WorldWideScience

Sample records for global transient dynamics

  1. Transient global amnesia: emergency department evaluation and management [digest].

    Science.gov (United States)

    Faust, Jeremy Samuel; Nemes, Andreea; Zaurova, Milana

    2016-08-22

    Transient global amnesia is a clinically distinct syndrome characterized by the acute inability to form new memories. It can last up to 24 hours. The diagnosis is dependent on eliminating other more serious etiologies including toxic ingestions, acute strokes, complex partial seizures, and central nervous system infections. Transient global amnesia confers no known long-term risks; however, when abnormal signs or symptoms are present, they take precedence and guide the formulation of a differential diagnosis and investigation. In witnessed transient global amnesia with classic features, a minimalist approach is reasonable, avoiding overtesting, inappropriate medication, and medical interventions in favor of observation, ensuring patient safety, and reassuring patients and their families. This review provides a detailed framework for distinguishing transient global amnesia from its dangerous mimics and managing its course in the emergency department. [Points & Pearls is a digest of Emergency Medicine Practice].

  2. Scaling Laws in the Transient Dynamics of Firefly-like Oscillators

    International Nuclear Information System (INIS)

    Rubido, N; Cabeza, C; Marti, A; Ramirez Avila, G M

    2011-01-01

    Fireflies constitute a paradigm of pulse-coupled oscillators. In order to tackle the problems related to synchronisation transients of pulse-coupled oscillators, a Light-Controlled Oscillator (LCO) model is presented. A single LCO constitutes a one-dimensional relaxation oscillator described by two distinct time-scales meant to mimic fireflies in the sense that: it is capable of emitting light in a pulse-like fashion and detect the emitted by others in order to adjust its oscillation. We present dynamical results for two interacting LCOs in the torus for all possible coupling configurations. Transient times to the synchronous limit cycle are obtained experimentally and numerically as a function of initial conditions and coupling strengths. Scaling laws are found based on dimensional analysis and critical exponents calculated, thus, global dynamic is restricted. Furthermore, an analytical orthogonal transformation that allows to calculate Floquet multipliers directly from the time series is presented. As a consequence, local dynamics is also fully characterized. This transformation can be easily extended to a system with an arbitrary number of interacting LCOs.

  3. Transient cognitive dynamics, metastability, and decision making.

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2008-05-01

    Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.

  4. Transient global amnesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Spiegel DR

    2017-10-01

    Full Text Available David R Spiegel, Justin Smith, Ryan R Wade, Nithya Cherukuru, Aneel Ursani, Yuliya Dobruskina, Taylor Crist, Robert F Busch, Rahim M Dhanani, Nicholas Dreyer Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA Abstract: Transient global amnesia (TGA is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA. Keywords: transient global amnesia, vascular, migraines, psychiatric

  5. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  6. A parallel algorithm for transient solid dynamics simulations with contact detection

    International Nuclear Information System (INIS)

    Attaway, S.; Hendrickson, B.; Plimpton, S.; Gardner, D.; Vaughan, C.; Heinstein, M.; Peery, J.

    1996-01-01

    Solid dynamics simulations with Lagrangian finite elements are used to model a wide variety of problems, such as the calculation of impact damage to shipping containers for nuclear waste and the analysis of vehicular crashes. Using parallel computers for these simulations has been hindered by the difficulty of searching efficiently for material surface contacts in parallel. A new parallel algorithm for calculation of arbitrary material contacts in finite element simulations has been developed and implemented in the PRONTO3D transient solid dynamics code. This paper will explore some of the issues involved in developing efficient, portable, parallel finite element models for nonlinear transient solid dynamics simulations. The contact-detection problem poses interesting challenges for efficient implementation of a solid dynamics simulation on a parallel computer. The finite element mesh is typically partitioned so that each processor owns a localized region of the finite element mesh. This mesh partitioning is optimal for the finite element portion of the calculation since each processor must communicate only with the few connected neighboring processors that share boundaries with the decomposed mesh. However, contacts can occur between surfaces that may be owned by any two arbitrary processors. Hence, a global search across all processors is required at every time step to search for these contacts. Load-imbalance can become a problem since the finite element decomposition divides the volumetric mesh evenly across processors but typically leaves the surface elements unevenly distributed. In practice, these complications have been limiting factors in the performance and scalability of transient solid dynamics on massively parallel computers. In this paper the authors present a new parallel algorithm for contact detection that overcomes many of these limitations

  7. Complex dynamics and switching transients in periodically forced Filippov prey–predator system

    International Nuclear Information System (INIS)

    Tang, Guangyao; Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: •We develop a Filippov prey–predator model with periodic forcing. •The sliding mode dynamics and its domain have been investigated. •The existence and stability of sliding periodic solution have been discussed. •The complex dynamics are addressed through bifurcation analyses. •Switching transients and their biological implications have been discussed. - Abstract: By employing threshold policy control (TPC) in combination with the definition of integrated pest management (IPM), a Filippov prey–predator model with periodic forcing has been proposed and studied, and the periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. This study aims to address how the periodic forcing and TPC affect the pest control. To do this, the sliding mode dynamics and sliding mode domain have been addressed firstly by using Utkin’s equivalent control method, and then the existence and stability of sliding periodic solution are investigated. Furthermore, the complex dynamics including multiple attractors coexistence, period adding sequences and chaotic solutions with respect to bifurcation parameters of forcing amplitude and economic threshold (ET) have been investigated numerically in more detail. Finally the switching transients associated with pest outbreaks and their biological implications have been discussed. Our results indicate that the sliding periodic solution could be globally stable, and consequently the prey or pest population can be controlled such that its density falls below the economic injury level (EIL). Moreover, the switching transients have both advantages and disadvantages concerning pest control, and the magnitude and frequency of switching transients depend on the initial values of both populations, forcing amplitude and ET

  8. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  9. Transient Global Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    Richard Alan Rison

    2012-08-01

    Full Text Available Introduction: Transient global amnesia is a syndrome of temporary and reversible disruption of short-term memory accompanied by repetitive questioning. Although the etiology is unknown, the prognosis usually benign, and no particular treatment is required, it is important for all involved clinicians to recognize the diagnosis and possess knowledge about the evaluation of these affected patients. Case Presentation: A middle-aged Caucasian woman presented for neurologic evaluation for acute forgetfulness. Neurologic examination disclosed repetitive questioning with preserved orientation and no focal motor, speech, sensory, coordination, or cranial nerve deficits. Neurologic investigations did not reveal any pathologic findings. Her memory improved and reverted to normal baseline over the course of a 24-hour hospital stay. Conclusion: Transient global amnesia is an interesting syndrome of reversible anterograde amnesia associated with repetitive questioning that occurs with an unclear etiology in middle-aged and elderly individuals. Due clinical diligence is required in the investigation of these patients. Treatment is generally not required, and the condition usually does not recur. Clinicians, including neurologists, internists, family practice physicians, and psychiatrists, need awareness of this condition.

  10. Transient global amnesia after cerebral angiography still occurs: Case report and literature review

    DEFF Research Database (Denmark)

    Foss-Skiftesvik, Jon; Snoer, Agneta Henriette; Wagner, Aase

    2014-01-01

    Transient global amnesia is considered a very rare complication of diagnostic cerebral angiography, and has only been reported in a limited number of case reports more than 15 years ago. We describe a patient experiencing transient global amnesia following cerebral digital subtraction angiography....... While the condition by definition is self-limiting, its differential diagnoses may cause severe morbidity and/or mortality if left untreated. It is therefore important to build and maintain awareness of transient global amnesia as a possible complication of cerebral angiography....

  11. Hydrologic and radiative feedbacks on extratropical transient eddies: Implications of global warming

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.; Branscome, L.E.

    1994-01-01

    Atmospheric transient eddies contribute significantly to global energy and water cycles through their transports of sensible heat and water vapor. Changes in global climate induced by greenhouse enhancement will likely alter transient eddy behavior. General circulation models (GCMs) can simulate such alterations, but unraveling all the feedbacks that occur in GCMs is difficult

  12. Transient global amnesia after taking sibutramine: a case report.

    Science.gov (United States)

    Fu, Pin-Kuei; Hsu, Hung-Yi; Wang, Pao-Yu

    2010-03-01

    Sibutramine (Meridia in the United States, Reductil in Europe) is approved for weight reduction and weight maintenance. Although amnesia and seizure is listed as a reported adverse event of sibutramine in the US product information, our literature search in the PubMed website database found no published reports of theses adverse events. We report a 39-year-old healthy woman who had an episode of sudden memory loss lasting for several hours after taking sibutramine for 4 days. Cranial computed tomography scan, magnetic resonance imaging, and magnetic resonance angiography of the head all showed normal results. Electroencephalogram showed spike and wave complexes with phase reversal in the left mesial temporal area. Transient global amnesia was suspected clinically and transient epileptic amnesia provoked by sibutramine was also proposed. Three months after this episode, the follow-up electroencephalogram was normal. This patient did not take any anticonvulsant, and there were no more episodes of memory impairment. This case serves to emphasize that sibutramine which was used for weight reduction might induce transient global amnesia or provoke transient epileptic amnesia. Physicians should be careful to monitor for this adverse effect when sibutramine is prescribed.

  13. Transient dynamic crack propagation in gas pressurised pipelines

    International Nuclear Information System (INIS)

    Caldis, E.S.; Owen, D.R.J.; Taylor, C.

    1983-01-01

    The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)

  14. Perturbation analysis of transient population dynamics using matrix projection models

    DEFF Research Database (Denmark)

    Stott, Iain

    2016-01-01

    Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....

  15. Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators

    International Nuclear Information System (INIS)

    Sabarathinam, S.; Thamilmaran, K.

    2015-01-01

    Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented

  16. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  17. Global attractors and extinction dynamics of cyclically competing species.

    Science.gov (United States)

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  18. Belt conveyor dynamics in transient operation for speed control

    OpenAIRE

    He, D.; Pang, Y.; Lodewijks, G.

    2016-01-01

    Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are signifi...

  19. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  20. Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)

    2006-01-15

    This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)

  1. Study of a spur gear dynamic behavior in transient regime

    Science.gov (United States)

    Khabou, M. T.; Bouchaala, N.; Chaari, F.; Fakhfakh, T.; Haddar, M.

    2011-11-01

    In this paper the dynamic behavior of a single stage spur gear reducer in transient regime is studied. Dynamic response of the single stage spur gear reducer is investigated at different rotating velocities. First, gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. Then, the dynamic response is computed using the Newmark method. After that, a parameter study is made on spur gear powered in the first place by an electric motor and in the second place by four strokes four cylinders diesel engine. Dynamic responses come to confirm a significant influence of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition.

  2. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  3. A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)

  4. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  5. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  6. Transient Global Amnesia Associated With a Unilateral Infarction of the Fornix: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mihir eGupta

    2015-01-01

    Full Text Available Stroke is an extremely uncommon cause of transient global amnesia. Unilateral lesions of the fornix rarely cause amnesia and have not previously been reported to be associated with the distinctive amnesic picture of transient global amnesia. We describe the case of a 60-year-old woman who presented with acute onset, recent retrograde and anterograde amnesia characteristic of transient global amnesia. Serial magnetic resonance imaging showed a persistent focal infarction of the body and left column of the fornix, without acute lesions in the hippocampus or other structures. Amnesia resolved in 6 hours. Infarction of the fornix should thus be included in the differential diagnosis of transient global amnesia, as it changes the management of this otherwise self-limited syndrome.

  7. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  8. A new strategy for transient stability using augmented generator control and local dynamic braking

    Energy Technology Data Exchange (ETDEWEB)

    Dorsey, J; Jiang, H; Habetler, T [Georgia Inst. of Tech., Atlanta, GA (United States); Qu, Z [University of Central Florida, Orlando, FL (United States)

    1994-12-31

    A decentralized automatic control strategy for significantly improving the transient stability of a large power system is introduced. The strategy combines local dynamic braking and a straightforward augmentation of the existing turbine / governor control system that uses only local feedback. The brake resistor, which employs thick film, metal oxide technology, has no inductance and is of very low resistance, allowing its use during fault to show a generator`s acceleration. Simulation results using the 39 Bus New England system show that the strategy dramatically increases the global stability of a power system. (author) 15 refs., 7 figs., 1 tab.

  9. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  10. Global analysis of dynamical decision-making models through local computation around the hidden saddle.

    Directory of Open Access Journals (Sweden)

    Laura Trotta

    Full Text Available Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity.

  11. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  12. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    Science.gov (United States)

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  13. Numerical analysis of power system transients and dynamics

    CERN Document Server

    Ametani, Akihiro

    2015-01-01

    This book describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with other powerful simulation tools such as XTAP.

  14. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  15. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya; Walton, Jay; Gorb, Yuliya

    2008-01-01

    . In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem

  16. Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects

    Science.gov (United States)

    Misel, J. E.; Nenno, S. B.; Takahashi, D.

    1984-01-01

    A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads.

  17. Global thunderstorm activity estimation based on number of transients in ELF-band

    Science.gov (United States)

    Ondraskova, Adriena; Sevcik, Sebastian

    2017-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance. Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - October 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Criteria for the identification of the burst are chosen on the basis of the transient amplitudes and their morphological features. Monthly mean daily variations in number of transients showed that African focus dominates at 14 - 16 h UT and it is more active in comparison with Asian source, which dominates at 5 - 8 h UT in dependence on winter or summer month. American source had surprisingly slight response. Meteorological observations in South America aiming to determine lightning hotspots on the Earth indicate that flash rate in this region is greatest during nocturnal 0 h - 3 h local standard time. This fact may be interpreted that Asian and South American sources contribute together in the same UT. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in

  18. Transient global amnesia: neuropsychological dysfunction during attack and recovery in two "pure" cases.

    OpenAIRE

    Regard, M; Landis, T

    1984-01-01

    Two patients with transient global amnesia are reported. Comprehensive neuropsychological evaluation, during the amnesic episode, as well as follow-up examinations on memory were performed. The course of the amnesia was exemplified by two comparable memory tests in different modalities. Partial retrograde amnesia and complete anterograde amnesia were demonstrated during the transient episode. Objective recovery was found to be slower than subjectively experienced, but test performance was com...

  19. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  20. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Science.gov (United States)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  1. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  2. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  3. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  4. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  5. Transient global amnesia and neurological events: the Framingham Heart Study

    OpenAIRE

    Jose Rafael Romero; Jose Rafael Romero; Melissa eMercado; Alexa S Beiser; Alexa S Beiser; Alexa S Beiser; Aleksandra ePikula; Aleksandra ePikula; Sudha eSeshadri; Sudha eSeshadri; Margaret eKelly-Hayes; Philip A Wolf; Philip A Wolf; Carlos S Kase; Carlos S Kase

    2013-01-01

    Background/ objective: Transient global amnesia (TGA) is a temporary amnestic syndrome characterized by lack of other focal neurological deficits. Cerebrovascular disease, migraine and seizures have been suggested as underlying mechanisms. TGA may be a risk factor for cerebrovascular or other neurological events. We studied the relation of TGA, vascular risk factors, brain magnetic resonance imaging (MRI) indices of subclinical ischemia and neurological events in a community-based sample. Des...

  6. The dynamic behavior of the SUPER-PHENIX reactor under unprotected transient

    International Nuclear Information System (INIS)

    Gouriou, A.; Francillon, E.; Kayser, G.; Malenfer, G.; Languille, A.

    1982-01-01

    Due to design changes and progress on the knowledge of feed-back effects, a reactualization of the dynamic behavior of SUPER-PHENIX under unprotected transients was undertaken. We present the main data on feed-back characteristics and the results of dynamic calculations. With the present state of knowledge, the former conclusion is confirmed: the dynamic evolution is very slow and no irreversible phenomena happen in the short term

  7. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane

    Science.gov (United States)

    Gerber, Brian D.; Kendall, William L.

    2016-01-01

    The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.

  8. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  9. Probing carrier dynamics of individual layers in a heterostructure using transient reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Singh, Asha; Yogi, Rachana; Chari, Rama [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-09-21

    We report the wavelength dependent transient reflectivity measurements in AlGaAs-GaAs heterostructures having two-dimensional electron (or hole) gas near the interface. Using a multilayer model for transient reflectivity, we show that the magnitude and sign of contributions from the carriers in two-dimensional electron (or hole) gas and GaAs to the total signal depends on the wavelength. Further, it has been shown that it is possible to study the carrier dynamics in a given layer of a heterostructure by performing transient reflectivity at specific wavelengths.

  10. Probing carrier dynamics of individual layers in a heterostructure using transient reflectivity

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Singh, Asha; Yogi, Rachana; Chari, Rama

    2015-01-01

    We report the wavelength dependent transient reflectivity measurements in AlGaAs-GaAs heterostructures having two-dimensional electron (or hole) gas near the interface. Using a multilayer model for transient reflectivity, we show that the magnitude and sign of contributions from the carriers in two-dimensional electron (or hole) gas and GaAs to the total signal depends on the wavelength. Further, it has been shown that it is possible to study the carrier dynamics in a given layer of a heterostructure by performing transient reflectivity at specific wavelengths

  11. Experimental investigation of transient thermoelastic effects in dynamic fracture

    International Nuclear Information System (INIS)

    Rittel, D.

    1997-01-01

    Thermoelastic effects in fracture are generally considered to be negligible at the benefit of the conversion of plastic work into heat. For the case of dynamic crack initiation, the experimental and theoretical emphasis has been put on the temperature rise associated with crack-tip plasticity. Nevertheless, earlier experimental work with polymers has shown that thermoelastic cooling precedes the temperature rise at the tip of a propagating crack (Fuller et al., 1975). Transient thermoelastic effects at the tip of a dynamically loaded crack have been theoretically assessed and shown to be significant when thermal conductivity is initially neglected. However, the fundamental question of the relation between crack initiation and thermal fields, both of transient nature, is still open. In this paper, we present an experimental investigation of the thermoelastic effect at the tip of fatigue cracks subjected to mixed-mode (dominant mode 1) dynamic loading. The material is commercial polymethylmethacrylate as an example of 'brittle' material. The applied loads, crack-tip temperatures and fracture time are simultaneously monitored to provide a more complete image of dynamic crack initiation. The corresponding evolution of the stress intensity factors is calculated by a hybrid-experimental numerical model. The results show that substantial crack-tip cooling develops initially to an extent which corroborates theoretical estimates. This effect is followed by a temperature rise. Fracture is shown to initiate during the early cooling phase, thus emphasizing the relevance of the phenomenon to dynamic crack initiation in this material as probably in other materials. (author)

  12. Transient Dynamics Analysis of The Reachstacker Speader Based On ANSYS

    Directory of Open Access Journals (Sweden)

    Shu Yu Feng

    2016-01-01

    Full Text Available Reachstacker is an indispensable handling machinery, it will inevitably lead to unbalanced force at the job site. This paper does transient dynamics analysis for the spreader mechanism, which is one of the most significance key components. We get dynamic response of the spreader in lifting instant, results not only provide a reference for designers to understand the mechanical characteristics of spreader comprehensively, but also bedding for the future research.

  13. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  14. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  15. General purpose dynamic Monte Carlo with continuous energy for transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)

    2012-07-01

    For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)

  16. Signal classification using global dynamical models, Part I: Theory

    International Nuclear Information System (INIS)

    Kadtke, J.; Kremliovsky, M.

    1996-01-01

    Detection and classification of signals is one of the principal areas of signal processing, and the utilization of nonlinear information has long been considered as a way of improving performance beyond standard linear (e.g. spectral) techniques. Here, we develop a method for using global models of chaotic dynamical systems theory to define a signal classification processing chain, which is sensitive to nonlinear correlations in the data. We use it to demonstrate classification in high noise regimes (negative SNR), and argue that classification probabilities can be directly computed from ensemble statistics in the model coefficient space. We also develop a modification for non-stationary signals (i.e. transients) using non-autonomous ODEs. In Part II of this paper, we demonstrate the analysis on actual open ocean acoustic data from marine biologics. copyright 1996 American Institute of Physics

  17. Excited-state dynamics of a ruthenium(II) catalyst studied by transient photofragmentation in gas phase and transient absorption in solution

    Energy Technology Data Exchange (ETDEWEB)

    Imanbaew, D.; Nosenko, Y. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Kerner, C. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Chevalier, K.; Rupp, F. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Riehn, C., E-mail: riehn@chemie.uni-kl.de [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany); Thiel, W.R. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Diller, R. [Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern (Germany)

    2014-10-17

    Graphical abstract: - Highlights: • Ultrafast dynamics of new Ru(II) catalysts investigated in gas phase and solution. • Catalyst activation (HCl loss) achieved in ion trap by UV photoexcitation. • Electronic relaxation proceeds by IVR and IC followed by ground state dissociation. • No triplet formation in contrast to other Ru-polypyridine complexes. • Solvent prohibits catalyst activation in solution by fast vibrational cooling. - Abstract: We report studies on the excited state dynamics of new ruthenium(II) complexes [(η{sup 6}-cymene)RuCl(apypm)]PF{sub 6} (apypm=2-NR{sub 2}-4-(pyridine-2-yl)-pyrimidine, R=CH{sub 3} (1)/H (2)) which, in their active form [1{sup +}-HCl] and [2{sup +}-HCl], catalyze the transfer hydrogenation of arylalkyl ketones in the absence of a base. The investigations encompass femtosecond pump–probe transient mass spectrometry under isolated conditions and transient absorption spectroscopy in acetonitrile solution, both on the cations [(η{sup 6}-cymene)RuCl(apypm)]{sup +} (1{sup +}, 2{sup +}). Gas phase studies on mass selected ions were performed in an ESI ion trap mass spectrometer by transient photofragmentation, unambiguously proving the formation of the activated catalyst species [1{sup +}-HCl] or [2{sup +}-HCl] after photoexcitation being the only fragmentation channel. The primary excited state dynamics in the gas phase could be fitted to a biexponential decay, yielding time constants of <100 fs and 1–3 ps. Transient absorption spectroscopy performed in acetonitrile solution using femtosecond UV/Vis and IR probe laser pulses revealed additional deactivation processes on longer time scales (∼7–12 ps). However, the formation of the active catalyst species after photoexcitation could not be observed in solution. The results from both studies are compared to former CID investigations and DFT calculations concerning the activation mechanism.

  18. Transients drive the demographic dynamics of plant populations in variable environments

    DEFF Research Database (Denmark)

    McDonald, Jenni L; Stott, Iain; Townley, Stuart

    2016-01-01

    clear patterns related to growth form. We find a surprising tendency for plant populations to boom rather than bust in response to temporal changes in vital rates and that stochastic growth rates increase with increasing tendency to boom. Synthesis. Transient dynamics contribute significantly...

  19. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    International Nuclear Information System (INIS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-01-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.

  20. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2016-04-15

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.

  1. Transient dynamic and inelastic analysis of shells of revolution

    International Nuclear Information System (INIS)

    Svalbonas, V.

    1975-01-01

    Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that, therefore, such analyses are prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if however, the user needs only to analyze structures falling into limited categories, he may find that a variety of smaller special purpose programs are available, which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs will concentrate upon the analytical tools which have been developed predominantly for shells of revolution. The survey will be subdivided into three parts: a) consideration of programs for transient dynamic analysis, b) consideration of programs for inelastic analysis, and finally, c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods will be considered. The programs will be compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems will be utilized to exemplify the state-of-the-art. (orig.) [de

  2. Sleep modifications in acute transient global amnesia.

    Science.gov (United States)

    Della Marca, Giacomo; Mazza, Marianna; Losurdo, Anna; Testani, Elisa; Broccolini, Aldobrando; Frisullo, Giovanni; Marano, Giuseppe; Morosetti, Roberta; Pilato, Fabio; Profice, Paolo; Vollono, Catello; Di Lazzaro, Vincenzo

    2013-09-15

    Transient global amnesia (TGA) is a temporary memory loss characterized by an abrupt onset of antero-grade and retrograde amnesia, totally reversible. Since sleep plays a major role in memory consolidation, and in the storage of memory-related traces into the brain cortex, the aims of the present study were: (1) to evaluate changes in sleep macro-structure in TGA; (2) to assess modifications in sleep micro-structure in TGA, with particular reference to the arousal EEG and to cyclic alternating pattern (CAP); (3) to compare sleep parameters in TGA patients with a control group of patients with acute ischemic events ("minor stroke" or transient ischemic attack [TIA]) clinically and neuroradiologically "similar" to the TGA. TGA GROUP: 17 patients, (8 men and 9 women, 60.2 ± 12.5 years). Stroke or TIA (SoT) group: 17 patients hospitalized in the Stroke Unit for recent onset of minor stroke or TIA with hemispheric localization; healthy controls (HC) group: 17 healthy volunteers, matched for age and sex. Patients and controls underwent full-night polysomnography. In the multivariate analysis (conditions TGA, SoT, and HC) a significant effect of the condition was observed for sleep efficiency index, number of awakenings longer 1 min, REM latency, CAP time, and CAP rate. TGA and SoT differed only for CAP time and CAP rate, which were lower in the TGA group. Microstructural modification associated with tga could be consequent to: (1) hippocampal dysfunction and memory impairment; (2) impairment of arousal-related structures (in particular, cholinergic pathways); (3) emotional distress.

  3. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  4. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  5. Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions

    Science.gov (United States)

    Chu, Chia-Chi

    A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are

  6. Diffusion magnetic resonance imaging in transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)

    2009-03-15

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  7. Diffusion magnetic resonance imaging in transient global amnesia

    International Nuclear Information System (INIS)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de

    2009-01-01

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  8. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  9. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    Science.gov (United States)

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  10. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Chu Ketan

    2012-04-01

    Full Text Available Abstract Background Neuroinflammation plays an important role in cerebral ischemia/reperfusion (I/R injury. The P2X7 receptor (P2X7R has been reported to be involved in the inflammatory response of many central nervous system diseases. However, the role of P2X7Rs in transient global cerebral I/R injury remains unclear. The purpose of this study is to determine the effects of inhibiting the P2X7R in a rat model of transient global cerebral I/R injury, and then to explore the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury. Methods Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG, adenosine 5′-triphosphate-2′,3′-dialdehyde (OxATP or A-438079, 20 minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1 region was observed using H & E staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling TUNEL. In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β, TNF-α and IL-6, and to identify activated microglia and astrocytes. Results The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10 μg and A-0438079 (3 μg, and a low dosage of OxATP (1 μg significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, and glial activation and inflammatory cytokine overexpression in the hippocampus. Conclusions Our study indicates that inhibiting P2X7Rs protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of

  11. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  12. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya

    2008-11-01

    A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.

  13. A neural model for transient identification in dynamic processes with 'don't know' response

    International Nuclear Information System (INIS)

    Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto

    2003-01-01

    This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation

  14. Dynamic remedial action scheme using online transient stability analysis

    Science.gov (United States)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  15. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    Science.gov (United States)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  16. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite

    Science.gov (United States)

    Garipov, G. K.; Khrenov, B. A.; Klimov, P. A.; Klimenko, V. V.; Mareev, E. A.; Martines, O.; Mendoza, E.; Morozenko, V. S.; Panasyuk, M. I.; Park, I. H.; Ponce, E.; Rivera, L.; Salazar, H.; Tulupov, V. I.; Vedenkin, N. N.; Yashin, I. V.

