Combinatorial-topological framework for the analysis of global dynamics
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Global monopoles can change Universe's topology
International Nuclear Information System (INIS)
Marunović, Anja; Prokopec, Tomislav
2016-01-01
If the Universe undergoes a phase transition, at which global monopoles are created or destroyed, topology of its spatial sections can change. More specifically, by making use of Myers' theorem, we show that, after a transition in which global monopoles form, spatial sections of a spatially flat, infinite Universe becomes finite and closed. This implies that global monopoles can change the topology of Universe's spatial sections (from infinite and open to finite and closed). Global monopoles cannot alter the topology of the space-time manifold.
Energy Technology Data Exchange (ETDEWEB)
Kalb, Jeffrey L.; Lee, David S.
2008-01-01
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
Wilansky, Albert
2008-01-01
Three levels of examples and problems make this volume appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important topological concepts. 1970 edition.
A concept for global optimization of topology design problems
DEFF Research Database (Denmark)
Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi
2006-01-01
We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...
Globally symmetric topological phase: from anyonic symmetry to twist defect
International Nuclear Information System (INIS)
Teo, Jeffrey C Y
2016-01-01
Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)
Topological analysis of metabolic control.
Sen, A K
1990-12-01
A topological approach is presented for the analysis of control and regulation in metabolic pathways. In this approach, the control structure of a metabolic pathway is represented by a weighted directed graph. From an inspection of the topology of the graph, the control coefficients of the enzymes are evaluated in a heuristic manner in terms of the enzyme elasticities. The major advantage of the topological approach is that it provides a visual framework for (1) calculating the control coefficients of the enzymes, (2) analyzing the cause-effect relationships of the individual enzymes, (3) assessing the relative importance of the enzymes in metabolic regulation, and (4) simplifying the structure of a given pathway, from a regulatory viewpoint. Results are obtained for (a) an unbranched pathway in the absence of feedback the feedforward regulation and (b) an unbranched pathway with feedback inhibition. Our formulation is based on the metabolic control theory of Kacser and Burns (1973) and Heinrich and Rapoport (1974).
Topological Analysis of Wireless Networks (TAWN)
2016-05-31
19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael
Topological data analysis for scientific visualization
Tierny, Julien
2017-01-01
Combining theoretical and practical aspects of topology, this book delivers a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a thorough but intuitive manner, with many high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in details, and their application is carefully illustrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis, for lecturers, students and researchers.
The global monopole spacetime and its topological charge
Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei
2018-03-01
We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).
First Meeting in Topology and Functional Analysis
López-Pellicer, Manuel
2014-01-01
Descriptive topology and functional analysis, with extensive material demonstrating new connections between them, are the subject of the first section of this work. Applications to spaces of continuous functions, topological Abelian groups, linear topological equivalence and to the separable quotient problem are included and are presented as open problems. The second section is devoted to Banach spaces, Banach algebras and operator theory. Each chapter presents a lot of worthwhile and important recent theorems with an abstract discussing the material in the chapter. Each chapter can almost be seen as a survey covering a particular area.
Global analysis studies and applications
Gliklikh, Yuri; Vershik, A
1992-01-01
This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm...
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Correlation and network topologies in global and local stock indices
DEFF Research Database (Denmark)
Nobi, A.; Lee, S.; Kim, D. H.
2014-01-01
the crises. A significant change in the network topologies was observed due to the financial crises in both markets. The Jaccard similarities identified the change in the market state due to a crisis in both markets. The dynamic change of the Jaccard index can be used as an indicator of systemic risk......We examined how the correlation and network structure of the global indices and local Korean indices have changed during years 2000-2012. The average correlations of the global indices increased with time, while the local indices showed a decreasing trend except for drastic changes during...... or precursors of the crisis. (C) 2014 Elsevier B.V. All rights reserved....
Correlation and network topologies in global and local stock indices
Nobi, Ashadun; Lee, Sungmin; Kim, Doo Hwan; Lee, Jae Woo
2014-07-01
We examined how the correlation and network structure of the global indices and local Korean indices have changed during years 2000-2012. The average correlations of the global indices increased with time, while the local indices showed a decreasing trend except for drastic changes during the crises. A significant change in the network topologies was observed due to the financial crises in both markets. The Jaccard similarities identified the change in the market state due to a crisis in both markets. The dynamic change of the Jaccard index can be used as an indicator of systemic risk or precursors of the crisis.
A topological introduction to nonlinear analysis
Brown, Robert F
2014-01-01
This third edition of A Topological Introduction to Nonlinear Analysis is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. For this third edition, several new chapters present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply...
DEFF Research Database (Denmark)
Rasmussen, Marie-Louise Højlund; Stolpe, Mathias
2008-01-01
the physics, and the cuts (Combinatorial Benders’ and projected Chvátal–Gomory) come from an understanding of the particular mathematical structure of the reformulation. The impact of a stronger representation is investigated on several truss topology optimization problems in two and three dimensions.......The subject of this article is solving discrete truss topology optimization problems with local stress and displacement constraints to global optimum. We consider a formulation based on the Simultaneous ANalysis and Design (SAND) approach. This intrinsically non-convex problem is reformulated...
A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. II
Energy Technology Data Exchange (ETDEWEB)
Hidalgo, M. A., E-mail: miguel.hidalgo@uah.es [Departamento de Fisica, Universidad de Alcala, Apartado 20, E-28871 Alcala de Henares, Madrid (Spain)
2013-04-01
In the present work, we extensively used our analytical approach to the global magnetic field topology of magnetic clouds (MCs), introduced in a previous paper, in order to show its potential and to study its physical consistency. The model assumes toroidal topology with a non-uniform (variable maximum radius) cross-section along them. Moreover, it has a non-force-free character and also includes the expansion of its cross-section. As is shown, the model allows us, first, to analyze MC magnetic structures-determining their physical parameters-with a variety of magnetic field shapes, and second, to reconstruct their relative orientation in the interplanetary medium from the observations obtained by several spacecraft. Therefore, multipoint spacecraft observations give the opportunity to infer the structure of this large-scale magnetic flux rope structure in the solar wind. For these tasks, we use data from Helios (A and B), STEREO (A and B), and Advanced Composition Explorer. We show that the proposed analytical model can explain quite well the topology of several MCs in the interplanetary medium and is a good starting point for understanding the physical mechanisms under these phenomena.
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence
Xie, Yi-Chao; Ding, Guang-Yu; Xia, Ke-Qing
2018-05-01
We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.
Topological properties and global structure of space-time
International Nuclear Information System (INIS)
Bergmann, P.G.; De Sabbata, V.
1986-01-01
This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole
Adaptive approach to global synchronization of directed networks with fast switching topologies
International Nuclear Information System (INIS)
Qin Buzhi; Lu Xinbiao
2010-01-01
Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.
Hocking, John G
1988-01-01
""As textbook and reference work, this is a valuable addition to the topological literature."" - Mathematical ReviewsDesigned as a text for a one-year first course in topology, this authoritative volume offers an excellent general treatment of the main ideas of topology. It includes a large number and variety of topics from classical topology as well as newer areas of research activity.There are four set-theoretic chapters, followed by four primarily algebraic chapters. Chapter I covers the fundamentals of topological and metrical spaces, mappings, compactness, product spaces, the Tychonoff t
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
Topological analysis of nuclear pasta phases
Kycia, Radosław A.; Kubis, Sebastian; Wójcik, Włodzimierz
2017-08-01
In this article the analysis of the result of numerical simulations of pasta phases using algebraic topology methods is presented. These considerations suggest that some phases can be further split into subphases and therefore should be more refined in numerical simulations. The results presented in this article can also be used to relate the Euler characteristic from numerical simulations to the geometry of the phases. The Betti numbers are used as they provide finer characterization of the phases. It is also shown that different boundary conditions give different outcomes.
Efficient Topological Localization Using Global and Local Feature Matching
Directory of Open Access Journals (Sweden)
Junqiu Wang
2013-03-01
Full Text Available We present an efficient vision-based global topological localization approach in which different image features are used in a coarse-to-fine matching framework. Orientation Adjacency Coherence Histogram (OACH, a novel image feature, is proposed to improve the coarse localization. The coarse localization results are taken as inputs for the fine localization which is carried out by matching Harris-Laplace interest points characterized by the SIFT descriptor. The computation of OACHs and interest points is efficient due to the fact that these features are computed in an integrated process. The matching of local features is improved by using approximate nearest neighbor searching technique. We have implemented and tested the localization system in real environments. The experimental results demonstrate that our approach is efficient and reliable in both indoor and outdoor environments. This work has also been compared with previous works. The comparison results show that our approach has better performance with higher correct ratio and lower computational complexity.
Helical chirality: a link between local interactions and global topology in DNA.
Directory of Open Access Journals (Sweden)
Youri Timsit
Full Text Available DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg(2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early
Manetti, Marco
2015-01-01
This is an introductory textbook on general and algebraic topology, aimed at anyone with a basic knowledge of calculus and linear algebra. It provides full proofs and includes many examples and exercises. The covered topics include: set theory and cardinal arithmetic; axiom of choice and Zorn's lemma; topological spaces and continuous functions; connectedness and compactness; Alexandrov compactification; quotient topologies; countability and separation axioms; prebasis and Alexander's theorem; the Tychonoff theorem and paracompactness; complete metric spaces and function spaces; Baire spaces; homotopy of maps; the fundamental group; the van Kampen theorem; covering spaces; Brouwer and Borsuk's theorems; free groups and free product of groups; and basic category theory. While it is very concrete at the beginning, abstract concepts are gradually introduced. It is suitable for anyone needing a basic, comprehensive introduction to general and algebraic topology and its applications.
Robustness of edge states in topological quantum dots against global electric field
Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen
2017-07-01
The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.
Brain Network Analysis: Separating Cost from Topology Using Cost-Integration
Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew
2011-01-01
A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437
Brain network analysis: separating cost from topology using cost-integration.
Directory of Open Access Journals (Sweden)
Cedric E Ginestet
Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.
Global regularizing flows with topology preservation for active contours and polygons.
Sundaramoorthi, Ganesh; Yezzi, Anthony
2007-03-01
Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.
Descriptive Topology in Selected Topics of Functional Analysis
Kakol, J; Pellicer, Manuel Lopez
2011-01-01
"Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Frechet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical set
Topological Modeling and Stochastic Analysis of Images
National Research Council Canada - National Science Library
Krim, Hamid
2004-01-01
.... Concepts in classification and recognition problems. 1. We have explored the potential of combining geometrical as well as topological information in capturing the essence of an object for classification and recognition purposes...
The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries
International Nuclear Information System (INIS)
Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan
2013-01-01
We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)
The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries
Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan
2013-12-01
We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.
Quantum algorithms for topological and geometric analysis of data
Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo
2016-01-01
Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491
Simulation and Analysis of a Grid Connected Multi-level Converter Topologies and their Comparison
Directory of Open Access Journals (Sweden)
Mohammad Shadab Mirza
2014-09-01
Full Text Available This paper presents simulation and analysis of a grid connected multi-level converter topologies. In this paper, converter circuit works as an inverter by controlling the switching angle (α. This paper, presents a MATLAB/SIMULINK model of multi-level converter topologies (topology1 & topology2. Topology1 is without transformer while topology2 with transformer. Both the topologies are simulated and analyzed for three level converters in order to reduce the total harmonic distortion (THD. A comparative study of topology1 and topology2 is also presented in this paper for different switching angles (α and battery voltages. The results have been tabulated and discussed.
Analysis of Membrane Protein Topology in the Plant Secretory Pathway.
Guo, Jinya; Miao, Yansong; Cai, Yi
2017-01-01
Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.
Average-case analysis of incremental topological ordering
DEFF Research Database (Denmark)
Ajwani, Deepak; Friedrich, Tobias
2010-01-01
Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated...... experimentally on random DAGs. We present the first average-case analysis of incremental topological ordering algorithms. We prove an expected runtime of under insertion of the edges of a complete DAG in a random order for the algorithms of Alpern et al. (1990) [4], Katriel and Bodlaender (2006) [18], and Pearce...
The Volatility of Data Space: Topology Oriented Sensitivity Analysis
Du, Jing; Ligmann-Zielinska, Arika
2015-01-01
Despite the difference among specific methods, existing Sensitivity Analysis (SA) technologies are all value-based, that is, the uncertainties in the model input and output are quantified as changes of values. This paradigm provides only limited insight into the nature of models and the modeled systems. In addition to the value of data, a potentially richer information about the model lies in the topological difference between pre-model data space and post-model data space. This paper introduces an innovative SA method called Topology Oriented Sensitivity Analysis, which defines sensitivity as the volatility of data space. It extends SA into a deeper level that lies in the topology of data. PMID:26368929
Directory of Open Access Journals (Sweden)
Adam J. Schwarz
2012-01-01
Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.
Investigating the Cosmic Web with Topological Data Analysis
Cisewski-Kehe, Jessi; Wu, Mike; Fasy, Brittany; Hellwing, Wojciech; Lovell, Mark; Rinaldo, Alessandro; Wasserman, Larry
2018-01-01
Data exhibiting complicated spatial structures are common in many areas of science (e.g. cosmology, biology), but can be difficult to analyze. Persistent homology is a popular approach within the area of Topological Data Analysis that offers a new way to represent, visualize, and interpret complex data by extracting topological features, which can be used to infer properties of the underlying structures. In particular, TDA may be useful for analyzing the large-scale structure (LSS) of the Universe, which is an intricate and spatially complex web of matter. In order to understand the physics of the Universe, theoretical and computational cosmologists develop large-scale simulations that allow for visualizing and analyzing the LSS under varying physical assumptions. Each point in the 3D data set represents a galaxy or a cluster of galaxies, and topological summaries ("persistent diagrams") can be obtained summarizing the different ordered holes in the data (e.g. connected components, loops, voids).The topological summaries are interesting and informative descriptors of the Universe on their own, but hypothesis tests using the topological summaries would provide a way to make more rigorous comparisons of LSS under different theoretical models. For example, the received cosmological model has cold dark matter (CDM); however, while the case is strong for CDM, there are some observational inconsistencies with this theory. Another possibility is warm dark matter (WDM). It is of interest to see if a CDM Universe and WDM Universe produce LSS that is topologically distinct.We present several possible test statistics for two-sample hypothesis tests using the topological summaries, carryout a simulation study to investigate the suitableness of the proposed test statistics using simulated data from a variation of the Voronoi foam model, and finally we apply the proposed inference framework to WDM vs. CDM cosmological simulation data.
Truss topology optimization with simultaneous analysis and design
Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.
1992-01-01
Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Hong Kezhu
2007-01-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Throughput Analysis of Large Wireless Networks with Regular Topologies
Directory of Open Access Journals (Sweden)
Kezhu Hong
2007-04-01
Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.
Analysis of Degree 5 Chordal Rings for Network Topologies
DEFF Research Database (Denmark)
Riaz, M. Tahir; Pedersen, Jens Myrup; Bujnowski, Sławomir
2011-01-01
This paper presents an analysis of degree 5 chordal rings, from a network topology point of view. The chordal rings are mainly evaluated with respect to average distance and diameter. We derive approximation expressions for the related ideal graphs, and show that these matches the real chordal...
Spectral Analysis of Rich Network Topology in Social Networks
Wu, Leting
2013-01-01
Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2009-01-01
we use the theory developed in Part I to design a convergent nonlinear branch-and-bound method tailored to solve large-scale instances of the original discrete problem. The problem formulation and the needed theoretical results from Part I are repeated such that this paper is self-contained. We focus...... the largest discrete topology design problems solved by means of global optimization....
Devil's carpet of topological entropy and complexity of global dynamical behavior
International Nuclear Information System (INIS)
Cao, K.-F.; Zhang, X.-S.; Zhou Zhong; Peng, S.-L.
2003-01-01
For bimodal maps the concept of an equal topological entropy class (ETEC) is established by the dual star products. All the infinitely many ETEC plateaus and single points are harmonically organized in the kneading parameter plane, they construct a multifractal devil's carpet, which possesses a perfect subregion similarity and a dual central symmetry. The entropy devil's carpet reveals the complexity of global dynamical behavior in the whole parameter plane of bimodal systems
Directory of Open Access Journals (Sweden)
J. Yan
2016-06-01
Full Text Available This paper presents a global solution to building roof topological reconstruction from LiDAR point clouds. Starting with segmented roof planes from building LiDAR points, a BSP (binary space partitioning algorithm is used to partition the bounding box of the building into volumetric cells, whose geometric features and their topology are simultaneously determined. To resolve the inside/outside labelling problem of cells, a global energy function considering surface visibility and spatial regularization between adjacent cells is constructed and minimized via graph cuts. As a result, the cells are labelled as either inside or outside, where the planar surfaces between the inside and outside form the reconstructed building model. Two LiDAR data sets of Yangjiang (China and Wuhan University (China are used in the study. Experimental results show that the completeness of reconstructed roof planes is 87.5%. Comparing with existing data-driven approaches, the proposed approach is global. Roof faces and edges as well as their topology can be determined at one time via minimization of an energy function. Besides, this approach is robust to partial absence of roof planes and tends to reconstruct roof models with visibility-consistent surfaces.
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
Energy Technology Data Exchange (ETDEWEB)
Oesterling, Patrick [Univ. of Leipzig (Germany). Computer Science Dept.; Heine, Christian [Univ. of Leipzig (Germany). Computer Science Dept.; Federal Inst. of Technology (ETH), Zurich (Switzerland). Dept. of Computer Science; Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Scheuermann, Gerik [Univ. of Leipzig (Germany). Computer Science Dept.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phase utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.
Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M
2016-01-01
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Directory of Open Access Journals (Sweden)
Aaron M. Prescott
2016-08-01
Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms
Topological analysis of long-chain branching patterns in polyolefins.
Bonchev, D; Markel, E; Dekmezian, A
2001-01-01
Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.
Impact of the topology of global macroeconomic network on the spreading of economic crises.
Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook
2011-03-31
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more "globalized" random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises.
Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases
Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank
2018-04-01
Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.
THERMODYNAMIC TOPOLOGICAL ANALYSIS OF EXTRACTIVE DISTILLATION OF MAXIMUM BOILING AZEOTROPES
Directory of Open Access Journals (Sweden)
W. F. Shen
2015-12-01
Full Text Available Abstract This paper provides a feasibility study of azeotropic mixture separation based on a topological analysis combining thermodynamic knowledge of residue curve maps, univolatility and unidistribution curves, and extractive profiles. Thermodynamic topological features related to process operations for typical ternary diagram classes 1.0-2 are, for the first time, discussed. Separating acetone/chloroform is presented as an illustrative example; different entrainers are investigated: several heavy ones, a light one, and water, covering the Serafimov classes 1.0-2, 1.0-1a and 3.1-4, respectively. The general feasibility criterion that was previously established for ternary mixtures including only one azeotrope (1.0-1a or 1.0-2 is now, for the first time, extended to that including three azeotropes (class 3.1–4.
Topology design and performance analysis of an integrated communication network
Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.
1985-01-01
A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.
Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios
DEFF Research Database (Denmark)
Manzano, M.; Marzo, J. L.; Calle, E.
2012-01-01
on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....
Topological data analysis of financial time series: Landscapes of crashes
Gidea, Marian; Katz, Yuri
2018-02-01
We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
Ten mathematical essays on approximation in analysis and topology
López-Gómez, J; Ruiz del Portal, F R
2005-01-01
This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces
Membrane topology analysis of HIV-1 envelope glycoprotein gp41
Directory of Open Access Journals (Sweden)
Xiao Dan
2010-11-01
Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2007-01-01
this problem is well-studied for continuous bar areas, we consider in this study the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single available bar area, i.......e., a 0/1 problem. In contrast to the heuristic methods considered in many other approaches, our goal is to compute guaranteed globally optimal structures. This is done by a branch-and-bound method for which convergence can be proven. In this branch-and-bound framework, lower bounds of the optimal......-integer problems. The main intention of this paper is to provide optimal solutions for single and multiple load benchmark examples, which can be used for testing and validating other methods or heuristics for the treatment of this discrete topology design problem....
Static analysis of topology-dependent broadcast networks
DEFF Research Database (Denmark)
Nanz, Sebastian; Nielson, Flemming; Nielson, Hanne Riis
2010-01-01
changing network topology is a crucial ingredient. In this paper, we develop a static analysis that automatically constructs an abstract transition system, labelled by actions and connectivity information, to yield a mobility-preserving finite abstraction of the behaviour of a network expressed......Broadcast semantics poses significant challenges over point-to-point communication when it comes to formal modelling and analysis. Current approaches to analysing broadcast networks have focused on fixed connectivities, but this is unsuitable in the case of wireless networks where the dynamically...... in a process calculus with asynchronous local broadcast. Furthermore, we use model checking based on a 3-valued temporal logic to distinguish network behaviour which differs under changing connectivity patterns. (C) 2009 Elsevier Inc. All rights reserved....
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Wingender Edgar
2008-05-01
Full Text Available Abstract Background Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging. Results The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes, an edge (i.e., reactions, interactions, as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness of this network to the presence (absence of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network. Conclusion Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations from a network. The greatest potential value of
Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang
2014-09-01
Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Three dimensions in rhetorical conflict analysis: A topological model
Directory of Open Access Journals (Sweden)
Trygve Svensson
2016-04-01
Full Text Available Conflict is omnipresent in human relations. So is rhetoric in conflict situations. Hence, there is a danger of taking conflict and its different forms of resolution for granted when we do rhetorical analysis. “Rhetoric” is often used as a general and non-scientific term in the social sciences; the same is the case for “conflict” in rhetorical scholarship. Hence, there is a need for concrete analytical tools. This article suggests a topological model to analyze three dimensions of rhetoric in conflict resolution, management or handling. Using “I’ve Been to the Mountaintop,” the famous last speech of Martin Luther King Jr., as an example, I use the model to give an analytic overview.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Energy Technology Data Exchange (ETDEWEB)
Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)
2015-10-15
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H
2015-10-01
Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
Observations and analysis of self-similar branching topology in glacier networks
Bahr, D.B.; Peckham, S.D.
1996-01-01
Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.
Automated modelling of complex refrigeration cycles through topological structure analysis
International Nuclear Information System (INIS)
Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.
2009-01-01
We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.
Rethinking Sensitivity Analysis of Nuclear Simulations with Topology
Energy Technology Data Exchange (ETDEWEB)
Dan Maljovec; Bei Wang; Paul Rosen; Andrea Alfonsi; Giovanni Pastore; Cristian Rabiti; Valerio Pascucci
2016-01-01
In nuclear engineering, understanding the safety margins of the nuclear reactor via simulations is arguably of paramount importance in predicting and preventing nuclear accidents. It is therefore crucial to perform sensitivity analysis to understand how changes in the model inputs affect the outputs. Modern nuclear simulation tools rely on numerical representations of the sensitivity information -- inherently lacking in visual encodings -- offering limited effectiveness in communicating and exploring the generated data. In this paper, we design a framework for sensitivity analysis and visualization of multidimensional nuclear simulation data using partition-based, topology-inspired regression models and report on its efficacy. We rely on the established Morse-Smale regression technique, which allows us to partition the domain into monotonic regions where easily interpretable linear models can be used to assess the influence of inputs on the output variability. The underlying computation is augmented with an intuitive and interactive visual design to effectively communicate sensitivity information to the nuclear scientists. Our framework is being deployed into the multi-purpose probabilistic risk assessment and uncertainty quantification framework RAVEN (Reactor Analysis and Virtual Control Environment). We evaluate our framework using an simulation dataset studying nuclear fuel performance.
Multifractal analysis for the historic set in topological dynamical systems
International Nuclear Information System (INIS)
Zhou, Xiaoyao; Chen, Ercai
2013-01-01
In this paper the historic set is divided into different level sets and we use topological pressure to describe the size of these level sets. We give an application of these results to dimension theory. Our primary focus is using topological pressure to describe the relative multifractal spectrum of ergodic averages and to give a positive answer to the conjecture posed by Olsen (2003 J. Math. Pures Appl. 82 1591–649). (paper)
FIELD TOPOLOGY ANALYSIS OF A LONG-LASTING CORONAL SIGMOID
International Nuclear Information System (INIS)
Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.
2012-01-01
We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.
Inference of Ancestral Recombination Graphs through Topological Data Analysis
Cámara, Pablo G.; Levine, Arnold J.; Rabadán, Raúl
2016-01-01
The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands. PMID:27532298
Introduction to global analysis
Kahn, Donald W
2007-01-01
This text introduces the methods of mathematical analysis as applied to manifolds, including the roles of differentiation and integration, infinite dimensions, Morse theory, Lie groups, and dynamical systems. 1980 edition.
The Topological Analysis of Urban Transit System as a Small-World Network
Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang
2011-01-01
This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...
Design, Analysis And Realization Of Topology Optimized Concrete Structures
DEFF Research Database (Denmark)
Søndergaard, Asbjørn; Dombernowsky, Per
2012-01-01
This paper proposes the application of topology optimisation as a constitutive design tool for design and form-finding of architectural concrete structures, and realisation of these designs using large scale CNCmilling of polystyrene form-work for in situ casting....
Global optimization and sensitivity analysis
International Nuclear Information System (INIS)
Cacuci, D.G.
1990-01-01
A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints
Multicast middleware for performance and topology analysis of multimedia grids
Directory of Open Access Journals (Sweden)
Jerry Z. Xie
2017-04-01
Full Text Available Since multicast reduces bandwidth consumption in multimedia grid computing, the middleware for monitoring the performance and topology of multicast communications is important to the design and management of multimedia grid applications. However, the current middleware technologies for multicast performance monitoring are still far from attaining the level of maturity and there lacks consistent approaches to obtain the evaluation data for multicast. In this study, to serve a clear guide for the design and implementation of the multicast middleware, two algorithms are developed for organising all constituents in multicast communications and analysing the multicast performance in two topologies – ‘multicast distribution tree’ and ‘clusters distribution’, and a definitive set of corresponding metrics that are comprehensive yet viable for evaluating multicast communications are also presented. Instead of using the inference data from unicast measurements, in the proposed middleware, the measuring data of multicast traffic are obtained directly from multicast protocols in real time. Moreover, this study makes a middleware implementation which is integrated into a real access grid multicast communication infrastructure. The results of the implementation demonstrate the substantial improvements in the accuracy and real time in evaluating the performance and topology of multicast network.
Test-electron analysis of the magnetic reconnection topology
Borgogno, D.; Perona, A.; Grasso, D.
2017-12-01
Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.
Wacks, Daniel H.
2016-12-02
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.
2016-01-01
The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.
On the topology of flux transfer events
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.
Winding around the winding number in topology, geometry, and analysis
Roe, John
2015-01-01
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra), guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem), explain why ever
Convex analysis and global optimization
Tuy, Hoang
2016-01-01
This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;
Papers on topology Analysis Situs and its five supplements
Poincaré, Henri
2010-01-01
These famous papers, with their characteristic mixture of deep insight and inevitable confusion, are here presented complete and in English for the first time, with a commentary by their translator, John Stillwell, that guides the reader into the heart of the subject. One of the finest works of one of the great mathematicians is now available anew for students and experts alike. -Jeremy Gray The AMS and John Stillwell have made an important contribution to the mathematics literature in this translation of Poincaré. For many of us, these great papers on the foundations of topology are given greater clarity in English. Moreover, reading Poincaré here illustrates the ultimate in research by successive approximations (akin to my own way of mathematical thinking). - Stephen Smale I am a proud owner of the original complete works in green leather in French bought for a princely sum in Paris around 1975. I have read them extensively, and often during topology lectures I refer to parts of these works. I am happy th...
An Efficient Topology-Based Algorithm for Transient Analysis of Power Grid
Yang, Lan
2015-08-10
In the design flow of integrated circuits, chip-level verification is an important step that sanity checks the performance is as expected. Power grid verification is one of the most expensive and time-consuming steps of chip-level verification, due to its extremely large size. Efficient power grid analysis technology is highly demanded as it saves computing resources and enables faster iteration. In this paper, a topology-base power grid transient analysis algorithm is proposed. Nodal analysis is adopted to analyze the topology which is mathematically equivalent to iteratively solving a positive semi-definite linear equation. The convergence of the method is proved.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Alagappan, Muthuraman; Jiang, Dadi; Denko, Nicholas; Koong, Albert C
In silico drug discovery refers to a combination of computational techniques that augment our ability to discover drug compounds from compound libraries. Many such techniques exist, including virtual high-throughput screening (vHTS), high-throughput screening (HTS), and mechanisms for data storage and querying. However, presently these tools are often used independent of one another. In this chapter, we describe a new multimodal in silico technique for the hit identification and lead generation phases of traditional drug discovery. Our technique leverages the benefits of three independent methods-virtual high-throughput screening, high-throughput screening, and structural fingerprint analysis-by using a fourth technique called topological data analysis (TDA). We describe how a compound library can be independently tested with vHTS, HTS, and fingerprint analysis, and how the results can be transformed into a topological data analysis network to identify compounds from a diverse group of structural families. This process of using TDA or similar clustering methods to identify drug leads is advantageous because it provides a mechanism for choosing structurally diverse compounds while maintaining the unique advantages of already established techniques such as vHTS and HTS.
The global relationship between chromatin physical topology, fractal structure, and gene expression
DEFF Research Database (Denmark)
Almassalha, Luay M; Tiwari, A; Ruhoff, P T
2017-01-01
in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D...... show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating...
Gamelin, Theodore W
1999-01-01
A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 edition. Solutions to Selected Exercises. List of Notations. Index. 51 illustrations.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Luminet, Jean-Pierre
2015-08-01
Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.
Modeling, Analysis and Control of Different DC-DC Converter Topologies for Photo Voltaic Emulator
Directory of Open Access Journals (Sweden)
Mohammad Tauquir Iqbal
2016-05-01
Full Text Available This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel. The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.
Analysis of Different Topologies of Inverter in 0.18μm CMOS Technology and its Comparision
Ashish Panchal; Rajkumar Gehlot; Nidhi Maheshwari; Prafful Dubey
2011-01-01
In this paper we study inverter topologies under various criteria and caracteristics using Cadence tool.This paper includes analysis of inveter topologies utilized in VLSI that includes CMOS, Pseudo NMOS and Dynamic families. The characteristics include DC transfer characteristics, current Vs voltage characteristics,area and delay. The inverter topologies has been designed in 0.18μm CMOS technology with 1.8V supply voltage. SPECTRA RF simulator is used for circuit simulation. This paper also ...
Banks, Natalie Clare; Paini, Dean Ronald; Bayliss, Kirsty Louise; Hodda, Michael
2015-02-01
More people and goods are moving further and more frequently via many different trade and transport networks under current trends of globalisation. These networks can play a major role in the unintended introduction of exotic species to new locations. With the continuing rise in global trade, more research attention is being focused on the role of networks in the spread of invasive species. This represents an emerging field of research in invasion science and the substantial knowledge being generated within other disciplines can provide ecologists with new tools with which to study invasions. For the first time, we synthesise studies from several perspectives, approaches and disciplines to derive the fundamental characteristics of network topology determining the likelihood of spread of organisms via trade and transport networks. These characteristics can be used to identify critical points of vulnerability within these networks and enable the development of more effective strategies to prevent invasions. © 2014 John Wiley & Sons Ltd/CNRS.
Consensus Analysis of Second-Order Multiagent Systems with General Topology and Time Delay
Directory of Open Access Journals (Sweden)
Bo Liu
2013-01-01
Full Text Available This paper addresses the consensus of second-order multiagent systems with general topology and time delay based on the nearest neighbor rule. By using the Laplace transform technique, it is proved that the second-order multi-agent system in the presence of time-delay can reach consensus if the network topology contains a globally reachable node and time delay is bounded. The bound of time-delay only depends on eigenvalues of the Laplacian matrix of the system. The main contribution of this paper is that the accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are given. Some numerical simulations are given to illustrate the theoretical results.
Topology Analysis of the Sloan Digital Sky Survey. I. Scale and Luminosity Dependence
Park, Changbom; Choi, Yun-Young; Vogeley, Michael S.; Gott, J. Richard, III; Kim, Juhan; Hikage, Chiaki; Matsubara, Takahiko; Park, Myeong-Gu; Suto, Yasushi; Weinberg, David H.; SDSS Collaboration
2005-11-01
We measure the topology of volume-limited galaxy samples selected from a parent sample of 314,050 galaxies in the Sloan Digital Sky Survey (SDSS), which is now complete enough to describe the fully three-dimensional topology and its dependence on galaxy properties. We compare the observed genus statistic G(νf) to predictions for a Gaussian random field and to the genus measured for mock surveys constructed from new large-volume simulations of the ΛCDM cosmology. In this analysis we carefully examine the dependence of the observed genus statistic on the Gaussian smoothing scale RG from 3.5 to 11 h-1 Mpc and on the luminosity of galaxies over the range -22.50meatball'' (i.e., cluster dominated) topology, while faint galaxies show a positive shift toward a ``bubble'' (i.e., void dominated) topology. The transition from negative to positive shift occurs approximately at the characteristic absolute magnitude Mr*=-20.4. Even in this analysis of the largest galaxy sample to date, we detect the influence of individual large-scale structures, as the shift parameter Δν and cluster multiplicity AC reflect (at ~3 σ) the presence of the Sloan Great Wall and an X-shaped structure that runs for several hundred megaparsecs across the survey volume.
Transnational legal assemblages and global security law: topologies and temporalities of the list
Sullivan, G.
2014-01-01
This article examines the UN 1267 Al-Qaida sanctions regime as a technique of global security listing and form of transnational law with distinct legal ordering processes. Conventional literatures frame these sanctions in formalist terms, flattening their complexity. Understanding their qualities
Analysis of topological relationships and network properties in the interactions of human beings.
Directory of Open Access Journals (Sweden)
Ye Yuan
Full Text Available In the animal world, various kinds of collective motions have been found and proven to be efficient ways of carrying out some activities such as searching for food and avoiding predators. Many scholars research the interactions of collective behaviors of human beings according to the rules of collective behaviors of animals. Based on the Lennard-Jones potential function and a self-organization process, our paper proposes a topological communication model to simulate the collective behaviors of human beings. In the results of simulations, we find various types of collective behavior and fission behavior and discover the threshold for the emergence of collective behavior, which is the range five to seven for the number of topology K. According to the analysis of network properties of the model, the in-degree of individuals is always equal to the number of topology. In the stable state, the out-degrees of individuals distribute around the value of the number of topology K, except that the out-degree of a single individual is approximately double the out-degrees of the other individuals. In addition, under different initial conditions, some features of different kinds of networks emerge from the model. We also find the leader and herd mentality effects in the characteristics of the behaviors of human beings in our model. Thus, this work could be used to discover how to promote the emergence of beneficial group behaviors and prevent the emergence of harmful behaviors.
