which play a critical role in global biogeochemical cycling are considered in detail.

  13. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2007-06-01

    Full Text Available This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  14. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-06-01

    This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  15. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Science.gov (United States)

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  16. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water

    KAUST Repository

    Kim, Jung Eun

    2018-01-01

    A hybrid forward osmosis (FO) and reverse osmosis (RO)/nanofiltration (NF) system in a closed-loop operation with selected draw solutes was evaluated to treat coal mine impaired water. This study provides an insight of selecting the most suitable draw solution (DS) by conducting environmental and economic life cycle assessment (LCA). Baseline environmental LCA showed that the dominant components to energy use and global warming are the DS recovery processes (i.e. RO or NF processes) and FO membrane materials, respectively. When considering the DS replenishment in FO, the contribution of chemical use to the overall global warming impact was significant for all hybrid systems. Furthermore, from an environmental perspective, the FO-NF hybrid system with Na2SO4 shows the lowest energy consumption and global warming with additional considerations of final product water quality and FO brine disposal. From an economic perspective, the FO-NF with Na2SO4 showed the lowest total operating cost due to its lower DS loss and relatively low solute cost. In a closed-loop system, FO-NF with NaCl and Na2SO4 had the lowest total water cost at optimum NF recovery rates of 90 and 95%, respectively. FO-NF with Na2SO4 had the lowest environmental and economic impacts. Overall, draw solute performances and cost in FO and recovery rate in RO/NF play a crucial role in determining the total water cost and environmental impact of FO hybrid systems in a closed-loop operation.

  17. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  18. Securing the Global Airspace System Via Identity-Based Security

    Science.gov (United States)

    Ivancic, William D.

    2015-01-01

    Current telecommunications systems have very good security architectures that include authentication and authorization as well as accounting. These three features enable an edge system to obtain access into a radio communication network, request specific Quality-of-Service (QoS) requirements and ensure proper billing for service. Furthermore, the links are secure. Widely used telecommunication technologies are Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) This paper provides a system-level view of network-centric operations for the global airspace system and the problems and issues with deploying new technologies into the system. The paper then focuses on applying the basic security architectures of commercial telecommunication systems and deployment of federated Authentication, Authorization and Accounting systems to provide a scalable, evolvable reliable and maintainable solution to enable a globally deployable identity-based secure airspace system.

  19. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  20. Mediterranean Outflow Water dynamics during the past 570 kyr: Regional and global implications

    Science.gov (United States)

    Kaboth, Stefanie; de Boer, Bas; Bahr, André; Zeeden, Christian; Lourens, Lucas J.

    2017-06-01

    The Gulf of Cadiz constitutes a prime area to study teleconnections between the North Atlantic Ocean and climate change in the Mediterranean realm. In particular, the highly saline Mediterranean Outflow Water (MOW) is an important modulator of the North Atlantic salt budget on intermediate water levels. However, our understanding of its paleoceanographic evolution is poorly constrained due to the lack of high-resolution proxy records that predate the last glacial cycle. Here we present the first continuous and high-resolution ( 1 kyr) benthic δ18O and δ13C as well as grain size records from Integrated Ocean Drilling Program Site U1386 representing the last 570 kyr. We find three distinct phases of MOW variability throughout the Late to Middle Pleistocene at Site U1386 associated with prominent shifts in its composition and flow strength. We attribute this long-term variability to changes in water mass sourcing of the MOW. Superimposed on the long-term change in water mass sourcing is the occurrence of distinct and precession paced δ18O enrichment events, which contrast the pattern of global ice volume change as inferred from the global mean δ18O signal (i.e., LR04) but mimics that of the adjacent Mediterranean Sea. We attribute these enrichment events to a profound temperature reduction and salinity increases of the MOW, aligning with similar changes in the Mediterranean source region. These events might further signify ice volume increases as inferred from significant sea level drops recorded in the Red Sea and/or increased influence of North Atlantic intermediate water masses when MOW influence was absent at Site U1386.

  1. Global Water Issues and Insights

    OpenAIRE

    Grafton, Quentin R.; Wyrwoll, Paul; White , Chris; Allendes, David

    2014-01-01

    This book brings together some of the world’s leading water researchers with an especially written collection of chapters on: water economics; transboundary water; water and development; water and energy; and water concepts.