    2013-01-01

    Light detectors sensitive to wavelength ranges 240-400 nm and beyond 610 nm (which we refer to, for simplicity, as the UV and Red bands) on board Universitetsky-Tatiana-2 satellite have detected transient flashes in the atmosphere of duration 1-128 ms. Measured ratio of the number of Red photons to the number of UV photons indicates that source of transient radiation is at high atmosphere altitude (>50 km). Distribution of events with various photon numbers Qa in the atmosphere found to be different for "luminous" events Qa = 1023 - 1026 (with exponent of differential distribution -2.2) and for "faint" events Qa = 1021 - 1023 (with exponent - 0.97). Luminous event parameters (atmosphere altitude, energy released to radiation, and temporal profiles) are similar to observed elsewhere parameters of transient luminous events (TLE) of elves, sprites, halo, and gigantic blue jets types. Global map of luminous events demonstrates concentration to equatorial zones (latitudes 30°N to 30°S) above continents. Faint events (with number of photons Qa = 1020 - 5ṡ 1021) are distributed more uniformly over latitudes and longitudes. Phenomenon of series of transients registered every minute along satellite orbit (from 3 to 16 transients in one series) was observed. Most TLE-type events belonged to series. Single transients are in average fainter than serial ones. Some transients belonging to series occurs far away of thunderstorm regions. Origin of faint single transients is not clear; several hypothetical models of their production are discussed.

  17. Transient Response Analysis of Metropolis Learning in Games

    KAUST Repository

    Jaleel, Hassan

    2017-10-19

    The objective of this work is to provide a qualitative description of the transient properties of stochastic learning dynamics like adaptive play, log-linear learning, and Metropolis learning. The solution concept used in these learning dynamics for potential games is that of stochastic stability, which is based on the stationary distribution of the reversible Markov chain representing the learning process. However, time to converge to a stochastically stable state is exponential in the inverse of noise, which limits the use of stochastic stability as an effective solution concept for these dynamics. We propose a complete solution concept that qualitatively describes the state of the system at all times. The proposed concept is prevalent in control systems literature where a solution to a linear or a non-linear system has two parts, transient response and steady state response. Stochastic stability provides the steady state response of stochastic learning rules. In this work, we study its transient properties. Starting from an initial condition, we identify the subsets of the state space called cycles that have small hitting times and long exit times. Over the long time scales, we provide a description of how the distributions over joint action profiles transition from one cycle to another till it reaches the globally optimal state.

  18. Transient Response Analysis of Metropolis Learning in Games

    KAUST Repository

    Jaleel, Hassan; Shamma, Jeff S.

    2017-01-01

    The objective of this work is to provide a qualitative description of the transient properties of stochastic learning dynamics like adaptive play, log-linear learning, and Metropolis learning. The solution concept used in these learning dynamics for potential games is that of stochastic stability, which is based on the stationary distribution of the reversible Markov chain representing the learning process. However, time to converge to a stochastically stable state is exponential in the inverse of noise, which limits the use of stochastic stability as an effective solution concept for these dynamics. We propose a complete solution concept that qualitatively describes the state of the system at all times. The proposed concept is prevalent in control systems literature where a solution to a linear or a non-linear system has two parts, transient response and steady state response. Stochastic stability provides the steady state response of stochastic learning rules. In this work, we study its transient properties. Starting from an initial condition, we identify the subsets of the state space called cycles that have small hitting times and long exit times. Over the long time scales, we provide a description of how the distributions over joint action profiles transition from one cycle to another till it reaches the globally optimal state.

  19. Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn

    2016-09-16

    For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.

  20. Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems

    International Nuclear Information System (INIS)

    Kang, Yan-Mei

    2016-01-01

    For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.

  1. Temporal frequency probing for 5D transient analysis of global light transport

    KAUST Repository

    O'Toole, Matthew

    2014-07-27

    We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, determined by the set of all light transport paths through the scene and the time delays they induce. The underlying 3D-to-3D transformation encodes scene geometry and global transport in great detail, but individual transport components (e.g., direct reflections, inter-reflections, caustics, etc.) are coupled nontrivially in both space and time. To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

  2. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo

    2004-01-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:±5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8±2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA

  3. SPM analysis and cognitive dysfunctions in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Yun, Go Un; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Donga University, Busan (Korea, Republic of)

    2004-07-01

    Transient global amnesia (TGA) is known as a disease of benign nature characterized with clinically transient global antegrade amnesia and a variable degree of global retrograde memory impairment, but it usually resolved within 24 hours. The aims of this study are to assess the alterations in regional cerebral blood flow (rCBF) by Tc-99m HMPAO SPECT imaging with statistical parametric mapping (SPM) analysis and to verify the cognitive deficits by neuropsychological test in TGA patients. Twelve patients with TGA and age-matched normal control subjects participated in this study. Tc-99m HMPAO SPECT was performed within 1 to 19 days (mean duration: 7.3:{+-}5.2 days) after the events to measure the rCBF. SPECT images were analyzed using SPM (SPM99) with Matlab 5.3. Seoul Neuropsychological Screening Battery test was also done within 2 to 8 days (mean duration 3.8{+-}2.2 days) for cognitive functions in 8 of 12 patients with TGA. The SPM analysis of SPECT images showed significantly decreased rCBF in the left inferior frontal gyrus (Brodmann area 9), the left supramarginal gyrus (Brodmann area 40), the left postcentral gyrus (Brodmann area 40) and the left precentral gyrus (Brodmann area 4) in patients with TGA (uncorrected p<0.01). Neuropsychological test findings represented that several cognitive functions. such as, verbal memory, visual memory, phonemic fluency and confrontational naming, were impaired in patients with TGA compared with normal control. Additionally, on SPM analysis, we found lesions of hyperperfusion in contralateral cerebral hemisphere. Our study shows perfusion deficits in the left cerebral hemisphere in patients with TGA and several cognitive dysfunctions. And we found after clinical symptoms were completely resolved, the lesions of hypoperfusion were still remained. We found that functional quantitative neuroimaging study and neuropsychological test are useful to understand underlying pathomachanism of TGA.

  4. Low latitude ionospheric TEC responses to dynamical complexity quantifiers during transient events over Nigeria

    Science.gov (United States)

    Ogunsua, Babalola

    2018-04-01

    In this study, the values of chaoticity and dynamical complexity parameters for some selected storm periods in the year 2011 and 2012 have been computed. This was done using detrended TEC data sets measured from Birnin-Kebbi, Torro and Enugu global positioning system (GPS) receiver stations in Nigeria. It was observed that the significance of difference (SD) values were mostly greater than 1.96 but surprisingly lower than 1.96 in September 29, 2011. The values of the computed SD were also found to be reduced in most cases just after the geomagnetic storm with immediate recovery a day after the main phase of the storm while the values of Lyapunov exponent and Tsallis entropy remains reduced due to the influence of geomagnetic storms. It was also observed that the value of Lyapunov exponent and Tsallis entropy reveals similar variation pattern during storm period in most cases. Also recorded surprisingly were lower values of these dynamical quantifiers during the solar flare event of August 8th and 9th of the year 2011. The possible mechanisms responsible for these observations were further discussed in this work. However, our observations show that the ionospheric effects of some other possible transient events other than geomagnetic storms can also be revealed by the variation of chaoticity and dynamical complexity.

  5. Geography of Global Forest Carbon Stocks & Dynamics

    Science.gov (United States)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  6. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  7. The joy of transient chaos

    Energy Technology Data Exchange (ETDEWEB)

    Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  8. The joy of transient chaos.

    Science.gov (United States)

    Tél, Tamás

    2015-09-01

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  9. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  10. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  11. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    Science.gov (United States)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  12. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  13. Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps

    Directory of Open Access Journals (Sweden)

    Giorgio Mancini

    2014-08-01

    Full Text Available To satisfy the increasingly stringent emission regulations and a demand for an ever lower fuel consumption, diesel engines have become complex systems with many interacting actuators. As a consequence, these requirements are pushing control and calibration to their limits. The calibration procedure nowadays is still based mainly on engineering experience, which results in a highly iterative process to derive a complete engine calibration. Moreover, automatic tools are available only for stationary operation, to obtain control maps that are optimal with respect to some predefined objective function. Therefore, the exploitation of any leftover potential during transient operation is crucial. This paper proposes an approach to derive a transient feedforward (FF control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. A partially physics-based model is thereby used to replace the engine. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient. These maps complement the static control maps by accounting for the dynamic behavior of the engine. The procedure is implemented on a real engine and experimental results are presented along with the development of the methodology.

  14. Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption

    NARCIS (Netherlands)

    Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.

    2003-01-01

    The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a

  15. Curing dynamics of photopolymers measured by single-shot heterodyne transient grating method.

    Science.gov (United States)

    Arai, Mika; Fujii, Tomomi; Inoue, Hayato; Kuwahara, Shota; Katayama, Kenji

    2013-01-01

    The heterodyne transient grating (HD-TG) method was first applied to the curing dynamics measurement of photopolymers. The curing dynamics for various monomers including an initiator (2.5 vol%) was monitored optically via the refractive index change after a single UV pulse irradiation. We could obtain the polymerization time and the final change in the refractive index, and the parameters were correlated with the viscosity, molecular structure, and reaction sites. As the polymerization time was longer, the final refractive change was larger, and the polymerization time was explained in terms of the monomer properties.

  16. Transient global amnesia and functional retrograde amnesia: contrasting examples of episodic memory loss.

    OpenAIRE

    Kritchevsky, M; Zouzounis, J; Squire, L R

    1997-01-01

    We studied 11 patients with transient global amnesia (TGA) and ten patients with functional retrograde amnesia (FRA). Patients with TGA had a uniform clinical picture: a severe, relatively isolated amnesic syndrome that started suddenly, persisted for 4-12 h, and then gradually improved to essentially normal over the next 12-24 h. During the episode, the patients had severe anterograde amnesia for verbal and non-verbal material and retrograde amnesia that typically covered at least two decade...

  17. Dynamic transient analysis of rupture disks by the finite-element method

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1975-02-01

    A finite element method utilizing the principle of virtual work in convected coordinates is used to analyze the axisymmetric dynamic transient response of rupture disks. This method can treat non-linearities arising both from inelastic material properties and large displacements/rotations provided that the convected strains are small. This report contains extensive calculations using a variety of rupture disk geometries and attempts to relate the static buckling of such disks to their dynamic response characteristics. A majority of the calculations treat the response of 18 inch disks typical of those currently considered for use in the Clinch River Breeder Reactor intermediate heat transport system

  18. Atmospheric CO2 and climate: Importance of the transient response

    International Nuclear Information System (INIS)

    Schneider, S.H.; Thompson, S.L.

    1981-01-01

    Preliminary studies suggest that the thermal inertia of the upper layers of the oceans, combined with vertical mixing of deeper oceanic waters, could delay the response of the globally averaged surface temperature to an increasing atmospheric CO 2 concentration by a decade or so relative to equilibrium calculations. This study extends the global analysis of the transient response to zonal averages, using a hierarchy of simple energy balance models and vertical mixing assumptions for water exchange between upper and deeper oceanic layers. It is found that because of the latitudinal dependence of both thermal inertia and radiative and dynamic energy exchange mechanisms, the approach toward equilibrium of the surface temperature of various regions of the earth will be significantly different from the global average approach. This suggests that the actual time evolution of the horizontal surface temperature gradients--and any associated regional climatic anomalies-may well be significantly different from that suggested by equilibrium climatic modeling simulations (or those computed with a highly unrealistic geographic distribution of ocean thermal capacity). Also, the transient response as a function of latitude is significantly different between globally equivalent CO 2 and solar constant focusing runs. It is suggested that the nature of the transient response is a major uncertainty in characterizing the CO 2 problem and that study of this topic should become a major priority for future research. An appendix puts this issue in the context of the overall CO 2 problem

  19. Mere exposure effect can be elicited in transient global amnesia.

    Science.gov (United States)

    Marin-Garcia, Eugenia; Ruiz-Vargas, Jose M; Kapur, Narinder

    2013-01-01

    Transient global amnesia (TGA) is one of the most severe forms of anterograde amnesia seen in clinical practice, yet patients may show evidence of spared learning during the amnesic episode. The scope of spared learning in such a severe form of amnesia remains uncertain, and it is also unclear whether findings from single-case studies hold up in group studies of TGA patients. In this group study, we found evidence that extended the domain of spared learning in TGA to include the mere exposure effect, whereby enhanced preference is primed by prior exposure to stimuli. We demonstrate this effect during an acute episode in a group of TGA patients, where they showed enhanced preference for previously exposed faces, despite markedly impaired performance on standard anterograde memory tests.

  20. GARLIC-B. A digital code for real-time calculation of the transient behaviour of nodal and global core and plant parameters of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Ercan, Y.; Hoeld, A.; Lupas, O.

    1982-04-01

    A program description of the code GARLIC-B is given. The code is based on a nonlinear transient model for BWR nuclear power plants which consist of a 3D-core, a top plenum, steam removal and feed water systems and a downcomer with main coolant recirculation pumps. The core is subdivided into a number of superboxes and flow channels with different coolant mass flow rates. Subcooled boiling within these channels has an important reactivity feed back effect and has to be taken also into account. The code computes the local and global core and plant transient situation as dependent on both the inherent core dynamics and external control actions, i.e., disturbances such as motions of control rod banks, changes of mass flow rates of coolant, feed water and steam outlet. The case of a pressure-controlled reactor operation is also considered. (orig./GL) [de

  1. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  2. Assessments of the kinetic and dynamic transient behavior of sub-critical systems (ADS) in comparison to critical reactor systems

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    2001-01-01

    The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early

  3. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  4. Can We Remember Future Actions yet Forget the Last Two Minutes? Study in Transient Global Amnesia

    Science.gov (United States)

    Hainselin, Mathieu; Quinette, Peggy; Desgranges, Beatrice; Martinaud, Olivier; Hannequin, Didier; de La Sayette, Vincent; Viader, Fausto; Eustache, Francis

    2011-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the abrupt onset of a massive episodic memory deficit that spares other cognitive functions. If the anterograde dimension is known to be impaired in TGA, researchers have yet to investigate prospective memory (PM)--which involves remembering to perform an intended action at…

  5. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  6. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  7. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    Science.gov (United States)

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats.

    Science.gov (United States)

    Viswanatha, Gollapalle Lakshminarayanashastry; Kumar, Lakkavalli Mohan Sharath; Rafiq, Mohamed; Kavya, Kethaganahalli Jayaramaiah; Thippeswamy, Agadi Hiremath; Yuvaraj, Huvvinamadu Chandrashekarappa; Azeemuddin, Mohammed; Anturlikar, Suryakanth Dattatreya; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Ramakrishnan, Shyam

    2015-01-01

    The aim of this study was to evaluate the possible beneficial effects of Mentat against transient global ischemia and reperfusion-induced brain injury in rats. The neuroprotective effects of Mentat were evaluated against transient global ischemia and reperfusion (I/R)-induced brain injury in rats. Various neurobehavioral and biochemical parameters were assessed, followed by morphologic and histopathologic evaluation of brain tissue to conclude the protective effect of Mentat. Additionally, in vitro antioxidant assays were performed to explore the antioxidant capacity of Mentat and detailed liquid chromatography-mass spectrometry (LC-MS/MS) profiling was carried out to identify the active phytoconstituents responsible for the protective effects of Mentat. Sixty minutes of transient global ischemia followed by 24 h reperfusion (I/R) caused significant alterations in the cognitive and neurologic functions in the ischemia control group (P cerebral infarct area (P protective effects. These findings suggest that Mentat is a neuroprotective agent that may be a useful adjunct in the management of ischemic stroke and its rehabilitation especially with respect to associated memory impairment and other related neurologic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Simulations of the global carbon cycle and anthropogenic CO2 transient

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1994-01-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report

  10. Tracking performance and global stability guaranteed neural control of uncertain hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Tao Teng

    2016-02-01

    Full Text Available In this article, a global adaptive neural dynamic surface control with predefined tracking performance is developed for a class of hypersonic flight vehicles, whose accurate dynamics is hard to obtain. The control scheme developed in this paper overcomes the limitations of neural approximation region by employing a switching mechanism which incorporates an additional robust controller outside the neural approximation region to pull the transient state variables back when they overstep the neural approximation region, such that globally uniformly ultimately bounded stability can be guaranteed. Especially, the developed global adaptive neural control also improves the tracking performance by introducing an error transformation mechanism, such that both transient and steady-state performance can be shaped according to the predefined bounds. Simulation studies on the hypersonic flight vehicle validate that the designed controller has good velocity modulation and velocity stability performance.

  11. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  12. Resonant and off-resonant transients in electromagnetically induced transparency: Turn-on and turn-off dynamics

    International Nuclear Information System (INIS)

    Greentree, Andrew D.; Smith, T.B.; Echaniz, S.R. de; Durrant, A. V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A.

    2002-01-01

    This paper presents a wide-ranging theoretical and experimental study of nonadiabatic transient phenomena in a Λ electromagnetically induced transparency system when a strong coupling field is rapidly switched on or off. The theoretical treatment uses a Laplace transform approach to solve the time-dependent density matrix equation. The experiments are carried out in a 87 Rb magneto-optical trap. The results show transient probe gain in parameter regions not previously studied, and provide insight into the transition dynamics between bare and dressed states

  13. Numerical methods and parallel algorithms for fast transient strongly coupled fluid-structure dynamics

    International Nuclear Information System (INIS)

    Faucher, V.

    2014-01-01

    This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author

  14. Transient hepatic attenuation difference of lobar or segmental distribution detected by dynamic computed tomography

    International Nuclear Information System (INIS)

    Itai, Y.; Moss, A.A.; Goldberg, H.I.

    1982-01-01

    Dynamic computed tomography of hepatic tumors revealed a transient attenuation difference of the liver in a lobar or segmental distribution in three cases. The difference was most prominent during the hepatogram phase. It was attributed to siphonage of arterial blood by hepatic tumors in two cases, while an increase of arterial flow induced by portal vein occlusion was inferred in the other case. Results indicate dynamic computed tomography will be usful in analysis of geometrical hemodynamics

  15. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  16. Transient global amnesia following a whole-body cryotherapy session.

    Science.gov (United States)

    Carrard, Justin; Lambert, Anne Chantal; Genné, Daniel

    2017-10-13

    Whole-body cryotherapy (WBC), which consists of a short exposure to very cold and dry air in special 'cryo-chambers', is believed to reduce inflammation and musculoskeletal pain as well as improve athletes' recovery. This is the case of a 63-year-old male, who presented with transient global amnesia (TGA) after undertaking a WBC session. TGA is a clinical syndrome characterised by a sudden onset of anterograde amnesia, sometimes coupled with a retrograde component, lasting up to 24 hours without other neurological deficits. Even though the patient completely recovered, as expected, in 24 hours, this case highlights that WBC is potentially not as risk free as thought to be initially. To conclude, before WBC can be medically recommended, well-conducted studies investigating the possible adverse events are required. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Dynamic CT of portal hypertensive gastropathy: significance of transient gastric perfusion defect sign

    International Nuclear Information System (INIS)

    Kim, T.U.; Kim, S.; Woo, S.K.; Lee, J.W.; Lee, T.H.; Jeong, Y.J.; Heo, J.

    2008-01-01

    Aim: To evaluate the 'transient gastric perfusion defect' sign as a way of diagnosing portal hypertensive gastropathy (PHG) on multidetector computed tomography (CT). Materials and methods: Ninety-two consecutive patients with cirrhosis underwent three-phase CT and endoscopy. Endoscopy was performed within 3 days of the CT examination. As controls, 92 patients without clinical evidence of chronic liver diseases who underwent CT and endoscopy were enrolled; the findings at endoscopy were used as a reference standard for patients with PHG. Two radiologists who were unaware of the results of the endoscopy retrospectively interpreted the CT images. PHG was diagnosed on dynamic CT if the transient gastric perfusion defect sign was present. The transient gastric perfusion defect was defined as the presence of transient, segmental or subsegmental hypo-attenuating mucosa in the fundus or body of the stomach on hepatic arterial imaging that returned to normal attenuation on portal venous or equilibrium-phase imaging. The frequency of the transient gastric perfusion defect sign was compared between these two groups using Fisher's exact test. The frequency, sensitivity, specificity, positive predictive values, and negative predictive values of the transient gastric perfusion defect sign were also compared between patients with PHG and without PHG in the cirrhosis group. Results: Nine patients of 92 patients with cirrhosis were excluded because of previous procedure or motion artifact; the remaining 83 patients with cirrhosis were evaluated. In the cirrhosis group, 40 (48.1%) of 83 patients showed the transient gastric perfusion defect sign. In the control group, none of the 92 patients showed the transient gastric perfusion defect sign. In the cirrhotic group, the frequency of the transient gastric perfusion defect sign was significantly higher in the patients with PHG (75%, 36/48) than in patients without PHG (11.4%, 4/35). The sensitivity, specificity, positive predictive

  18. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    Henestroza, E; Grote, D

    1999-01-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented

  19. Transient global amnesia and neurological events: the Framingham Heart Study

    Directory of Open Access Journals (Sweden)

    Jose Rafael Romero

    2013-05-01

    Full Text Available Background/ objective: Transient global amnesia (TGA is a temporary amnestic syndrome characterized by lack of other focal neurological deficits. Cerebrovascular disease, migraine and seizures have been suggested as underlying mechanisms. TGA may be a risk factor for cerebrovascular or other neurological events. We studied the relation of TGA, vascular risk factors, brain magnetic resonance imaging (MRI indices of subclinical ischemia and neurological events in a community-based sample. Design/setting: A total of 12 TGA cases were ascertained using standard criteria by experienced neurologists, and matched to 41 stroke- and seizure-free controls. Vascular risk factors, brain MRI findings, and subsequent cerebrovascular or seizure events were compared in cases and controls. Participants: Framingham Heart Study (FHS original and offspring cohort participants were included.Results: No significant differences between the groups were observed in the prevalence of vascular risk factors, or brain MRI measures. Few incident stroke/transient ischemic attacks (TIA (1 event among the cases and 4 in controls or subsequent seizures occurred in either group. Head CT during the acute event (n=11 and brain MRI (n=7 were negative for acute abnormalities. Electroencephalograms (EEG (n=5 were negative for epileptiform activity. Extracranial vascular studies were negative for significant stenosis in all cases.Conclusions: In our community-based study TGA was not related to traditional vascular risk factors, or cerebrovascular disease. However, our study is limited by small sample size and power, and larger studies are required to exclude an association.

  20. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans. Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009-2011, we used global positioning system (GPS radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that

  1. Space use and habitat selection by resident and transient red wolves (Canis rufus)

    Science.gov (United States)

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  2. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow

    Directory of Open Access Journals (Sweden)

    Masahiro eKawasaki

    2014-03-01

    Full Text Available Electroencephalogram (EEG phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE, to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz phase locking factor (PLF reached its highest value at the distant area (the motor area in this study, with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. PPI (phase-preservation index analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms, which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.

  3. A neural model for transient identification in dynamic processes with 'don't know' response

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio C. de A. E-mail: mol@ien.gov.br; Martinez, Aquilino S. E-mail: aquilino@lmp.ufrj.br; Schirru, Roberto E-mail: schirru@lmp.ufrj.br

    2003-09-01

    This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation.

  4. Tractable dynamic global games and applications

    Czech Academy of Sciences Publication Activity Database

    Mathevet, L.; Steiner, Jakub

    2013-01-01

    Roč. 148, č. 6 (2013), s. 2583-2619 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : global games * dynamic game * coordination Subject RIV: AH - Economics Impact factor: 0.919, year: 2013

  5. Global aphasia without hemiparesis may be caused by blunt head trauma: An adolescent boy with transient aphasia.

    Science.gov (United States)

    Şahin, Sevim; Türkdoğan, Dilşad; Hacıfazlıoğlu, Nilüfer Eldeş; Yalçın, Emek Uyur; Eksen, Zehra Yılmaz; Ekinci, Gazanfer

    2017-05-01

    Global aphasia without hemiparesis is a rare condition often associated with embolic stroke. Posttraumatic causes have not been reported, in the literature, to our knowledge. We report a 15-year old boy with transient global aphasia without hemiparesis due to blunt head trauma. In our case, clinical findings occurred 1week later following head trauma. Emergence of the symptoms after a period of the first mechanical head trauma, draws attention to the importance of secondary process in traumatic brain injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Coherent regimes of globally coupled dynamical systems

    DEFF Research Database (Denmark)

    de Monte, Silvia; D'ovidio, Francesco; Mosekilde, Erik

    2003-01-01

    This Letter presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region...

  7. The Dynamics of Regional and Global Expansion

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian; Nielsen, Bo Bernhard; Osegowitsch, Tom

    2015-01-01

    Purpose – The purpose of this paper is to model and test the dynamics of home-regional and global penetration by multi-national enterprises (MNEs). Design/methodology/approach – Drawing on international business (IB) theory, the authors model MNEs adjusting their home-regional and global market...... domain. Findings – The authors demonstrate that MNEs do penetrate both home-regional and global markets, often simultaneously, and that penetration levels often oscillate within an MNE over time. The authors show firms’ rates of regional and global expansion to be affected by their existing regional...

  8. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  9. Analytical Modeling of Transient Process In Terms of One-Dimensional Problem of Dynamics With Kinematic Action

    Directory of Open Access Journals (Sweden)

    Kravets Victor V.

    2016-05-01

    Full Text Available One-dimensional dynamic design of a component characterized by inertia coefficient, elastic coefficient, and coefficient of energy dispersion. The component is affected by external action in the form of time-independent initial kinematic disturbances and varying ones. Mathematical model of component dynamics as well as a new form of analytical representation of transient in terms of one-dimensional problem of kinematic effect is provided. Dynamic design of a component is being carried out according to a theory of modal control.

  10. Turbofan compressor dynamics during afterburner transients

    Science.gov (United States)

    Kurkov, A. P.

    1976-01-01

    The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  11. Global Crustal Dynamics of Magnetars in Relation to Their Bright X-Ray Outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Yang, Huan; Ortiz, Néstor [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2017-05-20

    This paper considers the yielding response of a neutron star crust to smooth, unbalanced Maxwell stresses imposed at the core–crust boundary, and the coupling of the dynamic crust to the external magnetic field. Stress buildup and yielding in a magnetar crust are global phenomena: an elastic distortion radiating from one plastically deforming zone is shown to dramatically increase the creep rate in distant zones. Runaway creep to dynamical rates is shown to be possible, being enhanced by in situ heating and suppressed by thermal conduction and shearing of an embedded magnetic field. A global and time-dependent model of elastic, plastic, magnetic, and thermal evolution is developed. Fault-like structures develop naturally, and a range of outburst timescales is observed. Transient events with time profiles similar to giant magnetar flares (millisecond rise, ∼0.1 s duration, and decaying power-law tails) result from runaway creep that starts in localized sub-kilometer-sized patches and spreads across the crust. A one-dimensional model of stress relaxation in the vertically stratified crust shows that a modest increase in applied stress allows embedded magnetic shear to escape the star over ∼3–10 ms, dissipating greater energy if the exterior field is already sheared. Several such zones coupled to each other naturally yield a burst of duration ∼0.1 s, as is observed over a wide range of burst energies. The collective interaction of many plastic zones forces an overstability of global elastic modes of the crust, consistent with quasi-periodic oscillation (QPO) activity extending over ∼100 s. Giant flares probably involve sudden meltdown in localized zones, with high-frequency (≫100 Hz) QPOs corresponding to standing Alfvén waves within these zones.