A global network topology of stock markets: Transmitters and receivers of spillover effects
Shahzad, Syed Jawad Hussain; Hernandez, Jose Areola; Rehman, Mobeen Ur; Al-Yahyaee, Khamis Hamed; Zakaria, Muhammad
2018-02-01
This paper applies a bivariate cross-quantilogram approach to examine the spillover network structure in the stock markets of 58 countries according to bearish, normal and bullish market scenarios. Our aim is to identify the strongest interdependencies, the directionality of the spillover risk effects, and to detect those equity markets with the potential to cause global systemic risk. The results highlight the role of the US and Canadian equity markets as major spillover transmitters, while the stock markets of Romania, Taiwan and Mexico act mainly as spillover receivers. Particularly strong spillovers are observed from the Canadian and US equity markets towards the Irish market, and from the Brazilian equity market towards the Kenyan equivalent. The equity market networks suggest that only the US equity market can trigger systemic risk on a global scale. Implications of the results are discussed.
Ulysses Data Analysis: Magnetic Topology of Heliospheric Structures
Crooker, Nancy
2001-01-01
In this final technical report on research funded by a NASA grant, a project overview is given by way of summaries on nine published papers. Research has included: 1) Using suprathermal electron data to study heliospheric magnetic structures; 2) Analysis of magnetic clouds, coronal mass ejections (CME), and the heliospheric current sheet (HCS); 3) Analysis of the corotating interaction region (CIR) which develop from interactions between solar wind streams of different velocities; 4) Use of Ulysses data in the interpretation of heliospheric events and phenomena.
Analysis of equilibrium and topology of tokamak plasmas
International Nuclear Information System (INIS)
Milligen, B.P. van.
1991-01-01
In a tokamak, the plasma is confined by means of a magnetic field. There exists an equilibrium between outward forces due to the pressure gradient in plasma and inward forces due to the interaction between currents flowing inside the plasma and the magnetic field. The equilibrium magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of constant flux. The equilibrium yields values for global and local plasma parameters (e.g. plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is essential for plasma control, for the understanding of many phenomena occurring in the plasma (in particular departures from the ideal equilibrium involving current filamentation on the flux surfaces that lead to the formation of islands, i.e. nested helical flux surfaces), and for the interpretation of many different types of measurements (e.g. the translation of line integrated electron density measurements made by laser beams probing the plasma into a local electron density on a flux surface). The problem of determining the equilibrium magnetic field from external magnetic field measurements has been studied extensively in literature. The problem is 'ill-posed', which means that the solution is unstable to small changes in the measurement data, and the solution has to be constrained in order to stabilize it. Various techniques for handling this problem have been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution in order to stabilize it. More equilibrium solvers are not able to handle very dissimilar measurement data which means information on the equilibrium is lost. The generally do not allow a straightforward error estimate of the obtained results to be made, and they require large amounts of computing time. This problems are addressed in this thesis. (author). 104 refs.; 42 figs.; 6 tabs
Network neighborhood analysis with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2007-01-15
The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).
Directory of Open Access Journals (Sweden)
Tadepally Lakshmikanth
2017-08-01
Full Text Available Human immune systems are variable, and immune responses are often unpredictable. Systems-level analyses offer increased power to sort patients on the basis of coordinated changes across immune cells and proteins. Allogeneic stem cell transplantation is a well-established form of immunotherapy whereby a donor immune system induces a graft-versus-leukemia response. This fails when the donor immune system regenerates improperly, leaving the patient susceptible to infections and leukemia relapse. We present a systems-level analysis by mass cytometry and serum profiling in 26 patients sampled 1, 2, 3, 6, and 12 months after transplantation. Using a combination of machine learning and topological data analyses, we show that global immune signatures associated with clinical outcome can be revealed, even when patients are few and heterogeneous. This high-resolution systems immune monitoring approach holds the potential for improving the development and evaluation of immunotherapies in the future.
Exploratory market structure analysis. Topology-sensitive methodology.
Mazanec, Josef
1999-01-01
Given the recent abundance of brand choice data from scanner panels market researchers have neglected the measurement and analysis of perceptions. Heterogeneity of perceptions is still a largely unexplored issue in market structure and segmentation studies. Over the last decade various parametric approaches toward modelling segmented perception-preference structures such as combined MDS and Latent Class procedures have been introduced. These methods, however, are not taylored for qualitative ...
Delory, Benjamin M; Li, Mao; Topp, Christopher N; Lobet, Guillaume
2018-01-01
Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.
Directory of Open Access Journals (Sweden)
Qian Wang
2016-01-01
Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.
Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A
2017-07-14
Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .
Energy Technology Data Exchange (ETDEWEB)
Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)
2013-12-01
We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.
Analysis and topology optimization design of high-speed driving spindle
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
Rahman, P. A.
2018-05-01
This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.
Topological data analysis of contagion maps for examining spreading processes on networks.
Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-07-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-01-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
Expediting topology data gathering for the TOPDB database.
Dobson, László; Langó, Tamás; Reményi, István; Tusnády, Gábor E
2015-01-01
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52,000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Directory of Open Access Journals (Sweden)
Mao Li
2018-04-01
Full Text Available Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions, to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.
Offroy, Marc; Duponchel, Ludovic
2016-03-03
An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.
Alpay, Daniel
2015-01-01
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.
International Nuclear Information System (INIS)
Zhang Ang-Hui; Li Xiao-Wen; Su Gui-Feng; Zhang Yi
2015-01-01
We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series. (paper)
Global Analysis of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J
2010-01-01
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ
Topology optimization under stochastic stiffness
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations
2016-10-31
boundary Γ, but the boundary points are not equally spaced along Γ ( recall Fig. 2). The idea is that a given boundary Γ has many possible discretisations...b+ b a (a) (b) (B) = 4 abc radius, R m ea n cu rv at ur e, ̄ 0 100 200 300 4000 0.01 0.02 0.03(c) 1/R geometric finite dierence perturbation...perimeter of a curve. The setting is illustrated in Fig. 9. Recall the sensitivity is defined by (3). For a curve that is represented by a set of
Critic: a new program for the topological analysis of solid-state electron densities
Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor
2009-01-01
In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.
Willard, Stephen
2004-01-01
Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340
A metric and topological analysis of determinism in the crude oil spot market
International Nuclear Information System (INIS)
Barkoulas, John T.; Chakraborty, Atreya; Ouandlous, Arav
2012-01-01
We test whether the spot price of crude oil is determined by stochastic rules or exhibits deterministic endogenous fluctuations. In our analysis, we employ both metric (correlation dimension and Lyapunov exponents) and topological (recurrence plots) diagnostic tools for chaotic dynamics. We find that the underlying system for crude oil spot prices (i) is of high dimensionality (no stabilization of the correlation dimension), (ii) does not exhibit sensitive dependence on initial conditions, and (iii) is not characterized by the recurrence property. Thus, the empirical evidence suggests that stochastic rather than deterministic rules are present in the system dynamics of the crude oil spot market. Recurrent plot analysis indicates that volatility clustering is an adequate, but not complete, explanation of the morphology of oil spot prices. - Highlights: ► We test whether the spot price of crude oil exhibits deterministic chaos. ► We employ both metric and topological diagnostic tools for chaos. ► Stochastic rules appear to govern the temporal evolution of oil prices. ► Volatility clustering explains the morphology of oil prices largely, but not entirely.
STRUCTURE LINE DETECTION FROM LIDAR POINT CLOUDS USING TOPOLOGICAL ELEVATION ANALYSIS
Directory of Open Access Journals (Sweden)
C. Y. Lo
2012-07-01
Full Text Available Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.
Visualizing vector field topology in fluid flows
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.
Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander
2016-01-01
Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.
Global Appearance Applied to Visual Map Building and Path Estimation Using Multiscale Analysis
Directory of Open Access Journals (Sweden)
Francisco Amorós
2014-01-01
Full Text Available In this work we present a topological map building and localization system for mobile robots based on global appearance of visual information. We include a comparison and analysis of global-appearance techniques applied to wide-angle scenes in retrieval tasks. Next, we define multiscale analysis, which permits improving the association between images and extracting topological distances. Then, a topological map-building algorithm is proposed. At first, the algorithm has information only of some isolated positions of the navigation area in the form of nodes. Each node is composed of a collection of images that covers the complete field of view from a certain position. The algorithm solves the node retrieval and estimates their spatial arrangement. With these aims, it uses the visual information captured along some routes that cover the navigation area. As a result, the algorithm builds a graph that reflects the distribution and adjacency relations between nodes (map. After the map building, we also propose a route path estimation system. This algorithm takes advantage of the multiscale analysis. The accuracy in the pose estimation is not reduced to the nodes locations but also to intermediate positions between them. The algorithms have been tested using two different databases captured in real indoor environments under dynamic conditions.
Guillemin, Victor
2010-01-01
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea-transversality-the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main
Morita, K
1989-01-01
Being an advanced account of certain aspects of general topology, the primary purpose of this volume is to provide the reader with an overview of recent developments.The papers cover basic fields such as metrization and extension of maps, as well as newly-developed fields like categorical topology and topological dynamics. Each chapter may be read independently of the others, with a few exceptions. It is assumed that the reader has some knowledge of set theory, algebra, analysis and basic general topology.
Global analysis of muon decay measurements
International Nuclear Information System (INIS)
Gagliardi, C.A.; Tribble, R.E.; Williams, N.J.
2005-01-01
We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector, and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other nonstandard model interactions are comparable. The value of the Michel parameter η found in the global analysis is -0.0036±0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G F
International Nuclear Information System (INIS)
Koshizuka, S.; Oka, Y.
1997-01-01
Moving Particle Semi-implicit (MPS) method is presented. Partial differential operators in the governing equations, such as gradient and Laplacian, are modeled as particle interactions without grids. A semi-implicit algorithm is used for incompressible flow analysis. In the present study, calculation models of moving solids, thin structures and phase change between liquid and gas are developed. Interaction between breaking waves and a floating solid is simulated using the model of moving solids. Calculations of collapsing water with a vertical thin plate show that water spills out over the plate which is largely deformed. Impingement of water jets on a molten metal pool is analyzed to investigate fundamental processes of vapor explosions. Water, vapor and molten metal are simultaneously calculated with evaporation. This calculation reveals that filaments of the molten metal emerge as the fragmentation process of vapor explosions. The MPS method is useful for complex problems involving moving interfaces even if topological deformations occur. (author)
Directory of Open Access Journals (Sweden)
Dagiuklas Tasos
2011-01-01
Full Text Available This paper presents a Wireless Information-Theoretic Security (WITS scheme, which has been recently introduced as a robust physical layer-based security solution, especially for infrastructureless networks. An autonomic network of moving users was implemented via 802.11n nodes of an ad hoc network for an outdoor topology with obstacles. Obstructed-Line-of-Sight (OLOS and Non-Line-of-Sight (NLOS propagation scenarios were examined. Low-speed user movement was considered, so that Doppler spread could be discarded. A transmitter and a legitimate receiver exchanged information in the presence of a moving eavesdropper. Average Signal-to-Noise Ratio (SNR values were acquired for both the main and the wiretap channel, and the Probability of Nonzero Secrecy Capacity was calculated based on theoretical formula. Experimental results validate theoretical findings stressing the importance of user location and mobility schemes on the robustness of Wireless Information-Theoretic Security and call for further theoretical analysis.
Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system.
Savic, Aleksandar; Toth, Gergely; Duponchel, Ludovic
2017-05-15
Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Maljovec, Dan [Univ. of Utah, Salt Lake City, UT (United States); Wang, Bei [Univ. of Utah, Salt Lake City, UT (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nourgaliev, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2013-10-01
and 2) topology-based methodologies to interactively visualize multidimensional data and extract risk-informed insights. Regarding item 1) we employ learning algorithms that aim to infer/predict simulation outcome and decide the coordinate in the input space of the next sample that maximize the amount of information that can be gained from it. Such methodologies can be used to both explore and exploit the input space. The later one is especially used for safety analysis scopes to focus samples along the limit surface, i.e. the boundaries in the input space between system failure and system success. Regarding item 2) we present a software tool that is designed to analyze multi-dimensional data. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations.
DEFF Research Database (Denmark)
Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.
2013-01-01
seat valves is developed, and the resulting dynamic response of the seat valve is presented. Requirements for the valve actuator is established based on the DD application, and three feasible actuator topologies are analyzed by means of transient electro-magnetic FEA simulation. From this analysis...
Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal
2015-04-01
Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is
Directory of Open Access Journals (Sweden)
Marcelo Franco Porto
2013-06-01
Full Text Available The technological innovations promote the availability of geographic information on the Internet through Web GIS such as Google Earth and Google Maps. These systems contribute to the teaching and diffusion of geographical knowledge that instigates the recognition of the space we live in, leading to the creation of a spatial identity. In these products available on the Web, the interpretation and analysis of spatial information gives priority to one of the human senses: vision. Due to the fact that this representation of information is transmitted visually (image and vectors, a portion of the population is excluded from part of this knowledge because categories of analysis of geographic data such as borders, territory, and space can only be understood by people who can see. This paper deals with the development of a model of interpretation of topological spatial analysis based on the synthesis of voice and sounds that can be used by the visually impaired (blind.The implementation of a prototype in Google Maps and the usability tests performed are also examined. For the development work it was necessary to define the model of topological spatial analysis, focusing on computational implementation, which allows users to interpret the spatial relationships of regions (countries, states and municipalities, recognizing its limits, neighborhoods and extension beyond their own spatial relationships . With this goal in mind, several interface and usability guidelines were drawn up to be used by the visually impaired (blind. We conducted a detailed study of the Google Maps API (Application Programming Interface, which was the environment selected for prototype development, and studied the information available for the users of that system. The prototype was developed based on the synthesis of voice and sounds that implement the proposed model in C # language and in .NET environment. To measure the efficiency and effectiveness of the prototype, usability
Topological insulators and topological superconductors
Bernevig, Andrei B
2013-01-01
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...
Using multidimensional topological data analysis to identify traits of hip osteoarthritis.
Rossi-deVries, Jasmine; Pedoia, Valentina; Samaan, Michael A; Ferguson, Adam R; Souza, Richard B; Majumdar, Sharmila
2018-05-07
Osteoarthritis (OA) is a multifaceted disease with many variables affecting diagnosis and progression. Topological data analysis (TDA) is a state-of-the-art big data analytics tool that can combine all variables into multidimensional space. TDA is used to simultaneously analyze imaging and gait analysis techniques. To identify biochemical and biomechanical biomarkers able to classify different disease progression phenotypes in subjects with and without radiographic signs of hip OA. Longitudinal study for comparison of progressive and nonprogressive subjects. In all, 102 subjects with and without radiographic signs of hip osteoarthritis. 3T, SPGR 3D MAPSS T 1ρ /T 2 , intermediate-weighted fat-suppressed fast spin-echo (FSE). Multidimensional data analysis including cartilage composition, bone shape, Kellgren-Lawrence (KL) classification of osteoarthritis, scoring hip osteoarthritis with MRI (SHOMRI), hip disability and osteoarthritis outcome score (HOOS). Analysis done using TDA, Kolmogorov-Smirnov (KS) testing, and Benjamini-Hochberg to rank P-value results to correct for multiple comparisons. Subjects in the later stages of the disease had an increased SHOMRI score (P Analysis of this subgroup identified knee biomechanics (P analysis of an OA subgroup with femoroacetabular impingement (FAI) showed anterior labral tears to be the most significant marker (P = 0.0017) between those FAI subjects with and without OA symptoms. The data-driven analysis obtained with TDA proposes new phenotypes of these subjects that partially overlap with the radiographic-based classical disease status classification and also shows the potential for further examination of an early onset biomechanical intervention. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
Directory of Open Access Journals (Sweden)
Jurado-Piña, R.
2014-12-01
Full Text Available When designing a tension structure the shape is not known at the beginning of the process. Form-finding methods allow the designer to obtain an initial shape from given boundary conditions. Several form-finding methods for tension structures are already available in the technical literature; all of them posses certain limitations and drawbacks and no single method is optimal for all problems. The engineer may select the proper combination of methods best suited to the designer’s needs. In this paper it is proposed a combined method to achieve satisfactory equilibrium configurations for fabric tension structures. The force density method (FDM implemented with topological mapping (TM is used as a search engine for the preliminary design, and a procedure that employs nonlinear structural analysis is proposed for final refinement of the initial equilibrium configuration hence allowing the use of the same analysis tool for both refinement of the solution and analysis under loading.Al diseñar una estructura tensada la forma inicial es normalmente desconocida. Los métodos de búsqueda de forma permiten al ingeniero obtener una geometría inicial dadas unas condiciones de contorno. Existen diferentes métodos de búsqueda de formas de equilibrio, pero todos tienen limitaciones y no existe uno único óptimo para cualquier tipo de problema. El ingeniero debe elegir la combinación de métodos que mejor se adapte a sus necesidades. En este artículo se propone un método combinado para generar configuraciones de equilibrio satisfactorias en estructuras tensadas. Como motor de búsqueda para el diseño preliminar se emplea el método de las densidades de fuerza (FDM implementado con mallado en topología (TM, y se propone un procedimiento basado en análisis no lineal de estructuras para el refinamiento de la configuración inicial de equilibrio, permitiéndose así el empleo de las mismas herramientas tanto para el refinamiento de la solución inicial
Topological Methods for Visualization
Energy Technology Data Exchange (ETDEWEB)
Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat
2016-04-07
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.L.; Hoffmann, A.