  2. Using global analysis models of water resources as an initial measure in management proposals concerning the artificial recharge of aquifers; Empleo de modelos de analisis global de recursos hidricos como primera actuacion a emprender en propuestas de gestion que contemplen operaciones de recarga artificial de acuiferos

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, J. M.; Navarro, J. A.

    2008-07-01

    This paper discusses artificial recharge not as an individual component disconnected from the other elements that make up a system of water resources, but as an integrated part of such a system, one that is interrelated with all the others, such that any action affecting a given element may affect the recharge operation, and vice versa. The methodology applied throughout this study is based on the technique of systems analysis, and makes use of the AQUATOOL software package with respect to assessing guarantees, water availability for the artificial recharge operation and the suitability of the host aquifer. The results obtained show that it is necessary, in the first place, to draw up a global model of water resources, incorporating all the elements that constitute the system; then, taking into account the results obtained, a viability analysis should be made of the artificial recharge operation, by means of a numerical model of the relevant parameters for the aquifer(s) in question. This model should specify in detail the infiltration operation proposed. If deemed appropriate, and either before or after drawing up the parameter model, a pilot artificial recharge plant can be constructed, so that a small-scale assay may be made of specific aspects of the artificial recharge; in any case, such a pilot plant should always be constructed after obtaining the global analysis model of water resources. The practical application described in this paper refers to the Quiebrajano-Viboras water exploitation system, which is located in the province of Jaen (Spain). (Author) 43 refs.

  3. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  4. The application of water poverty mapping in water management

    Directory of Open Access Journals (Sweden)

    Charles van der Vyver

    2012-07-01

    Full Text Available Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply water to people (Sullivan et al., 2005. Water resources will steadily decline because of population growth, pollution and expected climate change (Hemson et al., 2008. It has been estimated that the global demand for water doubles approximately every two decades (Meyer, 2007 and that water will even become as expensive as oil in the future (Holland, 2005. “In the year 2000, global water use was twice as high as it was in 1960” (Clarke and King, 2004:19. Unfortunately this trend is expected to continue. The aim of this paper is to describe how water poverty mapping as a process can be used to assist the management of our already scarce water resources. It constructs a water poverty map after which it describes its application at various management levels. The research indicates that the mapping process can be used to obtain more accurate predictions, as well as to form part of the master plan and integrated development plan documents. Keywords: Water management, water poverty mapping Disciplines: Water management, geographical information systems (GIS, poverty studies, decision support

  5. Integrationof Remote Sensing and Geographic information system in Ground Water Quality Assessment and Management

    Science.gov (United States)

    Shakak, N.

    2015-04-01

    Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.

  6. Sustaining Air Force Space Systems: A Model for the Global Positioning System

    National Research Council Canada - National Science Library

    Snyder, Don; Mills, Patrick; Comanor, Katherine; Roll, Jr, Charles R

    2007-01-01

    ... and sustainment affect the performance of space systems. In this monograph, we develop a pilot framework for analyzing these and related questions in the ground segment of the Global Positioning System and recommend steps for implementing this framework...

  7. Global assessment of exposure to faecal contamination through drinking water based on a systematic review.

    Science.gov (United States)

    Bain, Robert; Cronk, Ryan; Hossain, Rifat; Bonjour, Sophie; Onda, Kyle; Wright, Jim; Yang, Hong; Slaymaker, Tom; Hunter, Paul; Prüss-Ustün, Annette; Bartram, Jamie

    2014-08-01

    To estimate exposure to faecal contamination through drinking water as indicated by levels of Escherichia coli (E. coli) or thermotolerant coliform (TTC) in water sources. We estimated coverage of different types of drinking water source based on household surveys and censuses using multilevel modelling. Coverage data were combined with water quality studies that assessed E. coli or TTC including those identified by a systematic review (n = 345). Predictive models for the presence and level of contamination of drinking water sources were developed using random effects logistic regression and selected covariates. We assessed sensitivity of estimated exposure to study quality, indicator bacteria and separately considered nationally randomised surveys. We estimate that 1.8 billion people globally use a source of drinking water which suffers from faecal contamination, of these 1.1 billion drink water that is of at least 'moderate' risk (>10 E. coli or TTC per 100 ml). Data from nationally randomised studies suggest that 10% of improved sources may be 'high' risk, containing at least 100 E. coli or TTC per 100 ml. Drinking water is found to be more often contaminated in rural areas (41%, CI: 31%-51%) than in urban areas (12%, CI: 8-18%), and contamination is most prevalent in Africa (53%, CI: 42%-63%) and South-East Asia (35%, CI: 24%-45%). Estimates were not sensitive to the exclusion of low quality studies or restriction to studies reporting E. coli. Microbial contamination is widespread and affects all water source types, including piped supplies. Global burden of disease estimates may have substantially understated the disease burden associated with inadequate water services. © 2014 The Authors. Tropical Medicine and International Health published by John Wiley & Sons Ltd.