  12. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    International Nuclear Information System (INIS)

    Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D

    2014-01-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories

  13. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    Science.gov (United States)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  14. Transient dynamic and inelastic analysis of shells of revolution - a survey of programs

    International Nuclear Information System (INIS)

    Svalbonas, V.

    1976-01-01

    Advances in the limits of structural use in the aerospace and nuclear power industries over the past years have increased the requirements upon the applicable analytical computer programs to include accurate capabilities for inelastic and transient dynamic analyses. In many minds, however, this advanced capability is unequivocally linked with the large scale, general purpose, finite element programs. This idea is also combined with the view that such analyses are therefore prohibitively expensive and should be relegated to the 'last resort' classification. While this, in the general sense, may indeed be the case, if the user needs only to analyze structures falling into limited categories, however, he may find that a variety of smaller special purpose programs are available which do not put an undue strain upon his resources. One such structural category is shells of revolution. This survey of programs concentrates upon the analytical tools which have been developed predominantly for shells of revolution. The survey is subdivided into three parts: (a) consideration of programs for transient dynamic analysis; (b) consideration of programs for inelastic analysis and finally; (c) consideration of programs capable of dynamic plasticity analysis. In each part, programs based upon finite difference, finite element, and numerical integration methods are considered. The programs are compared on the basis of analytical capabilities, and ease of idealization and use. In each part of the survey sample problems are utilized to exemplify the state-of-the-art. (Auth.)

  15. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  16. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance. [Pulse radiolysis of methanol in D/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures.

  17. Earth Observation of Vegetation Dynamics in Global Drylands

    DEFF Research Database (Denmark)

    Tian, Feng

    Land degradation in global drylands has been a concern related to both the local livelihoods and the changes in terrestrial biosphere, especially in the context of substantial global environmental changes. Earth Observation (EO) provides a unique way to assess the vegetation dynamics over the past...

  18. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the

  19. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited ...

  20. Local and global measures of shape dynamics

    International Nuclear Information System (INIS)

    Driscoll, Meghan K; Losert, Wolfgang; Fourkas, John T

    2011-01-01

    The shape and motion of cells can yield significant insights into the internal operation of a cell. We present a simple, yet versatile, framework that provides multiple metrics of cell shape and cell shape dynamics. Analysis of migrating Dictyostelium discoideum cells shows that global and local metrics highlight distinct cellular processes. For example, a global measure of shape shows rhythmic oscillations suggestive of contractions, whereas a local measure of shape shows wave-like dynamics indicative of protrusions. From a local measure of dynamic shape, or boundary motion, we extract the times and locations of protrusions and retractions. We find that protrusions zigzag, while retractions remain roughly stationary along the boundary. We do not observe any temporal relationship between protrusions and retractions. Our analysis framework also provides metrics of the boundary as whole. For example, as the cell speed increases, we find that the cell shape becomes more elongated. We also observe that while extensions and retractions have similar areas, their shapes differ

  1. Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model

    Science.gov (United States)

    Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.

    2008-12-01

    Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.

  2. Dynamic modeling of primary and secondary systems of IRIS reactor for transient analysis using SIMULINK

    International Nuclear Information System (INIS)

    Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da

    2011-01-01

    The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)

  3. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  4. Fast relaxation transients in a kicked damped oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Urquizu, Merce [Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain); Correig, Antoni M. [Departament d' Astronomical i Meteorologia, Laboratori d' Estudis Geofisics Eduard Fontsere, UB Marti Franques 1, E-08028 Barcelona (Spain) and Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain)]. E-mail: ton.correig@am.ub.es

    2007-08-15

    Although nonlinear relaxation transients are very common in nature, very few studies are devoted to its characterization, mainly due to its short time duration. In this paper, we present a study about the nature of relaxation transients in a kicked damped oscillator, in which transients are generated in terms of continuous fast changes in the parameters of the system. We have found that transient dynamics can be described, rather than in terms of bifurcation dynamics, in terms of instantaneous stretching factors, which are related to the stability of fixed points of the corresponding stroboscopic maps.

  5. Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals

    Science.gov (United States)

    Albert, Magnus; Dantan, Aurélien; Drewsen, Michael

    2018-03-01

    We experimentally investigate the transient dynamics of an optical cavity field interacting with large ion Coulomb crystals in a situation of electromagnetically induced transparency (EIT). EIT is achieved by injecting a probe field at the single photon level and a more intense control field with opposite circular polarization into the same mode of an optical cavity to couple Zeeman substates of a metastable level in ? ions. The EIT interaction dynamics are investigated both in the frequency-domain - by measuring the probe field steady state reflectivity spectrum - and in the time-domain - by measuring the progressive buildup of transparency. The experimental results are observed to be in excellent agreement with theoretical predictions taking into account the inhomogeneity of the control field in the interaction volume, and confirm the high degree of control on light-matter interaction that can be achieved with ion Coulomb crystals in optical cavities.

  6. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  7. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  8. Global dynamics, phase space transport, orbits homoclinic to resonances, and applications

    CERN Document Server

    Wiggins, Stephen

    1993-01-01

    This monograph, which grew out of a series of lectures delivered by Stephen Wiggins at the Fields Institute in early 1993, is concerned with the geometrical viewpoint of the global dynamics of nonlinear dynamical systems. With appropriate examples and concise explanations, Wiggins unites many different topics into one volume and makes a unique contribution to the field. Engineers, physicists, chemists, and mathematicians who work on issues related to the global dynamics of nonlinear dynamical systems will find these lectures very useful.

  9. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    Science.gov (United States)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  10. The relationship between working memory and episodic memory disorders in transient global amnesia.

    Science.gov (United States)

    Quinette, Peggy; Guillery-Girard, Bérengère; Noël, Audrey; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2006-01-01

    In a previous study, we investigated the relationship between the disorders of both episodic memory and working memory in the acute phase of transient global amnesia (TGA). Since executive functions were spared, another dysfunction may be responsible for the binding and maintenance of multimodal informations and contribute to the encoding disorders observed in some patients [Quinette, P., Guillery, B., Desgranges, B., de la Sayette, V., Viader, F., & Eustache, F. (2003). Working memory and executive functions in transient global amnesia. Brain, 126, 1917-1934.]. The aim of this present study was to assess the functions of binding and maintenance of multimodal information during TGA and explore their involvement in episodic memory disorders. We therefore conducted a more thorough investigation of working memory in 16 new patients during the acute phase of TGA using two tasks designed to assess the binding process and both dimensions of the maintenance, namely the active storage and the memory load ability. We also investigated the nature of the episodic memory impairment in distinguishing between the performance of patients with preferential encoding deficits and those of patients with preferential storage disorders on the episodic memory task. This distinction was closely related to the severity of amnesia, i.e. an encoding disorder was observed rather in the early phase of TGA. The results showed that while the functions of binding and maintenance of multimodal information were intact in patients with storage disorders, they were impaired in the case of encoding deficits. These results are interpreted in the recent framework of episodic buffer proposed by Baddeley [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] that represents an interface between working memory and episodic memory.

  11. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  12. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  13. Transient magnetoviscosity of dilute ferrofluids

    International Nuclear Information System (INIS)

    Soto-Aquino, Denisse; Rinaldi, Carlos

    2011-01-01

    The magnetic field induced change in the viscosity of a ferrofluid, commonly known as the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state behavior of ferrofluids under conditions of applied constant magnetic fields has received considerable attention, comparatively little attention has been given to the transient response of the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such transient response can provide further insight into the dynamics of ferrofluids and find practical application in the design of devices that take advantage of the magnetoviscous effect and inevitably must deal with changes in the applied magnetic field and deformation. In this contribution Brownian dynamics simulations and a simple model based on the ferrohydrodynamics equations are applied to explore the dependence of the transient magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear flow is suddenly started. Both simulations and analysis show that the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative magnitudes of the applied magnetic field and shear rate. - Research Highlights: →Rotational Brownian dynamics simulations were used to study the transient behavior of the magnetoviscosity of ferrofluids. →Damped and oscillatory approach to steady state magnetoviscosity was observed for step changes in shear rate and magnetic field. →A model based on the ferrohydrodynamics equations qualitatively captured the damped and oscillatory features of the transient response →The transient behavior is due to the interplay of hydrodynamic, magnetic, and Brownian torques on the suspended particles.

  14. Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions

    OpenAIRE

    Lu, Zhou

    2007-01-01

    Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...

  15. Improved assessment of outcomes following transient global cerebral ischemia in mice

    DEFF Research Database (Denmark)

    Spray, Stine; Edvinsson, Lars

    2016-01-01

    by limited neurological assessment protocols and present insufficient reporting of the cumulative survival rate. Therefore, we aim at developing a reproducible and easily implementable model of transient GCI in mice with minimal impact on normal mouse behavior. GCI was induced in male C57BL/6 mice......Mouse models of global cerebral ischemia (GCI) allow experimental examination of cerebral pathophysiology in genetically modified mice and fast screening of new treatment strategies. Various surgical protocols of GCI-induction in mice have been published; however, many of these studies are hindered...... and again daily for up to 7 days after GCI or sham operation and was found to be significantly decreased 1-7 days after GCI compared to sham. Furthermore, we found delayed neuronal cell death in the frontal cortex and hippocampus 5 and 7 days after GCI but not at day 3 or after sham operation. The survival...

  16. Tractable dynamic global games and applications

    Czech Academy of Sciences Publication Activity Database

    Mathevet, L.; Steiner, Jakub

    2013-01-01

    Roč. 148, č. 6 (2013), s. 2583-2619 ISSN 0022-0531 R&D Projects: GA ČR(CZ) GA13-34759S Grant - others:UK(CZ) UNCE 204005/2012 Institutional support: PRVOUK-P23 Keywords : global games * dynamic game * coordination Subject RIV: AH - Economics Impact factor: 0.919, year: 2013

  17. Default Mode Dynamics for Global Functional Integration.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Manktelow, Anne E; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2015-11-18

    The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks

  18. On the application of the dynamic plasticity theory for the treatment of reinforced concrete structures under transient loading

    International Nuclear Information System (INIS)

    Ammann, W.

    1983-01-01

    After a short introduction of the theory of dynamic plasticity, the possible applications of this theory on reinforced concrete structures under transient loading are discussed. Estimates can be obtained by relations giving lower and upper limits for dynamically loaded supporting beams. A procedure similar for the mode approximation method is described for the calculation of beams after a sudden failure of a support. (orig.) [de

  19. Transient electromagnetic and dynamic structural analyses of a blanket structure with coupling effects

    Energy Technology Data Exchange (ETDEWEB)

    Koganezawa, K. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kushiyama, M. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Niikura, S. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kudough, F. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Koizumi, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.).

  20. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    Science.gov (United States)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  1. Safety-oriented global analysis of reactor dynamics

    International Nuclear Information System (INIS)

    Belhadj, M.; Aldemir, T.

    1992-01-01

    It is well known that the asymptotic solutions of the non-linear systems encountered in reactor dynamics can change from stable to periodic or from periodic to chaotic with a very small change in system parameters and/or initial conditions. In that respect, determination of the domains of attraction (DOAs) in the state-space that contains the asymptotic solutions and the identification of the basins of attraction (BOAs) and lead to these DOAs usually requires a global analysis of reactor dynamics (as opposed to a local analysis through perturbation theory). From the standpoint of safety, the DOAs indicate whether the reactor behavior remains within the imposed constraints or not, and the BOAs show which initial conditions lead to safe operation. Due to the lack of a general theory, often the only feasible method for the global analysis of nonlinear systems is the direct integration of governing equations. However, direct integration can be computationally prohibitive, particularly if there is uncertainty on the values of the system parameters to be used in the analysis, and/or asymptotic system behavior is chaotic. In a recent study, a global analysis algorithm was presented to determine the structure of DOAs (and their probability distribution when there is uncertainty on the system parameters) more quickly than by direct integration. This paper shows how the new algorithm can be expanded to determine the BOAs of reactor dynamics equations as well as their DOAs

  2. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  3. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    Science.gov (United States)

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-05-01

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  4. Transients and burn dynamics in advanced tokamak fusion reactors

    International Nuclear Information System (INIS)

    Mantsinen, M.J.; Salomaa, R.R.E.

    1994-01-01

    Transient behavior of D 3 He-tokamak reactors is investigated numerically using a zero-dimensional code with prescribed profiles. Pure D 3 He start-up is compared to DT-assisted and DT-ignited start-ups. We have considered two categories of transients which could extinguish steady fusion burn: fuelling interruptions and sudden confinement changes similar to the L → H transients occurring in present-day tokamaks. Shutdown with various current and density ramp-down scenarios are studied, too. (author)

  5. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  6. Coordinated ground-based, low altitude satellite and Cluster observations on global and local scales during a transient post-noon sector excursion of the magnetospheric cusp

    Directory of Open Access Journals (Sweden)

    H. J. Opgenoorth

    Full Text Available On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR and approached the post-noon dayside magnetopause over Green-land between 13:00 and 14:00 UT. During that interval, a sudden reorganisation of the high-latitude dayside convection pattern occurred after 13:20 UT, most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Söndre Strömfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

    Key words. Magnetospheric cusp, ionosphere, reconnection, convection flow-channel, Cluster, ground-based observations

  7. A global first integral for certain dynamical systems and related remarks

    International Nuclear Information System (INIS)

    Gonzalez-Gascon, F.

    1977-01-01

    A global first integral for certain dynamical systems and the related remarks are presented. In particular, it is shown that for these dynamical systems by introducing the (intrinsic) definition of the divergence of a vector field defined on an orientable differentiable manifold, the first integral, i.e. the (intrinsic) divergence of a vector field is now, automatically, a global first integral. (author)

  8. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  9. Global fast dynamic terminal sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Xiong, Jing-Jing; Zhang, Guo-Bao

    2017-01-01

    A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A new transiently chaotic flow with ellipsoid equilibria

    Science.gov (United States)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  11. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  12. Unified picture of the photoexcitations in phenylene-based conjugated polymers: Universal spectral and dynamical features in subpicosecond transient absorption

    International Nuclear Information System (INIS)

    Kraabel, B.; Klimov, V. I.; Kohlman, R.; Xu, S.; Wang, H-L.; McBranch, D. W.

    2000-01-01

    Using subpicosecond transient absorption spectroscopy, we investigate the primary photoexcitations in thin films and solutions of several phenylene-based conjugated polymers and an oligomer. We identify several features in the transient absorption spectra and dynamics that are common to all of the materials which we studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV that has intensity-dependent dynamics that match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, that is longer lived than the 1 eV exciton PA band, and that has dynamics that are independent (or weakly dependent) on excitation density. This feature is attributed to polarons, generated through a mechanism that is sample dependent. In pristine samples, polarons are generated via a mechanism that is quadratic in exciton density, whereas in photodegraded samples or samples doped with electron acceptors, the generation mechanism becomes linear in exciton density. (c) 2000 The American Physical Society

  13. RD2: Resilient Dynamic Desynchronization for TDMA over Lossy Networks

    DEFF Research Database (Denmark)

    Hinterhofer, Thomas; Schwefel, Hans-Peter; Tomic, Slobodanka

    2012-01-01

    We present a distributed TDMA negotiation approach for single-hop ad-hoc network communication. It is distributed, resilient to arbitrary transient packet loss and defines a non-overlapping TDMA schedule without the need of global time synchronization. A participating node can dynamically request...

  14. Transient selection in multicellular immune networks

    Science.gov (United States)

    Ivanchenko, M. V.

    2011-03-01

    We analyze the dynamics of a multi-clonotype naive T-cell population competing for survival signals from antigen-presenting cells. We find that this competition provides with an efficacious selection of clonotypes, making the less able and more repetitive get extinct. We uncover the scaling principles for large systems the extinction rate obeys and calibrate the model parameters to their experimental counterparts. For the first time, we estimate the physiological values of the T-cell receptor-antigen presentation profile recognition probability and T-cell clonotypes niche overlap. We demonstrate that, while the ultimate state is a stable fixed point, sequential transients dominate the dynamics over large timescales that may span over years, if not decades, in real time. We argue that what is currently viewed as "homeostasis" is a complex sequential transient process, while being quasi-stationary in the total number of T-cells only. The discovered type of sequential transient dynamics in large random networks is a novel alternative to the stable heteroclinic channel mechanism.

  15. Meteorological interpretation of transient LOD changes

    Science.gov (United States)

    Masaki, Y.

    2008-04-01

    The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.

  16. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease

    International Nuclear Information System (INIS)

    Amarteifio, E.; Wormsbecher, S.; Krix, M.; Demirel, S.; Braun, S.; Delorme, S.; Böckler, D.; Kauczor, H.-U.; Weber, M.-A.

    2012-01-01

    Objective: To quantify muscular micro-perfusion and arterial perfusion reserve in peripheral arterial disease (PAD) with dynamic contrast-enhanced ultrasound (CEUS) and transient arterial occlusion. Materials and methods: This study had local institutional review board approval and written informed consent was obtained from all subjects. We examined the dominant lower leg of 40 PAD Fontaine stage IIb patients (mean age, 65 years) and 40 healthy volunteers (mean age, 54 years) with CEUS (7 MHz; MI, 0.28) during continuous intravenous infusion of 4.8 mL microbubbles. Transient arterial occlusion at mid-thigh level simulated physical exercise. With time–CEUS–intensity curves obtained from regions of interest within calf muscles, we derived the maximum CEUS signal after occlusion (max) and its time (t max ), slope to maximum (m), vascular response after occlusion (AUC post ), and analysed accuracy, receiver operating characteristic (ROC) curves, and correlations with ankle-brachial index (ABI) and walking distance. Results: All parameters differed in PAD and volunteers (p max was delayed (31.2 ± 13.6 vs. 16.7 ± 8.5 s, p post as optimal parameter combination for diagnosing PAD and therefore impaired arterial perfusion reserve. Conclusions: Dynamic CEUS with transient arterial occlusion quantifies muscular micro-perfusion and arterial perfusion reserve. The technique is accurate to diagnose PAD.

  17. Evaluation of dynamic loads induced by transient regimes of fluid flows in the pipe systems and devices of reducing the loads and their effects

    International Nuclear Information System (INIS)

    Serban, Viorel; Chirita, Alexandru Mihai; Androne, Marian; Alexandru, Constantin; Ciuca, Camelia; Badara, Janina; Alexandru, Carmen

    1995-01-01

    The paper presents the analytic methods for estimating the dynamic effects induced in pipe systems in transient regimes. They are based on computation programs developed in order to check the behaviour of ECCS and EWS under 'water hammer effect' and the behaviour of the primary circuit system under stresses caused by pipe cracks. Computation examples are presented in order to emphasize the capabilities of the programs to model transient phenomena in complex pipe networks. The overpressure induced by the water hammer effect, as revealed by comparing several transient regimes, depends on the fluid viscosity, the initial speed, the duration of starting the transient regime, the system rigidity, etc. Values several ten times higher that the initial one could be thus reached. An overview of new types of devices designed for damping the effect of water hammer phenomenon, as well as of sustaining supports for pipe systems and equipment able to damp the vibrations produced by the transient regimes of fluid flows and seismic movements is presented. These devices have also to cope with the high shocks produced by pipe breakage as well as high static loads. The paper contains the following sections: 1. Introduction; 2. Evaluating dynamic loads associated to the water hammer phenomenon; 3. Determining loads associated to the water hammer phenomenon for the ECC system of the Cernavoda NPP Unit 1; 4. Device for reducing the water hammer effects; 5. Evaluating dynamic loads associated to pipe cracks; 6. Determining loads associated to pipe cracks in the Cernavoda NPP primary circuit; 7. Devices for absorbing and damping the dynamic loads in pipe systems and equipment; 8. Conclusions. (authors)

  18. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, J.L.

    1994-07-01

    This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

  19. Transient beam dynamics in the Lawrence Berkeley Laboratory 2 MV injector

    International Nuclear Information System (INIS)

    Henestroza, E.

    1996-01-01

    A driver-scale injector for the heavy ion fusion accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (above 2 MV), high current (more than 0.8 A of K + ) and low normalized emittance (less than 1 π mm mrad). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator which provides strong (alternating gradient) focusing for the space-charge-dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun pre-injector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot alumino-silicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and to avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 μs, and is reversed to turn off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several microseconds), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the particle-in-cell codes GYMNOS and WARP3D in a time-dependent mode. The generalization and its implementation is WARP3D of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented. (orig.)

  20. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  1. Local and global dynamical effects of dark energy

    Science.gov (United States)

    Chernin, A. D.

    Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.

  2. Analysis of pressure wave transients and seismic response in LMFBR piping systems using the SHAPS code

    International Nuclear Information System (INIS)

    Zeuch, W.R.; Wang, C.Y.

    1985-01-01

    This paper presents some of the current capabilities of the three-dimensional piping code SHAPS and demonstrates their usefulness in handling analyses encountered in typical LMFBR studies. Several examples demonstrate the utility of the SHAPS code for problems involving fluid-structure interactions and seismic-related events occurring in three-dimensional piping networks. Results of two studies of pressure wave propagation demonstrate the dynamic coupling of pipes and elbows producing global motion and rigorous treatment of physical quantities such as changes in density, pressure, and strain energy. Results of the seismic analysis demonstrate the capability of SHAPS to handle dynamic structural response within a piping network over an extended transient period of several seconds. Variation in dominant stress frequencies and global translational frequencies were easily handled with the code. 4 refs., 10 figs

  3. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  4. Transient Dynamic Response of Delaminated Composite Rotating Shallow Shells Subjected to Impact

    Directory of Open Access Journals (Sweden)

    Amit Karmakar

    2006-01-01

    Full Text Available In this paper a transient dynamic finite element analysis is presented to study the response of delaminated composite pretwisted rotating shallow shells subjected to low velocity normal impact. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are performed in respect of location of delamination, angle of twist and rotational speed for centrally impacted graphite-epoxy composite cylindrical shells.

  5. Transient computational homogenization for heterogeneous materials under dynamic excitation

    NARCIS (Netherlands)

    Pham, N.K.H.; Kouznetsova, V.; Geers, M.G.D.

    2013-01-01

    This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order)

  6. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  7. Transient identification system with noising data and 'don't know' response

    International Nuclear Information System (INIS)

    Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto

    2002-01-01

    In the last years, many different approaches based on neural network (NN) has been proposed for transient identification in nuclear power plants (NPP). Some of them focus the dynamic identification using recurrent neural networks however, they are not able to deal with unrecognized transients. Other kind of solution uses competitive learning in order to allow the 'don't know' response. In this case dynamic, dynamic features are not well represented. This work presents a new approach for neural network based transient identification which allows either dynamic identification and 'don't know'response. Such approach uses two multilayer neural networks trained with backpropagation algorithm. The first one is responsible for the dynamic identification. This NN uses, a short set (in a movable time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide 'don't know' response. In order to validate the method a NPP transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in other to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. In order to validate the method, a NPP transient identification problem comprising 15 postulated accidents simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  8. Learning Human Actions by Combining Global Dynamics and Local Appearance.

    Science.gov (United States)

    Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J

    2014-12-01

    In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods.

  9. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif

    2013-01-01

    Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy

  10. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  11. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  12. Dynamic biogeochemical provinces in the global ocean

    Science.gov (United States)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  13. Acoustics and voiding dynamics during SLSF simulations of LMFBR undercooling transients

    International Nuclear Information System (INIS)

    Anderson, T.T.; Kuzay, T.M.; Marr, W.W.; Miles, K.J.; Pedersen, D.R.; Thompson, D.H.; Wilson, R.E.

    1978-01-01

    The SLSF is the largest U.S. in-reactor test vehicle for steady-state and transient experiments in an environment typical of a LMFBR core. The SLSF experiment program, sponsored by the Department of Energy, contributes to the LMFBR safety assurance program by providing data on key phenomena that occur during postulated reactor accidents. This paper describes completed SLSF experiments, in-core instrumentation used, and methods of data interpretation to determine sodium boiling and voiding dynamics. Boiling inception is shown to be identifiable from several types of in-core instruments. Location of the boiling front and void growth derived from experimental data are compared with analytical predictions. These and other data form the basis to improve understanding of accidents and to validate or guide the development of accident analysis methods

  14. Transient identification system with noising data and 'don't know' response; Sistema de identificacao de transientes com inclusao de ruidos e indicacao de eventos desconhecidos

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio C. de A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Confiabilidade Humana; Martinez, Aquilino S.; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    In the last years, many different approaches based on neural network (NN) has been proposed for transient identification in nuclear power plants (NPP). Some of them focus the dynamic identification using recurrent neural networks however, they are not able to deal with unrecognized transients. Other kind of solution uses competitive learning in order to allow the 'don't know' response. In this case dynamic, dynamic features are not well represented. This work presents a new approach for neural network based transient identification which allows either dynamic identification and 'don't know'response. Such approach uses two multilayer neural networks trained with backpropagation algorithm. The first one is responsible for the dynamic identification. This NN uses, a short set (in a movable time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide 'don't know' response. In order to validate the method a NPP transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in other to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. In order to validate the method, a NPP transient identification problem comprising 15 postulated accidents simulated for a pressurized water reactor, was proposed in the validation process it has been considered noising data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know

  15. Combinatorial-topological framework for the analysis of global dynamics

    Science.gov (United States)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  16. Combinatorial-topological framework for the analysis of global dynamics.

    Science.gov (United States)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  17. Jugular veins in transient global amnesia: innocent bystanders.

    Science.gov (United States)

    Baracchini, Claudio; Tonello, Simone; Farina, Filippo; Viaro, Federica; Atzori, Matteo; Ballotta, Enzo; Manara, Renzo

    2012-09-01

    Transient global amnesia (TGA) has been associated with an increased prevalence of internal jugular valve insufficiency and many patients report Valsalva-associated maneuvers before TGA onset. These findings have led to the assumption of hemodynamic alterations in intracranial veins inducing focal hippocampal ischemia. We investigated this hypothesis in patients with TGA and control subjects. Seventy-five patients with TGA and 75 age- and sex-matched healthy subjects were enrolled into a cross-sectional study. Extracranial and transcranial high-resolution venous echo-color-Doppler sonography was performed blindly in all patients and control subjects. Blood flow direction and velocities were recorded at the internal jugular veins, basal veins of Rosenthal, and vein of Galen, both at rest and during Valsalva-associated maneuvers. Mean age of patients with TGA was 60.3±8.0 years (median, 60 years; range, 44-78 years); 44 (59%) were female (female/male ratio: 1.42). Internal jugular valve insufficiency (left, right, or bilateral) was found to be more frequent in patients with TGA than in control subjects: 53 (70.7%) versus 22 (29.3%; P<0.05). Blood flow velocities in the deep cerebral veins of patients with TGA did not differ from control subjects both at rest and during Valsalva-associated maneuvers. Intracranial venous reflux was neither observed in patients with TGA nor in control subjects despite unilateral or bilateral internal jugular valve insufficiency during prolonged and maximal Valsalva-associated maneuvers. This study, although confirming the association between TGA and internal jugular valve insufficiency, challenges the hypothesis that cerebral venous congestion plays a significant role in the pathogenesis of TGA.