1977-01-01
In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text
Directory of Open Access Journals (Sweden)
Chaoxing Li
2018-04-01
Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several
Li, Chaoxing; Liu, Li; Dinu, Valentin
2018-01-01
Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes
Introduction to global analysis minimal surfaces in Riemannian manifolds
Moore, John Douglas
2017-01-01
During the last century, global analysis was one of the main sources of interaction between geometry and topology. One might argue that the core of this subject is Morse theory, according to which the critical points of a generic smooth proper function on a manifold M determine the homology of the manifold. Morse envisioned applying this idea to the calculus of variations, including the theory of periodic motion in classical mechanics, by approximating the space of loops on M by a finite-dimensional manifold of high dimension. Palais and Smale reformulated Morse's calculus of variations in terms of infinite-dimensional manifolds, and these infinite-dimensional manifolds were found useful for studying a wide variety of nonlinear PDEs. This book applies infinite-dimensional manifold theory to the Morse theory of closed geodesics in a Riemannian manifold. It then describes the problems encountered when extending this theory to maps from surfaces instead of curves. It treats critical point theory for closed param...
Group-theoretical and topological analysis of localized rotation-vibration states
International Nuclear Information System (INIS)
Sadovskii, D.A.; Zhilinskii, B.I.
1993-01-01
A general scheme of qualitative analysis is applied to molecular rovibrational problems. The classical-quantum correspondence provides a description of different classes of localized quantum rotation-vibration states associated with localized classical motion. A description of qualitative features, such as localized motion, and of qualitative changes, such as localization phenomena, is based on the concept of the simplest Hamiltonian. It uses only the topological properties of the compact reduced phase space and the action of the symmetry group on this space. The qualitative changes of the simplest Hamiltonian are analyzed as bifurcations caused by rotational or vibrational excitation. The relation between the stationary points of the classical Hamiltonian function on the reduced phase space and the principal periodic trajectories in the coordinate space is analyzed for vibrational Hamiltonians. In particular, the relation between the nonlinear normal modes, proposed by Montaldi, Roberts, and Stewart [Philos. Trans. R. Soc. London, Ser. A 325, 237 (1988)], and normal- and local-mode models widely used in molecular physics is discussed. Along with a general consideration of localized rotational and vibrational states a more detailed analysis of the vibrational dynamics of an X 3 molecule with the D 3h symmetry, such as the H 3 + molecular ion, is given
Finite element application to global reactor analysis
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1981-01-01
The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de
Conference on Convex Analysis and Global Optimization
Pardalos, Panos
2001-01-01
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...
Goodman, Sue E
2009-01-01
Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while i
Dynamical Analysis of the Global Warming
Directory of Open Access Journals (Sweden)
J. A. Tenreiro Machado
2012-01-01
Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.
International Nuclear Information System (INIS)
Ho, Minhhuy; Schmider, H.; Edgecombe, K.E.
1994-01-01
Topological properties of the charge density p(→) of a series of diatomic molecules, as well as ethane, ethene, and acetylene are calculated at the Hartree-Fock level employing various basis sets, and by the AM1 method. The effect of the core orbitals on the bonding regions in these molecules is examined. The results help to evaluate the utility of AM1 wavefunctions for analyzing the topological properties of the charge density
Analysis of Business Connections Utilizing Theory of Topology of Random Graphs
Trelewicz, Jennifer Q.; Volovich, Igor V.
2006-03-01
A business ecosystem is a system that describes interactions between organizations. In this paper, we build a theoretical framework that defines a model which can be used to analyze the business ecosystem. The basic concepts within the framework are organizations, business connections, and market, that are all defined in the paper. Many researchers analyze the performance and structure of business using the workflow of the business. Our work in business connections answers a different set of questions, concerning the monetary value in the business ecosystem, rather than the task-interaction view that is provided by workflow analysis. We apply methods for analysis of the topology of complex networks, characterized by the concepts of small path length, clustering, and scale-free degree distributions. To model the dynamics of the business ecosystem we analyze the notion of the state of an organization at a given instant of time. We point out that the notion of state in this case is fundamentally different from the concept of state of the system which is used in classical or quantum physics. To describe the state of the organization at a given time one has to know the probability of payments to contracts which in fact depend on the future behavior of the agents on the market. Therefore methods of p-adic analysis are appropriate to explore such a behavior. Microeconomic and macroeconomic factors are indivisible and moreover the actual state of the organization depends on the future. In this framework some simple models are analyzed in detail. Company strategy can be influenced by analysis of models, which can provide a probabilistic understanding of the market, giving degrees of predictability.
Topology for statistical modeling of petascale data.
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)
2011-07-01
This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.
International Nuclear Information System (INIS)
Hendi, S.H.; Eslam Panah, B.; Panahiyan, S.
2017-01-01
Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.
Directory of Open Access Journals (Sweden)
S.H. Hendi
2017-06-01
Full Text Available Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.
Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.
2007-01-01
Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a
A hybrid approach for global sensitivity analysis
International Nuclear Information System (INIS)
Chakraborty, Souvik; Chowdhury, Rajib
2017-01-01
Distribution based sensitivity analysis (DSA) computes sensitivity of the input random variables with respect to the change in distribution of output response. Although DSA is widely appreciated as the best tool for sensitivity analysis, the computational issue associated with this method prohibits its use for complex structures involving costly finite element analysis. For addressing this issue, this paper presents a method that couples polynomial correlated function expansion (PCFE) with DSA. PCFE is a fully equivalent operational model which integrates the concepts of analysis of variance decomposition, extended bases and homotopy algorithm. By integrating PCFE into DSA, it is possible to considerably alleviate the computational burden. Three examples are presented to demonstrate the performance of the proposed approach for sensitivity analysis. For all the problems, proposed approach yields excellent results with significantly reduced computational effort. The results obtained, to some extent, indicate that proposed approach can be utilized for sensitivity analysis of large scale structures. - Highlights: • A hybrid approach for global sensitivity analysis is proposed. • Proposed approach integrates PCFE within distribution based sensitivity analysis. • Proposed approach is highly efficient.
DEFF Research Database (Denmark)
Blok, Anders
2010-01-01
Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...
A topological derivative method for topology optimization
DEFF Research Database (Denmark)
Norato, J.; Bendsøe, Martin P.; Haber, RB
2007-01-01
resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void......We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric...... regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures....
Global meta-analysis of transcriptomics studies.
Directory of Open Access Journals (Sweden)
José Caldas
Full Text Available Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy, based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.
The topology of large-scale structure. III. Analysis of observations
International Nuclear Information System (INIS)
Gott, J.R. III; Weinberg, D.H.; Miller, J.; Thuan, T.X.; Schneider, S.E.
1989-01-01
A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a meatball topology. 66 refs
The topology of large-scale structure. III - Analysis of observations
Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.
1989-05-01
A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.
The topology of large-scale structure. III - Analysis of observations. [in universe
Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.
1989-01-01
A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.
Analysis on the urban street network of Korea: Connections between topology and meta-information
Lee, Byoung-Hwa; Jung, Woo-Sung
2018-05-01
Cities consist of infrastructure that enables transportation, which can be considered as topology in abstract terms. Once cities are physically organized in terms of infrastructure, people interact with each other to form the values, which can be regarded as the meta-information of the cities. The topology and meta-information coevolve together as the cities are developed. In this study, we investigate the relationship between the topology and meta-information for a street network, which has aspects of both a complex network and planar graph. The degree of organization of a street structure determines the efficiency and productivity of the city in that they act as blood vessels to transport people, goods, and information. We analyze the topological aspect of a street network using centralities including the betweenness, closeness, straightness, and information. We classify the cities into several groups that share common meta-information based on the centrality, indicating that the topological factor of the street structure is closely related to meta-information through coevolution. We also obtain the coevolution in the planned cities using the regularity. Another footprint is the relation between the street segment length and the population, which shows the sublinear scaling.
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.; Hoffmann, A.
1977-01-01
Two different global models are used in the CEASEMT system for structural analysis, one for the shells analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses choosed are the membrane forces Nsub(ij) and bending (including torsion) moments Msub(ij). There is only one yield condition for a normal (to the middle surface) and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is: bending moments, torsional moments, Hoop stress and tension stress. There is only a set of stresses for a cross section and non integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic fonction of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield fonctions used. Some examples of applications in structural analysis are added to the text [fr
Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001
National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...
Buchstaber, Victor M
2015-01-01
This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric v
Franz, Marcel
2013-01-01
Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was
International Nuclear Information System (INIS)
Gonzalez, P.A.; Moncada, Felipe; Vasquez, Yerko
2012-01-01
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
The Perspective on Data and Control Flow Analysis in Topological Functioning Models by Petri Nets
Directory of Open Access Journals (Sweden)
Asnina Erika
2014-12-01
Full Text Available The perspective on integration of two mathematical formalisms, i.e., Colored Petri Nets (CPNs and Topological Functioning Model (TFM, is discussed in the paper. The roots of CPNs are in modeling system functionality. The TFM joins principles of system theory and algebraic topology, and formally bridges the solution domain with the problem domain. It is a base for further automated construction of software design models. The paper discusses a perspective on check of control and data flows in the TFM by CPNs formalism. The research result is definition of mappings from TFMs to CPNs.
Random matrix analysis of the QCD sign problem for general topology
International Nuclear Information System (INIS)
Bloch, Jacques; Wettig, Tilo
2009-01-01
Motivated by the important role played by the phase of the fermion determinant in the investigation of the sign problem in lattice QCD at nonzero baryon density, we derive an analytical formula for the average phase factor of the fermion determinant for general topology in the microscopic limit of chiral random matrix theory at nonzero chemical potential, for both the quenched and the unquenched case. The formula is a nontrivial extension of the expression for zero topology derived earlier by Splittorff and Verbaarschot. Our analytical predictions are verified by detailed numerical random matrix simulations of the quenched theory.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)
2012-12-15
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
International Nuclear Information System (INIS)
Carroll, S.M.; Trodden, M.
1998-01-01
We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society
PathNet: a tool for pathway analysis using topological information
Directory of Open Access Journals (Sweden)
Dutta Bhaskar
2012-09-01
Full Text Available Abstract Background Identification of canonical pathways through enrichment of differentially expressed genes in a given pathway is a widely used method for interpreting gene lists generated from high-throughput experimental studies. However, most algorithms treat pathways as sets of genes, disregarding any inter- and intra-pathway connectivity information, and do not provide insights beyond identifying lists of pathways. Results We developed an algorithm (PathNet that utilizes the connectivity information in canonical pathway descriptions to help identify study-relevant pathways and characterize non-obvious dependencies and connections among pathways using gene expression data. PathNet considers both the differential expression of genes and their pathway neighbors to strengthen the evidence that a pathway is implicated in the biological conditions characterizing the experiment. As an adjunct to this analysis, PathNet uses the connectivity of the differentially expressed genes among all pathways to score pathway contextual associations and statistically identify biological relations among pathways. In this study, we used PathNet to identify biologically relevant results in two Alzheimer’s disease microarray datasets, and compared its performance with existing methods. Importantly, PathNet identified de-regulation of the ubiquitin-mediated proteolysis pathway as an important component in Alzheimer’s disease progression, despite the absence of this pathway in the standard enrichment analyses. Conclusions PathNet is a novel method for identifying enrichment and association between canonical pathways in the context of gene expression data. It takes into account topological information present in pathways to reveal biological information. PathNet is available as an R workspace image from http://www.bhsai.org/downloads/pathnet/.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
International Nuclear Information System (INIS)
Hernandez-Trujillo, Jesus; Garcia-Cruz, Isidoro; Martinez-Magadan, Jose Manuel
2005-01-01
The topological properties of the charge distribution of pyrene and the three derived monoradicals in their ground state and of didehydrogenated pyrenes in the lowest singlet and triplet electronic states are discussed in detail by means of the quantum theory of atoms in molecules (TAIM) and by the electron localization function (ELF). The non-equivalence of the fused aromatic rings of pyrene prevents one from anticipating the stability and reactivity of these species from the chemistry of didehydrogenated species derived from benzene only. Whereas some of these didehydrogenated molecules were found to display a diradical character in the singlet ground state, the topological analysis reveals that others correspond to normal closed shells. Using these theoretical tools, the energetic and geometric details of o-, m- and p-benzyne-like pyrene derivatives are explained
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-01
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in flowering plants and are sensitive to processing artifacts. Here we describe a persistent homology approach to measuring shape. Persistent homology is a topological method (concerned wit...
twzPEA: A Topology and Working Zone Based Pathway Enrichment Analysis Framework
Sensitive detection of involvement and adaptation of key signaling, regulatory, and metabolic pathways holds the key to deciphering molecular mechanisms such as those in the biomass-to-biofuel conversion process in yeast. Typical gene set enrichment analyses often do not use topology information in...
International Nuclear Information System (INIS)
Yahalom, A
2014-01-01
Variational principles for magnetohydrodynamics have been introduced by previous authors both in Lagrangian and Eulerian form. Yahalom and Lynden-Bell (2008) have previously introduced simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. These variational principles were given in terms of six independent functions for non-stationary barotropic flows with given topologies and three independent functions for stationary barotropic flows. This is less then the seven variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field B-vector the velocity field v-vector and the density ρ. Later, Yahalom (2010) introduced a simpler variational principle in terms of four functions for non-stationary barotropic magnetohydrodynamics. It was shown that the above variational principles are also relevant for flows of non-trivial topologies and in fact using those variational variables one arrives at additional topological conservation laws in terms of cuts of variables which have close resemblance to the Aharonov- Bohm phase (Yahalom (2013)). In previous examples (Yahalom and Lynden-Bell (2008); Yahalom (2013)) the magnetic field lines with non-trivial topology were at the intersection of two surface one of which was always multivalued; in this paper an example is introduced in which the magnetic helicity is not zero yet both surfaces are single-valued
Directory of Open Access Journals (Sweden)
Justina Sidlauskaite
2015-01-01
Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.
Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2015-01-01
Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.
Global sensitivity analysis using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, Bruno
2008-01-01
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices
Global sensitivity analysis using polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr
2008-07-15
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.
Updated Global Analysis of Higgs Couplings
Ellis, John
2013-01-01
There are many indirect and direct experimental indications that the new particle H discovered by the ATLAS and CMS Collaborations has spin zero and (mostly) positive parity, and that its couplings to other particles are correlated with their masses. Beyond any reasonable doubt, it is a Higgs boson, and here we examine the extent to which its couplings resemble those of the single Higgs boson of the Standard Model. Our global analysis of its couplings to fermions and massive bosons determines that they have the same relative sign as in the Standard Model. We also show directly that these couplings are highly consistent with a dependence on particle masses that is linear to within a few %, and scaled by the conventional electroweak symmetry-breaking scale to within 10%. We also give constraints on loop-induced couplings, on the total Higgs decay width, and on possible invisible decays of the Higgs boson under various assumptions.
Global Surface Warming Hiatus Analysis Data
National Oceanic and Atmospheric Administration, Department of Commerce — These data were used to conduct the study of the global surface warming hiatus, an apparent decrease in the upward trend of global surface temperatures since 1998....
Analysis of Globalization, the Planet and Education
Tsegay, Samson Maekele
2016-01-01
Thorough the framework of theories analyzing globalization and education, this paper focuses on the intersection among globalization, the environment and education. This paper critically analyzes how globalization could affect environmental devastation, and explore the role of pedagogies that could foster planetary citizenship by exposing…
Tunable Topological Phononic Crystals
Chen, Zeguo; Wu, Ying
2016-01-01
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Tunable Topological Phononic Crystals
Chen, Zeguo
2016-05-27
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Surface Topology Reconstruction From The White Light Interferogram By Means Of Prony Analysis
Directory of Open Access Journals (Sweden)
Khoma Anna
2015-12-01
Full Text Available The paper presents a new method of surface topology reconstruction from a white light interferogram. The method is based on interferogram modelling by complex exponents (Prony method. The compatibility of white light interferogram and Prony models has already been proven. Effectiveness of the method was tested by modelling and examining reconstruction of tilted and spherical surfaces, and by estimating the reconstruction accuracy.
Percolation Analysis as a Tool to Describe the Topology of the Large Scale Structure of the Universe
Yess, Capp D.
1997-09-01
Percolation analysis is the study of the properties of clusters. In cosmology, it is the statistics of the size and number of clusters. This thesis presents a refinement of percolation analysis and its application to astronomical data. An overview of the standard model of the universe and the development of large scale structure is presented in order to place the study in historical and scientific context. Then using percolation statistics we, for the first time, demonstrate the universal character of a network pattern in the real space, mass distributions resulting from nonlinear gravitational instability of initial Gaussian fluctuations. We also find that the maximum of the number of clusters statistic in the evolved, nonlinear distributions is determined by the effective slope of the power spectrum. Next, we present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β = 0.1 to 1.0, where β=Ω0.6/b,/ Ω is the present dimensionless density and b is the linear bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R≈100h-1 Mpc, percolation analysis reveals a slight 'meatball' topology for the real space, galaxy distribution of the IRAS survey. Finally, we employ a percolation technique developed for pointwise distributions to analyze two-dimensional projections of the three northern and three southern slices in the Las Campanas Redshift Survey and then give consideration to further study of the methodology, errors and application of percolation. We track the growth of the largest cluster as a topological indicator to a depth of 400 h-1 Mpc, and report an unambiguous signal, with high signal-to-noise ratio, indicating a network topology which in
Schmidt, Gunther
2018-01-01
This book introduces and develops new algebraic methods to work with relations, often conceived as Boolean matrices, and applies them to topology. Although these objects mirror the matrices that appear throughout mathematics, numerics, statistics, engineering, and elsewhere, the methods used to work with them are much less well known. In addition to their purely topological applications, the volume also details how the techniques may be successfully applied to spatial reasoning and to logics of computer science. Topologists will find several familiar concepts presented in a concise and algebraically manipulable form which is far more condensed than usual, but visualized via represented relations and thus readily graspable. This approach also offers the possibility of handling topological problems using proof assistants.