  8. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  9. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  10. Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks

    Directory of Open Access Journals (Sweden)

    Raphaëlle Sauzède

    2017-05-01

    Full Text Available A neural network-based method (CANYON: CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using a Neural-network was developed to estimate water-column (i.e., from surface to 8,000 m depth biogeochemically relevant variables in the Global Ocean. These are the concentrations of three nutrients [nitrate (NO3−, phosphate (PO43−, and silicate (Si(OH4] and four carbonate system parameters [total alkalinity (AT, dissolved inorganic carbon (CT, pH (pHT, and partial pressure of CO2 (pCO2], which are estimated from concurrent in situ measurements of temperature, salinity, hydrostatic pressure, and oxygen (O2 together with sampling latitude, longitude, and date. Seven neural-networks were developed using the GLODAPv2 database, which is largely representative of the diversity of open-ocean conditions, hence making CANYON potentially applicable to most oceanic environments. For each variable, CANYON was trained using 80 % randomly chosen data from the whole database (after eight 10° × 10° zones removed providing an “independent data-set” for additional validation, the remaining 20 % data were used for the neural-network test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE: 1.04 μmol kg−1 (NO3−, 0.074 μmol kg−1 (PO43−, 3.2 μmol kg−1 (Si(OH4, 0.020 (pHT, 9 μmol kg−1 (AT, 11 μmol kg−1 (CT and 7.6 % (pCO2 (30 μatm at 400 μatm. This was confirmed for the eight independent zones not included in the training process. CANYON was also applied to the Hawaiian Time Series site to produce a 22 years long simulated time series for the above seven variables. Comparison of modeled and measured data was also very satisfactory (RMSE in the order of magnitude of RMSE from validation test. CANYON is thus a promising method to derive distributions of key biogeochemical variables. It could be used for a variety of global and regional applications ranging from data quality control

  11. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  12. Real time global orbit feedback system for NSLS x-ray ring

    International Nuclear Information System (INIS)

    Yu, L.H.; Biscardi, R.; Bittner, J.; Fauchet, A.M.; Krinsky, F.S.; Nawrocky, R.J.; Rothman, J.; Singh, O.V.; Yang, K.M.

    1991-01-01

    We report on the design and commissioning of a real time harmonic global orbit feedback system for the NSLS X-ray ring. This system uses 8 pick-up electrode position monitors and 16 trim dipole magnets to eliminate 3 harmonic components of the orbit fluctuations. Because of the larger number of position monitors and trim magnets, the X-ray ring feedback system differs from the previously reported VUV ring system in that the Fourier analysis and harmonic generation networks are comprised of MDAC boards controlled by computer. The implementation of the global feedback system has resulted in a dramatic improvement of orbit stability, by more than a factor of five everywhere. Simultaneous operation of the global and several local bump feedback systems has been achieved. 4 refs., 5 figs

  13. Global aspects of classical integrable systems

    CERN Document Server

    Cushman, Richard H

    2015-01-01

    This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

  14. CHAOS THEORY, GLOBAL SYSTEMIC CHANGE, AND HYBRID WARS

    Directory of Open Access Journals (Sweden)

    A. Korybko

    2016-01-01

    Full Text Available The global system is being rocked by the dueling ambitions of two competing blocs, with the US and its allies fighting to reinforce their unipolar system while Russia and its partners struggle to forge a multipolar future. The rapidity and scope with which events are unfolding makes it overwhelming for the casual observer to make sense of all of the complex processes currently at play, and truth be told, it’s understandable that all of this can appear confusing. In an attempt to clarify the present state of global affairs and forecast the direction that it’s all headed in, the article begins by explaining the nature of chaos theory and describing how it’s applicable to conceptualizing contemporary international relations. Afterwards, the idea of “chaos sequencing” is proposed, which in essence is a model that can be used in understanding the process of chaotic change. Following that, the article addresses the topic of global systemic change and includes the most relevant examples for how this relates to the present day. Next, the research combines these two aforementioned elements (chaos theory and global systemic change and presents a forward-looking geopolitical analysis that incorporates cutting-edge Hybrid War theory and aims to put the New Cold War into its proper perspective. Finally, the article ends on a suggestive note in encouraging analysts to study the authors’ conceptualization of Hybrid War in order to better prepare themselves for understanding and responding to forthcoming international events.