  18. Vertical axis wind turbine drive train transient dynamics

    Science.gov (United States)

    Clauss, D. B.; Carne, T. G.

    1982-01-01

    Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.

  19. Effects of Telecoupling on Global Vegetation Dynamics

    Science.gov (United States)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  20. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    Science.gov (United States)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  1. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  2. Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2014-01-01

    Highlights: • A dynamic LCA is proposed considering time-varying factors. • Dynamic LCA is used to highlight GHG emission hotspots of gasification projects. • Indicators are proposed to reflect GHG emission performance. • Dynamic LCA alters the static LCA results. • Crop residue gasification project has high GHG abatement potential. - Abstract: Bioenergy from crop residues is one of the prevailing sustainable energy sources owing to the abundant reserves worldwide. Amongst a wide variety of energy conversion technologies, crop residue gasification has been regarded as promising owing to its higher energy efficiency than that of direct combustion. However, prior to large-scale application of crop residue gasification, the lifetime environmental performance should be investigated to shed light on sustainable strategies. As traditional static life cycle assessment (LCA) does not include temporal information for dynamic processes, we proposed a dynamic life cycle assessment approach, which improves the static LCA approach by considering time-varying factors, e.g., greenhouse gas characterization factors and energy intensity. As the gasification project can reduce greenhouse gas (GHG) discharge compared with traditional direct fuel combustion, trade-offs between the benefits of global warming mitigation and the impact on global warming of crop residue gasification should be considered. Therefore, indicators of net global warming mitigation benefit and global warming impact mitigation period are put forward to justify the feasibility of the crop residue gasification project. The proposed dynamic LCA and indicators were then applied to estimate the life cycle global warming impact of a crop residue gasification system in China. Results show that the crop residue gasification project has high net global warming mitigation benefit and a short global warming impact mitigation period, indicating its prominent potential in alleviating global warming impact. During

  3. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  4. Global dynamics of a novel multi-group model for computer worms

    International Nuclear Information System (INIS)

    Gong Yong-Wang; Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multi-group SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R 0 is derived and the global dynamics of the model are established. It is shown that if R 0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R 0 is greater than 1, one unique endemic equilibrium exists and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results. (general)

  5. Timing of transients: quantifying reaching times and transient behavior in complex systems

    Science.gov (United States)

    Kittel, Tim; Heitzig, Jobst; Webster, Kevin; Kurths, Jürgen

    2017-08-01

    In dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much ‘earlier’ or ‘later’ than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.

  6. Nonlinear Diffusion and Transient Osmosis

    International Nuclear Information System (INIS)

    Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    DEFF Research Database (Denmark)

    Liu, Y.; Melillo, J.; Niu, S.

    2011-01-01

    a coordinated approach that combines long-term, large-scale global change experiments with process studies and modeling. Long-term global change manipulative experiments, especially in high-priority ecosystems such as tropical forests and high-latitude regions, are essential to maximize information gain......Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation...... to be the most effective strategy to gain the best information on long-term ecosystem dynamics in response to global change....

  8. Dynamics in stationary, non-globally hyperbolic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Seggev, Itai [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States)

    2004-06-07

    Classically, the dynamics of a scalar field in a non-globally hyperbolic spacetime is ill-posed. Previously, a prescription was given for defining dynamics in static spacetimes in terms of a second-order operator acting on a Hilbert space defined on static slices. The present work extends this result by giving a similar prescription for defining dynamics in stationary spacetimes obeying certain mild assumptions. The prescription is defined in terms of a first-order operator acting on a different Hilbert space from that used in the static prescription. It preserves the important properties of the earlier prescription: the formal solution agrees with the Cauchy evolution within the domain of dependence, and smooth data of compact support always give rise to smooth solutions. In the static case, the first-order formalism agrees with the second-order formalism (using specifically the Friedrichs extension). Applications to field quantization are also discussed.

  9. Predictor-Corrector Quasi-Static Method Applied to Nonoverlapping Local/Global Iterations with 2-D/1-D Fusion Transport Kernel and p-CMFD Wrapper for Transient Reactor Analysis

    International Nuclear Information System (INIS)

    Cho, Bumhee; Cho, Nam Zin

    2015-01-01

    In this study, the steady-state p-CMFD adjoint flux is used as the weighting function to obtain PK parameters instead of the computationally expensive transport adjoint angular flux. Several numerical problems are investigated to see the capability of the PCQS method applied to the NLG iteration. CRX-2K adopts the nonoverlapping local/global (NLG) iterative method with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper. The parallelization of the NLG iteration has been recently implemented in CRX-2K and several numerical results are reported in a companion paper. However, the direct time discretization leads to a fine time step size to acquire an accurate transient solution, and the step size involved in the transport transient calculations is millisecond-order. Therefore, the transient calculations need much longer computing time than the steady-state calculation. To increase the time step size, Predictor-Corrector Quasi-Static (PCQS) method can be one option to apply to the NLG iteration. The PCQS method is a linear algorithm, so the shape function does not need to be updated more than once at a specific time step like a conventional quasi-static (QS) family such as Improved Quasi-Static (IQS) method. Moreover, the shape function in the PCQS method directly comes from the direct transport calculation (with a large time step), so one can easily implement the PCQS method in an existing transient transport code. Any QS method needs to solve the amplitude function in the form of the point kinetics (PK) equations, and accurate PK parameters can be obtained by the transport steady-state adjoint angular flux as a weighting function. The PCQS method is applied to the transient NLG iteration with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper, and has been implemented in CRX-2K. In the numerical problems, the PCQS method with the NLG iteration shows more accurate solutions compared to the direct transient calculations with large time step

  10. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    International Nuclear Information System (INIS)

    Lamboni, Matieyendou; Monod, Herve; Makowski, David

    2011-01-01

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  11. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Lamboni, Matieyendou [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Monod, Herve, E-mail: herve.monod@jouy.inra.f [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Makowski, David [INRA, UMR Agronomie INRA/AgroParisTech (UMR 211), BP 01, F78850 Thiverval-Grignon (France)

    2011-04-15

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  12. A statistical-dynamical downscaling procedure for global climate simulations

    International Nuclear Information System (INIS)

    Frey-Buness, A.; Heimann, D.; Sausen, R.; Schumann, U.

    1994-01-01

    A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present climate. (orig.)

  13. SCANAIR: A transient fuel performance code

    International Nuclear Information System (INIS)

    Moal, Alain; Georgenthum, Vincent; Marchand, Olivier

    2014-01-01

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  14. SCANAIR: A transient fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Moal, Alain, E-mail: alain.moal@irsn.fr; Georgenthum, Vincent; Marchand, Olivier

    2014-12-15

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  15. OPTICAL TRANSIENT DETECTOR (OTD) LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Transient Detector (OTD) records optical measurements of global lightning events in the daytime and nighttime. The data includes individual point...

  16. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  17. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  18. The dynamics of the global competitiveness of Chinese industries

    NARCIS (Netherlands)

    Zhang, J.; Ebbers, H.; van Witteloostuijn, A.

    2013-01-01

    Using a two-dimensional multi-variable approach, this article investigates the competitiveness and dynamics of Chinese industries from the perspective of the international marketplace. The study reveals the step-by-step transformation of the degree of global competitiveness across 97 Chinese

  19. Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association.

    Directory of Open Access Journals (Sweden)

    William Cenens

    2015-12-01

    Full Text Available Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22 throughout a population of its host (Salmonella Typhimurium at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host.

  20. J-Specific Dynamics in AN Optical Centrifuge Using Transient IR Spectroscopy

    Science.gov (United States)

    Murray, Matthew J.; Liu, Qingnan; Toro, Carlos; Mullin, Amy S.

    2013-06-01

    Quantum state-specific dynamics are reported for a number of CO_{2} rotational states in an optical centrifuge. The optical centrifuge results from combining oppositely-chirped ultrafast laser pulses and spinning CO_{2} molecules into extremely high rotational states with J≈220. Collisions of centrifuged molecules induce depletion of population from low-J states (J=0 and 36) and lead to appearance of population in high J states (J=36, 54 and 76). Transient Doppler-broadened line profiles for individual CO_{2} states reveal that the depletion populations have narrow velocity distributions with translational temperatures significantly colder than 300 K. Molecules that appear in the higher rotational states have broad velocity distributions, showing that both rotational and translational energy are imparted in collisions of the centrifuged molecules. These results show that substantial amounts of angular momentum persist after many collisions and that translational energy exchange continues for several thousand collisions.

  1. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  2. Transient analysis for PWR reactor core using neural networks predictors

    International Nuclear Information System (INIS)

    Gueray, B.S.

    2001-01-01

    In this study, transient analysis for a Pressurized Water Reactor core has been performed. A lumped parameter approximation is preferred for that purpose, to describe the reactor core together with mechanism which play an important role in dynamic analysis. The dynamic behavior of the reactor core during transients is analyzed considering the transient initiating events, wich are an essential part of Safety Analysis Reports. several transients are simulated based on the employed core model. Simulation results are in accord the physical expectations. A neural network is developed to predict the future response of the reactor core, in advance. The neural network is trained using the simulation results of a number of representative transients. Structure of the neural network is optimized by proper selection of transfer functions for the neurons. Trained neural network is used to predict the future responses following an early observation of the changes in system variables. Estimated behaviour using the neural network is in good agreement with the simulation results for various for types of transients. Results of this study indicate that the designed neural network can be used as an estimator of the time dependent behavior of the reactor core under transient conditions

  3. Molecular dynamics studies of the transient nucleation regime in the freezing of (RbCl)108 clusters

    International Nuclear Information System (INIS)

    Huang, Jinfan; Bartell, L.S.Lawrence S.

    2004-01-01

    The freezing of supercooled liquids in the transient period before a steady state of nucleation is attained has been the subject of a number of theoretical treatments. To our knowledge, no published experimental studies or computer simulations have been carried out in sufficient detail to test definitively the behavior predicted by the various theories. The present molecular dynamics (MD) simulation of 375 nucleation events in small, liquid RbCl clusters, however, yields a reasonably accurate account of the transient region. Despite published criticisms of a 1969 treatment by Kashchiev, it turns out that the behavior observed in the present study agrees with that predicted by Kashchiev. The study also obtains a much more accurate nucleation rate and time lag than reported for MD studies of RbCl previously published in this journal. In addition, it provides estimates of the solid-liquid interfacial free energy and the Granasy thickness of the diffuse solid-liquid interface

  4. Levels-of-processing effects on recollection and familiarity during transient global amnesia and after recovery.

    Science.gov (United States)

    Thoma, Patrizia; Schwarz, Michael; Daum, Irene

    2010-11-01

    The aim of the present study was to investigate the pattern of recollection and familiarity deficits and the modulation of recognition memory performance by the depth of encoding (deep vs. shallow) in transient global amnesia (TGA). Ten patients with TGA and 11 control subjects were assessed during the acute stage and after recovery 7 to 19 days later. Both recollection and familiarity were impaired in the acute stage and showed significant, albeit not complete, recovery by the time of the postacute assessment. The patients did, however, show a significant levels-of-processing effect, which was significantly reduced in acute TGA, but not at follow-up. The significant levels-of-processing effect during acute TGA might be linked to recruitment of the prefrontal cortex. (c) 2010 APA, all rights reserved

  5. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  6. The dynamics of sediment size and transient erosional signals in heterogeneous lithologies

    Science.gov (United States)

    Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.

    2017-12-01

    Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon

  7. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  8. TRANSIENT GLOBAL AMNESIA IN A PATIENT WITH HYPERTENSIVE CRISIS

    Directory of Open Access Journals (Sweden)

    E. V. Yakovleva

    2018-01-01

    Full Text Available Transient global amnesia was established by Fisher et Adams is 1964 for phenomena characterized by the sudden onset of all types memory loss, retrograde amnesia and the inability to form new  memories and to recall the recent past. The incidence of TGA is 5  to10 people per 100,000 worldwide but the real incidence is unknown because the episodes of memory loss are temporary and many patients don’t go to see a doctor at the time of attack. The triggers of TAG are physical activity, sexual  intercourse, pain, Valsalva maneuver etc. In routine clinical practice  TAG is more important for neurologists. But this problem is also  interesting for therapeutists because TAG could be developed in  patients with arterial hypertension, foramen ovale, mitral valve  prolapse and heart blocks. We present a 57-year-old female with  TAG. She was admitted to the hospital due to hypertensive crisis and an impaired ability to retain new information that started after  physical activity. The diagnosis of TAG was based on information  from attacks witnesses, the sudden onset of anterograde amnesia,  normal cognition of the patient and short duration of attack. Also,  the patient had no features of stroke, acute hypertensive encephalopathy, epilepsy and alcohol blackout. TAG is more typical for females over 50 years, all symptoms start after physical activity and resolve within 24 hours. It is characterized by reversibility of all symptoms and good prognosis of 2 years of follow-up.

  9. Implicit learning in transient global amnesia and the role of stress

    Directory of Open Access Journals (Sweden)

    Frauke Nees

    2016-11-01

    Full Text Available Transient global amnesia (TGA is a disorder with reversible anterograde disturbance of explicit memory, frequently preceded by an emotionally or physically stressful event. By using magnetic resonance imaging (MRI following an episode of TGA, small hippocampal lesions have been observed. Hence it has been postulated that the disorder is caused by the stress-related transient inhibition of memory formation in the hippocampus. In experimental studies, stress has been shown to affect both explicit and implicit learning – the latter defined as learning and memory processes that lack conscious awareness of the information acquired. To test the hypothesis that impairment of implicit learning in TGA is present and related to stress, we determined the effect of experimental exposure to stress on hippocampal activation patterns during an implicit learning paradigm in patients who suffered a recent TGA and healthy matched control subjects. We used a hippocampus-dependent aversive learning procedure (context conditioning with the phases habituation, acquisition, and extinction during functional MRI following experimental stress exposure (socially evaluated cold pressor test. After a control procedure, controls showed successful learning during the acquisition phase, indicated by increased valence, arousal and contingency ratings to the paired (CON+ versus the non-paired (CON- conditioned stimulus, and successful extinction of the conditioned responses. Following stress, acquisition was still successful, however extinction was impaired with persistently increased contingency ratings. In contrast, TGA patients showed impairment of conditioned responses and insufficient extinction after the control procedure, indicated by a lack of significant differences between CON+ and CON- for valence and arousal ratings after the acquisition phase and by significantly increased contingency ratings after the extinction. After stress, aversive learning was not successful

  10. The Dynamic Internationalization Model of Slovenian Born Global SMEs

    Directory of Open Access Journals (Sweden)

    Ina Lejko

    2013-01-01

    Full Text Available Small and medium sized enterprises (SMEs are important businessactors in the Slovenian, as well as European economy. Inaddition to the current global market conditions, reflecting a severeeconomic downturn, the SMEs in Slovenia and other transitioneconomies operate under additional extensive external pressures,arising from the opening of their domestic markets. Undersuch conditions, companies, including SMEs, perceive internationalizationas an inevitable, or even urgent step in the processof their business operations. However, companies pursue differentpaths in their internationalization efforts, one of them beinga rapid internationalization strategy, denoted as the Born Globalconcept. In the paper, we explore the internationalization processof Slovenian Born Global SMEs. We employ an exploratory qualitativecase study analysis of selected Slovenian SMEs in order tograsp the key characteristics of their internationalization process.On the basis of the latter we construct a dynamic internationalizationmodel that might be used as a conceptual framework forempirical research of dynamic SMEs market behavior in Sloveniaand other transition countries.

  11. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  12. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    Science.gov (United States)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  13. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  14. Dynamic behaviour of mono bucket foundations subjected to combined transient loading

    DEFF Research Database (Denmark)

    Nielsen, Søren Dam; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2015-01-01

    This article presents the results from small scale testing, investigating the effect of transient combined loading of a bucketfoundation. The tests are performed inside a pressure tank at Aalborg University, Denmark. The bucket foundation was installed in dense water saturated sand and transient ...

  15. Global Dynamics in Travel, Tourism, and Hospitality

    OpenAIRE

    Pappas, Nikolaos; Bregoli, Ilenia

    2016-01-01

    Worldwide, tourism is the third largest economic activity in direct earnings after petroleum and automobile industries, and by far the largest one if indirect earnings are also taken into consideration. Taking into account the profound economic impact the tourism and hospitality industries can have on regions and cities around the world, further research in this area is critical.\\ud \\ud Global Dynamics in Travel, Tourism, and Hospitality takes a holistic approach to tourism and hospitality op...

  16. Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?

    Directory of Open Access Journals (Sweden)

    Shouliang Qi

    2017-01-01

    Full Text Available Using computational fluid dynamics (CFD method, the feasibility of simulating transient airflow in a CT-based airway tree with more than 100 outlets for a whole respiratory period is studied, and the influence of truncations of terminal bronchi on CFD characteristics is investigated. After an airway model with 122 outlets is extracted from CT images, the transient airflow is simulated. Spatial and temporal variations of flow velocity, wall pressure, and wall shear stress are presented; the flow pattern and lobar distribution of air are gotten as well. All results are compared with those of a truncated model with 22 outlets. It is found that the flow pattern shows lobar heterogeneity that the near-wall air in the trachea is inhaled into the upper lobe while the center flow enters the other lobes, and the lobar distribution of air is significantly correlated with the outlet area ratio. The truncation decreases airflow to right and left upper lobes and increases the deviation of airflow distributions between inspiration and expiration. Simulating the transient airflow in an airway tree model with 122 bronchi using CFD is feasible. The model with more terminal bronchi decreases the difference between the lobar distributions at inspiration and at expiration.

  17. Development of real time visual evaluation system for sodium transient thermohydraulic experiments

    International Nuclear Information System (INIS)

    Tanigawa, Shingo

    1990-01-01

    A real time visual evaluation system, the Liquid Metal Visual Evaluation System (LIVES), has been developed for the Plant Dynamics Test Loop facility at O-arai Engineering Center. This facility is designed to provide sodium transient thermohydraulic experimental data not only in a fuel subassembly but also in a plant wide system simulating abnormal or accident conditions in liquid metal fast breeder reactors. Since liquid metal sodium is invisible, measurements to obtain experimental data are mainly conducted by numerous thermo couples installed at various locations in the test sections and the facility. The transient thermohydraulic phenomena are a result of complicated interactions among global and local scale three-dimensional phenomena, and short- and long-time scale phenomena. It is, therefore, difficult to grasp intuitively thermohydraulic behaviors and to observe accurately both temperature distribution and flow condition solely by digital data or various types of analog data in evaluating the experimental results. For effectively conducting sodium transient experiments and for making it possible to observe exactly thermohydraulic phenomena, the real time visualization technique for transient thermohydraulics has been developed using the latest Engineering Work Station. The system makes it possible to observe and compare instantly the experiment and analytical results while experiment or analysis is in progress. The results are shown by not only the time trend curves but also the graphic animations. This paper shows an outline of the system and sample applications of the system. (author)

  18. Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals

    International Nuclear Information System (INIS)

    Martin, M.; Shen, T.; Thadhani, N.N.

    2008-01-01

    Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state

  19. Development of a transient criticality evaluation method

    International Nuclear Information System (INIS)

    Pain, C.C.; Eaton, M.D.; Miles, B.; Ziver, A.K.; Gomes, J.L.M.A.; Umpleby, A.P.; Piggott, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    In developing a transient criticality evaluation method we model, in full spatial/temporal detail, the neutron fluxes and consequent power and the evolving material properties - their flows, energies, phase changes etc. These methods are embodied in the generic method FETCH code which is based as far as possible on basic principles and is capable of use in exploring safety-related situations somewhat beyond the range of experiment. FETCH is a general geometry code capable of addressing a range of criticality issues in fissile materials. The code embodies both transient radiation transport and transient fluid dynamics. Work on powders, granular materials, porous media and solutions is reviewed. The capability for modelling transient criticality for chemical plant, waste matrices and advanced reactors is also outlined. (author)

  20. Transient analysis of DTT rakes

    International Nuclear Information System (INIS)

    Kamath, P.S.; Lahey, R.T. Jr.

    1981-01-01

    This paper presents an analytical model for the determination of the cross-sectionally averaged transient mass flux of a two-phase fluid flowing in a conduit instrumented by a Drag-Disk Turbine Transducer (DTT) Rake and a multibeam gamma densitometer. Parametric studies indicate that for a typical blowdown transient, dynamic effects such as rotor inertia can be important for the turbine-meter. In contrast, for the drag-disk, a frequency response analysis showed that the quasisteady solution is valid below a forcing frequency of about 10 Hz, which is faster than the time scale normally encountered during blowdowns. The model showed reasonably good agreement with full scale transient rake data, where the flow regimes were mostly homogeneous or stratified, thus indicating that the model is suitable for the analysis of a DTT rake. (orig.)

  1. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Zahra-Nadia Sharifi

    2012-01-01

    Full Text Available Transient global cerebral ischemia causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the neurotrophic effect of the immunosuppressant agent FK506 in rat after global cerebral ischemia. Both common carotid arteries were occluded for 20 minutes followed by reperfusion. In experimental group 1, FK506 (6 mg/kg was given as a single dose exactly at the time of reperfusion. In the second group, FK506 was administered at the beginning of reperfusion, followed by its administration intraperitoneally (IP 6, 24, 48, and 72 hours after reperfusion. FK506 failed to show neurotrophic effects on CA1 region when applied as a single dose of 6 mg/kg. The cell number and size of the CA1 pyramidal cells were increased, also the number of cell death decreased in this region when FK506 was administrated 48 h after reperfusion. This work supports the possible use of FK506 in treatment of ischemic brain damage.

  2. Protective effect of embelin from Embelia ribes Burm. against transient global ischemia-induced brain damage in rats.

    Science.gov (United States)

    Thippeswamy, B S; Nagakannan, P; Shivasharan, B D; Mahendran, S; Veerapur, V P; Badami, S

    2011-11-01

    Embelia ribes is being used in Indian traditional herbal medicine for the treatment of mental disorders and as brain tonic. The present study was designed to investigate the protective effects of embelin from E. ribes on global ischemia/reperfusion-induced brain injury in rats. Transient global ischemia was induced by occluding bilateral common carotid arteries for 30 min followed by 24-h reperfusion. Neurological functions were measured using sensorimotor tests. Ischemia/reperfusion-induced neuronal injury was assessed by cerebral infarct area, biochemical and histopathological examination. Pretreatment of embelin (25 and 50 mg/kg, p.o.) significantly increased locomotor activity and hanging latency time and decreased beam walking latency when compared with ischemic control. The treatment also reduced significantly the lipid peroxidation and increased the total thiol content and glutathione-S-transferase activity in brain homogenates. The decreased cerebral infarction area in embelin-treated groups and histopathological observations confirmed the above findings. These observations suggested that embelin is a neuroprotective agent and may prove to be useful adjunct in the treatment of stroke.

  3. The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors

    NARCIS (Netherlands)

    Sjenitzer, B.L.

    2013-01-01

    In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing

  4. A dynamic global and local combined particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Chen Qunxian

    2009-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.

  5. Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane

    Science.gov (United States)

    Hu, Wenjie; Duan, Yueliang

    2018-04-01

    We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.

  6. Super-transient scaling in time-delay autonomous Boolean network motifs

    Energy Technology Data Exchange (ETDEWEB)

    D' Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Lohmann, Johannes [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Gauthier, Daniel J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  7. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  8. Shaking of reinforced concrete structures subjected to transient dynamic analysis

    International Nuclear Information System (INIS)

    Rouzaud, Christophe

    2015-01-01

    In the design of nuclear engineering structures security and safety present a crucial aspect. Civil engineering design and the qualification of materials to dynamic loads must consider the accelerations which they undergo. These accelerations could integrate seismic activity and shaking movements consecutive to aircraft impact with higher cut-off frequency. Current methodologies for assessing this shock are based on transient analyses using classical finite element method associated with explicit numerical schemes or projection on modal basis, often linear. In both cases, to represent in meaningful way a medium-frequency content, it should implement a mesh refinement which is hardly compatible with the size of models of the civil engineering structures. In order to extend industrial methodologies used and to allow a better representation of the behavior of the structure in medium-frequency, an approach coupling a temporal and non-linear analysis for shock area with a frequency approach to treatment of shaking with VTCR (Variational Theory of Complex Rays) has been used. The aim is to use the computational efficiency of the implemented strategy, including medium frequency to describe the nuclear structures to aircraft impact. (author)

  9. Analysis of the FFTF primary pipe rupture transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Chen, L.C.; Albright, D.C.

    1979-01-01

    The response of the Fast Flux Test Facility (FFTF) to hypothetical ruptures of the high pressure primary piping has been analyzed using two LMFBR plant systems codes, namely IANUS and DEMO. Comparisons of the average channel temperatures predicted by the two codes show good agreement for identical transients. However, the hot channel temperatures predicted by DEMO are about 60K higher than the corresponding IANUS predictions for severe transients. This difference is attributed to the dynamic hot channel factors employed in DEMO which discount the thermal inertia of the duct walls for rapid transients. DEMO also predicts more severe transients for hot-leg ruptures in FFTF than previously reported analyses for the CRBR

  10. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  11. Implementation of the dynamic Monte Carlo method for transient analysis in the general purpose code Tripoli

    Energy Technology Data Exchange (ETDEWEB)

    Sjenitzer, Bart L.; Hoogenboom, J. Eduard, E-mail: B.L.Sjenitzer@TUDelft.nl, E-mail: J.E.Hoogenboom@TUDelft.nl [Delft University of Technology (Netherlands)

    2011-07-01

    A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)

  12. Implementation of the dynamic Monte Carlo method for transient analysis in the general purpose code Tripoli

    International Nuclear Information System (INIS)

    Sjenitzer, Bart L.; Hoogenboom, J. Eduard

    2011-01-01

    A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)

  13. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  14. Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves

    Science.gov (United States)

    Lilienkamp, Thomas; Christoph, Jan; Parlitz, Ulrich

    2017-08-01

    In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.