DEFF Research Database (Denmark)
A. Kristensen, Anders Schmidt; Damkilde, Lars
2007-01-01
. A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...
Arnold, Vladimir; Zorich, Anton
1999-01-01
This volume offers an account of the present state of the art in pseudoperiodic topology-a young branch of mathematics, born at the boundary between the ergodic theory of dynamical systems, topology, and number theory. Related topics include the theory of algorithms, convex integer polyhedra, Morse inequalities, real algebraic geometry, statistical physics, and algebraic number theory. The book contains many new results. Most of the articles contain brief surveys on the topics, making the volume accessible to a broad audience. From the Preface by V.I. Arnold: "The authors … have done much to s
Warner, S
1993-01-01
This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.
Stability of fundamental couplings: A global analysis
Martins, C. J. A. P.; Pinho, A. M. M.
2017-01-01
Astrophysical tests of the stability of fundamental couplings are becoming an increasingly important probe of new physics. Motivated by the recent availability of new and stronger constraints we update previous works testing the consistency of measurements of the fine-structure constant α and the proton-to-electron mass ratio μ =mp/me (mostly obtained in the optical/ultraviolet) with combined measurements of α , μ and the proton gyromagnetic ratio gp (mostly in the radio band). We carry out a global analysis of all available data, including the 293 archival measurements of Webb et al. and 66 more recent dedicated measurements, and constraining both time and spatial variations. While nominally the full data sets show a slight statistical preference for variations of α and μ (at up to two standard deviations), we also find several inconsistencies between different subsets, likely due to hidden systematics and implying that these statistical preferences need to be taken with caution. The statistical evidence for a spatial dipole in the values of α is found at the 2.3 sigma level. Forthcoming studies with facilities such as ALMA and ESPRESSO should clarify these issues.
Multi-planed unified switching topologies
Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka
2017-07-04
An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.
Spring and Its Global Echo: Quantitative Analysis
Directory of Open Access Journals (Sweden)
A. V. Korotayev
2017-01-01
Full Text Available It is shown that the Arab Spring acted as a trigger for a global wave of socio-political destabilization, which signifi cantly exceeded the scale of the Arab Spring itself and affected absolutely all world-system zones. Only in 2011 the growth of the global number of largescale anti-government demonstrations, riots and political strikes was to a high degree (although not entirely due to their growth in the Arab world. In the ensuing years, the Arab countries rather made a negative contribution to a very noticeable further increase in the global number of large-scale anti-government demonstrations, riots and general strikes (the global intensity of all these three important types of socio-political destabilization continued to grow despite the decline in the Arab world. Thus, for all these three important indicators of sociopolitical destabilization, the scale of the global echo of the Arab Spring has overshadowed the scale of the Arab Spring itself. Only as regards the fourth considered indicator (major terrorist attacks / guerrilla warfare the scale of the global echo for the entire period considered did not overshadow the scale of the Arab Spring (and, incidentally, «Winter» - and in 2014-2015 Arab countries continued to make a disproportionate contribution to the historically record global values of this sad indicator – global number of major terrorist attacks/ guerilla warfare. To conclude, triggered by the Arab Spring, the global wave of socio-political destabilization led after 2010 to a very signifi cant growth of socio-political instability in absolutely all World System zones. However, this global destabilization wave manifested itself in different World System zones in different ways and not completely synchronously.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
DEFF Research Database (Denmark)
Bendsøe, Martin P.; Sigmund, Ole
2007-01-01
Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...
Modelling and analysis of global coal markets
International Nuclear Information System (INIS)
Trueby, Johannes
2013-01-01
International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global
Modelling and analysis of global coal markets
Energy Technology Data Exchange (ETDEWEB)
Trueby, Johannes
2013-01-17
International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global
Multitarget global sensitivity analysis of n-butanol combustion.
Zhou, Dingyu D Y; Davis, Michael J; Skodje, Rex T
2013-05-02
A model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets. The combination of species and ignition targets leads to multitarget global sensitivity analysis, which allows for a more complete mechanism validation procedure than we previously implemented. The inclusion of species sensitivity analysis allows for a direct comparison between reaction pathway analysis and global sensitivity analysis.
Solving equations by topological methods
Directory of Open Access Journals (Sweden)
Lech Górniewicz
2005-01-01
Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.
International Nuclear Information System (INIS)
Belokoneva, E.L.; Mori, Takao
2009-01-01
The topology and symmetry analysis was applied to a series of rare earth borocarbide compounds, which have been gaining increasing interest due to their magnetic and thermoelectric properties. Using principles of OD theory, the crystal structures were deconvoluted into L(1) (B 12 icosahedra and C-B-C chain) layers and L(2) (rare earth and B 6 octahedral) layers. The arrangement of B 12 icosahedra in the L(1) layer is equal to close packed spheres, however, symmetry of the B 12 block lowers symmetry of the resulting layer from P 6/mmm to P 3m1. Both layers, L(1) and L(2) possess symmetry P 3m1 and the conjugation of L(1) with L(2) layers occurs in accordance with the symmetry elements. No disorder may appear here because of equal symmetry of single layers and layer pairs and it is not a classical OD family. Only the increasing of the amount of one type of layers, namely L(1), provides the structural variations. Close analogy to the hexagonal ferrites family has been found. Topology and symmetry analysis reveals principles in the building up of the structural family, gives an insight into the particular order-disorder formation mechanism/criteria of these homologous borocarbide compounds and as the result relation to the properties (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Integrated risk analysis of global climate change
International Nuclear Information System (INIS)
Shlyakhter, Alexander; Wilson, Richard; Valverde A, L.J. Jr.
1995-01-01
This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)
Global sensitivity analysis in wind energy assessment
Tsvetkova, O.; Ouarda, T. B.
2012-12-01
Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present
Global Analysis of Photosynthesis Transcriptional Regulatory Networks
Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.
2014-01-01
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406
Global analysis of photosynthesis transcriptional regulatory networks.
Directory of Open Access Journals (Sweden)
Saheed Imam
2014-12-01
Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.
Topological Qubits from Valence Bond Solids
Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert
2018-05-01
Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Bhatia, Harsh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gyulassy, Attila [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ong, Mitchell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Draeger, Erik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-27
The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field to analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.
State of the Climate - Global Analysis
National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...
Land Tenure, Gender, and Globalization : Research and Analysis ...
International Development Research Centre (IDRC) Digital Library (Canada)
Land Tenure, Gender, and Globalization : Research and Analysis from Africa, Asia, and Latin America. Couverture du livre Land Tenure, Gender, and Globalization : Research and Analysis from Africa. Directeur(s) : Dzodzi Tsikata et Pamela Golah. Maison(s) d'édition : Zubaan, CRDI. 29 août 2009. ISBN : 9788189884727.
Directory of Open Access Journals (Sweden)
Andrey Anisimov
2016-09-01
Full Text Available More than 100 years ago, the concept of quantization began to go beyond natural and physical sciences. For instance, quantum numbers are used to determine the electron configuration of an atom, the probable location of the atom’s electronsand other characteristics of atoms. The main idea of quantization is the application of “double nature” logic to observed processes and phenomena, as well as to their driving forces and structure. Based on this logic, the principle of wave –particle duality was developed in physics and mathematics and provides the basis for quantum mechanics and relativistic theory. This principle applied to analysis and calculations helps to formulate fundamental theories to explain processes and structure using relativistic velocity and, in turn, describe operations of the material world at the macro and micro levels. This article applies the concepts of quantization and representation duality (which is the analysis of the dual nature of facts and events observed at the macro and micro levels to social, economic and political data to describe the dynamics of actors and processes of the multiple connections of the global system. The analysis of the current state of world’s multiple connections in a macroeconomic context is conducted with inapproved parameters that characterize the dynamics of various changes that explain events in a two-dimensional manner.Often criticized by experts, these parameters have been supplemented by new ones, which have not yet resolved the flaw sin such a study of changes in economic processes. This article describes a theoretical concept of a structural-topological approach based on presenting global multiple connections in the form of two aggregated spaces – the space of events and the space of states – that complement each other to create a single system. The study demonstrates the representation method of the global economy illustrated through a practical analysis of integrational
Fomenko, Anatoly
2016-01-01
This classic text of the renowned Moscow mathematical school equips the aspiring mathematician with a solid grounding in the core of topology, from a homotopical perspective. Its comprehensiveness and depth of treatment are unmatched among topology textbooks: in addition to covering the basics—the fundamental notions and constructions of homotopy theory, covering spaces and the fundamental group, CW complexes, homology and cohomology, homological algebra—the book treats essential advanced topics, such as obstruction theory, characteristic classes, Steenrod squares, K-theory and cobordism theory, and, with distinctive thoroughness and lucidity, spectral sequences. The organization of the material around the major achievements of the golden era of topology—the Adams conjecture, Bott periodicity, the Hirzebruch–Riemann–Roch theorem, the Atiyah–Singer index theorem, to name a few—paints a clear picture of the canon of the subject. Grassmannians, loop spaces, and classical groups play a central role ...
Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu
2014-01-01
An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127
Ó, João; Tomei, Carlos
2014-01-01
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical ...
Global Analysis of a Planetary Gear Train
Directory of Open Access Journals (Sweden)
Tongjie Li
2014-01-01
Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.
On load paths and load bearing topology from finite element analysis
International Nuclear Information System (INIS)
Kelly, D; Reidsema, C; Lee, M
2010-01-01
Load paths can be mapped from vector plots of 'pointing stress vectors'. They define a path along which a component of load remains constant as it traverses the solution domain. In this paper the theory for the paths is first defined. Properties of the plots that enable a designer to interpret the structural behavior from the contours are then identified. Because stress is a second order tensor defined on an orthogonal set of axes, the vector plots define separate paths for load transfer in each direction of the set of axes. An algorithm is therefore presented that combines the vectors to define a topology to carry the loads. The algorithm is shown to straighten the paths reducing bending moments and removing stress concentration. Application to a bolted joint, a racing car body and a yacht hull demonstrate the usefulness of the plots.
Computer-aided topological analysis of Nd-Fe-B ternary system
International Nuclear Information System (INIS)
Liu, G.; Xu, P.; Zhang, W.
1993-01-01
A three-dimensional partially matrixed topological model of the Nd-Fe-B ternary phase diagram has been established based on experimental results assessed comprehensively with the aid of a computer-aided design and graphic and graphics software, AutoCAD (R10), and application programs developed in this work. Vertical sections at 5.88 at.% B, Nd:B = 1:1, Fe-Nd/sub 2/Fe/sub 14/B-Nd, Nd/sub 2/Fe/sub 17/-Nd/sub 2/Fe/sub 7/B/sub 6/ have been cut out from the model and the corresponding phase relationships have been analyzed. Among them, those on the Nd-rich protons of both the sections at 5.88 at.% B and Nd:B = 2:1 and those on the Nd/sub 2/Fe/sub 14/B-Nd section are given for the first time. (author)
Rendering the Topological Spines
Energy Technology Data Exchange (ETDEWEB)
Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-05-05
Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.
Topology with applications topological spaces via near and far
Naimpally, Somashekhar A
2013-01-01
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...
Martens, Pim; Akin, Su-Mia; Maud, Huynen; Mohsin, Raza
2010-09-17
It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.
Is globalization healthy: a statistical indicator analysis of the impacts of globalization on health
Directory of Open Access Journals (Sweden)
Martens Pim
2010-09-01
Full Text Available Abstract It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.
Global Proteome Analysis of Leptospira interrogans
Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Paul, Avijit Kumar
2018-04-01
One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.
Guaranteed cost control of mobile sensor networks with Markov switching topologies.
Zhao, Yuan; Guo, Ge; Ding, Lei
2015-09-01
This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Topological Aspects of Information Retrieval.
Egghe, Leo; Rousseau, Ronald
1998-01-01
Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)
DEFF Research Database (Denmark)
Plum, Maja
Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...
Topology for Statistical Modeling of Petascale Data
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Bremer, P. -T. [Univ. of Utah, Salt Lake City, UT (United States)
2013-10-31
Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, the approach of the entire team involving all three institutions is based on the complementary techniques of combinatorial topology and statistical modelling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modelling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. The overall technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modelling, and (3) new integrated topological and statistical methods. Roughly speaking, the division of labor between our 3 groups (Sandia Labs in Livermore, Texas A&M in College Station, and U Utah in Salt Lake City) is as follows: the Sandia group focuses on statistical methods and their formulation in algebraic terms, and finds the application problems (and data sets) most relevant to this project, the Texas A&M Group develops new algebraic geometry algorithms, in particular with fewnomial theory, and the Utah group develops new algorithms in computational topology via Discrete Morse Theory. However, we hasten to point out that our three groups stay in tight contact via videconference every 2 weeks, so there is much synergy of ideas between the groups. The following of this document is focused on the contributions that had grater direct involvement from the team at the University of Utah in Salt Lake City.
Current issues and challenges in global analysis of parton distributions
International Nuclear Information System (INIS)
Tung, Wu-Ki
2007-01-01
A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed. (author)
Kyeong, Sunghyon; Kim, Jae-Jin; Kim, Eunjoo
2017-01-01
Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous condition and identification of clinically meaningful subgroups would open up a new window for personalized medicine. Thus, we aimed to identify new clinical phenotypes in children and adolescents with ADHD and to investigate whether neuroimaging findings validate the identified phenotypes. Neuroimaging and clinical data from 67 children with ADHD and 62 typically developing controls (TDCs) from the ADHD-200 database were selected. Clinical measures of ADHD symptoms and intelligence quotient (IQ) were used as input features into a topological data analysis (TDA) to identify ADHD subgroups within our sample. As external validators, graph theoretical measures obtained from the functional connectome were compared to address the biological meaningfulness of the identified subtypes. The TDA identified two unique subgroups of ADHD, labelled as mild symptom ADHD (mADHD) and severe symptom ADHD (sADHD). The output topology shape was repeatedly observed in the independent validation dataset. The graph theoretical analysis showed a decrease in the degree centrality and PageRank in the bilateral posterior cingulate cortex in the sADHD group compared with the TDC group. The mADHD group showed similar patterns of intra- and inter-module connectivity to the sADHD group. Relative to the TDC group, the inter-module connectivity between the default mode network and executive control network were significantly increased in the sADHD group but not in the mADHD group. Taken together, our results show that the data-driven TDA is potentially useful in identifying objective and biologically relevant disease phenotypes in children and adolescents with ADHD.
Directory of Open Access Journals (Sweden)
Sunghyon Kyeong
Full Text Available Attention-deficit/hyperactivity disorder (ADHD is a clinically heterogeneous condition and identification of clinically meaningful subgroups would open up a new window for personalized medicine. Thus, we aimed to identify new clinical phenotypes in children and adolescents with ADHD and to investigate whether neuroimaging findings validate the identified phenotypes. Neuroimaging and clinical data from 67 children with ADHD and 62 typically developing controls (TDCs from the ADHD-200 database were selected. Clinical measures of ADHD symptoms and intelligence quotient (IQ were used as input features into a topological data analysis (TDA to identify ADHD subgroups within our sample. As external validators, graph theoretical measures obtained from the functional connectome were compared to address the biological meaningfulness of the identified subtypes. The TDA identified two unique subgroups of ADHD, labelled as mild symptom ADHD (mADHD and severe symptom ADHD (sADHD. The output topology shape was repeatedly observed in the independent validation dataset. The graph theoretical analysis showed a decrease in the degree centrality and PageRank in the bilateral posterior cingulate cortex in the sADHD group compared with the TDC group. The mADHD group showed similar patterns of intra- and inter-module connectivity to the sADHD group. Relative to the TDC group, the inter-module connectivity between the default mode network and executive control network were significantly increased in the sADHD group but not in the mADHD group. Taken together, our results show that the data-driven TDA is potentially useful in identifying objective and biologically relevant disease phenotypes in children and adolescents with ADHD.
Topology optimized electrothermal polysilicon microgrippers
DEFF Research Database (Denmark)
Sardan Sukas, Özlem; Petersen, Dirch Hjorth; Mølhave, Kristian
2008-01-01
This paper presents the topology optimized design procedure and fabrication of electrothermal polysilicon microgrippers for nanomanipulation purposes. Performance of the optimized microactuators is compared with a conventional three-beam microactuator design through finite element analysis...
Mapping the global health employment market: an analysis of global health jobs.
Keralis, Jessica M; Riggin-Pathak, Brianne L; Majeski, Theresa; Pathak, Bogdan A; Foggia, Janine; Cullinen, Kathleen M; Rajagopal, Abbhirami; West, Heidi S
2018-02-27
The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.
Global qualitative analysis of a quartic ecological model
Broer, Hendrik; Gaiko, Valery A.
2010-01-01
in this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles. (C) 2009 Elsevier Ltd. All rights reserved.
Coupled electrostatic-elastic analysis for topology optimization using material interpolation
International Nuclear Information System (INIS)
Alwan, A; Ananthasuresh, G K
2006-01-01
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finiteelement mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a 'leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (registered) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case
Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A
2017-11-15
The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The
Clayton, Thomas
2004-01-01
In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…
Global analysis of the protection status of the world's forests
DEFF Research Database (Denmark)
Schmitt, Christine B.; Burgess, Neil David; Coad, Lauren
2009-01-01
This study presents a global analysis of forest cover and forest protection. An updated Global Forest Map (using MODIS2005) provided a current assessment of forest cover within 20 natural forest types. This map was overlaid onto WWF realms and ecoregions to gain additional biogeographic information...... on forest distribution. Using the 2008 World Database on Protected Areas, percentage forest cover protection was calculated globally, within forest types, realms and ecoregions, and within selected areas of global conservation importance. At the 10% tree cover threshold, global forest cover was 39 million...... km2. Of this, 7.7% fell within protected areas under IUCN management categories I-IV. With the inclusion of IUCN categories V and VI, the level of global forest protection increased to 13.5%. Percentage forest protection (IUCN I-IV) varied greatly between realms from 5.5% (Palearctic) to 13...
Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation
Dreyer, T. R.; Siqueira, A. F. P.; Magrini, T. D.; Fiorito, P. A.; Assumpção, M. E. O. A.; Nichi, M.; Martinho, H. S.; Milazzotto, M. P.
2011-07-01
Low-level laser irradiation (LLLI) increases ATP production and energy supply to the cell which could increase sperm motility, acrossomal reaction and consequently the fertilizing potential. The aim of this study was to characterize the biochemical and topological changes induced by low power laser irradiation on bull sperm cells. Post-thawing sperm were irradiated with a 633nm laser with fluence rates of 30, 150 and 300mJ.cm-2 (power of 5mW for 1, 5 and 10minutes, respectively); 45, 230, and 450mJ.cm-2 (7.5mW for 1, 5 and 10 minutes); and 60, 300 and 600mJ.cm-2 (10mW for 1, 5 and 10 minutes). Biochemical and metabolical changes were analyzed by FTIR and flow cytometry; oxygen reactive species production was assessed by TBARS and the morphological changes were evaluated by AFM. Motility had no difference among times or powers of irradiation. Increasing in ROS generation was observed with power of 5mW compared to 7.5 and 10mW, and with 10min of irradiation in comparison with 5 and 1min of irradiation. This higher ROS generation was related to an increase in acrossomal and plasma membrane damage. FTIR results showed that the amount of lipids was inversely proportional to the quantity of ROS generated. AFM images showed morphological differences in plasma/acrossomal membrane, mainly on the equatorial region. We conclude that LLLI is an effective method to induce changes on sperm cell metabolism but more studies are necessary to establish an optimal dose to increase the fertility potential of these cells.
Energy Technology Data Exchange (ETDEWEB)
Wei, Jun, E-mail: jvwei@umich.edu; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2014-08-15
Purpose: The buildup of noncalcified plaques (NCPs) that are vulnerable to rupture in coronary arteries is a risk for myocardial infarction. Interpretation of coronary CT angiography (cCTA) to search for NCP is a challenging task for radiologists due to the low CT number of NCP, the large number of coronary arteries, and multiple phase CT acquisition. The authors conducted a preliminary study to develop machine learning method for automated detection of NCPs in cCTA. Methods: With IRB approval, a data set of 83 ECG-gated contrast enhanced cCTA scans with 120 NCPs was collected retrospectively from patient files. A multiscale coronary artery response and rolling balloon region growing (MSCAR-RBG) method was applied to each cCTA volume to extract the coronary arterial trees. Each extracted vessel was reformatted to a straightened volume composed of cCTA slices perpendicular to the vessel centerline. A topological soft-gradient (TSG) detection method was developed to prescreen for NCP candidates by analyzing the 2D topological features of the radial gradient field surface along the vessel wall. The NCP candidates were then characterized by a luminal analysis that used 3D geometric features to quantify the shape information and gray-level features to evaluate the density of the NCP candidates. With machine learning techniques, useful features were identified and combined into an NCP score to differentiate true NCPs from false positives (FPs). To evaluate the effectiveness of the image analysis methods, the authors performed tenfold cross-validation with the available data set. Receiver operating characteristic (ROC) analysis was used to assess the classification performance of individual features and the NCP score. The overall detection performance was estimated by free response ROC (FROC) analysis. Results: With our TSG prescreening method, a prescreening sensitivity of 92.5% (111/120) was achieved with a total of 1181 FPs (14.2 FPs/scan). On average, six features
International Nuclear Information System (INIS)
Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella
2014-01-01
Purpose: The buildup of noncalcified plaques (NCPs) that are vulnerable to rupture in coronary arteries is a risk for myocardial infarction. Interpretation of coronary CT angiography (cCTA) to search for NCP is a challenging task for radiologists due to the low CT number of NCP, the large number of coronary arteries, and multiple phase CT acquisition. The authors conducted a preliminary study to develop machine learning method for automated detection of NCPs in cCTA. Methods: With IRB approval, a data set of 83 ECG-gated contrast enhanced cCTA scans with 120 NCPs was collected retrospectively from patient files. A multiscale coronary artery response and rolling balloon region growing (MSCAR-RBG) method was applied to each cCTA volume to extract the coronary arterial trees. Each extracted vessel was reformatted to a straightened volume composed of cCTA slices perpendicular to the vessel centerline. A topological soft-gradient (TSG) detection method was developed to prescreen for NCP candidates by analyzing the 2D topological features of the radial gradient field surface along the vessel wall. The NCP candidates were then characterized by a luminal analysis that used 3D geometric features to quantify the shape information and gray-level features to evaluate the density of the NCP candidates. With machine learning techniques, useful features were identified and combined into an NCP score to differentiate true NCPs from false positives (FPs). To evaluate the effectiveness of the image analysis methods, the authors performed tenfold cross-validation with the available data set. Receiver operating characteristic (ROC) analysis was used to assess the classification performance of individual features and the NCP score. The overall detection performance was estimated by free response ROC (FROC) analysis. Results: With our TSG prescreening method, a prescreening sensitivity of 92.5% (111/120) was achieved with a total of 1181 FPs (14.2 FPs/scan). On average, six features
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
Emerging Trends in Topological Insulators and Topological ...
Indian Academy of Sciences (India)
/fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...
Margalef-Roig, J
1992-01-01
...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor
Community Analysis of Global Financial Markets
Directory of Open Access Journals (Sweden)
Irena Vodenska
2016-05-01
Full Text Available We analyze the daily returns of stock market indices and currencies of 56 countries over the period of 2002–2012. We build a network model consisting of two layers, one being the stock market indices and the other the foreign exchange markets. Synchronous and lagged correlations are used as measures of connectivity and causality among different parts of the global economic system for two different time intervals: non-crisis (2002–2006 and crisis (2007–2012 periods. We study community formations within the network to understand the influences and vulnerabilities of specific countries or groups of countries. We observe different behavior of the cross correlations and communities for crisis vs. non-crisis periods. For example, the overall correlation of stock markets increases during crisis while the overall correlation in the foreign exchange market and the correlation between stock and foreign exchange markets decrease, which leads to different community structures. We observe that the euro, while being central during the relatively calm period, loses its dominant role during crisis. Furthermore we discover that the troubled Eurozone countries, Portugal, Italy, Greece and Spain, form their own cluster during the crisis period.
Induced topological pressure for topological dynamical systems
International Nuclear Information System (INIS)
Xing, Zhitao; Chen, Ercai
2015-01-01
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure
Topological anomalies for Seifert 3-manifolds
Energy Technology Data Exchange (ETDEWEB)
Imbimbo, Camillo [Dipartimento di Fisica, Università di Genova,Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova,Via Dodecaneso 33, 16146, Genova (Italy); Rosa, Dario [School of Physics and Astronomy andCenter for Theoretical Physics Seoul National University,Seoul 151-747 (Korea, Republic of); Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN - Sezione di Milano-Bicocca,I-20126 Milano (Italy)
2015-07-14
We study globally supersymmetric 3d gauge theories on curved manifolds by describing the coupling of 3d topological gauge theories, with both Yang-Mills and Chern-Simons terms in the action, to background topological gravity. In our approach, the Seifert condition for manifolds supporting global supersymmetry is elegantly deduced from the BRST transformations of topological gravity. A cohomological characterization of the geometrical moduli which affect the partition function is obtained. In the Seifert context the Chern-Simons topological (framing) anomaly is BRST trivial. We compute explicitly the corresponding local Wess-Zumino functional. As an application, we obtain the dependence on the Seifert moduli of the partition function of 3d supersymmetric gauge theory on the squashed sphere by solving the anomalous topological Ward identities, in a regularization independent way and without the need of evaluating any functional determinant.
COMPARATIVE ANALYSIS OF GLOBAL TERTIARY EDUCATIONAL SYSTEMS
Directory of Open Access Journals (Sweden)
Ciumas Cristina
2013-07-01
Full Text Available Higher education system occupies a special place in the policy of each nation. Regardless of geographical location, socio-economic or cultural differences, the need to improve the education offered for population by facilitating access to higher education becomes more and more important. Providing a suitable framework for the personal development of each student is expensive and involves high amounts of money. From the analyses carried out we couldn\\'t identify the substantial differences between the way it is structured and organized education system worldwide. However, we were able to identify a number of common elements that create a global University System. The need to invest in human resources through structural reforms in each country is present, and therefore a higher indention to pay greater attention to the development of the higher education system. In our work we decided to analyze education systems in countries like United States of America (USA, United Kingdom (GB, China (CHN, Germany (DE, France (FR, Russian Federation (RU, Japan (JPN average values recorded for EU-27 and last but not least Romania (RO. Although the investment in the University system is hard to quantify, it is unanimously acknowledged that a country can achieve a competitive advantage in international relations through a very well prepared and trained personnel. The countries reviewed in this paper have different policies when it comes to financial support of the University System. If Germany and France have decided to get involved directly in supporting the system by allocating the necessary funds from the State budget, another European country, the United Kingdom, decided to apply a policy diametrically opposite, similar to that existing in the USA and cover in a lesser degree the needs of universities in Government funds. Regardless of the policy adopted the results are intended to be the same: facilitating access to university education, a high quality of
Analysis and Research on Several Global Subdivision Grids
Directory of Open Access Journals (Sweden)
SONG Shuhua
2016-12-01
Full Text Available In order to solve the problem that lacking of an unified organization frame about global remote sensing satellite image data, this paper introduces serval global subdivision grids as the unified organization frame for remote sensing image. Based on the characteristics of remote sensing image data, this paper analyzes and summarizes the design principles and difficulties of the organization frame. Based on analysis and comparison with these grids, GeoSOT is more suitable as the unified organization frame for remote sensing image. To provide a reference for the global remote sensing image organization.
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).
Systemic sclerosis: a world wide global analysis.
Coral-Alvarado, Paola; Pardo, Aryce L; Castaño-Rodriguez, Natalia; Rojas-Villarraga, Adriana; Anaya, Juan-Manuel
2009-07-01
The objective of this study was to analyze epidemiological tendencies of systemic sclerosis (SSc) around the world in order to identify possible local variations in the presentation and occurrence of the disease. A systematic review of the literature was performed through electronic databases using the keywords "Systemic Sclerosis" and "Clinical Characteristics." Out of a total of 167 articles, 41 were included in the analysis. Significant differences in the mean age at the time of diagnosis, subsets of SSc, clinical characteristics, and presence of antibodies were found between different regions of the word. Because variations in both additive and nonadditive genetic factors and the environmental variance are specific to the investigated population, ethnicity and geography are important characteristics to be considered in the study of SSc and other autoimmune diseases.
Recurrence quantification analysis of global stock markets
Bastos, João A.; Caiado, Jorge
2011-04-01
This study investigates the presence of deterministic dependencies in international stock markets using recurrence plots and recurrence quantification analysis (RQA). The results are based on a large set of free float-adjusted market capitalization stock indices, covering a period of 15 years. The statistical tests suggest that the dynamics of stock prices in emerging markets is characterized by higher values of RQA measures when compared to their developed counterparts. The behavior of stock markets during critical financial events, such as the burst of the technology bubble, the Asian currency crisis, and the recent subprime mortgage crisis, is analyzed by performing RQA in sliding windows. It is shown that during these events stock markets exhibit a distinctive behavior that is characterized by temporary decreases in the fraction of recurrence points contained in diagonal and vertical structures.
DEFF Research Database (Denmark)
Marcussen, Lars
2003-01-01
Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum.......Rummets topologi, Historiens topologi: betragtninger om menneskets orientering til rum - fra hulen over beherskelse af flere akser til det flydende rum....
Nicolau, Monica; Levine, Arnold J; Carlsson, Gunnar
2011-04-26
High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER(+)) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER(+) breast cancers. We denote the group as c-MYB(+) breast cancer.
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
Global approach of emergency response, reflection analysis
International Nuclear Information System (INIS)
Velasco Garcia, E.; Garcia Ahumada, F.; Albaladejo Vidal, S.
1998-01-01
The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)
Aeroelastic Wingbox Stiffener Topology Optimization
Stanford, Bret K.
2017-01-01
This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system
International Nuclear Information System (INIS)
Zhou, Leilei; Chen, Zengqiang; Wang, Zhonglin; Wang, Jiezhi
2016-01-01
Highlights: • A new 4D smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented. • The stability of equilibria is observed near the bifurcation points. • The Hopf bifurcation and pitchfork bifurcation are analyzed by using the center manifold theorem and bifurcation theory. • A horseshoe with two-directional expansions in the 4D hyper-chaotic system has been found, which rigorously proves the existence of hyper-chaos in theory. - Abstract: In this paper, a new four-dimensional (4D) smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented and analyzed. The Lyapunov exponent (LE) spectrum, bifurcation diagram and various phase portraits of the system are provided. The stability, Hopf bifurcation and pitchfork bifurcation of equilibrium point are discussed by using the center manifold theorem and bifurcation theory. Numerical simulation results are consistent with the theoretical analysis. Besides, by combining the topological horseshoe theory with a computer-assisted method of Poincaré maps and utilizing the algorithm for finding horseshoes in 3D hyper-chaotic maps, a horseshoe with two-directional expansions in the 4D hyper-chaotic system is successfully found, which rigorously proves the existence of hyper-chaos in theory.
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H., E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Eslam Panah, B. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran 19839 (Iran, Islamic Republic of)
2017-06-10
Violation of Lorentz invariancy in the high energy quantum gravity motivates one to consider an energy dependent spacetime with massive deformation of standard general relativity. In this paper, we take into account an energy dependent metric in the context of a massive gravity model to obtain exact solutions. We investigate the geometry of black hole solutions and also calculate the conserved and thermodynamic quantities, which are fully reproduced by the analysis performed with the standard techniques. After examining the validity of the first law of thermodynamics, we conduct a study regarding the effects of different parameters on thermal stability of the solutions. In addition, we employ the relation between cosmological constant and thermodynamical pressure to study the possibility of phase transition. Interestingly, we will show that for the specific configuration considered in this paper, van der Waals like behavior is observed for different topology. In other words, for flat and hyperbolic horizons, similar to spherical horizon, a second order phase transition and van der Waals like behavior are observed. Furthermore, we use geometrical method to construct phase space and study phase transition and bound points for these black holes. Finally, we obtain critical values in extended phase space through the use of a new method.
Topological superconductors: a review.
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Carbon emission intensity in electricity production: A global analysis
International Nuclear Information System (INIS)
Ang, B.W.; Su, Bin
2016-01-01
We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.
Global/local methods for probabilistic structural analysis
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Topological Characterization of Fractured Coal
Jing, Yu; Armstrong, Ryan T.; Ramandi, Hamed L.; Mostaghimi, Peyman
2017-12-01
Coal transport properties are highly dependent on the underlying fractured network, known as cleats, which are characterized by geometrical and topological properties. X-ray microcomputed tomography (micro-CT) has been widely applied to obtain 3-D digital representations of the cleat network. However, segmentation of 3-D data is often problematic due to image noise, which will result in inaccurate estimation of coal properties (e.g., porosity and specific surface area). To circumvent this issue, a discrete fracture network (DFN) model is proposed. We develop a characterization framework to determine if the developed DFN models can preserve the topological properties of the coal cleat network found in micro-CT data. We compute the Euler characteristic, fractal dimension, and percolation quantities to analyze the topology locally and globally and compare the results between micro-CT data (before denoising), filtered micro-CT data (after denoising), and the DFN model. We find that micro-CT data with noise have extensive connectivity while filtered micro-CT data and DFN models have similar topology both globally and locally. It is concluded that the topology of the DFN models are closer to that of the realistic cleat network that do not have segmentation-induced pores. In addition, micro-CT imaging always struggles with the trade-off between sample size and resolution, while the presented DFN models are not restricted by imaging resolution and thus can be constructed with extended domain size. Overall, the presented DFN model is a reliable alternative with realistic cleat topology, extended domain size and favorable data format for direct numerical simulations.
Topological Substituent Descriptors
Directory of Open Access Journals (Sweden)
Mircea V. DIUDEA
2002-12-01
Full Text Available Motivation. Substituted 1,3,5-triazines are known as useful herbicidal substances. In view of reducing the cost of biological screening, computational methods are carried out for evaluating the biological activity of organic compounds. Often a class of bioactives differs only in the substituent attached to a basic skeleton. In such cases substituent descriptors will give the same prospecting results as in case of using the whole molecule description, but with significantly reduced computational time. Such descriptors are useful in describing steric effects involved in chemical reactions. Method. Molecular topology is the method used for substituent description and multi linear regression analysis as a statistical tool. Results. Novel topological descriptors, XLDS and Ws, based on the layer matrix of distance sums and walks in molecular graphs, respectively, are proposed for describing the topology of substituents linked on a chemical skeleton. They are tested for modeling the esterification reaction in the class of benzoic acids and herbicidal activity of 2-difluoromethylthio-4,6-bis(monoalkylamino-1,3,5-triazines. Conclusions. Ws substituent descriptor, based on walks in graph, satisfactorily describes the steric effect of alkyl substituents behaving in esterification reaction, with good correlations to the Taft and Charton steric parameters, respectively. Modeling the herbicidal activity of the seo of 1,3,5-triazines exceeded the models reported in literature, so far.