  15. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    Science.gov (United States)

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  16. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    Science.gov (United States)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  17. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  18. Benefits of economic criteria for water scarcity management under global changes: insights from a large-scale hydroeconomic framework

    Science.gov (United States)

    Neverre, Noémie; Dumas, Patrice; Nassopoulos, Hypatia

    2016-04-01

    Global changes are expected to exacerbate water scarcity issues in the Mediterranean region in the next decades. In this work, we investigate the impacts of reservoirs operation rules based on an economic criterion. We examine whether can they help reduce the costs of water scarcity, and whether they become more relevant under future climatic and socioeconomic conditions. We develop an original hydroeconomic model able to compare future water supply and demand on a large scale, while representing river basin heterogeneity. On the demand side, we focus on the two main sectors of water use: the irrigation and domestic sectors. Demands are projected in terms of both quantity and economic value. Irrigation requirements are computed for 12 types of crops, at the 0.5° spatial resolution, under future climatic conditions (A1B scenario). The computation of the economic benefits of irrigation water is based on a yield comparison approach between rainfed and irrigated crops. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The economic value of domestic water is defined as the economic surplus. On the supply side, we evaluate the impacts of climate change on water inflows to the reservoirs. Operating rules of the reservoirs are set up using a parameterisation-simulation-optimisation approach. The objective is to maximise water benefits. We introduce prudential parametric rules in order to take into account spatial and temporal trade-offs. The methodology is applied to Algeria at the 2050 horizon. Overall, our results show that the supply-demand imbalance and its costs will increase in most basins under future climatic and socioeconomic conditions. Our results suggest that the benefits of operating rules based on economic criteria are not unequivocally increased with global changes: in some basins the positive impact of economic prioritisation is higher under future conditions

  19. Approaches to Building Global Strategic Deterrence System after 2021

    Directory of Open Access Journals (Sweden)

    Vitaliy V. Kabernik

    2016-01-01

    Full Text Available The article studies prospective for transformation of the current global deterrence system in 21st century, paying special attention to the structures of treaties past 2021. After the mainstay arms control treaty (New START expiration development of the new system of treaties and agreements seems inevitable, quite possibly, on multilateral basis. The hypothesis stressing possibility of multilateral deterrence system for global stability is quite popular nowadays. Studying the dynamics of nuclear arms cuts and monitoring progress on New START treaty, we can see numerous positive effects. However, the nuclear modernization programs currently in progress or planned for the near future should be taken into account for future agreements. This is when geospatialanalysis is important, demonstrating effectively which states are deterring each other and for which ones this is simply impossible because of the available weapons delivery range. This analysis is performed for three possible candidates for future multilateral treaties: USA, Russia and China, mentioning Great Britain and France as well. Going further into geospatial analysis, strategic ABM factor is accounted and the role of global ABM is estimated for future treaties. Numerical estimates of nuclear potentials of third countries - incomparable to the current numbers in possession of two main nuclear powers - performed specifically. Based on the analysis provided we can effectively deny the possibility of multilateral agreements for future deterrence scenarios. However, some steps for involving third countries into the global process of nuclear regulations can be outlined. This includes a number of bilateral agreements for arms control in certain regions, specifically developed to form a system of treaties aimed for global tensions reduction moving towards a safer world in the 21st century.