  15. The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia

    Directory of Open Access Journals (Sweden)

    Roehl Anna B

    2012-08-01

    Full Text Available Abstract Backround Neuroprotective strategies after cardiopulmonary resuscitation are currently the focus of experimental and clinical research. Levosimendan has been proposed as a promising drug candidate because of its cardioprotective properties, improved haemodynamic effects in vivo and reduced traumatic brain injury in vitro. The effects of levosimendan on brain metabolism during and after ischaemia/hypoxia are unknown. Methods Transient cerebral ischaemia/hypoxia was induced in 30 male Wistar rats by bilateral common carotid artery clamping for 15 min and concomitant ventilation with 6% O2 during general anaesthesia with urethane. After 10 min of global ischaemia/hypoxia, the rats were treated with an i.v. bolus of 24 μg kg-1 levosimendan followed by a continuous infusion of 0.2 μg kg-1 min-1. The changes in the energy-related metabolites lactate, the lactate/pyruvate ratio, glucose and glutamate were monitored by microdialysis. In addition, the effects on global haemodynamics, cerebral perfusion and autoregulation, oedema and expression of proinflammatory genes in the neocortex were assessed. Results Levosimendan reduced blood pressure during initial reperfusion (72 ± 14 vs. 109 ± 2 mmHg, p = 0.03 and delayed flow maximum by 5 minutes (p = 0.002. Whereas no effects on time course of lactate, glucose, pyruvate and glutamate concentrations in the dialysate could be observed, the lactate/pyruvate ratio during initial reperfusion (144 ± 31 vs. 77 ± 8, p = 0.017 and the glutamate release during 90 minutes of reperfusion (75 ± 19 vs. 24 ± 28 μmol·L-1 were higher in the levosimendan group. The increased expression of IL-6, IL-1ß TNFα and ICAM-1, extend of cerebral edema and cerebral autoregulation was not influenced by levosimendan. Conclusion Although levosimendan has neuroprotective actions in vitro and on the spinal cord in vivo and has been shown to cross the blood–brain barrier, the present

  16. Global dynamics of multi-group SEI animal disease models with indirect transmission

    International Nuclear Information System (INIS)

    Wang, Yi; Cao, Jinde

    2014-01-01

    A challenge to multi-group epidemic models in mathematical epidemiology is the exploration of global dynamics. Here we formulate multi-group SEI animal disease models with indirect transmission via contaminated water. Under biologically motivated assumptions, the basic reproduction number R 0 is derived and established as a sharp threshold that completely determines the global dynamics of the system. In particular, we prove that if R 0 <1, the disease-free equilibrium is globally asymptotically stable, and the disease dies out; whereas if R 0 >1, then the endemic equilibrium is globally asymptotically stable and thus unique, and the disease persists in all groups. Since the weight matrix for weighted digraphs may be reducible, the afore-mentioned approach is not directly applicable to our model. For the proofs we utilize the classical method of Lyapunov, graph-theoretic results developed recently and a new combinatorial identity. Since the multiple transmission pathways may correspond to the real world, the obtained results are of biological significance and possible generalizations of the model are also discussed

  17. Dynamical Networks Characterization of Geomagnetic Substorms and Transient Response to the Solar Wind State.

    Science.gov (United States)

    Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Observations of how the solar wind interacts with earth's magnetosphere, and its dynamical response, are increasingly becoming a data analytics challenge. Constellations of satellites observe the solar corona, the upstream solar wind and throughout earth's magnetosphere. These data are multipoint in space and extended in time, so in principle are ideal for study using dynamical networks to characterize the full time evolving spatial pattern. We focus here on analysis of data from the full set of 100+ auroral ground based magnetometer stations that have been collated by SuperMAG. Spatio-temporal patterns of correlation between the magnetometer time series can be used to form a dynamical network [1]. The properties of the network can then be captured by (time dependent) network parameters. This offers the possibility of characterizing detailed spatio-temporal pattern by a few parameters, so that many events can then be compared [2] with each other. Whilst networks are in widespread use in the data analytics of societal and commercial data, there are additional challenges in their application to physical timeseries. Determining whether two nodes (here, ground based magnetometer stations) are connected in a network (seeing the same dynamics) requires normalization w.r.t. the detailed sensitivities and dynamical responses of specific observing stations and seasonal conductivity variations and we have developed methods to achieve this dynamical normalization. The detailed properties of the network capture time dependent spatial correlation in the magnetometer responses and we will show how this can be used to infer a transient current system response to magnetospheric activity. [l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  18. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  19. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  20. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  1. AFSC/ABL: Global Ocean Ecosystems Dynamics (GLOBEC) fish and oceanography data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Understanding the processes that regulate early marine survival of salmon is a major goal of the Global Ocean Ecosystems Dynamics (GLOBEC) Northeast Pacific (NEP)...

  2. Data Synthesis and Data Assimilation at Global Change Experiments and Fluxnet Toward Improving Land Process Models

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States). Dept. of Microbiology and Plant Biology

    2017-09-12

    , biomes, and models. This framework has been successfully implemented by several global land models, such as CABLE (Xia et al., 2013), LPJ-GUESS (Ahlström et al., 2015), CLM (Hararuk et al., 2014; Huang et al., 2017, submitted; Shi et al., 2017, submitted), and ORCHIDEE (Huang et al., 2017, unpublished). Moreover, we have identified the theoretical foundation of the determinants of transient C storage dynamics by adding another term, C storage potential, to the steady-state traceability framework (Luo et al., 2017). The theoretical foundation of transient C storage dynamics has been applied to develop a transient traceability framework to explore the traceable components of transient C storage dynamics responded to the rising CO2 and climate change in the two contrasting ecosystem types Duke needleleaved forest and Harvard deciduous broadleaved forest (Jiang et al., 2017, in revision). Overall, with the data synthesis, data assimilation techniques, and the steady-state and transient traceability frameworks, we have greatly improved land process models for predicting responses and feedback of terrestrial C dynamics to global change. The matrix approaches has the potential to be applied in theoretical research on nitrogen and phosphorus cycle, and therefore, the coupling of carbon-nitrogen-phosphorus.

  3. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    NARCIS (Netherlands)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-01-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global

  4. The computer code EURDYN - 1 M (release 1) for transient dynamic fluid-structure interaction. Pt.1: governing equations and finite element modelling

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.; Halleux, J.P.; Jones, A.V.

    1980-01-01

    This report describes the governing equations and the finite element modelling used in the computer code EURDYN - 1 M. The code is a non-linear transient dynamic program for the analysis of coupled fluid-structure systems; It is designed for safety studies on LMFBR components (primary containment and fuel subassemblies)

  5. Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics

    DEFF Research Database (Denmark)

    Stendel, Martin; Romanovsky, Vladimir E.; Christensen, Jens H.

    2007-01-01

    Even though we can estimate the zonation of present-day permafrost from deep-soil temperatures obtained from global coupled atmosphere-ocean general circulation models (GCMs) by accounting for heat conduction in the frozen soil, it is impossible to explicitly resolve soil properties, vegetation......, in particular in mountainous regions. By using global climate change scenarios as driving fields, one can obtain permafrost dynamics in high temporal resolution on the order of years. For the 21st century under the IPCC SRES scenarios A2 and B2, we find an increase of mean annual ground temperature by up to 6 K...

  6. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  7. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  8. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  9. Theorems on Existence and Global Dynamics for the Einstein Equations

    Directory of Open Access Journals (Sweden)

    Rendall Alan

    2002-01-01

    Full Text Available This article is a guide to theorems on existence and global dynamics of solutions ofthe Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.

  10. Theorems on Existence and Global Dynamics for the Einstein Equations

    Directory of Open Access Journals (Sweden)

    Rendall Alan D.

    2005-10-01

    Full Text Available This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.

  11. Stress-related factors in the emergence of transient global amnesia with hippocampal lesion

    Directory of Open Access Journals (Sweden)

    Juliane eDöhring

    2014-08-01

    Full Text Available The transient global amnesia (TGA is a rare amnesic syndrome that is characterized by an acute onset episode of an anterograde and retrograde amnesia. Its origin is still debated, but there is evidence for psychological factors involved in TGA. In neuroimaging, selective lesions in the CA1 fields of the hippocampus can be detected, a region that is particularly involved in the processing of memory, stress and emotion. The aim of this study was to assess the role of psychological stress in TGA by studying the prevalence of stress related precipitating events and individual stress-related personality profiles as well as coping strategies in patients. The hypothesis of a functional differentiation of the hippocampus in mnemonic and stress-related compartments was also evaluated. From all 113 patients, 18 % (n= 24 patients experienced emotional and psychological stress episodes directly before the TGA. In a cohort of 21 acute patients, TGA patients tend to cope with stress less efficiently and less constructively than controls. Patients who experienced a stress related precipitant event exhibited a higher level of anxiety in comparison to non-stress patients and controls. However, there was no difference between the general experience of stress and the number of stress inducing life events. The majority of patients (73% did show typical MRI lesions in the CA1 region of the hippocampal cornu ammonis. There was no clear association between stressful events, distribution of hippocampal CA1 lesions and behavioral patterns during the TGA. Disadvantageous coping strategies and an elevated anxiety level may increase the susceptibility to psychological stress which may facilitate the pathophysiological cascade in TGA. The findings suggest a role of emotional stress factors in the manifestation of TGA in a subgroup of patients. Stress may be one trigger involved in the emergence of transient lesions in the hippocampal CA1 region, which are thought to be the

  12. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  13. Modeling of Transients in an Enrichment Circuit

    International Nuclear Information System (INIS)

    Fernandino, Maria; Delmastro, Dario; Brasnarof, Daniel

    2003-01-01

    In the present work a mathematical model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.Transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations along the closed loop

  14. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  15. Transient Performance of a Vertical Axis Wind Turbine

    Science.gov (United States)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  16. Presentation of geometries and transient results of TRAC-calculations

    International Nuclear Information System (INIS)

    Lutz, A.; Lang, U.; Ruehle, R.

    1985-02-01

    The computer code TRAC is used to analyze the transient behaviour of nuclear reactors. The input of a TRAC-Calculation, as well as the produced result files serve for the graphical presentation of the geometries and transient results. This supports the search for errors during input generation and the understanding of complex processes by dynamic presentation of calculational result in colour. (orig.) [de

  17. Illuminating massive black holes with white dwarfs: orbital dynamics and high-energy transients from tidal interactions

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Goldstein, Jacqueline; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than ∼10 5 M ☉ . These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising indication of an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the light curve, is quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case, leading to the destruction of the WD after several tens of orbits. We examine the stellar dynamics of clusters surrounding MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters. The 10 49 erg s –1 peak luminosity of these events makes them visible to cosmological distances. They may be detectible at rates of as many as tens per year by instruments like Swift. In fact, WD-disruption transients significantly outshine their main-sequence star counterparts and are the tidal interaction most likely to be detected arising from MBHs with masses less than 10 5 M ☉ . The detection or nondetection of such WD-disruption transients by Swift is, therefore, a powerful tool to constrain the lower end of the MBH mass function. The emerging ultralong gamma-ray burst class of events all have peak luminosities and durations reminiscent of WD disruptions, offering a hint that WD-disruption transients may already be present in existing data sets.

  18. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains.

    Directory of Open Access Journals (Sweden)

    Luis A Veliz

    Full Text Available BACKGROUND: The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP family of ion channels are translocated toward the plasma membrane (PM in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane. METHODOLOGY/PRINCIPAL FINDINGS: We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2-8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability. CONCLUSIONS/SIGNIFICANCE: These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.

  19. Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

    International Nuclear Information System (INIS)

    Giacomin, Giambattista; Pakdaman, Khashayar; Pellegrin, Xavier

    2012-01-01

    We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero

  20. Statistical study of particle acceleration in the core of foreshock transients

    OpenAIRE

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli; Wilson III, Lynn B.

    2017-01-01

    Several types of foreshock transients upstream of Earth's bow shock possessing a tenuous, hot core have been observed and simulated. Because of the low dynamic pressure in their cores, these phenomena can significantly disturb the bow shock and the magnetosphere-ionosphere system. Recent observations have also demonstrated that foreshock transients can accelerate particles which, when transported earthward, can affect space weather. Understanding the potential of foreshock transients to accel...

  1. Global workspace dynamics: Cortical "binding and propagation enables conscious contents.

    Directory of Open Access Journals (Sweden)

    Bernard J Baars

    2013-05-01

    Full Text Available A global workspace is a hub of binding and propagation in a population of loosely coupled signaling elements. Global workspace (GW architectures recruit many distributed, specialized agents to help resolve focal ambiguities. In the brain, conscious experiences may reflect a global workspace function. For animals the natural world is full of fitness-related ambiguities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. In humans and related species the cortico-thalamic (C-T core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing, emotions, imagery, working memory and executive control. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. The repertoire of conscious contents is a large, open set. These points suggest that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a dynamic capacity for adaptive binding and propagation of neural signals over multi-hub networks. We refer to this as dynamic global workspace theory (dGW. In this view, conscious contents can arise in any region of the C-T core when multiple signal streams settle on a winner-take-all equilibrium. The resulting bound gestalt may ignite an any-to-many broadcast, lasting ~100-200 ms, and trigger widespread adaptation in established networks. Binding and broadcasting may involve theta/gamma or alpha/gamma phase coupling. Conscious contents (qualia may reflect their sources in cortex. Sensory percepts may bind and broadcast from posterior regions, while non-sensory feelings of knowing (FOKs may be frontotemporal. The small focal capacity of conscious contents may be the biological price to pay for global access. We propose that in the intact brain the hippocampal/rhinal complex may support conscious event organization as well as episodic memory coding.

  2. 5-HMF attenuates striatum oxidative damage via Nrf2/ARE signaling pathway following transient global cerebral ischemia.

    Science.gov (United States)

    Ya, Bai-Liu; Li, Hong-Fang; Wang, Hai-Ying; Wu, Fei; Xin, Qing; Cheng, Hong-Ju; Li, Wen-Juan; Lin, Na; Ba, Zai-Hua; Zhang, Ru-Juan; Liu, Qian; Li, Ya-Nan; Bai, Bo; Ge, Feng

    2017-01-01

    Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that

  3. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  4. Attosecond transient absorption spectroscopy of molecular hydrogen

    International Nuclear Information System (INIS)

    Martín, Fernando; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Cheng, Yan; Chini, Michael; Wang, Xiaowei; Chang, Zenghu

    2015-01-01

    We extend attosecond transient absorption spectroscopy (ATAS) to the study of hydrogen molecules, demonstrating the potential of the technique to resolve – simultaneously and with state resolution – both the electronic and nuclear dynamics. (paper)

  5. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    International Nuclear Information System (INIS)

    Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting

    2015-01-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)

  6. Temporal frequency probing for 5D transient analysis of global light transport

    KAUST Repository

    O'Toole, Matthew; Heide, Felix; Xiao, Lei; Hullin, Matthias B.; Heidrich, Wolfgang; Kutulakos, Kiriakos N.

    2014-01-01

    To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

  7. Transient analysis of house load operation for LNPP

    International Nuclear Information System (INIS)

    Shi Junying; Zheng Bin

    2000-01-01

    The author analysis the transient of house load operation for Ling'ao Nuclear Power Plant by using the methods of dynamic simulation and closed loops of primary and secondary system. The transient of house load operation from 100% FP is the most severe that can occur on the unit in normal operation because it causes immediately shedding of 95% of turbine load and requires the unit to operate steadily at reduced power. The results show that the transient can be successful both at beginning of core life and manual house load operation. However, more attentions must be paid to automatic house load operation caused by grid fault at toward end of core life because the success of the transient could be threatened by the actuation of the protection of high flux and high flux rate

  8. Transiently chaotic neural networks with piecewise linear output functions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-S. [Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan (China); Shih, C.-W. [Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan (China)], E-mail: cwshih@math.nctu.edu.tw

    2009-01-30

    Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.

  9. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  10. The profound reach of the 11 April 2012 M 8.6 Indian Ocean earthquake: Short‐term global triggering followed by a longer‐term global shadow

    Science.gov (United States)

    Pollitz, Fred; Burgmann, Roland; Stein, Ross S.; Sevilgen, Volkan

    2014-01-01

    The 11 April 2012 M 8.6 Indian Ocean earthquake was an unusually large intraoceanic strike‐slip event. For several days, the global M≥4.5 and M≥6.5 seismicity rate at remote distances (i.e., thousands of kilometers from the mainshock) was elevated. The strike‐slip mainshock appears through its Love waves to have triggered a global burst of strike‐slip aftershocks over several days. But the M≥6.5 rate subsequently dropped to zero for the succeeding 95 days, although the M≤6.0 global rate was close to background during this period. Such an extended period without an M≥6.5 event has happened rarely over the past century, and never after a large mainshock. Quiescent periods following previous large (M≥8) mainshocks over the past century are either much shorter or begin so long after a given mainshock that no physical interpretation is warranted. The 2012 mainshock is unique in terms of both the short‐lived global increase and subsequent long quiescent period. We believe that the two components are linked and interpret this pattern as the product of dynamic stressing of a global system of faults. Transient dynamic stresses can encourage short‐term triggering, but, paradoxically, it can also inhibit rupture temporarily until background tectonic loading restores the system to its premainshock stress levels.

  11. Design of performance and analysis of dynamic and transient thermal behaviors on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Mizuno, Minoru; Itoh, Mitsuyoshi; Urabe, Shigemi

    1985-01-01

    The intermediate heat exchanger (IHX) is designed as the high temperature heat exchanger for HTGR (High Temperature Gas-cooled Reactor), which transmits the primary coolant helium's heat raised up to about 950 0 C in the reactor core to the secondary helium or the nuclear heat utilization. Having to meet, in addition, the requirement of the primary coolant pressure boundary as the Class-1 component, it must be secured integrity throughout the service life. This paper will show (1) the design of the thermal performance; (2) the results of the dynamic analyses of the 1.5 MWt-IHX with its comparison to the experimental data; (3) the analytical predictions of the dynamic thermal behaviors under start-up and of the transient thermal behaviors during the accident on the 25 MWt-IHX. (author)

  12. Global monitoring of dynamic information systems a case study in the international supply chain

    NARCIS (Netherlands)

    Pruksasri, P.; Berg, J. van den; Hofman, W.J.

    2014-01-01

    Global information systems are becoming more complex and dynamic everyday: huge amounts of data and messages through those systems show dynamically changing traffic patterns. Because of this, diagnosing when sub-systems are not working properly is difficult. System failures or errors in information

  13. Combined cycle power plants: A comparison between two different dynamic models to evaluate transient behaviour and residual life

    International Nuclear Information System (INIS)

    Benato, Alberto; Stoppato, Anna; Bracco, Stefano

    2014-01-01

    Highlights: • Two procedures aimed at simulating the dynamic behaviour of power plants are compared. • They both are aimed at predicting the residual life of plant devices. • A single pressure gas-steam combined plant has been modelled. • A good correspondence has been found despite the different approaches used. - Abstract: The deregulated energy market and the increasing quota of electrical capacity covered by non-predictable renewable sources require strongly irregular and discontinuous operation of thermoelectric plants to satisfy users demand and compensate the variability of renewable sources. As a consequence, due to thermo-mechanical fatigue, creep and corrosion, a lifetime reduction of the most critical components occurs. The availability of a procedure able to predict the residual life of plant devices is necessary to assist the management decisions about power plants’ operation and maintenance scheduling. The first step of this procedure is the capability of simulating the plant behaviour versus time by evaluating the trends of the main thermodynamic parameters that describe the plant operation during different transient periods. In this context, the main contribution of the present paper is to propose a complete procedure able to simulate the plant dynamic behaviour and estimate the residual life reduction of some components. Indeed, two different models, developed by two different research groups, of the same single pressure heat recovery steam generator unit are presented and utilized to characterize the dynamic behaviour of the above mentioned power plant. The main thermodynamic variables during different transient operation conditions are predicted and good correspondence between the two methods is obtained. It can be also noted that, when the geometry and size of the devices are considered, the thermal inertia related to heat exchangers tubes, pipes and other physical masses causes a delay in the system response. Moreover, a residual life

  14. Belt conveyor dynamics in transient operation for speed control

    NARCIS (Netherlands)

    He, D.; Pang, Y.; Lodewijks, G.

    2016-01-01

    Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control.

  15. Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels

    Science.gov (United States)

    Li, Linqing; Kiick, Kristi

    2014-04-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (engineering applications, of a range of RLP hydrogels.

  16. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  17. Analytical prediction and experimental verification of reactor safety system injection transient

    International Nuclear Information System (INIS)

    Roy, B.N.; Nomm, E.

    1991-01-01

    This paper describes the computer code that was developed for thermal hydraulic transient analysis of mixed phase fluid system and the flow tests that were carried out to validate the Code. A full scale test facility was designed to duplicate the Supplementary Shutdown System (SSS) of Savannah River Production Reactors. Several steady state and dynamic flow tests were conducted simulating the actual reactor injection transients. A dynamic multiphase fluid flow code was developed and validated with experimental results and utilized for system performance predictions and development of technical specifications for reactors. 3 refs

  18. Genetic and neural approaches to nuclear transient identification

    International Nuclear Information System (INIS)

    Almeida, Jose Carlos Soares de; Mol, Antonio Carlos de Abreu; Pereira, Claudio Marcio Nascimento Abreu; Lapa, Celso Marcelo Franklin

    2005-01-01

    This work presents two approaches for pattern recognition to the same set of reactor signals. The first one describes a possibilistic approach optimized by genetic algorithm. The use of a possibilistic classification provides a natural and consistent classification rules, leading naturally to a good heuristic to handle the 'don't know' response, in case of unrecognized transient, which is fairly desirable in transient classification systems where safety is critical, since wrong or not reliable classifications can be catastrophic. Application of the proposed approach to a nuclear transient identification problem reveals good capability of the genetic algorithm in learning optimized possibilistic classification rules for efficient diagnosis including 'don't know' response. The second one uses two multilayer neural networks (NN). The first NN is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The second NN is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate both methods, a Nuclear Power Plant (NPP) transient identification problem comprising postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the methods in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  19. Recovery from Transient Global Amnesia Following Restoration of Hippocampal and Fronto–Cingulate Perfusion

    Directory of Open Access Journals (Sweden)

    Paolo Caffarra

    2010-01-01

    Full Text Available A patient who suffered a transient global amnesia (TGA attack underwent regional cerebral blood flow (rCBF SPECT imaging and neuropsychological testing in the acute phase, after one month and after one year. Neuropsychological testing in the acute phase showed a pattern of anterograde and retrograde amnesia, whereas memory was within age normal limits at follow up. SPECT data were analysed with a within subject comparison and also compared with those of a group of healthy controls. Within subject comparison between the one month follow up and the acute phase detected increases in rCBF in the hippocampus bilaterally; further rCBF increases in the right hippocampus were detected after one year. Compared to controls, significant hypoperfusion was found in the right precentral, cingulate and medial frontal gyri in the acute phase; after one month significant hypoperfusion was detected in the right precentral and cingulate gyri and the left postcentral gyrus; after one year no significant hypoperfusion appeared. The restoration of memory was paralleled by rCBF increases in the hippocampus and fronto-limbic-parietal cortex; after one year neither significant rCBF differences nor cognitive deficits were detectable. In conclusion, these data indicate that TGA had no long lasting cognitive and neural alterations in this patient.

  20. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Directory of Open Access Journals (Sweden)

    Kun Wei

    Full Text Available In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE. Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  1. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  2. Global structure of exact scalar hairy dynamical black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)

    2016-05-30

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  3. Global investigation of the nonlinear dynamics of carbon nanotubes

    KAUST Repository

    Xu, Tiantian

    2016-11-17

    Understanding the complex nonlinear dynamics of carbon nanotubes (CNTs) is essential to enable utilization of these structures in devices and practical applications. We present in this work an investigation of the global nonlinear dynamics of a slacked CNT when actuated by large electrostatic and electrodynamic excitations. The coexistence of several attractors is observed. The CNT is modeled as an Euler–Bernoulli beam. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses. Critical computational challenges are posed due to the complicated form of the electrostatic force, which describes the interaction between the upper electrode, consisting of the cylindrically shaped CNT, and the lower electrode. Toward this, we approximate the electrostatic force using the Padé expansion. We explore the dynamics near the primary and superharmonic resonances. The nanostructure exhibits several attractors with different characteristics. To achieve deep insight and describe the complexity and richness of the behavior, we analyze the nonlinear response from an attractor-basins point of view. The competition of attractors is highlighted. Compactness and/or fractality of their basins are discussed. Both the effects of varying the excitation frequency and amplitude are examined up to the dynamic pull-in instability.

  4. Top-down constraints on disturbance dynamics in the terrestrial carbon cycle: effects at global and regional scales

    Science.gov (United States)

    Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.

    2014-12-01

    Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have

  5. Laser Pulse Production for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar

    Science.gov (United States)

    Stysley, Paul R.; Coyle, D. Barry; Clarke, Greg B.; Frese, Erich; Blalock, Gordon; Morey, Peter; Kay, Richard B.; Poulios, Demetrios; Hersh, Michael

    2016-01-01

    The Lasers and Electro-Optics Branch at Goddard Space Flight Center has been tasked with building the Lasers for the Global Ecosystems Dynamics Investigation (GEDI) Lidar Mission, to be installed on the Japanese Experiment Module (JEM) on the International Space Station (ISS)1. GEDI will use three NASA-developed lasers, each coupled with a Beam Dithering Unit (BDU) to produce three sets of staggered footprints on the Earth's surface to accurately measure global biomass. We will report on the design, assembly progress, test results, and delivery process of this laser system.

  6. Ultrafast Carrier Dynamics Measured by the Transient Change in the Reflectance of InP and GaAs Film

    Energy Technology Data Exchange (ETDEWEB)

    Klopf, John [Helmholtz Association of German Research Centers, Dresden (Germany)

    2005-10-31

    Advancements in microfabrication techniques and thin film growth have led to complex integrated photonic devices, also known as optoelectronics. The performance of these devices relies upon precise control of the band gap and optical characteristics of the thin film structures, as well as a fundamental understanding of the photoexcited carrier thermalization, relaxation, and recombination processes. An optical pump-probe technique has been developed to measure the transient behavior of these processes on a sub-picosecond timescale. This method relies upon the generation of hot carriers by theabsorption of an intense ultrashort laser pulse (~ 135 fs). The transient changes in reflectance due to the pump pulse excitation are monitored using a weaker probe pulse. Control of the relative time delay between the pump and probe pulses allows for temporal measurements with resolution limited only by the pulse width. The transient change in reflectance is the result of a transient change in the carrier distribution. Observation of the reflectance response of indium phosphide (InP) and gallium arsenide (GaAs) films on a sub-picosecond timescale allows for detailed examination of thermalization and relaxation processes of the excited carriers. Longer timescales (> 100 ps) are useful for correlating the transient reflectance response to slower processes such as the diffusion and recombination of the photoexcited carriers. This research investigates the transient hot carrier processes in several InP and GaAs based films similar to those commonly used in optoelectronics. This technique is especially important as it provides a non-destructive means of evaluating these materials; whereas much of the research performed in this field has relied upon the measurement of transient changes in the transmission of transparent films. The process of preparing films that are transparent renders them unusable in functioning devices. This research should not only extend the understanding of

  7. Ensuring dynamic strategic fit of firms that compete globally in alliances and networks: proposing the Global SNA - Strategic Network Analysis - framework

    Directory of Open Access Journals (Sweden)

    T. Diana L. Van Aduard de Macedo-Soares

    2011-02-01

    Full Text Available In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.