Asadzadeh-Aghdaee, Hamid; Mansouri, Vahid; Peyvandi, Ali Asghar; Moztarzadeh, Fathollah; Okhovatian, Farshad; Lahmi, Farhad; Vafaee, Reza; Zali, Mohammad Reza
2016-01-01
Aim: The corresponding proteins are important for network mapping since the interaction analysis can provide a new interpretation about disease underlying mechanisms as the aim of this study. Backgroud: Nonalcoholic steatohepatitis (NASH) is one of the main causes of liver disease in the world. It has been known with many susceptible proteins that play essential role in its pathogenesis. Methods: In this paper, protein-protein interaction (PPI) network analysis of fatty liver disease retrieved from STRING db by the application of Cytoscape Software. ClueGO analyzed the associated pathways for the selected top proteins. Results: INS, PPARA, LEP, SREBF1, and ALB are the introduced biomarker panel for fatty liver disease. Conclusion: It seems that pathways related to insulin have a prominent role in fatty liver disease. Therefore, investigation in this case is required to confirm the possible linkage of introduced panel and involvement of insulin pathway in the disease. PMID:28224024
Topological Derivatives in Shape Optimization
Novotny, Antonio André
2013-01-01
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...
Simulation analysis of globally integrated logistics and recycling strategies
Energy Technology Data Exchange (ETDEWEB)
Song, S.J.; Hiroshi, K. [Hiroshima Inst. of Tech., Graduate School of Mechanical Systems Engineering, Dept. of In formation and Intelligent Systems Engineering, Hiroshima (Japan)
2004-07-01
This paper focuses on the optimal analysis of world-wide recycling activities associated with managing the logistics and production activities in global manufacturing whose activities stretch across national boundaries. Globally integrated logistics and recycling strategies consist of the home country and two free trading economic blocs, NAFTA and ASEAN, where significant differences are found in production and disassembly cost, tax rates, local content rules and regulations. Moreover an optimal analysis of globally integrated value-chain was developed by applying simulation optimization technique as a decision-making tool. The simulation model was developed and analyzed by using ProModel packages, and the results help to identify some of the appropriate conditions required to make well-performed logistics and recycling plans in world-wide collaborated manufacturing environment. (orig.)
Topological hierarchy matters — topological matters with superlattices of defects
International Nuclear Information System (INIS)
He Jing; Kou Su-Peng
2016-01-01
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)
Topology of modified helical gears and Tooth Contact Analysis (TCA) program
Litvin, Faydor L.; Zhang, Jiao
1989-01-01
The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.
The stability analysis of non-topological solitons in gauge theory and in electrodynamics
International Nuclear Information System (INIS)
Chakrabarti, S.
1982-08-01
The Lyapunov stability analysis of the nontopological soliton solution in the many-charge Qsub(i) Synge Model in non-Abelian SU(2)xU(1) symmetry with the presence of gauge fields is considered. It is shown that in the presence of the subsidiary condition of fixation of charges μsub(i)νsub(i)delta Qsub(i)=0 the necessary condition for stability of the soliton solution (periodic in time with parameters νsub(i)) is defined by the inequality: μsub(i,k) (deltaQsub(i) 0 /deltaνsub(k)) - νsub(i)νsub(k)<0. This condition holds for any Lagrangian density with second-order time derivatives in the presence of gauge fields. This result is extended to the stability analysis of a scalar soliton with electromagnetic field in U(1) symmetry, and it is shown that, in this case, the necessary condition reduces to deltaQsub(i)/deltaν<0. (author)
Reliability analysis of component-level redundant topologies for solid-state fault current limiter
Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam
2018-04-01
Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.
Algebraic topology of spin glasses
International Nuclear Information System (INIS)
Koma, Tohru
2011-01-01
We study the topology of frustration in d-dimensional Ising spin glasses with d ≥ 2 with nearest-neighbor interactions. We prove the following. For any given spin configuration, the domain walls on the unfrustration network are all transverse to a frustrated loop on the unfrustration network, where a domain wall is defined to be a connected element of the collection of all the (d - 1)-cells which are dual to the bonds having an unfavorable energy, and the unfrustration network is the collection of all the unfrustrated plaquettes. These domain walls are topologically nontrivial because they are all related to the global frustration of a loop on the unfrustration network. Taking account of the thermal stability for the domain walls, we can explain the numerical results that three- or higher-dimensional systems exhibit a spin glass phase, whereas two-dimensional ones do not. Namely, in two dimensions, the thermal fluctuations of the topologically nontrivial domain walls destroy the order of the frozen spins on the unfrustration network, whereas they do not in three or higher dimensions. This may be interpreted as a global topological effect of the frustrations.
Finite-time analysis of global projective synchronization on coloured ...
Indian Academy of Sciences (India)
A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...
Global and Local Sensitivity Analysis Methods for a Physical System
Morio, Jerome
2011-01-01
Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…
Methods for global sensitivity analysis in life cycle assessment
Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.
2017-01-01
Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to
Ecological network analysis on global virtual water trade.
Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin
2012-02-07
Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.
Error Analysis of Determining Airplane Location by Global Positioning System
Hajiyev, Chingiz; Burat, Alper
1999-01-01
This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.
Quantum analysis of Jackiw and Teitelboim's model for (1+1)D gravity and topological gauge theory
International Nuclear Information System (INIS)
Terao, Haruhiko
1993-01-01
We study the BRST quantization of the (1+1)-dimensional gravity model proposed by Jackiw and Teitelboim and also the topological gauge model which is equivalent to the gravity model at least classically. The gravity model quantized in the light-cone gauge is found to be a free theory with a nilpotent BRST charge. We show also that there exist twisted N=2 superconformal algebras in the Jackiw-Teitelboim model as well as in the topological gauge model. We discuss the quantum equivalence between the gravity theory and the topological gauge theory. It is shown that these theories are indeed equivalent to each other in the light-cone gauge. (orig.)
Linear least-squares method for global luminescent oil film skin friction field analysis
Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu
2018-06-01
A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.
A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III
International Nuclear Information System (INIS)
Parihar, Prachi; Gott, J. Richard III; Vogeley, Michael S.; Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Speare, Robert; Brownstein, Joel R.; Brinkmann, J.
2014-01-01
We study the three-dimensional genus topology of large-scale structure using the northern region of the CMASS Data Release 10 (DR10) sample of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select galaxies with redshift 0.452 < z < 0.625 and with a stellar mass M stellar > 10 11.56 M ☉ . We study the topology at two smoothing lengths: R G = 21 h –1 Mpc and R G = 34 h –1 Mpc. The genus topology studied at the R G = 21 h –1 Mpc scale results in the highest genus amplitude observed to date. The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random phase initial conditions. The data thus support the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random phase initial conditions. Modest deviations in the observed genus from random phase are as expected from shot noise effects and the nonlinear evolution of structure. We suggest the use of a fitting formula motivated by perturbation theory to characterize the shift and asymmetries in the observed genus curve with a single parameter. We construct 54 mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample and find the observed genus topology to be consistent with ΛCDM as simulated by the HR3 mock samples. We conclude that the topology of the large-scale structure in the SDSS CMASS sample is consistent with cosmological models having primordial Gaussian density fluctuations growing in accordance with general relativity to form galaxies in massive dark matter halos.
Revealing the underlying drivers of disaster risk: a global analysis
Peduzzi, Pascal
2017-04-01
Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL
Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping
2016-05-01
Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.
A general first-order global sensitivity analysis method
International Nuclear Information System (INIS)
Xu Chonggang; Gertner, George Zdzislaw
2008-01-01
Fourier amplitude sensitivity test (FAST) is one of the most popular global sensitivity analysis techniques. The main mechanism of FAST is to assign each parameter with a characteristic frequency through a search function. Then, for a specific parameter, the variance contribution can be singled out of the model output by the characteristic frequency. Although FAST has been widely applied, there are two limitations: (1) the aliasing effect among parameters by using integer characteristic frequencies and (2) the suitability for only models with independent parameters. In this paper, we synthesize the improvement to overcome the aliasing effect limitation [Tarantola S, Gatelli D, Mara TA. Random balance designs for the estimation of first order global sensitivity indices. Reliab Eng Syst Safety 2006; 91(6):717-27] and the improvement to overcome the independence limitation [Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 2007, accepted for publication]. In this way, FAST can be a general first-order global sensitivity analysis method for linear/nonlinear models with as many correlated/uncorrelated parameters as the user specifies. We apply the general FAST to four test cases with correlated parameters. The results show that the sensitivity indices derived by the general FAST are in good agreement with the sensitivity indices derived by the correlation ratio method, which is a non-parametric method for models with correlated parameters
Directory of Open Access Journals (Sweden)
Tulio Rosembuj
2006-12-01
Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.
Tulio Rosembuj
2006-01-01
There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.
Tamura, Itiro
1992-01-01
This book provides historical background and a complete overview of the qualitative theory of foliations and differential dynamical systems. Senior mathematics majors and graduate students with background in multivariate calculus, algebraic and differential topology, differential geometry, and linear algebra will find this book an accessible introduction. Upon finishing the book, readers will be prepared to take up research in this area. Readers will appreciate the book for its highly visual presentation of examples in low dimensions. The author focuses particularly on foliations with compact leaves, covering all the important basic results. Specific topics covered include: dynamical systems on the torus and the three-sphere, local and global stability theorems for foliations, the existence of compact leaves on three-spheres, and foliated cobordisms on three-spheres. Also included is a short introduction to the theory of differentiable manifolds.
Safety-oriented global analysis of reactor dynamics
International Nuclear Information System (INIS)
Belhadj, M.; Aldemir, T.
1992-01-01
It is well known that the asymptotic solutions of the non-linear systems encountered in reactor dynamics can change from stable to periodic or from periodic to chaotic with a very small change in system parameters and/or initial conditions. In that respect, determination of the domains of attraction (DOAs) in the state-space that contains the asymptotic solutions and the identification of the basins of attraction (BOAs) and lead to these DOAs usually requires a global analysis of reactor dynamics (as opposed to a local analysis through perturbation theory). From the standpoint of safety, the DOAs indicate whether the reactor behavior remains within the imposed constraints or not, and the BOAs show which initial conditions lead to safe operation. Due to the lack of a general theory, often the only feasible method for the global analysis of nonlinear systems is the direct integration of governing equations. However, direct integration can be computationally prohibitive, particularly if there is uncertainty on the values of the system parameters to be used in the analysis, and/or asymptotic system behavior is chaotic. In a recent study, a global analysis algorithm was presented to determine the structure of DOAs (and their probability distribution when there is uncertainty on the system parameters) more quickly than by direct integration. This paper shows how the new algorithm can be expanded to determine the BOAs of reactor dynamics equations as well as their DOAs
Global robust exponential stability analysis for interval recurrent neural networks
International Nuclear Information System (INIS)
Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun
2004-01-01
This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition
Geared Topological Metamaterials with Tunable Mechanical Stability
Directory of Open Access Journals (Sweden)
Anne S. Meeussen
2016-11-01
Full Text Available The classification of materials into insulators and conductors has been shaken up by the discovery of topological insulators that conduct robustly at the edge but not in the bulk. In mechanics, designating a material as insulating or conducting amounts to asking if it is rigid or floppy. Although mechanical structures that display topological floppy modes have been proposed, they are all vulnerable to global collapse. Here, we design and build mechanical metamaterials that are stable and yet capable of harboring protected edge and bulk modes, analogous to those in electronic topological insulators and Weyl semimetals. To do so, we exploit gear assemblies that, unlike point masses connected by springs, incorporate both translational and rotational degrees of freedom. Global structural stability is achieved by eliminating geometrical frustration of collective gear rotations extending through the assembly. The topological robustness of the mechanical modes makes them appealing across scales from engineered macrostructures to networks of toothed microrotors of potential use in micromachines.
Book Review: Computational Topology
DEFF Research Database (Denmark)
Raussen, Martin
2011-01-01
Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5......Computational Topology by Herbert Edelsbrunner and John L. Harer. American Matheamtical Society, 2010 - ISBN 978-0-8218-4925-5...
Topological massive sigma models
International Nuclear Information System (INIS)
Lambert, N.D.
1995-01-01
In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2017-12-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Free Boolean Topological Groups
Directory of Open Access Journals (Sweden)
Ol’ga Sipacheva
2015-11-01
Full Text Available Known and new results on free Boolean topological groups are collected. An account of the properties that these groups share with free or free Abelian topological groups and properties specific to free Boolean groups is given. Special emphasis is placed on the application of set-theoretic methods to the study of Boolean topological groups.
Complex Network Analysis for Characterizing Global Value Chains in Equipment Manufacturing
Meng, Bo; Cheng, Lihong
2017-01-01
The rise of global value chains (GVCs) characterized by the so-called “outsourcing”, “fragmentation production”, and “trade in tasks” has been considered one of the most important phenomena for the 21st century trade. GVCs also can play a decisive role in trade policy making. However, due to the increasing complexity and sophistication of international production networks, especially in the equipment manufacturing industry, conventional trade statistics and the corresponding trade indicators may give us a distorted picture of trade. This paper applies various network analysis tools to the new GVC accounting system proposed by Koopman et al. (2014) and Wang et al. (2013) in which gross exports can be decomposed into value-added terms through various routes along GVCs. This helps to divide the equipment manufacturing-related GVCs into some sub-networks with clear visualization. The empirical results of this paper significantly improve our understanding of the topology of equipment manufacturing-related GVCs as well as the interdependency of countries in these GVCs that is generally invisible from the traditional trade statistics. PMID:28081201
Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa.
Wei, Yong; Zhang, Heng; Gao, Zeng-Qiang; Xu, Jian-Hua; Liu, Quan-Sheng; Dong, Yu-Hui
2013-01-01
The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Complex Network Analysis for Characterizing Global Value Chains in Equipment Manufacturing.
Directory of Open Access Journals (Sweden)
Hao Xiao
Full Text Available The rise of global value chains (GVCs characterized by the so-called "outsourcing", "fragmentation production", and "trade in tasks" has been considered one of the most important phenomena for the 21st century trade. GVCs also can play a decisive role in trade policy making. However, due to the increasing complexity and sophistication of international production networks, especially in the equipment manufacturing industry, conventional trade statistics and the corresponding trade indicators may give us a distorted picture of trade. This paper applies various network analysis tools to the new GVC accounting system proposed by Koopman et al. (2014 and Wang et al. (2013 in which gross exports can be decomposed into value-added terms through various routes along GVCs. This helps to divide the equipment manufacturing-related GVCs into some sub-networks with clear visualization. The empirical results of this paper significantly improve our understanding of the topology of equipment manufacturing-related GVCs as well as the interdependency of countries in these GVCs that is generally invisible from the traditional trade statistics.
Complex Network Analysis for Characterizing Global Value Chains in Equipment Manufacturing.
Xiao, Hao; Sun, Tianyang; Meng, Bo; Cheng, Lihong
2017-01-01
The rise of global value chains (GVCs) characterized by the so-called "outsourcing", "fragmentation production", and "trade in tasks" has been considered one of the most important phenomena for the 21st century trade. GVCs also can play a decisive role in trade policy making. However, due to the increasing complexity and sophistication of international production networks, especially in the equipment manufacturing industry, conventional trade statistics and the corresponding trade indicators may give us a distorted picture of trade. This paper applies various network analysis tools to the new GVC accounting system proposed by Koopman et al. (2014) and Wang et al. (2013) in which gross exports can be decomposed into value-added terms through various routes along GVCs. This helps to divide the equipment manufacturing-related GVCs into some sub-networks with clear visualization. The empirical results of this paper significantly improve our understanding of the topology of equipment manufacturing-related GVCs as well as the interdependency of countries in these GVCs that is generally invisible from the traditional trade statistics.
Structural analysis of a ship on global aspect using ANSYS
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
Andru?cã Maria Carmen
2013-01-01
The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...
Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment; MNV
1997-01-01
This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to
Topology of polymer chains under nanoscale confinement.
Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza
2017-08-24
Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross
An Analysis of Yip's Global Strategy Model, Using Coca-Cola ...
African Journals Online (AJOL)
Analysis of the selected business cases suggest a weak fit between the Yip model of a truly Global strategy ... like Coca-Cola in the beverage industry for effective implementation of a global strategy. ... Keywords: Global Strategy, Leadership.
OPTIMAL NETWORK TOPOLOGY DESIGN
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Topological susceptibility from the overlap
International Nuclear Information System (INIS)
Del Debbio, Luigi; Pica, Claudio
2004-01-01
The chiral symmetry at finite lattice spacing of Ginsparg-Wilson fermionic actions constrains the renormalization of the lattice operators; in particular, the topological susceptibility does not require any renormalization, when using a fermionic estimator to define the topological charge. Therefore, the overlap formalism appears as an appealing candidate to study the continuum limit of the topological susceptibility while keeping the systematic errors under theoretical control. We present results for the SU(3) pure gauge theory using the index of the overlap Dirac operator to study the topology of the gauge configurations. The topological charge is obtained from the zero modes of the overlap and using a new algorithm for the spectral flow analysis. A detailed comparison with cooling techniques is presented. Particular care is taken in assessing the systematic errors. Relatively high statistics (500 to 1000 independent configurations) yield an extrapolated continuum limit with errors that are comparable with other methods. Our current value from the overlap is χ 1/4 = 188±12±5MeV (author)
A global sensitivity analysis approach for morphogenesis models
Boas, Sonja E. M.