  20. Approaches to Building Global Strategic Deterrence System after 2021

    Directory of Open Access Journals (Sweden)

    Vitaliy V. Kabernik

    2016-01-01

    Full Text Available The article studies prospective for transformation of the current global deterrence system in 21 century, paying special attention to the structures of treaties past 2021. After the mainstay arms control treaty (New START expiration development of the new system of treaties and agreements seems inevitable, quite possibly, on multilateral basis. The hypothesis stressing possibility of multilateral deterrence system for global stability is quite popular nowadays. Studying the dynamics of nuclear arms cuts and monitoring progress on New START treaty, we can see numerous positive effects. However, the nuclear modernization programs currently in progress or planned for the near future should be taken into account for future agreements. This is when geospatialanalysis is important, demonstrating effectively which states are deterring each other and for which ones this is simply impossible because of the available weapons delivery range. This analysis is performed for three possible candidates for future multilateral treaties: USA, Russia and China, mentioning Great Britain and France as well. Going further into geospatial analysis, strategic ABM factor is accounted and the role of global ABM is estimated for future treaties. Numerical estimates of nuclear potentials of third countries - incomparable to the current numbers in possession of two main nuclear powers - performed specifically. Based on the analysis provided we can effectively deny the possibility of multilateral agreements for future deterrence scenarios. However, some steps for involving third countries into the global process of nuclear regulations can be outlined. This includes a number of bilateral agreements for arms control in certain regions, specifically developed to form a system of treaties aimed for global tensions reduction moving towards a safer world in the 21st century.

  1. Global Positioning System receiver evaluation results

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.

    1993-09-01

    A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.

  2. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  3. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  4. Precipitable water: Its linear retrieval using leaps and bounds procedure and its global distribution from SEASAT SMMR data

    Science.gov (United States)

    Pandey, P. C.

    1982-01-01

    Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.

  5. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  6. 'Earth system governance' as a crosscutting theme of global change research

    NARCIS (Netherlands)

    Biermann, F.

    2007-01-01

    In 2001, the four global change research programmes 'urgently' called for 'an ethical framework for global stewardship and strategies for Earth System management'. Yet this notion of 'earth system management' remains vaguely defined: It is too elusive for natural scientists, and too ambitious or too

  7. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  8. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  9. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  10. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  11. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  12. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  13. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    International Nuclear Information System (INIS)

    Tulbure, Mirela G; Broich, Mark; Kininmonth, Stuart

    2014-01-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999–2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  14. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  15. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  16. Global Combat Support System - Army Increment 2 (GCSS-A Inc 2)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Global Combat Support System - Army Increment 2 (GCSS-A Inc 2) Defense Acquisition...Secretary of Defense PB - President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be...Date Assigned: Program Information Program Name Global Combat Support System - Army Increment 2 (GCSS-A Inc 2) DoD Component Army Responsible

  17. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  18. Isotope tracers in global water and climate studies of the past and present

    International Nuclear Information System (INIS)

    Edwards, T.W.D.; Birks, S.J.; Gibson, J.J.

    2002-01-01

    To date the global distribution of isotopes in modern precipitation has been characterized almost exclusively from the IAEA/WMO GNIP database, although patchiness of GNIP station records in both time and space has limited the potential of isotope hydrology and climate applications in some areas. Herein, we discuss the prospect of utilizing GCMs for simulating global isotope distributions as a supplementary tool for modern and paleoclimate isotope studies to bridge this gap. Such models currently generate reliable zonal isotope fields, and it is anticipated that future enhancements in finescale resolution of GCMs, and incorporation of land-surface feedbacks and topography will allow for future development of a global reanalysis data set ground-truthed by GNIP. Compilation of time-slice maps of past isotope distribution in precipitation from archival records of meteoric waters also offers significant potential to ground-truth paleoclimate simulations extending back tens to hundreds of thousands of years. (author)

  19. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  20. The DIAS/CEOS Water Portal, distributed system using brokering architecture

    Science.gov (United States)

    Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki

    2015-04-01

    The DIAS/CEOS Water Portal is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) systems for data distribution for users including, but not limited to, scientists, decision makers and officers like river administrators. This portal has two main functions; one is to search and access data and the other is to register and share use cases which use datasets provided via this portal. This presentation focuses on the first function, to search and access data. The Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal itself does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Although some data centers have unique meta data format and/or data search protocols, our portal's brokering function enables users to search across various data centers at one time, like one-stop shopping. And this portal is also connected to other data brokering systems, including GEOSS DAB (Discovery and Access Broker). As a result, users can search over thousands of datasets, millions of files at one time. Our system mainly relies on the open source software GI-cat (http://essi-lab.eu/do/view/GIcat), Opensearch protocol and OPeNDAP protocol to enable the above functions. Details on how it works will be introduced during the