  8. EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.; Halleux, J.P.

    1987-01-01

    1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin

  9. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  10. Computational model for transient studies of IRIS pressurizer behavior

    International Nuclear Information System (INIS)

    Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L.

    2014-01-01

    International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  11. Transient chaos in the Lorenz-type map with periodic forcing.

    Science.gov (United States)

    Maslennikov, Oleg V; Nekorkin, Vladimir I; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  12. On the global dynamics of the Rabinovich system

    International Nuclear Information System (INIS)

    Llibre, Jaume; Messias, Marcelo; Silva, Paulo R da

    2008-01-01

    In this paper by using the Poincare compactification in R 3 we make a global analysis of the Rabinovich system x-dot=hy-v 1 x+yz, y-dot=hx-v 2 y-xz, z-dot=-v 3 z+xy, where (x,y,z) element of R 3 and (h,v 1 ,v 2 ,v 3 ) element of R 4 . We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R 3 with the sphere S 2 of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor

  13. On the global dynamics of the Rabinovich system

    Energy Technology Data Exchange (ETDEWEB)

    Llibre, Jaume [Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Messias, Marcelo [Departamento de Matematica EstatIstica e Computacao, Faculdade de Ciencias e Tecnologia- UNESP, Rua Roberto Simonsen, 305, Cx. Postal 467, CEP 19060-900 P Prudente, Sao Paulo (Brazil); Silva, Paulo R da [Departamento de Matematica-IBILCE-UNESP, Rua C Colombo, 2265, CEP 15054-000 S J Rio Preto, Sao Paulo (Brazil)], E-mail: jllibre@mat.uab.cat, E-mail: marcelo@fct.unesp.br, E-mail: prs@ibilce.unesp.br

    2008-07-11

    In this paper by using the Poincare compactification in R{sup 3} we make a global analysis of the Rabinovich system x-dot=hy-v{sub 1}x+yz, y-dot=hx-v{sub 2}y-xz, z-dot=-v{sub 3}z+xy, where (x,y,z) element of R{sup 3} and (h,v{sub 1},v{sub 2},v{sub 3}) element of R{sup 4}. We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R{sup 3} with the sphere S{sup 2} of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.

  14. Century long observation constrained global dynamic downscaling and hydrologic implication

    Science.gov (United States)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  15. Radio and white-light observations of coronal transients

    International Nuclear Information System (INIS)

    Dulk, G.A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. The author reviews the observed properties of coronal transients, concentrating on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones non-thermal. The possible mechanisms involved in the radio bursts are discussed and the estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves. (Auth.)

  16. Response of centrifugal blowers to simulated tornado transients, July-September 1981

    International Nuclear Information System (INIS)

    Idar, E.S.; Gregory, W.S.; Martin, R.A.; Littleton, P.E.

    1982-03-01

    During this quarter, quasi-steady and dynamic testing of the 24-in. centrifugal blower was completed using the blowdown facility located at New Mexico State University. The data were obtained using a new digital data-acquisition system. Software was developed at the Los Alamos National Laboratory to reduce the dynamic test data and create computer-generated movies showing the dynamic performance of the blower under simulated tornado transient pressure conditions relative to its quasi-steady-state performance. Currently, quadrant-four (outrunning flow) data have been reduced for the most severe and a less severe tornado pressure transient. The results indicate that both the quasi-steady and dynamic blower performance are very similar. Some hysteresis in the dynamic performance occurs because of rotational inertia effects in the blower rotor and drive system. Currently quadrant-two (backflow) data are being transferred to the LTSS computer system at Los Alamos and will be reduced shortly

  17. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    Science.gov (United States)

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  18. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  19. Transient dynamic finite element analysis of hydrogen distribution test chamber structure for hydrogen combustion loads

    International Nuclear Information System (INIS)

    Singh, R.K.; Redlinger, R.; Breitung, W.

    2005-09-01

    Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were

  20. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  1. Transient analysis of a U-tube natural circulation steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Kumar, Rajesh; Bhadra, Anu; Chakraborty, G; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    A computer code has been developed, for transient thermal-hydraulic analysis of proposed 500 MWe PHWR steam generator. The transient behaviour of a nuclear power plant is very much dependent on the steam generator performance, as it provides a thermal linkage between the primary and secondary systems. Study of dynamics of steam generator is essential for over all power plant dynamics as well as design of control systems for steam generator. A mathematical model has been developed for the simulation of thermal-hydraulic phenomena in a U tube natural circulation steam generator. Fluid model is based on one dimensional, nonlinear, single fluid conservation equations of mass, momentum, energy and equation of state. This model includes coupled two phase flow heat transfer and natural circulation. The model accounts for both compressibility and thermal expansion effects. The process simulation and results obtained for transients such as step change in load and total loss of feed water are presented. (author). 5 refs., 7 figs.

  2. On the empirical relevance of the transient in opinion models

    International Nuclear Information System (INIS)

    Banisch, Sven; Araujo, Tanya

    2010-01-01

    While the number and variety of models to explain opinion exchange dynamics is huge, attempts to justify the model results using empirical data are relatively rare. As linking to real data is essential for establishing model credibility, this Letter develops an empirical confirmation experiment by which an opinion model is related to real election data. The model is based on a representation of opinions as a vector of k bits. Individuals interact according to the principle that similarity leads to interaction and interaction leads to still more similarity. In the comparison to real data we concentrate on the transient opinion profiles that form during the dynamic process. An artificial election procedure is introduced which allows to relate transient opinion configurations to the electoral performance of candidates for which data are available. The election procedure based on the well-established principle of proximity voting is repeatedly performed during the transient period and remarkable statistical agreement with the empirical data is observed.

  3. On the empirical relevance of the transient in opinion models

    Energy Technology Data Exchange (ETDEWEB)

    Banisch, Sven, E-mail: sven.banisch@universecity.d [Mathematical Physics, Physics Department, Bielefeld University, 33501 Bielefeld (Germany); Institute for Complexity Science (ICC), 1249-078 Lisbon (Portugal); Araujo, Tanya, E-mail: tanya@iseg.utl.p [Research Unit on Complexity in Economics (UECE), ISEG, TULisbon, 1249-078 Lisbon (Portugal); Institute for Complexity Science (ICC), 1249-078 Lisbon (Portugal)

    2010-07-12

    While the number and variety of models to explain opinion exchange dynamics is huge, attempts to justify the model results using empirical data are relatively rare. As linking to real data is essential for establishing model credibility, this Letter develops an empirical confirmation experiment by which an opinion model is related to real election data. The model is based on a representation of opinions as a vector of k bits. Individuals interact according to the principle that similarity leads to interaction and interaction leads to still more similarity. In the comparison to real data we concentrate on the transient opinion profiles that form during the dynamic process. An artificial election procedure is introduced which allows to relate transient opinion configurations to the electoral performance of candidates for which data are available. The election procedure based on the well-established principle of proximity voting is repeatedly performed during the transient period and remarkable statistical agreement with the empirical data is observed.

  4. [Transient amnesia in the elderly].

    Science.gov (United States)

    Sellal, François

    2006-03-01

    The two main aetiologies of transient amnesia in the elderly are idiopathic transient global amnesia (TGA) and iatrogenic or toxic amnesia. Vascular and epileptic amnesia are less common. According to the literature, transient psychogenic amnesia, which is a frequent cause of amnesia at age 30 to 50, is very rare in the elderly. TGA is the prototypical picture of transient amnesia. It occurs more often after age 50, with no identified cause, even if some authors accept emotional stress or minor head trauma as occasional precipitants. The mechanism of TGA remains a matter of discussion. It may be the consequence of a spreading depression similar to that described in migraine with aura, but other arguments support an ischemic mechanism. Iatrogenic amnesias are mainly caused by benzodiazepines (BZs) or anticholinergics. The former may occur in a non-anxious subject, who is not a usual consumer of BZ and takes a single dose. The latter are more often due to a hypersensitivity to anticholinergic drugs, in particular in patients presenting with a covert, incipient Alzheimer's disease. A vascular origin must be considered when amnesia is accompanied by other neurological symptoms, and when the regression of the amnesic disorder is slow, lasting several days. It results from lesions involving various mechanisms and locations, mainly subcortical. Partial seizures, most often mesio-temporal, more rarely frontal, may be the cause of transient amnesia in the elderly, in the absence of a past history of epilepsy. The red flag supportive of an epileptic origin is the repetition of stereotyped amnesic episodes. EEG demonstration of seizures may be difficult and the response to antiepileptic drugs effective on partial seizures is usually good.

  5. Pressure Transient Model of Water-Hydraulic Pipelines with Cavitation

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    2018-03-01

    Full Text Available Transient pressure investigation of water-hydraulic pipelines is a challenge in the fluid transmission field, since the flow continuity equation and momentum equation are partial differential, and the vaporous cavitation has high dynamics; the frictional force caused by fluid viscosity is especially uncertain. In this study, due to the different transient pressure dynamics in upstream and downstream pipelines, the finite difference method (FDM is adopted to handle pressure transients with and without cavitation, as well as steady friction and frequency-dependent unsteady friction. Different from the traditional method of characteristics (MOC, the FDM is advantageous in terms of the simple and convenient computation. Furthermore, the mechanism of cavitation growth and collapse are captured both upstream and downstream of the water-hydraulic pipeline, i.e., the cavitation start time, the end time, the duration, the maximum volume, and the corresponding time points. By referring to the experimental results of two previous works, the comparative simulation results of two computation methods are verified in experimental water-hydraulic pipelines, which indicates that the finite difference method shows better data consistency than the MOC.

  6. Soil-structure interaction for transient loads due to safety relief valve discharges

    International Nuclear Information System (INIS)

    Tseng, W.S.; Tsai, N.C.

    1978-01-01

    Dynamic responses of BWR Mark II containment structures subjected to axisymmetric transient pressure loadings due to simultaneous safety relief valve discharges were investigated using finite element analysis, including the soil-structure interaction effect. To properly consider the soil-structure interaction effect, a simplified lumped parameter foundation model and axisymmetric finite element foundation model with viscous boundary impedance are used. Analytical results are presented to demonstrate the effectiveness of the simplified foundation model and to exhibit the dynamic response behavior of the structure as the transient loading frequency and the foundation rigidity vary. The impact of the dynamic structural response due to this type of loading on the equipment design is also discussed. (Auth.)

  7. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  8. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  9. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  10. Transient analysis of LMFBR reinforced/prestressed concrete containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Belytschko, T.B.; Bazant, Z.P.

    1979-01-01

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containments must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. Furthermore, for the sake of convenience, all of these features should be available in a single computer code. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. The use of explicit time integration has the advantage that it can easily treat the complicated constitutive model which arises from the considerations of concrete cracking and it can handle the slip between reinforcing tendons and the concrete through the use of the well known sliding interface options. However, explicit time integration programs are usually not well suited to the simulation of static processes such as prestressing. Nevertheless, explicit time integration programs can handle static processes through the introduction of damping by what is known as a dynamic relaxation procedure. For this reason, the dynamic relaxation procedure was refined through the introduction of lumped mass, viscous damping. This provision made the prestressing operation of the concrete structures by means of the explicit formulation rather convenient. (orig.)

  11. Role of the noise on the transient dynamics of an ecosystem of interacting species

    Science.gov (United States)

    Spagnolo, B.; La Barbera, A.

    2002-11-01

    We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.

  12. Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weat...

  13. Dynamic visual acuity during transient and sinusoidal yaw rotation in normal and unilaterally vestibulopathic humans.

    Science.gov (United States)

    Tian, J R; Shubayev, I; Demer, J L

    2001-03-01

    The vestibulo-ocular reflex (VOR) stabilizes gaze to permit clear vision during head movements. It has been supposed that VOR function might be inferred from dynamic visual acuity (DVA), the acuity during imposed head motion. We sought to determine effectiveness of DVA for detection and lateralization of unilateral vestibulopathy, using rigorous psychophysical methods. Seventeen normal and 11 unilaterally vestibulopathic subjects underwent measurement of optically best corrected DVA during head motion. A variable size letter "E" 6 m distant was displayed in oblique random orientations to determine binocular DVA by a computer controlled, forced choice method. Three types of whole-body yaw rotation were delivered by a servo-controlled chair synchronized with optotype presentation. Two types of motion were predictable: (1) steady-state 2.0-Hz rotation at 10-130 degrees/s peak velocity with repetitive optotype presentation only during head velocity exceeding 80% of peak; and (2) directionally predictable transients at peak accelerations of 1000, 1600 and 2800 degrees/s2 with optotype presentation for 300 ms. For neither of these predictable motions did DVA in vestibulopathic subjects significantly differ from normal, with suggestions from search coil recordings that this was due to predictive slow and saccadic eye movements. Unilaterally vestibulopathic subjects experienced a significant decrease in DVA from the static condition during ipsilesional rotation for all three peak head accelerations. Only during directionally unpredictable transients with 75 ms or 300 ms optotype presentation was the sensitivity of DVA in unilaterally vestibulopathic subjects significantly abnormal during ipsilesional rotation. The ipsilesional decrease in DVA with head motion was greater for 75 ms than 300 ms optotype presentation. Search coil recordings confirmed hypometric compensatory eye movements during DVA testing with unpredictable, ipsilesional rotation. Receiver

  14. Radio and white-light observations of coronal transients

    Science.gov (United States)

    Dulk, G. A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.

  15. Short-term depression and transient memory in sensory cortex.

    Science.gov (United States)

    Gillary, Grant; Heydt, Rüdiger von der; Niebur, Ernst

    2017-12-01

    Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.

  16. Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Shaukat, Nadeem; Ryu, Min; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2017-08-15

    With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

  17. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia

    Directory of Open Access Journals (Sweden)

    Hongzhou Duan

    2016-01-01

    Full Text Available Introduction. Transient global amnesia (TGA following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360 or cardiac angiography (4 in 8817 and no case with TGA following peripheral angiography (0 in 7659. Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p=0.022. Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p=0.82 and different contrast agents (p=0.619. Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography.

  18. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    Directory of Open Access Journals (Sweden)

    Adam M Wilson

    2016-03-01

    Full Text Available Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  19. Modelling MIZ dynamics in a global model

    Science.gov (United States)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  20. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David; Bally, John; Masci, Frank; Armus, Lee; Cody, Ann Marie; Bond, Howard E.; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph; Boyer, Martha; Cantiello, Matteo; Fox, Ori D.

    2017-01-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr −1 to >7 mag yr −1 . SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  1. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  2. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  3. Sensitivity analysis of reactive ecological dynamics.

    Science.gov (United States)

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  4. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  5. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    International Nuclear Information System (INIS)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi; Schunert, Sebastian; DeHart, Mark

    2017-01-01

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$ 2 $, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  6. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    Science.gov (United States)

    Yousefian, Reza

    toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.

  7. A fast reactor transient analysis methodology for personal computers

    International Nuclear Information System (INIS)

    Ott, K.O.

    1993-01-01

    A simplified model for a liquid-metal-cooled reactor (LMR) transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All 30 differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes a new form, i.e., the quadratic dynamics equation. In this integral formulation, the initial value problem of typical LMR transients can be solved with large item steps (initially 1 s, later up to 256 s). This then makes transient problems amenable to a treatment on personal computer. The resulting mathematical model forms the basis for the GW-BASIC program LMR transient calculation (LTC) program. The LTC program has also been converted to QuickBASIC. The running time for a 10-h transient overpower transient is then ∼40 to 10 s, depending on the hardware version (286, 386, or 486 with math coprocessors)

  8. Global value chains: Building blocks and network dynamics

    Science.gov (United States)

    Tsekeris, Theodore

    2017-12-01

    The paper employs measures and tools from complex network analysis to enhance the understanding and interpretation of structural characteristics pertaining to the Global Value Chains (GVCs) during the period 1995-2011. The analysis involves the country, sector and country-sector value chain networks to identify main drivers of structural change. The results indicate significant intertemporal changes, mirroring the increased globalization in terms of network size, strength and connectivity. They also demonstrate higher clustering and increased concentration of the most influential countries and country-sectors relative to all others in the GVC network, with the geographical dimension to prevail over the sectoral dimension in the formation of value chains. The regionalization and less hierarchical organization drive country-sector production sharing, while the sectoral value chain network has become more integrated and more competitive over time. The findings suggest that the impact of country-sector policies and/or shocks may vary with the own-group and network-wide influence of each country, take place in multiple geographical scales, as GVCs have a block structure, and involve time dynamics.

  9. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    Science.gov (United States)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  10. Improving the Complexity of the Lorenz Dynamics

    Directory of Open Access Journals (Sweden)

    María Pilar Mareca

    2017-01-01

    Full Text Available A new four-dimensional, hyperchaotic dynamic system, based on Lorenz dynamics, is presented. Besides, the most representative dynamics which may be found in this new system are located in the phase space and are analyzed here. The new system is especially designed to improve the complexity of Lorenz dynamics, which, despite being a paradigm to understand the chaotic dissipative flows, is a very simple example and shows great vulnerability when used in secure communications. Here, we demonstrate the vulnerability of the Lorenz system in a general way. The proposed 4D system increases the complexity of the Lorenz dynamics. The trajectories of the novel system include structures going from chaos to hyperchaos and chaotic-transient solutions. The symmetry and the stability of the proposed system are also studied. First return maps, Poincaré sections, and bifurcation diagrams allow characterizing the global system behavior and locating some coexisting structures. Numerical results about the first return maps, Poincaré cross sections, Lyapunov spectrum, and Kaplan-Yorke dimension demonstrate the complexity of the proposed equations.

  11. Genome-wide evolutionary dynamics of influenza B viruses on a global scale.

    Directory of Open Access Journals (Sweden)

    Pinky Langat

    2017-12-01

    Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.

  12. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Science.gov (United States)

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  13. The assessment of RELAP5/MOD2 based on pressurizer transient experiments

    International Nuclear Information System (INIS)

    Xue Hanjun; Tanrikut, A.; Menzel, R.

    1992-03-01

    Two typical experiments have been performed in Chinese test facility under full pressure load corresponding to typical PWRs, 1) dynamic behavior of pressurizer due to relief valve operations (Case-I) is extremely important in transients and accident conditions regarding depressurization of PWR primary system; 2) Outsurge/Insurge operation is one of the transient which is often encountered and experienced in pressurizer systems due to pressure transients in primary system of PWRs. The simulation capability of RELAP5/MOD2 is good in comparison to experimental results. The physical models (such as interface model, stratification model), playing a major role in such simulation, seems to be realistic. The effect of realistic valve modeling in depressurization simulation is extremely important. Sufficient data for relief valve (the dynamic characteristics of valve) play a major role. The time dependent junction model and the trip valve model with a reduced discharge coefficient of 0.2 give better predictions in agreement with the experiment data while the trip valve models with discharge coefficient 1.0 yield overdepressurization. The simulation of outsurge/insurge transient yields satisfactory results. The thermal non-equilibrium model is important with respect to simulation of complicated physical phenomena in outsurge/insurge transient but has a negligible effect upon the depressurization simulation. (orig./HP)

  14. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  15. Investigating the impact of in-vehicle transients on diesel soot emissions

    Directory of Open Access Journals (Sweden)

    Filipi Zoran

    2008-01-01

    Full Text Available This paper describes development of a test cell setup for concurrent running of a real engine and a simulation of the vehicle system, and its use for investigating highly-dynamic engine-in-vehicle operation and its effect on diesel engine emissions. Running an engine in the test cell under conditions experienced in the vehicle enables acquiring detailed insight into dynamic interactions between power train sub-systems, and the impact of it on fuel consumption and transient emissions. This type of data may otherwise be difficult and extremely costly to obtain from a vehicle prototype test. In particular, engine system response during critical transients and the effect of transient excursions on emissions are investigated using advanced, fast-response test instrumentation and emissions analyzers. Main enablers of the work include the highly dynamic AC electric dynamometer with the accompanying computerized control system and the computationally efficient simulation of the driveline/vehicle system. The latter is developed through systematic energy-based proper modeling that tailors the virtual model to capture critical powertrain transients while running in real time. Coupling the real engine with the virtual driveline/vehicle offers a chance to easily modify vehicle parameters, and even study different power train configurations. In particular, the paper describes the engine-in-the-loop study of a V-8, 6l engine coupled to a virtual 4´4 off road vehicle. This engine is considered as a high-performance option for this truck and the real prototype of the complete vehicle does not exist yet. The results shed light on critical transients in a conventional powertrain and their effect on NOx and soot emissions. Measurements demonstrate very large spikes of particulate concentration at the initiation of vehicle acceleration events. Characterization of transients and their effect on particulate emission provides a basis for devising engine-level or

  16. Cross-covariance based global dynamic sensitivity analysis

    Science.gov (United States)

    Shi, Yan; Lu, Zhenzhou; Li, Zhao; Wu, Mengmeng

    2018-02-01

    For identifying the cross-covariance source of dynamic output at each time instant for structural system involving both input random variables and stochastic processes, a global dynamic sensitivity (GDS) technique is proposed. The GDS considers the effect of time history inputs on the dynamic output. In the GDS, the cross-covariance decomposition is firstly developed to measure the contribution of the inputs to the output at different time instant, and an integration of the cross-covariance change over the specific time interval is employed to measure the whole contribution of the input to the cross-covariance of output. Then, the GDS main effect indices and the GDS total effect indices can be easily defined after the integration, and they are effective in identifying the important inputs and the non-influential inputs on the cross-covariance of output at each time instant, respectively. The established GDS analysis model has the same form with the classical ANOVA when it degenerates to the static case. After degeneration, the first order partial effect can reflect the individual effects of inputs to the output variance, and the second order partial effect can reflect the interaction effects to the output variance, which illustrates the consistency of the proposed GDS indices and the classical variance-based sensitivity indices. The MCS procedure and the Kriging surrogate method are developed to solve the proposed GDS indices. Several examples are introduced to illustrate the significance of the proposed GDS analysis technique and the effectiveness of the proposed solution.

  17. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  18. The DTU12MDT global mean dynamic topography and ocean circulation model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole B.

    2013-01-01

    combined with the DTU10MSS mean sea surface model to construct a global mean dynamic topography model named DTU10MDT. The results of analyses clearly demonstrated the value of the GOCE mission. Both the resolution and the estimation of the surface currents have been improved significantly compared...

  19. Global Analysis of Response in the Piezomagnetoelastic Energy Harvester System under Harmonic and Poisson White Noise Excitations

    International Nuclear Information System (INIS)

    Yue Xiao-Le; Xu Wei; Zhang Ying; Wang Liang

    2015-01-01

    The piezomagnetoelastic energy harvester system subjected to harmonic and Poisson white noise excitations is studied by using the generalized cell mapping method. The transient and stationary probability density functions (PDFs) of response based on the global viewpoint are obtained by the matrix analysis method. Monte Carlo simulation results verify the accuracy of this method. It can be observed that evolutionary direction of transient and stationary PDFs is in accordance with the unstable manifold for this system, and a stochastic P-bifurcation occurs as the intensity of Poisson white noise increases. This study presents an efficient numerical tool to solve the stochastic response of a three-dimensional dynamical system and provides a new idea to analyze the energy harvester system. (paper)

  20. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    Science.gov (United States)

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optimal Subinterval Selection Approach for Power System Transient Stability Simulation

    Directory of Open Access Journals (Sweden)

    Soobae Kim

    2015-10-01

    Full Text Available Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. The performance of the proposed method is demonstrated with the GSO 37-bus system.

  2. Transient flow assurance for determination of operational control of heavy oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejo, Victor [TransCanada Pipelines Ltd, (Canada); Mohitpour, Mo [Tempsys Pipeline Solutions Inc., (Canada)

    2010-07-01

    Pipeline transmission systems have been designed traditionally using steady state simulations. Steady state simulation provided sufficient values for simple systems, but is limited in dealing with surges in flow rates, loss of facilities and facility operation. A dynamic approach is required to test the capacity of a system for various fluids. This paper investigated the use of transient analysis of liquid pipelines in order to improve the design of these pipelines and to achieve operational benefits. The transient method and its use are discussed. Dynamic analysis was applied to the Keystone Pipeline Project. The purpose of the study was first to determine the system capacity and data for transportation of Heavy DilBit, and then to implement batch transportation of a volume of synthetic crude oil. It was found that the use of transient modeling in design and operational assessment of a liquid pipeline ensures system capability, control, safety and integrity.

  3. Study of Transients in an Enrichment Closed Loop

    International Nuclear Information System (INIS)

    Fernandino, M.

    2002-06-01

    In the present thesis a mathematic model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.For the verification of the model, measurements were taken in an experimental circuit using air as the process fluid.This circuit was instrumented so as to register its characteristic thermohydraulic variables.The measured transients were simulated, comparing the numerical results with the experimental measurements.A good agreement between the characteristic setting times and the thermohydraulic parameters evolution was observed.Besides, other transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations

  4. Transient analysis of a variable speed rotary compressor

    International Nuclear Information System (INIS)

    Park, Youn Cheol

    2010-01-01

    A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.

  5. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  6. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  7. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  8. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway.

    Science.gov (United States)

    Aguiar, Carla J; Andrade, Vanessa L; Gomes, Enéas R M; Alves, Márcia N M; Ladeira, Marina S; Pinheiro, Ana Cristina N; Gomes, Dawidson A; Almeida, Alvair P; Goes, Alfredo M; Resende, Rodrigo R; Guatimosim, Silvia; Leite, M Fatima

    2010-01-01

    GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, a citric acid cycle intermediate, in several tissues. In the heart, the role of succinate is unknown. We now report that rat ventricular cardiomyocytes express GPR91. We found that succinate, through GPR91, increases the amplitude and the rate of decline of global Ca(2+) transient, by increasing the phosphorylation levels of ryanodine receptor and phospholamban, two well known Ca(2+) handling proteins. The effects of succinate on Ca(2+) transient were abolished by pre-treatment with adenylyl cyclase and cAMP-dependent protein kinase (PKA) inhibitors. Direct PKA activation by succinate was further confirmed using a FRET-based A-kinase activity reporter. Additionally, succinate decreases cardiomyocyte viability through a caspase-3 activation pathway, effect also prevented by PKA inhibition. Taken together, these observations show that succinate acts as a signaling molecule in cardiomyocytes, modulating global Ca(2+) transient and cell viability through a PKA-dependent pathway. 2009 Elsevier Ltd. All rights reserved.

  9. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  10. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  11. Ultrafast transient-absorption of the solvated electron in water

    International Nuclear Information System (INIS)

    Kimura, Y.; Alfano, J.C.; Walhout, P.K.; Barbara, P.F.

    1994-01-01

    Ultrafast near infrared (NIR)-pump/variable wavelength probe transient-absorption spectroscopy has been performed on the aqueous solvated electron. The photodynamics of the solvated electron excited to its p-state are qualitatively similar to previous measurements of the dynamics of photoinjected electrons at high energy. This result confirms the previous interpretation of photoinjected electron dynamics as having a rate-limiting bottleneck at low energies presumably involving the p-state

  12. Multiple Order Diffractions by laser-Injured Transient Grating in Nematic MBBA Film

    International Nuclear Information System (INIS)

    Kim, Seong Kyu; Kim, Hack Jin

    1999-01-01

    The laser-induced transient grating method is applied to study the dynamics of the nematic MBBA film. The nanosecond laser pulses of 355 nm are used to make the transient grating and the cw He-Ne laser of 633 nm is used to probe the dynamics. Strong multiple order diffractions are observed at high nematic temperatures. The reordering process induced by the phototransformed state, which is the locally melted state from the nematic sample, is attributed to the main origin of the multiple order diffractions from the nematic MBBA. The characteristics of the multiple order gratings are discussed with the grating profiles simulated from the multiple diffraction signals

  13. Dynamic strains for earthquake source characterization

    Science.gov (United States)

    Barbour, Andrew J.; Crowell, Brendan W

    2017-01-01

    Strainmeters measure elastodynamic deformation associated with earthquakes over a broad frequency band, with detection characteristics that complement traditional instrumentation, but they are commonly used to study slow transient deformation along active faults and at subduction zones, for example. Here, we analyze dynamic strains at Plate Boundary Observatory (PBO) borehole strainmeters (BSM) associated with 146 local and regional earthquakes from 2004–2014, with magnitudes from M 4.5 to 7.2. We find that peak values in seismic strain can be predicted from a general regression against distance and magnitude, with improvements in accuracy gained by accounting for biases associated with site–station effects and source–path effects, the latter exhibiting the strongest influence on the regression coefficients. To account for the influence of these biases in a general way, we include crustal‐type classifications from the CRUST1.0 global velocity model, which demonstrates that high‐frequency strain data from the PBO BSM network carry information on crustal structure and fault mechanics: earthquakes nucleating offshore on the Blanco fracture zone, for example, generate consistently lower dynamic strains than earthquakes around the Sierra Nevada microplate and in the Salton trough. Finally, we test our dynamic strain prediction equations on the 2011 M 9 Tohoku‐Oki earthquake, specifically continuous strain records derived from triangulation of 137 high‐rate Global Navigation Satellite System Earth Observation Network stations in Japan. Moment magnitudes inferred from these data and the strain model are in agreement when Global Positioning System subnetworks are unaffected by spatial aliasing.

  14. The dynamics of accounting terms in a globalized environment

    DEFF Research Database (Denmark)

    Fuertes-Olivera, Pedro A.; Nielsen, Sandro

    2014-01-01

    European accounting terminology is dynamic as term creation occurs on national, European Union and international levels. English is the lingua franca of accounting, which influences terminologies in other languages, usually through the work of translators, e.g. the translation of existing interna...... into Spanish; and the presence of novel metaphors in Spanish accounting. The data used in the discussion are taken from the accounting dictionaries, a collection of online dictionaries in three languages: Danish, English and Spanish.......European accounting terminology is dynamic as term creation occurs on national, European Union and international levels. English is the lingua franca of accounting, which influences terminologies in other languages, usually through the work of translators, e.g. the translation of existing...... international accounting standards. The combined influence of these forces is discussed in this chapter that explains the existence of a globalized trend towards a kind of cultural uniformity. This manifests itself in many ways, two of which are: the translation of English multiword accounting terms...

  15. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    International Nuclear Information System (INIS)

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-01-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield

  16. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Lin, Tsu-Kung [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Yang, Ding-I. [Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan (China); Lee, Su-Ying [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Shaw, Fu-Zen [Department of Psychology, National Cheng Kung University, Tainan, Taiwan (China); Liou, Chia-Wei [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Chuang, Yao-Chung, E-mail: ycchuang@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China)

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  17. Design of a day tank glass furnace using a transient model and steady-state computation fluid dynamics

    International Nuclear Information System (INIS)

    Díaz-Ibarra, Oscar; Abad, Pablo; Molina, Alejandro

    2013-01-01

    To design day tanks with energy efficiency and good operation standards, a detailed transient model that considers the melting, refining, cooling and working stages of the glass production process was developed. With the model, the required power input was determined, with glass coverage with batch (β) as parameter, for a furnace with a daily production of 1130 kg of soda-lime glass and 14 h for melting/refining. A detailed analysis of the energy balance with the model showed that during the daily cycle about 70% of the energy input is released with the flue gas. During the working stage most of the energy escapes through the doors. As the peak of energy consumption is during the refining process, the power requirement for this stage defines the global power requirement. Calculated energy efficiencies vary between 13% and 16% for β = 70% and 30% respectively. A steady state CFD simulation of the combustion chamber and glass tank shows that a side-fired burner configuration allows for lower gas velocities and temperatures close to the glass and the furnace walls while guaranteeing the same heat transfer characteristics to the glass than the more traditional end-fired (U-type) furnaces. -- Highlights: ► A transient model of a day tank glass furnace captures main process characteristics. ► Heat loss through doors during working stage impacts thermal efficiency. ► A side-fired burner configuration should be preferred to an end-fired approach

  18. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    Science.gov (United States)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, pretrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  19. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M. (Brookhaven National Lab., Upton, NY (United States)); Carty, R.P. (State Univ. of New York, Brooklyn, NY (United States). Dept. of Biochemistry); Schlichting, I. (Brandeis Univ., Waltham, MA (United States). Rosenstiel Basic Medical Science Center); Stock, A. (Center for Advanced Biotechnology and Medicine, Piscataway, NJ (Un

    1992-01-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam.

  20. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M. [Brookhaven National Lab., Upton, NY (United States); Carty, R.P. [State Univ. of New York, Brooklyn, NY (United States). Dept. of Biochemistry; Schlichting, I. [Brandeis Univ., Waltham, MA (United States). Rosenstiel Basic Medical Science Center; Stock, A. [Center for Advanced Biotechnology and Medicine, Piscataway, NJ (United States); Smalas, A. [Univ. of Tromso (Norway). Inst. of Mathematics and Physical Science

    1992-11-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam.

  1. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    International Nuclear Information System (INIS)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M.; Carty, R.P.; Smalas, A.

    1992-01-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam

  2. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  3. Regional cerebral blood flow and metabolism in patients with transient global amnesia. A study using SPECT and 1H-MRS

    International Nuclear Information System (INIS)

    Ishihara, Tetsuya; Hirata, Koichi; Tatsumoto, Muneto; Yamazaki, Kaoru; Sato, Toshihiko.

    1997-01-01

    In 13 patients with transient global amnesia (TGA), we studied the clinical course and changes over time by means of imaging techniques such as SPECT. MRI, and proton MR spectroscopy ( 1 H-MRS). In the case of SPECT, a cerebral blood flow decrease at the time center of the temporal lobe persisted at least for more than one month. In many patients, no abnormal signs were found on MRI. Despite the presence of intracranial impairment of energy metabolism, no evidence of cerebral ischemia was obtained using 1 H-MRS at the acute and subacute stages. There were thus discrepancies between the symptoms and the findings of SPECT as well as the findings of 1 H-MRS. These data suggest that TGA may not necessarily be caused by cerebra1 ischemia. (author)

  4. The self-consistent dynamic pole tide in global oceans

    Science.gov (United States)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  5. Nonlinear dynamics of global atmospheric and earth system processes

    Science.gov (United States)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  6. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  7. Transient Global Amnesia with Reversible White Matter Lesions: A Variant of Posterior Reversible Encephalopathy Syndrome?

    Directory of Open Access Journals (Sweden)

    Tomoki Nakamizo

    2015-01-01

    Full Text Available Transient global amnesia (TGA is a self-limited disease characterized by isolated amnesia, which resolves within 24 h. In contrast, posterior reversible encephalopathy syndrome (PRES is a potentially life-threatening disease that usually presents with seizures, altered mental status, headache, and visual disturbances. It is characterized by reversible vasogenic edema that predominantly involves the parieto-occipital subcortical white matter as shown by neuroimaging studies. To date, there have been no reported cases of PRES with a clinical course resembling TGA. Here we report the case of a 58-year-old woman who presented with isolated amnesia and headache. On admission, her blood pressure was 187/100 mmHg. She had complete anterograde amnesia and slight retrograde amnesia without other neurological findings. After the treatment of her hypertension, the amnesia resolved within 24 h. Although the initial magnetic resonance image (MRI was almost normal, the fluid attenuation inversion recovery (FLAIR images of the MRI on the next day revealed several small foci of high intensity areas in the fronto-parieto-occipital subcortical white matter, presumed to be vasogenic edema in PRES. The lesions disappeared one month later. This case suggests that PRES can mimic the clinical course of TGA. PRES should be considered in the differential diagnosis for TGA.

  8. Global emission projections for the transportation sector using dynamic technology modeling

    Science.gov (United States)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  9. Evolution of cerebral blood flow between the acute stage and one month after a global transient amnesia: a study of 18 patients

    International Nuclear Information System (INIS)

    Philippon, B.; Houzard, C.; Cinotti, L.; Croisile, B.

    2001-01-01

    We studied 18 patients within 24 hours of an idiopathic transient global amnesia and one month later using 133 Xe et 99m Tc-HMPAO for CBF measurements. Absolute hemispheric CBF obtained with the 133 Xe were initially: (right) = 46.9 ml/mn/100 g (s.d 6.6) and (left) = 47.9 (s.d 6.8). One month later, a significant increase of the right hemispheric CBF occurred (52.0 ± 6.9). Accordingly, absolute CBF increased bilaterally in the cerebellar and temporal regions. Local relative cerebral blood flow ( 99m Tc-HMPAO) allowed to reinforce these findings with increased resolution. They can also provide quantitative values thanks to the 133 Xe calibration. (authors)

  10. Electromagnetic Transient Response Analysis of DFIG under Cascading Grid Faults Considering Phase Angel Jumps

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei

    2014-01-01

    This paper analysis the electromagnetic transient response characteristics of DFIG under symmetrical and asymmetrical cascading grid fault conditions considering phaseangel jump of grid. On deriving the dynamic equations of the DFIG with considering multiple constraints on balanced and unbalanced...... conditions, phase angel jumps, interval of cascading fault, electromagnetic transient characteristics, the principle of the DFIG response under cascading voltage fault can be extract. The influence of grid angel jump on the transient characteristic of DFIG is analyzed and electromagnetic response...

  11. Energy efficient approach for transient fault recovery in real time ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: DVS, Fault tolerance, Real Time System, Transient Fault. ... in which missing the deadline may cause a failure and soft real time system, ..... Pillai, P., Shin, K., Real-time dynamic voltage scaling for low-power embedded operating ...

  12. Urban Land Expansion and Spatial Dynamics in Globalizing Shanghai

    Directory of Open Access Journals (Sweden)

    Han Li

    2014-12-01

    Full Text Available Urban land expansion in China has attracted considerable scholarly attention. However, more work is needed to apply spatial modeling to understanding the mechanisms of urban growth from both institutional and physical perspectives. This paper analyzes urban expansion in Shanghai and its development zones (DZs. We find that, as nodes of global-local interface, the DZs are the most significant components of urban growth in Shanghai, and major spatial patterns of urban expansion in Shanghai are infilling and edge expansion. We apply logistic regression, geographically weighted logistic regression (GWLR and spatial regime regression to investigate the determinants of urban land expansion including physical conditions, state policy and land development. Regressions reveal that, though the market has been an important driving force in urban growth, the state has played a predominant role through the implementation of urban planning and the establishment of DZs to fully capitalize on globalization. We also find that differences in urban growth dynamics exist between the areas inside and outside of the DZs. Finally, this paper discusses policies to promote sustainable development in Shanghai.

  13. An Artificial Intelligence Approach to Transient Stability Assessment

    OpenAIRE

    Akella, Vijay Ahaskar; Khincha, HP; Kumar, Sreerama R

    1991-01-01

    An artificial intelligence approach to online transient stability assessment is briefly discussed, and some crucial requirements for this algorithm are identified. Solutions to these are proposed. Some new attributes are suggested so as to reflect machine dynamics and changes in the network. Also a new representative learning set algorithm has been developed.

  14. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Grubler, A.; Nakicenovic, N.; Victor, D.G.

    1999-01-01

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  15. Transient Global Amnesia Deteriorates the Network Efficiency of the Theta Band.

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    Full Text Available Acute perturbation of the hippocampus, one of the connector hubs in the brain, is a key step in the pathophysiological cascade of transient global amnesia (TGA. We tested the hypothesis that network efficiency, meaning the efficiency of information exchange over a network, is impaired during the acute stage of TGA. Graph theoretical analysis was applied to resting-state EEG data collected from 21 patients with TGA. The EEG data were obtained twice, once during the acute stage ( 2 months after symptom onset of TGA. Characteristic path lengths and clustering coefficients of functional networks constructed using phase-locking values were computed and normalized as a function of the degree in the delta, theta, alpha, beta 1, beta 2 and gamma frequency bands of the EEG. We investigated whether the normalized characteristic path length (nCPL and normalized clustering coefficients (nCC differed significantly between the acute and resolved stages of TGA at each frequency band using the Wilcoxon signed-rank test. For networks where the nCPL or nCC differed significantly between the two stages, we also evaluated changes in the connections of the brain networks. During the acute stage of TGA, the nCPL of the theta band networks with mean degrees of 8, 8.5, 9 and 9.5 significantly increased (P < 0.05. During the acute stage, the lost edges for these networks were mostly found between the anterior (frontal and anterior temporal and posterior (parieto-occipital and posterior temporal brain regions, whereas newly developed edges were primarily found between the left and right frontotemporal regions. The nCC of the theta band with a mean degree of 5.5 significantly decreased during the acute stage (P < 0.05. Our results indicate that TGA deteriorates the network efficiency of the theta frequency band. This effect might be related to the desynchronization between the anterior and posterior brain areas.

  16. Dynamic stress intensity factors for a longitudinal semi-elliptical ...

    African Journals Online (AJOL)

    elliptical crack in a thick-walled cylinder subjected to transient dynamic stresses. First, the problem of dynamic elasticity in a thick-walled cylinder is solved analytically using the finite Hankel transform. Transient pressure is assumed to act on ...

  17. Transient localization in the kicked Rydberg atom

    International Nuclear Information System (INIS)

    Persson, Emil; Fuerthauer, S.; Burgdoerfer, J.; Wimberger, S.

    2006-01-01

    We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg atom is shown to possess in addition to the quantum localization time τ L a second crossover time t D where quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number at fixed kick strength increases. The survival probability as a function of frequency in the transient localization regime τ L D is characterized by highly irregular, fractal-like fluctuations

  18. Global Dynamical Systems Involving Generalized -Projection Operators and Set-Valued Perturbation in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Yun-zhi Zou

    2012-01-01

    Full Text Available A new class of generalized dynamical systems involving generalized f-projection operators is introduced and studied in Banach spaces. By using the fixed-point theorem due to Nadler, the equilibrium points set of this class of generalized global dynamical systems is proved to be nonempty and closed under some suitable conditions. Moreover, the solutions set of the systems with set-valued perturbation is showed to be continuous with respect to the initial value.

  19. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions

    International Nuclear Information System (INIS)

    Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.

    2015-01-01

    Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient

  20. TMCC: a transient three-dimensional neutron transport code by the direct simulation method - 222

    International Nuclear Information System (INIS)

    Shen, H.; Li, Z.; Wang, K.; Yu, G.

    2010-01-01

    A direct simulation method (DSM) is applied to solve the transient three-dimensional neutron transport problems. DSM is based on the Monte Carlo method, and can be considered as an application of the Monte Carlo method in the specific type of problems. In this work, the transient neutronics problem is solved by simulating the dynamic behaviors of neutrons and precursors of delayed neutrons during the transient process. DSM gets rid of various approximations which are always necessary to other methods, so it is precise and flexible in the requirement of geometric configurations, material compositions and energy spectrum. In this paper, the theory of DSM is introduced first, and the numerical results obtained with the new transient analysis code, named TMCC (Transient Monte Carlo Code), are presented. (authors)

  1. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism

    DEFF Research Database (Denmark)

    Casanovas, Albert; Sprenger, Richard R; Tarasov, Kirill

    2015-01-01

    Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular...

  2. PRESSURE PULSES AT VOYAGER 2 : DRIVERS OF INTERSTELLAR TRANSIENTS?

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J. D. [Kavli Center for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wang, C.; Liu, Y. D. [State Key Laboratory for Space Weather, Chinese Academy of Sciences, Beijing (China); Šafránková, J.; Němeček, Z. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Kurth, W. S., E-mail: jdr@space.mit.edu, E-mail: cw@spaceweather.ac.cn, E-mail: liuxying@spaceweather.ac.cn, E-mail: jana.safrankova@mff.cuni.cz, E-mail: william-kurth@uiowa.edu [University of Iowa, Iowa City, IA 52242 (United States)

    2017-01-10

    Voyager 1 ( V1 ) crossed the heliopause into the local interstellar medium (LISM) in 2012. The LISM is a dynamic region periodically disturbed by solar transients with outward-propagating shocks, cosmic-ray intensity changes and anisotropies, and plasma wave oscillations. Voyager 2 ( V2 ) trails V1 and thus may observe the solar transients that are later observed at V1. V2 crossed the termination shock in 2007 and is now in the heliosheath. Starting in 2012, when solar maximum conditions reached V2 , five possible merged interaction regions (MIRs) have been observed by V2 in the heliosheath. The timing is consistent with these MIRs driving the transients observed by V1 in the LISM. The largest heliosheath MIR was observed by V2 in late 2015 and should reach V1 in 2018.

  3. Dynamical analysis of a cubic Liénard system with global parameters

    Science.gov (United States)

    Chen, Hebai; Chen, Xingwu

    2015-10-01

    In this paper we investigate the dynamical behaviour of a cubic Liénard system with global parameters. After analysing the qualitative properties of all the equilibria and judging the existences of limit cycles and homoclinic loops for the whole parameter plane, we give the bifurcation diagram and phase portraits. Phase portraits are global if there exist limit cycles and local otherwise. We prove that parameters lie in a connected region, not just on a curve, usually in the parameter plane when the system has one homoclinic loop. Moreover, for global parameters we give a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19) in the case of exactly two equilibria about the existence of some function whose graph is exactly the surface of double limit cycles. Supported by NSFC 11471228, 11172246 and the Fundamental Research Funds for the Central Universities.

  4. Recovery time after localized perturbations in complex dynamical networks

    International Nuclear Information System (INIS)

    Mitra, Chiranjit; Kittel, Tim; Kurths, Jürgen; Donner, Reik V; Choudhary, Anshul

    2017-01-01

    Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed

  5. Recovery time after localized perturbations in complex dynamical networks

    Science.gov (United States)

    Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed

  6. Complete synchronization of the global coupled dynamical network induced by Poisson noises.

    Science.gov (United States)

    Guo, Qing; Wan, Fangyi

    2017-01-01

    The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.

  7. Devil's carpet of topological entropy and complexity of global dynamical behavior

    International Nuclear Information System (INIS)

    Cao, K.-F.; Zhang, X.-S.; Zhou Zhong; Peng, S.-L.

    2003-01-01

    For bimodal maps the concept of an equal topological entropy class (ETEC) is established by the dual star products. All the infinitely many ETEC plateaus and single points are harmonically organized in the kneading parameter plane, they construct a multifractal devil's carpet, which possesses a perfect subregion similarity and a dual central symmetry. The entropy devil's carpet reveals the complexity of global dynamical behavior in the whole parameter plane of bimodal systems

  8. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  9. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. First- and second-order processing in transient stereopsis.

    Science.gov (United States)

    Edwards, M; Pope, D R; Schor, C M

    2000-01-01

    Large-field stimuli were used to investigate the interaction of first- and second-order pathways in transient-stereo processing. Stimuli consisted of sinewave modulations in either the mean luminance (first-order stimulus) or the contrast (second-order stimulus) of a dynamic-random-dot field. The main results of the present study are that: (1) Depth could be extracted with both the first-order and second-order stimuli; (2) Depth could be extracted from dichoptically mixed first- and second-order stimuli, however, the same stimuli, when presented as a motion sequence, did not result in a motion percept. Based upon these findings we conclude that the transient-stereo system processes both first- and second-order signals, and that these two signals are pooled prior to the extraction of transient depth. This finding of interaction between first- and second-order stereoscopic processing is different from the independence that has been found with the motion system.

  11. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  12. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record.

    Science.gov (United States)

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang

    2017-07-12

    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  13. Global variables and the dynamics or relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Cugnon, J.; L'Hote, D.

    1983-01-01

    Various global variables providing a simple description of high multiplicity events are reviewed. Many of them are calculated in the framework of an intra-nuclear cascade model, which describes the collision process as a series of binary on-shell relativistic baryon-baryon collisions and which includes inelasticity through the production of δ-resonances. The calculations are first made for the Ar+KCl system at 0.8 GeV/A, with global variables including either all the nucleons or only the participant nucleons. The shape and the orientation of the ellipsoid of sphericity are particularly investigated. For both cases, on the average, the large axis of the ellipsoid is found to point in the beam direction. This result is discussed in comparison with hydrodynamics predictions and in relation with the mean free path. A kind of small 'bounce-off effect' is detected for intermediate impact parameters. The possibility of extracting the value of the impact parameter b from the value of a global variable is shown to depend upon the variation of this variable with b and upon the fluctuation of the global variable for a given impact parameter. A quality factor is defined to quantify this possibility. No current global variable seems to be more appropriate than the number of participant nucleons for the impact parameter selection. The physical origin of the fluctuations inside the intranuclear cascade model is discussed and the possibility of extracting useful information on the dynamics of the system from the fluctuations is pointed out. The energy dependence of our results is discussed. Some results of the calculations at 250 and 400 MeV/A are also presented for the same system Ar+KCl. (orig.)

  14. Coldspots and hotspots - Global tectonics and mantle dynamics of Venus

    Science.gov (United States)

    Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.

    1992-01-01

    Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).

  15. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  16. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  17. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Science.gov (United States)

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  18. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  19. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  20. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    Directory of Open Access Journals (Sweden)

    M. Rubey

    2017-09-01

    Full Text Available We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific. Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii regions far away from convergent margins feature long-term positive dynamic topography; and (iii rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

  1. Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.

    Science.gov (United States)

    Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso

    2016-10-17

    Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.

  2. Regional cerebral blood flow and metabolism in patients with transient global amnesia. A study using SPECT and {sup 1}H-MRS

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tetsuya; Hirata, Koichi; Tatsumoto, Muneto; Yamazaki, Kaoru [Dokkyo Univ., Tochigi (Japan). School of Medicine; Sato, Toshihiko

    1997-06-01

    In 13 patients with transient global amnesia (TGA), we studied the clinical course and changes over time by means of imaging techniques such as SPECT. MRI, and proton MR spectroscopy ({sup 1}H-MRS). In the case of SPECT, a cerebral blood flow decrease at the time center of the temporal lobe persisted at least for more than one month. In many patients, no abnormal signs were found on MRI. Despite the presence of intracranial impairment of energy metabolism, no evidence of cerebral ischemia was obtained using {sup 1}H-MRS at the acute and subacute stages. There were thus discrepancies between the symptoms and the findings of SPECT as well as the findings of {sup 1}H-MRS. These data suggest that TGA may not necessarily be caused by cerebra1 ischemia. (author)

  3. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  4. Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2013-01-01

    Full Text Available We study the global dynamics of an HIV infection model describing the interaction of the HIV with CD4+ T cells and macrophages. The incidence rate of virus infection and the growth rate of the uninfected CD4+ T cells and macrophages are given by general functions. We have incorporated two types of distributed delays into the model to account for the time delay between the time the uninfected cells are contacted by the virus particle and the time for the emission of infectious (matures virus particles. We have established a set of conditions which are sufficient for the global stability of the steady states of the model. Using Lyapunov functionals and LaSalle's invariant principle, we have proven that if the basic reproduction number R0 is less than or equal to unity, then the uninfected steady state is globally asymptotically stable (GAS, and if the infected steady state exists, then it is GAS.

  5. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    1979-01-01

    Feedback control systems for non-linear simulation of operational transients in LMFBRs are developed. The models include (1) the reactor power control and rod drive mechanism, (2) sodium flow control and pump drive system, (3) steam generator flow control and valve actuator dynamics, and (4) the supervisory control. These models have been incorporated into the SSC code using a flexible approach, in order to accommodate some design dependent variations. The impact of system nonlinearity on the control dynamics is shown to be significant for severe perturbations. Representative result for a 10 cent and 25 cent step insertion of reactivity and a 10% ramp change in load in 40 seconds demonstrate the suitability of this model for study of operational transients without scram in LMFBRs

  6. Transient stability analysis of a distribution network with distributed generators

    NARCIS (Netherlands)

    Xyngi, I.; Ishchenko, A.; Popov, M.; Sluis, van der L.

    2009-01-01

    This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are

  7. A Semi-Automatic, Remote-Controlled Video Observation System for Transient Luminous Events

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2003-01-01

    In support for global ELF/VLF observations, HF measurements in France, and conjugate photometry/VLF observations in South Africa, we developed and operated a semi-automatic, remotely controlled video system for the observation of middle-atmospheric transient luminous events (TLEs). Installed...

  8. Insights into Watson–Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A

    Science.gov (United States)

    Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K.

    2017-01-01

    Abstract In the canonical DNA double helix, Watson–Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02–0.4%) and short-lived (lifetimes ∼0.2–2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. PMID:28369571

  9. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    Energy Technology Data Exchange (ETDEWEB)

    Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A. [Department of Chemistry and Biochemistry, and Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97403 (United States); Jumper, Chanelle C. [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Dean, Jacob C.; Scholes, Gregory D., E-mail: gscholes@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-07

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.

  10. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  11. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    International Nuclear Information System (INIS)

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  12. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Science.gov (United States)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  13. Global sensitivity analysis of a dynamic model for gene expression in Drosophila embryos

    Science.gov (United States)

    McCarthy, Gregory D.; Drewell, Robert A.

    2015-01-01

    It is well known that gene regulation is a tightly controlled process in early organismal development. However, the roles of key processes involved in this regulation, such as transcription and translation, are less well understood, and mathematical modeling approaches in this field are still in their infancy. In recent studies, biologists have taken precise measurements of protein and mRNA abundance to determine the relative contributions of key factors involved in regulating protein levels in mammalian cells. We now approach this question from a mathematical modeling perspective. In this study, we use a simple dynamic mathematical model that incorporates terms representing transcription, translation, mRNA and protein decay, and diffusion in an early Drosophila embryo. We perform global sensitivity analyses on this model using various different initial conditions and spatial and temporal outputs. Our results indicate that transcription and translation are often the key parameters to determine protein abundance. This observation is in close agreement with the experimental results from mammalian cells for various initial conditions at particular time points, suggesting that a simple dynamic model can capture the qualitative behavior of a gene. Additionally, we find that parameter sensitivites are temporally dynamic, illustrating the importance of conducting a thorough global sensitivity analysis across multiple time points when analyzing mathematical models of gene regulation. PMID:26157608

  14. Transient flows occurring during the accelerated crucible rotation technique

    International Nuclear Information System (INIS)

    Horowitz, Atara; Horowitz, Yigal

    1992-11-01

    The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)

  15. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    International Nuclear Information System (INIS)

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  16. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqing, Gan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides

  17. Transient state work fluctuation theorem for a classical harmonic ...

    Indian Academy of Sciences (India)

    Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we ...

  18. VO2 OFF TRANSIENT KINETICS IN EXTREME INTENSITY SWIMMING

    Directory of Open Access Journals (Sweden)

    Ana Sousa

    2011-09-01

    Full Text Available Inconsistencies about dynamic asymmetry between the on- and off- transient responses in oxygen uptake are found in the literature. Therefore, the purpose of this study was to characterize the oxygen uptake off-transient kinetics during a maximal 200-m front crawl effort, as examining the degree to which the on/off regularity of the oxygen uptake kinetics response was preserved. Eight high level male swimmers performed a 200-m front crawl at maximal speed during which oxygen uptake was directly measured through breath-by-breath oxymetry (averaged every 5 s. This apparatus was connected to the swimmer by a low hydrodynamic resistance respiratory snorkel and valve system. Results: The on- and off-transient phases were symmetrical in shape (mirror image once they were adequately fitted by a single-exponential regression models, and no slow component for the oxygen uptake response was developed. Mean (± SD peak oxygen uptake was 69.0 (± 6.3 mL·kg-1·min-1, significantly correlated with time constant of the off- transient period (r = 0.76, p < 0.05 but not with any of the other oxygen off-transient kinetic parameters studied. A direct relationship between time constant of the off-transient period and mean swimming speed of the 200-m (r = 0.77, p < 0.05, and with the amplitude of the fast component of the effort period (r = 0.72, p < 0.05 were observed. The mean amplitude and time constant of the off-transient period values were significantly greater than the respective on- transient. In conclusion, although an asymmetry between the on- and off kinetic parameters was verified, both the 200-m effort and the respectively recovery period were better characterized by a single exponential regression model

  19. Dynamics beyond uniform hyperbolicity a global geometric and probabilistic perspective

    CERN Document Server

    Bonatti, Christian; Viana, Marcelo

    2005-01-01

    The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically.Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information.

  20. Could the cosmic acceleration be transient?

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.C.; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Full text: The possibility of a transient cosmic acceleration appears in several theoretical scenarios and is theoretically interesting because it solves some difficulties inherent to eternally accelerating universes (like {Lambda}CDM). On the observational side, some authors, using a dynamical Ansatz for the dark energy equation of state, have suggested that the cosmic acceleration have already peaked and that we are currently witnessing its slowing down. Here, a possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminous distance to fourth order and fitting the SNe Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distribution for the deceleration parameter today indicates that there is a considerable probability for q{sub 0} > 0. Also in contrast to the prediction of the {Lambda}CDM model, the cosmographic q(z) reconstruction suggests that the cosmic acceleration could already have peaked and be presently slowing down, what would imply that the recent accelerated expansion of the Universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminous distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the Universe. (author)

  1. Initial Implementation of Transient VERA-CS

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Kochunas, Brendan [Univ. of Michigan, Ann Arbor, MI (United States); Salko, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    In this milestone the capabilities of both CTF and MPACT were extended to perform coupled transient calculations. This required several small changes in MPACT to setup the problems correctly, perform the edits correctly, and call the appropriate CTF interfaces in the right order. For CTF, revisions and corrections to the transient timestepping algorithm were made, as well as the addition of a new interface subroutine to allow MPACT to drive CTF at each timestep. With the modifications completed, the initial coupled capability was demonstrated on some problems used for code verification, a hypothetical small mini-core, and a Watts Bar demonstration problem. For each of these cases the results showed good agreement with the previous MPACT internal TH feedback model that relied on a simplified fuel heat conduction model and simplified coolant treatment. After the pulse the results are notably different as expected, where the effects of convection of heat to the coolant can be observed. Areas for future work were discussed, including assessment and development of the CTF dynamic fuel deformation and gap conductance models, addition of suitable transient boiling and CHF models for the rapid heating and cooling rates seen in RIAs, additional validation and demonstration work, and areas for improvement to the code input and output capabilities.

  2. Transient analysis for a system with a tilted disc check valve

    International Nuclear Information System (INIS)

    Jeung, Jaesik; Lee, Kyukwang; Cho, Daegwan

    2014-01-01

    Check valves are used to prevent reverse flow conditions in a variety of systems in nuclear power plants. When a check valve is closed by a reverse flow, the transient load can jeopardize the structural integrity on the piping system and its supports. It may also damage intended function of the in-line components even though the severity of the load differs and depends strongly on types of the check valves. To incorporate the transient load in the piping system, it is very important to properly predict the system response to transients such as a check valve closure accompanied by pump trip and to evaluate the system transient. The one-dimensional transient simulation codes such as the RELAP5/MOD3.3 and TRACE were used. There has not been a single model that integrates the two codes to handle the behavior of a tilted disc check valve, which is designed to mitigate check valve slams by shorting the travel of the disc. In this paper a model is presented to predict the dynamic motion of a tilted disc check valve in the transient simulation using the RELAP5/MOD3.3 code and the model is incorporated in a system transient analysis using control variables of the code. In addition, transient analysis for Essential Service Water (ESW) system is performed using the proposed model and the associated load is evaluated for the system. (author)

  3. Nuclear power plant transient identification using a neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Oliveira, Mauro Vitor de; Santos, Isaac Jose Antonio Luchetti dos; Carvalho, Paulo Victor Rodrigues de; Grecco, Claudio Henrique dos Santos; Auguto, Silas Cordeiro

    2005-01-01

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in nuclear power plants. The basis for the identification of a change in the system is that different system faults and anomalies lead to different patterns of evolution of the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments, that represents a specific type of event. In this work, an approach for the identification of transients is presented, aiming at helping the operator to make a decision relative to the procedure to be followed in situations of accidents/transients at nuclear power plants. In this way, a diagnostic strategy based on hierarchical use artificial neural networks (ANN) for a first level transient diagnose. After the ANN has done a preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. In order to validate the method, a Nuclear Power Plant transient identification problem, comprising postulated accidents, is proposed. Noisy data was used to evaluate the method robustness. The results obtained reveal the ability of the method in dealing with dynamic identification of transients and its reliability degree. (author)

  4. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  5. Investigation of transient thermal dissipation in thinned LSI for advanced packaging

    Science.gov (United States)

    Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.

  6. Chunking Dynamics: Heteroclinics in Mind

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2014-03-01

    Full Text Available Recent results of imaging technologies and nonlinear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are nonlinear dynamical descriptions of the interaction of the core components –brain modes– participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel consisting of chain of saddles -metastable states- connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences and finally words. Chunking is important in many processes of perception, learning and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we proposed here a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics.

  7. Visual scan-path analysis with feature space transient fixation moments

    Science.gov (United States)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  8. Dynamics of the youth travel market on a global level

    Directory of Open Access Journals (Sweden)

    Timea DEMETER

    2015-06-01

    Full Text Available The segment of young tourists has been considered a niche market and was treated as a branch of the tourism industry. In the past 10 years, however, its market value has began to increase significantly bringing real benefits to the companies adapting to this segment by developing appropriate strategies and policies. Therefore, the aim of this project is to analyse the dynamics of the youth travel market, on a global level, taking into consideration the international youth arrivals, youth accommodation units and the behavioural habits of young tourists, serving as a starting point in the strategy development process.

  9. Accelerating transient simulation of linear reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  10. Transient chaotic transport in dissipative drift motion

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)

    2016-04-22

    Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  11. Modeling of Transient Response of the Wickless Heat Pipes

    International Nuclear Information System (INIS)

    Hussien, A.K.A.

    2013-01-01

    Thermosyphons transient response for startup from ambient temperature to steady state until shutdown conditions, is considered a stringent necessity for applications such as electronic, solar, geothermal and even nuclear reactors safety systems. This typically returns to the need to keep the temperature within certain limits before reaching critical conditions. A simple network model is derived for describing the transient response of closed two-phase thermosyphon (CTPT) at startup and shutdown states. In addition, for predicting the effect of operational characteristics of water/copper closed two-phase thermosyphon such as thermal load, filling ratio, evaporator length, and thermosyphon tube diameter. The thermosyphons operation was considered a thermal network of various components with different thermal resistances and dynamic responses. The network model consists of six sub-models. These models are pure conduction in walls of evaporator, adiabatic and condenser, and convection in evaporator pool, evaporator film, and condenser film. So, an energy balance for each sub-model was done to estimate temperatures, heat transfer coefficients, thermal resistances, time constant, and other thermal characteristics that describe the required transient response of the closed two-phase thermosyphon. Governing equations of the transient thermosyphon behavior can be simplified into a set of first-order linear ordinary differential equations. The Runge-Kutta method can be used to obtain transient thermosyphon temperatures from these equations.

  12. An overview of optimization of structures subjected to transient loads

    International Nuclear Information System (INIS)

    Kang, Byung Soo; Park, Gyung Jin

    2005-01-01

    Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed-direct differentiation method and adjoint variable method. The approximation concept mainly focuses on response surface method in crashworthiness and local approximation with the intermediate variable. Especially, as an approximated optimization technique, equivalent static load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic system is reviewed in the viewpoint of the above three themes

  13. Coping with the Collapse: A Stock-Flow Consistent Monetary Macro-dynamics of Global Warming

    International Nuclear Information System (INIS)

    Giraud, Gael; Mc Isaac, Florent; Bovari, Emmanuel; Zatsepina, Ekaterina

    2016-08-01

    This paper presents a macro-economic model of endogenous growth that enables to take into consideration both the economic impact of climate change and the pivotal role of private debt. Using a Goodwin-Keen approach, based on the Lotka-Volterra logic, we couple its nonlinear dynamics of underemployment and income distribution with abatement costs. Moreover, various damage functions a la Nordhaus and Dietz-Stern reflect the loss in final production due to the temperature increase caused by the rising levels of CO_2 emissions. An empirical estimation of the model at the world-scale enables us to simulate plausible trajectories for the planetary business-as-usual scenario. Our main finding is that, even though the short-run impact of climate change on economic fundamentals may seem prima facie rather minor, its long-run dynamic consequences may lead to an extreme downside. Under plausible circumstances, global warming forces the private sector to leverage in order to compensate for output losses; the private debt overhang may eventually induce a global financial collapse, even before climate change could cause serious damage to the production sector. Under more severe conditions, the interplay between global warming and debt may lead to a secular stagnation followed by a collapse in the second half of this century. We analyze the extent to which slower demographic growth or higher carbon pricing allow a global breakdown to be avoided. The paper concludes by examining the conditions under which the +1.5 C target, adopted by the Paris Agreement (2015), could be reached. (authors)

  14. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary Elliott [Univ. of Georgia, Athens, GA (United States)

    2017-11-16

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systems important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.

  15. The global distribution and dynamics of chromophoric dissolved organic matter.

    Science.gov (United States)

    Nelson, Norman B; Siegel, David A

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.

  16. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  17. Dynamic Global Currency Hedging

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Varneskov, Rasmus T.

    2016-01-01

    This paper proposes a model for discrete-time hedging based on continuous-time movements in portfolio and foreign currency exchange rate returns. In particular, the vector of optimal currency exposures is shown to be given by the negative realized regression coefficients from a one......-period conditional expectation of the intra-period quadratic covariation matrix for portfolio and foreign exchange rate returns. These are labelled the realized currency betas. The model, hence, facilitates dynamic hedging strategies that depend exclusively on the dynamic evolution of the ex-post quadratic...... covariation matrix. These hedging strategies are suggested implemented using modern, yet simple, non-parametric techniques to accurately measure and dynamically model historical quadratic covariation matrices. The empirical results from an extensive hedging exercise for equity investments illustrate...

  18. Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics

    Science.gov (United States)

    Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418

  19. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    Tang Yong; Yuan Wei; Pan Minqiang; Li Zongtao; Chen Guoqing; Li Yong

    2010-01-01

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  20. Transient Go: A Mobile App for Transient Astronomy Outreach

    Science.gov (United States)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  1. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    Science.gov (United States)

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  2. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum

    Science.gov (United States)

    Kurahashi-Nakamura, Takasumi; Paul, André; Losch, Martin

    2017-04-01

    The global ocean state for the modern age and for the Last Glacial Maximum (LGM) was dynamically reconstructed with a sophisticated data assimilation technique. A substantial amount of data including global seawater temperature, salinity (only for the modern estimate), and the isotopic composition of oxygen and carbon (only in the Atlantic for the LGM) were integrated into an ocean general circulation model with the help of the adjoint method, thereby the model was optimized to reconstruct plausible continuous fields of tracers, overturning circulation and water mass distribution. The adjoint-based LGM state estimation of this study represents the state of the art in terms of the length of forward model runs, the number of observations assimilated, and the model domain. Compared to the modern state, the reconstructed continuous sea-surface temperature field for the LGM shows a global-mean cooling of 2.2 K, and the reconstructed LGM ocean has a more vigorous Atlantic meridional overturning circulation, shallower North Atlantic Deep Water (NADW) equivalent, stronger stratification, and more saline deep water.

  3. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    Science.gov (United States)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  4. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    International Nuclear Information System (INIS)

    Ozkanlar, Abdullah; Zhou, Tiecheng; Clark, Aurora E.

    2014-01-01

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed

  5. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2

    Science.gov (United States)

    Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi

    2018-01-01

    Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and

  6. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  7. On transient events in the upper atmosphere generated away of thunderstorm regions

    Science.gov (United States)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  8. Transient from crystallization to fractal growth observed in both boar bile and SnI sub 2 vapour

    CERN Document Server

    Zhang Ji Zhong; Xie An Jian

    2003-01-01

    A visual transient of the growth mechanism from crystallization to fractal growth was observed clearly in a drop of boar bile. The growing crystals were replaced by treelike fractal structures during solidification of the sample. It is fascinating to compare the transient with the result observed in SnI sub 2 vapour. They were completely identical, and revealed that under certain conditions a linear growth could be transferred spontaneously into nonlinear growth. It may be possible to consider the transient as a 'bridge' between linear and nonlinear growth, and to develop a quantitative expression of transient dynamics.

  9. Spatial patterns and temporal dynamics of global scale climate-groundwater interactions

    Science.gov (United States)

    Cuthbert, M. O.; Gleeson, T. P.; Moosdorf, N.; Schneider, A. C.; Hartmann, J.; Befus, K. M.; Lehner, B.

    2017-12-01

    The interactions between groundwater and climate are important to resolve in both space and time as they influence mass and energy transfers at Earth's land surface. Despite the significance of these processes, little is known about the spatio-temporal distribution of such interactions globally, and many large-scale climate, hydrological and land surface models oversimplify groundwater or exclude it completely. In this study we bring together diverse global geomatic data sets to map spatial patterns in the sensitivity and degree of connectedness between the water table and the land surface, and use the output from a global groundwater model to assess the locations where the lateral import or export of groundwater is significant. We also quantify the groundwater response time, the characteristic time for groundwater systems to respond to a change in boundary conditions, and map its distribution globally to assess the likely dynamics of groundwater's interaction with climate. We find that more than half of the global land surface significantly exports or imports groundwater laterally. Nearly 40% of Earth's landmass has water tables that are strongly coupled to topography with water tables shallow enough to enable a bi-directional exchange of moisture with the climate system. However, only a small proportion (around 12%) of such regions have groundwater response times of 100 years or less and have groundwater fluxes that would significantly respond to rapid environmental changes over this timescale. We last explore fundamental relationships between aridity, groundwater response times and groundwater turnover times. Our results have wide ranging implications for understanding and modelling changes in Earth's water and energy balance and for informing robust future water management and security decisions.

  10. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    fed induction generator (DFIG), the assessments of the impact on the electrical transient performances were investigated for the doubly fed wind turbine with different representations of wind turbine drive-train dynamics models, different initial operational conditions and different active crowbar...... crowbar on the transient performances of the doubly fed wind turbine were also investigated, with the possible reasonable trip time of crowbar. The investigation have shown that the transient performances are closely correlated with the wind turbine drive train models, initial operational conditions, key...

  11. Global format for energy-momentum based time integration in nonlinear dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented...... of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear...

  12. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  13. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  14. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  15. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    International Nuclear Information System (INIS)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun

    2007-01-01

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  16. Stall/surge dynamics of a multi-stage air compressor in response to a load transient of a hybrid solid oxide fuel cell-gas turbine system

    Science.gov (United States)

    Azizi, Mohammad Ali; Brouwer, Jacob

    2017-10-01

    A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.

  17. Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings

    Science.gov (United States)

    Fu, Zhidong; Qin, Suyang; Liu, Hong

    2014-01-01

    The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.

  18. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  19. Optimization Design of Structures Subjected to Transient Loads Using First and Second Derivatives of Dynamic Displacement and Stress

    Directory of Open Access Journals (Sweden)

    Qimao Liu

    2012-01-01

    Full Text Available This paper developed an effective optimization method, i.e., gradient-Hessian matrix-based method or second order method, of frame structures subjected to the transient loads. An algorithm of first and second derivatives of dynamic displacement and stress with respect to design variables is formulated based on the Newmark method. The inequality time-dependent constraint problem is converted into a sequence of appropriately formed time-independent unconstrained problems using the integral interior point penalty function method. The gradient and Hessian matrixes of the integral interior point penalty functions are also computed. Then the Marquardt's method is employed to solve unconstrained problems. The numerical results show that the optimal design method proposed in this paper can obtain the local optimum design of frame structures and sometimes is more efficient than the augmented Lagrange multiplier method.

  20. Financial fragility and global dynamics

    International Nuclear Information System (INIS)

    Dieci, Roberto; Sordi, Serena; Vercelli, Alessandro

    2006-01-01

    This paper deals with a simple model of financial fluctuations, where a crucial role is played by the dynamic interaction between aggregate current and intertemporal financial ratios. The model results in a 4D discrete-time dynamical system-capable of generating complex dynamics-which is analyzed by means of both analytical tools, such as local stability analysis and bifurcation theory, and numerical simulations. The behavior of the model is studied for different parameter regimes. We show that its dynamic behavior is very sensitive to the parameters that represent (1) the speed of adjustment of the desired current financial ratio towards a safe level of the intertemporal one and (2) the intensity with which aggregate current financial decisions affect future financial constraints. In particular, different parameter regimes are identified, giving rise to two different 'routes' to complexity, one leading to chaotic dynamics, the other to a coexistence of attractors and path-dependence

  1. Structural dynamics and fracture mechanics calculations of the behaviour of a DN 425 test piping system subjected to transient loading by water hammer

    International Nuclear Information System (INIS)

    Kussmaul, K.; Kobes, E.; Diem, H.; Schrammel, D.; Brosi, S.

    1994-01-01

    Within the scope of the German HDR safety programme, several tests were carried out to investigate transient pipe loading initiated by a simulated double-ended guillotine break event, and subsequent closure of a feedwater check valve (water hammer, blow-down). Numerical analyses by means of finite element programmes were performed in parallel to the experiments. Using water hammer tests of a DN 425 piping system with predamaged components, the procedure of such analyses will be demonstrated. The results are presented, beginning with structural dynamic calculations of the undamaged piping; followed by coupling of structural dynamics and fracture mechanics computations with simple flaw elements (line spring); and finishing with costly three-dimensional fracture mechanics analyses. A good description of the real piping behaviour can be made by the numerical methods, even in the case of high plastification processes. ((orig.))

  2. Study on transient stability of asynchronous wind turbine based on series dynamic braking resistor%基于串联动态制动电阻的异步风电机组暂态稳定性研究

    Institute of Scientific and Technical Information of China (English)

    肖兰; 赵斌; 李建; 范镇南

    2011-01-01

    以并网笼型异步风电机组为例,分析了利用串联动态制动电阻提高并网异步风电机组在电网故障下暂态稳定性的作用机理以及效果.建立了并网异步风电机组的数学模型,基于Matlab/Simulink仿真平台,对比分析了采用串联动态制动电阻、并联动态制动电阻以及无功补偿装置的作用效果.仿真结果表明,采用串联动态制动电阻可以有效改善并网异步风力发电机组的暂态稳定性;同时,采用串联动态制动电阻和无功补偿装置,可显著提高机组的暂态稳定性,减少对无功补偿的需求,降低风电场的运行成本.%Take the squirrel-cage type asynchronous wind turbine as example, the mechanism and efficiency of the improvement on the transient stability of wind turbine with grid-connected used by series dynamic braking resistor under the power grid fault is analyzed, the mathematical model of asynchronous wind turbine.with grid-connected is established, the transient behaviors of the wind turbine generator system using series dynamic breaking resistor, parallel dynamic breaking resistor and reactive compensation device are analyzed and compared based on Matlab/Simulink,. The simulation results have shown that the series dynamic breaking resistor can effectively improve the transient stability of asynchronous wind turbine system. Using series dynamic breaking resistor and reactive compensation device simultaneously can improve the transient stability of wind turbine generator system significantly , which reducing the reactive compensation requirement and cost of wind farm.

  3. Europlexus: a domain decomposition method in explicit dynamics

    International Nuclear Information System (INIS)

    Faucher, V.; Hariddh, Bung; Combescure, A.

    2003-01-01

    Explicit time integration methods are used in structural dynamics to simulate fast transient phenomena, such as impacts or explosions. A very fine analysis is required in the vicinity of the loading areas but extending the same method, and especially the same small time-step, to the whole structure frequently yields excessive calculation times. We thus perform a dual Schur domain decomposition, to divide the global problem into several independent ones, to which is added a reduced size interface problem, to ensure connections between sub-domains. Each sub-domain is given its own time-step and its own mesh fineness. Non-matching meshes at the interfaces are handled. An industrial example demonstrates the interest of our approach. (authors)

  4. What can He II 304 Å tell us about transient seismic emission from solar flares?

    Science.gov (United States)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  5. A faster reactor transient analysis methodology for PCs

    International Nuclear Information System (INIS)

    Ott, K.O.

    1991-10-01

    The simplified ANL model for LMR transient analysis, in which point kinetics as well as lumped descriptions of the heat transfer equations in all components are applied, is converted from a differential into an integral formulation. All differential balance equations are implicitly solved in terms of convolution integrals. The prompt jump approximation is applied as the strong negative feedback effectively keeps the net reactivity well below prompt critical. After implicit finite differencing of the convolution integrals, the kinetics equation assumes the form of a quadratic equation, the ''quadratic dynamics equation.'' This model forms the basis for GW-BASIC program, LTC, for LMR Transient Calculation program, which can effectively be run on a PC. The GW-BASIC version of the LTC program is described in detail in Volume 2 of this report

  6. Dynamic simulation of LMFBR systems

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.

    1980-01-01

    This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)

  7. The transient behavior of whole-canopy fluxes during dynamic light conditions for midlatitude and tropical forests

    Science.gov (United States)

    Fitzjarrald, D. R.; Kivalov, S. N.

    2017-12-01

    Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.

  8. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  9. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  10. Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States

    Science.gov (United States)

    Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin

    2013-01-01

    Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater

  11. Global Mindsets

    DEFF Research Database (Denmark)

    Global Mindsets: Exploration and Perspectives seeks to tackle a topic that is relatively new in research and practice, and is considered by many to be critical for firms seeking to conduct global business. It argues that multiple mindsets exist (across and within organizations), that they operate...... in a global context, and that they are dynamic and undergo change and action. Part of the mindset(s) may depend upon place, situation and context where individuals and organizations operate. The book will examine the notion of "mindset" is situational and dynamic, especially in a global setting, why...... it is important for future scholars and managers and how it could be conceptualized. Global Mindsets: Exploration and Perspectives is split into two major sections; the first examines where the literature currently is with respect to the knowledge in the field and what conceptual frameworks guide the thinking...

  12. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...

  13. Is Earth F**ked? Dynamical Futility of Global Environmental Management and Possibilities for Sustainability via Direct Action Activism

    Science.gov (United States)

    wErnEr, B.

    2012-12-01

    Environmental challenges are dynamically generated within the dominant global culture principally by the mismatch between short-time-scale market and political forces driving resource extraction/use and longer-time-scale accommodations of the Earth system to these changes. Increasing resource demand is leading to the development of two-way, nonlinear interactions between human societies and environmental systems that are becoming global in extent, either through globalized markets and other institutions or through coupling to global environmental systems such as climate. These trends are further intensified by dissipation-reducing technological advances in transactions, communication and transport, which suppress emergence of longer-time-scale economic and political levels of description and facilitate long-distance connections, and by predictive environmental modeling, which strengthens human connections to a short-time-scale virtual Earth, and weakens connections to the longer time scales of the actual Earth. Environmental management seeks to steer fast scale economic and political interests of a coupled human-environmental system towards longer-time-scale consideration of benefits and costs by operating within the confines of the dominant culture using a linear, engineering-type connection to the system. Perhaps as evidenced by widespread inability to meaningfully address such global environmental challenges as climate change and soil degradation, nonlinear connections reduce the ability of managers to operate outside coupled human-environmental systems, decreasing their effectiveness in steering towards sustainable interactions and resulting in managers slaved to short-to-intermediate-term interests. In sum, the dynamics of the global coupled human-environmental system within the dominant culture precludes management for stable, sustainable pathways and promotes instability. Environmental direct action, resistance taken from outside the dominant culture, as in

  14. Fast reactor fuel pin behavior analyses in a LOF type transient event

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Koyama, Shin-ichi; Kaito, Takeji; Uwaba, Tomoyuki; Tanaka, Kenya

    2013-06-01

    In order to evaluate integrity limiting parameters of fuel pins during fast reactor core transient events, such as fuel center line temperature and cladding maximum temperature, fuel pin behavior calculations were made using the fast reactor fuel pin performance code CEDAR. The temperature histories of fuel pins during a loss of flow (LOF) type transient events was calculated based on Ross and Stoute type gap conductance model and constant gap conductance model, which is used in a core transient calculation code like HIPRAC. The calculated maximum temperatures of cladding and adjacent coolant channel were lower in the case with Ross and Stoute type model than in the case of constant gap conductance model due to the dynamic change of gap conductance of former case. It is indicated that core transient calculations with constant gap conductance give conservative cladding and coolant temperatures than that with Ross and Stoute type gap conductance model which is thought to be realistic. (author)

  15. Steady and transient regimes in hydropower plants

    Science.gov (United States)

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  16. Steady and transient regimes in hydropower plants

    International Nuclear Information System (INIS)

    Gajic, A

    2013-01-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock

  17. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  18. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A.

    Science.gov (United States)

    Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K; Al-Hashimi, Hashim M

    2017-05-19

    In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  20. Transient response of two lobe aerodynamic journal bearing

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar Yadav

    2018-03-01

    Full Text Available The dynamic behavior of a rotor-dynamic system is greatly affected by the performance of aerodynamic bearing and the performance of bearing is characterized by the stiffness and damping coefficients. In the present work, stiffness and damping coefficients of bearing are computed and the performance of the bearing is greatly changed with the change in bearing air film profile. The effect of lobe offset factors on the transient performance of aerodynamic bearing is presented. Bifurcation and Poincare diagrams of two lobe journal bearing have been presented for different offset factors. A bearing designer can judge the bearing performance based on bifurcation diagrams.