2015-11-21
Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Optimal Network-Topology Design
Li, Victor O. K.; Yuen, Joseph H.; Hou, Ting-Chao; Lam, Yuen Fung
1987-01-01
Candidate network designs tested for acceptability and cost. Optimal Network Topology Design computer program developed as part of study on topology design and analysis of performance of Space Station Information System (SSIS) network. Uses efficient algorithm to generate candidate network designs consisting of subsets of set of all network components, in increasing order of total costs and checks each design to see whether it forms acceptable network. Technique gives true cost-optimal network and particularly useful when network has many constraints and not too many components. Program written in PASCAL.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro, María
2016-12-26
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Sampling Algorithms of Pure Network Topologies: Stability and Separability of Metric Embeddings
National Research Council Canada - National Science Library
Airoldi, Edoardo M
2005-01-01
... has become a central theme for KDD. The intuition behind the plethora of approaches relies upon a few basic types of networks, which are identified by specific local and global topological properties, and which the authors term "pure" topology types...
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Directory of Open Access Journals (Sweden)
McClafferty Heather
2005-01-01
Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP
Topology-Based Methods in Visualization 2015
Garth, Christoph; Weinkauf, Tino
2017-01-01
This book presents contributions on topics ranging from novel applications of topological analysis for particular problems, through studies of the effectiveness of modern topological methods, algorithmic improvements on existing methods, and parallel computation of topological structures, all the way to mathematical topologies not previously applied to data analysis. Topological methods are broadly recognized as valuable tools for analyzing the ever-increasing flood of data generated by simulation or acquisition. This is particularly the case in scientific visualization, where the data sets have long since surpassed the ability of the human mind to absorb every single byte of data. The biannual TopoInVis workshop has supported researchers in this area for a decade, and continues to serve as a vital forum for the presentation and discussion of novel results in applications in the area, creating a platform to disseminate knowledge about such implementations throughout and beyond the community. The present volum...
Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)
1997-01-01
A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.
Cultural Topology of Creativity
Directory of Open Access Journals (Sweden)
L. M. Andryukhina
2015-02-01
Full Text Available The man in the modern culture faces the challenge of either being creative or forced to leave the stage, which reflects the essential basics of life. The price of lost opportunities, caused by mental stereotypes and encapsulation, is gradually rising. The paper reveals the socio-cultural conditions and the necessary cultural topology of creativity development, as well as the man’s creative potential in the 21st century. The content of the creativity concept is specified along with the phenomenon of its fast expansion in the modern discourse. That results from the global spreading of numerous creative practices in various spheres of life, affecting the progress directions in economics, business, industrial technologies, labor, employment and social stratification. The author emphasizes the social features of creativity, the rising number of, so called, creative class, and outlines the two opposing strategies influencing the topology modification of the social and cultural environment. The first one, applied by the developed countries, facilitates the development of the creative human potential, whereas the other one, inherent in our country, holds that a creative person is able to make progress by himself. However, for solving the urgent problem of innovative development, the creative potential of modern Russia is not sufficient, and following the second strategy will result in unrealized social opportunities and ever lasting social and cultural situation demanding further investment. According to the author, to avoid such a perspective, it is necessary to overcome the three deeply rooted archetypes: the educational disciplinary centrism, organizational absolutism and cultural ostracism.
Cultural Topology of Creativity
Directory of Open Access Journals (Sweden)
L. M. Andryukhina
2012-01-01
Full Text Available The man in the modern culture faces the challenge of either being creative or forced to leave the stage, which reflects the essential basics of life. The price of lost opportunities, caused by mental stereotypes and encapsulation, is gradually rising. The paper reveals the socio-cultural conditions and the necessary cultural topology of creativity development, as well as the man’s creative potential in the 21st century. The content of the creativity concept is specified along with the phenomenon of its fast expansion in the modern discourse. That results from the global spreading of numerous creative practices in various spheres of life, affecting the progress directions in economics, business, industrial technologies, labor, employment and social stratification. The author emphasizes the social features of creativity, the rising number of, so called, creative class, and outlines the two opposing strategies influencing the topology modification of the social and cultural environment. The first one, applied by the developed countries, facilitates the development of the creative human potential, whereas the other one, inherent in our country, holds that a creative person is able to make progress by himself. However, for solving the urgent problem of innovative development, the creative potential of modern Russia is not sufficient, and following the second strategy will result in unrealized social opportunities and ever lasting social and cultural situation demanding further investment. According to the author, to avoid such a perspective, it is necessary to overcome the three deeply rooted archetypes: the educational disciplinary centrism, organizational absolutism and cultural ostracism.
Mixed kernel function support vector regression for global sensitivity analysis
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
Warren, Ashley E; Wyss, Kaspar; Shakarishvili, George; Atun, Rifat; de Savigny, Don
2013-07-26
Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific activities - through conventional 'vertical-programming' approach. Such funding can be channelled to one or more of the health system building blocks while targeting disease(s) or explicitly to system-wide activities. We operationalized the World Health Organization health system framework of the six building blocks to conduct a detailed assessment of Global Fund health system investments. Our application of this framework framework provides a comprehensive quantification of system-level interventions. We applied this systematically to a random subset of 52 of the 139 grants funded in Round 8 of the Global Fund to Fight AIDS, Tuberculosis and Malaria (totalling approximately US$1 billion). According to the analysis, 37% (US$ 362 million) of the Global Fund Round 8 funding was allocated to health systems strengthening. Of that, 38% (US$ 139 million) was for generic system-level interventions, rather than disease-specific system support. Around 82% of health systems strengthening funding (US$ 296 million) was allocated to service delivery, human resources, and medicines & technology, and within each of these to two to three interventions. Governance, financing, and information building blocks received relatively low funding. This study shows that a substantial portion of Global Fund's Round 8 funds was devoted to health systems strengthening. Dramatic skewing among the health system building blocks suggests opportunities for more balanced investments with regard to governance, financing, and
Methodology for global nonlinear analysis of nuclear systems
International Nuclear Information System (INIS)
Cacuci, D.G.; Cacuci, G.L.
1987-01-01
This paper outlines a general method for globally computing the crucial features of nonlinear problems: bifurcations, limit points, saddle points, extrema (maxima and minima); our method also yields the local sensitivities (i.e., first order derivatives) of the system's state variables (e.g., fluxes, power, temperatures, flows) at any point in the system's phase space. We also present an application of this method to the nonlinear BWR model discussed in Refs. 8 and 11. The most significant novel feature of our method is the recasting of a general mathematical problem comprising three aspects: (1) nonlinear constrained optimization, (2) sensitivity analysis, into a fixed point problem of the form F[u(s), λ(s)] = 0 whose global zeros and singular points are related to the special features (i.e., extrema, bifurcations, etc.) of the original problem
Global analysis of a renewable micro hydro power generation plant
Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul
2017-12-01
Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.
Transportation Network Topologies
Alexandrov, Natalia (Editor)
2004-01-01
The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.
Global tractography with embedded anatomical priors for quantitative connectivity analysis
Directory of Open Access Journals (Sweden)
Alia eLemkaddem
2014-11-01
Full Text Available The main assumption of fiber-tracking algorithms is that fiber trajectories are represented by paths of highest diffusion, which is usually accomplished by following the principal diffusion directions estimated in every voxel from the measured diffusion MRI data. The state-of-the-art approaches, known as global tractography, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The tractograms obtained with these algorithms outperform any previous technique but, unfortunately, the price to pay is an increased computational cost which is not suitable in many practical settings, both in terms of time and memory requirements. Furthermore, existing global tractography algorithms suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are used during in the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the white matter. This does not only unnecessarily slow down the estimation procedure and potentially biases any subsequent analysis but also, most importantly, prevents the de facto quantification of brain connectivity. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications by explicitly enforcing anatomical priors of the tracts in the optimization and considering the effective contribution of each of them, i.e. volume, to the acquired diffusion MRI image. We evaluated our approach on both a realistic diffusion MRI phantom and in-vivo data, and also compared its performance to existing tractography aloprithms.
Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment Programme (UNEP), Nairobi, Kenia; MNV
1997-01-01
This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to 2050. The study was carried out in support of the Agenda 21 interim evaluation, five years after 'Rio' and ten years after 'Brundtland'. The scenario analysis is based on only one scenario, Conventional...
Comparison of topologies suitable for Capacitor Charging Systems
Maestri, S; Uicich, G; Benedetti, M; Cravero, JM
2014-01-01
This paper presents a comparison between topologies suitable for capacitor charging systems. The topologies under evaluation are a flyback converter, a half-bridge series resonant converter and a full-bridge phase-shifted converter. The main features of these topologies are highlighted, which allows the proper topology selection according to the application requirements. Moreover, the performed analysis permits to characterize the operational range of the main components thus allowing their appropriate sizing and selection. Simulation results are provided.
Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation
Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten
2015-04-01
Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.
Economic impact analysis for global warming: Sensitivity analysis for cost and benefit estimates
International Nuclear Information System (INIS)
Ierland, E.C. van; Derksen, L.
1994-01-01
Proper policies for the prevention or mitigation of the effects of global warming require profound analysis of the costs and benefits of alternative policy strategies. Given the uncertainty about the scientific aspects of the process of global warming, in this paper a sensitivity analysis for the impact of various estimates of costs and benefits of greenhouse gas reduction strategies is carried out to analyze the potential social and economic impacts of climate change
Synchronization in complex networks with switching topology
International Nuclear Information System (INIS)
Wang, Lei; Wang, Qing-guo
2011-01-01
This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.
Machine Learning Topological Invariants with Neural Networks
Zhang, Pengfei; Shen, Huitao; Zhai, Hui
2018-02-01
In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.
Topology of classical vacuum space-time
International Nuclear Information System (INIS)
Cho, Y.M.
2007-04-01
We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)
Drivers of wetland conversion: a global meta-analysis.
van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H
2013-01-01
Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic
The identification of model effective dimensions using global sensitivity analysis
International Nuclear Information System (INIS)
Kucherenko, Sergei; Feil, Balazs; Shah, Nilay; Mauntz, Wolfgang
2011-01-01
It is shown that the effective dimensions can be estimated at reasonable computational costs using variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be found by using the Sobol' sensitivity indices for subsets of variables. The effective dimension in the superposition sense can be estimated by using the first order effects and the total Sobol' sensitivity indices. The classification of some important classes of integrable functions based on their effective dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of numerical tests verify the prediction of the developed techniques.
The identification of model effective dimensions using global sensitivity analysis
Energy Technology Data Exchange (ETDEWEB)
Kucherenko, Sergei, E-mail: s.kucherenko@ic.ac.u [CPSE, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Feil, Balazs [Department of Process Engineering, University of Pannonia, Veszprem (Hungary); Shah, Nilay [CPSE, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Mauntz, Wolfgang [Lehrstuhl fuer Anlagensteuerungstechnik, Fachbereich Chemietechnik, Universitaet Dortmund (Germany)
2011-04-15
It is shown that the effective dimensions can be estimated at reasonable computational costs using variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be found by using the Sobol' sensitivity indices for subsets of variables. The effective dimension in the superposition sense can be estimated by using the first order effects and the total Sobol' sensitivity indices. The classification of some important classes of integrable functions based on their effective dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of numerical tests verify the prediction of the developed techniques.
Topology optimization of fluid mechanics problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan
While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...
An Analysis of Historical Global Warming and Social Engagement
Train, Joseph; Roizenman, David; Damiani, Seth; Rochwerg, Ronny
2018-01-01
The goal of this paper is to determine whether there is a correlation between awareness of global warming, and where global warming occurs. This theory is carried out by analyzing maps containing various forms of data that have to do with global warming, such as precipitation and surface temperature, and comparing it with a map of engagement from tweets which mention global warming. This paper found that there is no solid correlation between mentioning global warming in tweets and global warm...
A meta-analysis of global urban land expansion.
Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K
2011-01-01
The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.
International Nuclear Information System (INIS)
Eberhart, M.
1996-01-01
A systematic study of the charge density topologies corresponding to a number of transition metal aluminides with the B2 structure indicates that unstable crystal structures are sometimes associated with uncharacteristic topologies. This observation invites the speculation that the distance to a topological instability might relate to a metals phase behavior. Following this speculation, a metric is imposed on the topological theory of Bader, producing a geometrical theory, where it is now possible to assign a distance from a calculated charge density topology to a topological instability. For the cubic transition metals, these distances are shown to correlate with single crystal elastic constants, where the metals that are furthest from an instability are observed to be the stiffest. (author). 16 refs., 1 tab., 9 figs
Topological mirror superconductivity.
Zhang, Fan; Kane, C L; Mele, E J
2013-08-02
We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.
Interactive Topology Optimization
DEFF Research Database (Denmark)
Nobel-Jørgensen, Morten
Interactivity is the continuous interaction between the user and the application to solve a task. Topology optimization is the optimization of structures in order to improve stiffness or other objectives. The goal of the thesis is to explore how topology optimization can be used in applications...... on theory of from human-computer interaction which is described in Chapter 2. Followed by a description of the foundations of topology optimization in Chapter 3. Our applications for topology optimization in 2D and 3D are described in Chapter 4 and a game which trains the human intuition of topology...... optimization is presented in Chapter 5. Topology optimization can also be used as an interactive modeling tool with local control which is presented in Chapter 6. Finally, Chapter 7 contains a summary of the findings and concludes the dissertation. Most of the presented applications of the thesis are available...
Clay, Adam
2016-01-01
This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.
A Global Sensitivity Analysis Methodology for Multi-physics Applications
Energy Technology Data Exchange (ETDEWEB)
Tong, C H; Graziani, F R
2007-02-02
Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.
Topological Foundations of Electromagnetism
Barrett, Terrence W
2008-01-01
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field
Siino, Masaru
1997-01-01
The topologies of event horizons are investigated. Considering the existence of the endpoint of the event horizon, it cannot be differentiable. Then there are the new possibilities of the topology of the event horizon though they are excluded in smooth event horizons. The relation between the topology of the event horizon and the endpoint of it is revealed. A torus event horizon is caused by two-dimensional endpoints. One-dimensional endpoints provide the coalescence of spherical event horizo...
Gulamsarwar, Syazwani; Salleh, Zabidin
2017-08-01
The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.
Decorrelating topology with HMC
International Nuclear Information System (INIS)
Lippert, Th.; Alles, B.; Bali, G.; D'Elia, M.; Di Giacomo, A.; Eicker, N.; Guesken, S.; Schilling, K.; Spitz, A.; Struckmann, T.; Ueberholz, P.; Viehoff, J.
1999-01-01
The investigation of the decorrelation efficiency of the HMC algorithm with respect to vacuum topology is a prerequisite for trustworthy full QCD simulations, in particular for the computation of topology sensitive quantities. We demonstrate that for ((m π )/(m ρ ))-ratios ≥ 0.69 sufficient tunneling between the topological sectors can be achieved, for two flavours of dynamical Wilson fermions close to the scaling region (β 5.6). Our results are based on time series of length 5000 trajectories
F. Gerard Adams
2008-01-01
The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is â€œflatâ€ . While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between â€œoldâ€ countries and â€œnewâ€ . As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...
Directory of Open Access Journals (Sweden)
Ali Bajravani
2018-04-01
Full Text Available By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness, quotient and compactness notions, where we prove the Thychonoff's theorem and connectedness property for ultra product of $L$-compact and $L$-connected topological spaces, respectively.
Singh, Tej Bahadur
2013-01-01
Topological SpacesMetric Spaces Topologies Derived Concepts Bases Subspaces Continuity and ProductsContinuityProduct TopologyConnectednessConnected Spaces Components Path-Connected Spaces Local ConnectivityConvergence Sequences Nets Filters Hausdorff SpacesCountability Axioms 1st and 2nd Countable Spaces Separable and Lindelöf SpacesCompactnessCompact Spaces Countably Compact Spaces Compact Metric Spaces Locally Compact Spaces Proper Maps Topological Constructions Quotient Spaces Identification Maps Cones, Suspensions and Joins Wedge Sums and Smash Products Adjunction Spaces Coherent Topologie
Topological Gyroscopic Metamaterials
Nash, Lisa Michelle
Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.
ACE2 Global Digital Elevation Model : User Analysis
Smith, R. G.; Berry, P. A. M.; Benveniste, J.
2013-12-01
Altimeter Corrected Elevations 2 (ACE2), first released in October 2009, is the Global Digital Elevation Model (GDEM) created by fusing the high accuracy of over 100 million altimeter retracked height estimates, derived primarily from the ERS-1 Geodetic Mission, with the high frequency content available within the near-global Shuttle Radar Topography Mission. This novel ACE2 GDEM is freely available at 3”, 9”, 30” and 5' and has been distributed via the web to over 680 subscribers. This paper presents the results of a detailed analysis of geographical distribution of subscribed users, along with fields of study and potential uses. Investigations have also been performed to determine the most popular spatial resolutions and the impact these have on the scope of data downloaded. The analysis has shown that, even though the majority of users have come from Europe and America, a significant number of website hits have been received from South America, Africa and Asia. Registered users also vary widely, from research institutions and major companies down to individual hobbyists looking at data for single projects.
Global patterns of materials use. A socioeconomic and geophysical analysis
Energy Technology Data Exchange (ETDEWEB)
Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)
2010-03-15
Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)
Global sensitivity analysis of multiscale properties of porous materials
Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.
2018-02-01
Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.
General Topology of the Universe
Pandya, Aalok
2002-01-01
General topology of the universe is descibed. It is concluded that topology of the present universe is greater or stronger than the topology of the universe in the past and topology of the future universe will be stronger or greater than the present topology of the universe. Consequently, the universe remains unbounded.
Directory of Open Access Journals (Sweden)
Ning Li
2016-11-01
Full Text Available Because wireless sensor networks (WSNs have been widely used in recent years, how to reduce their energy consumption and interference has become a major issue. Topology control is a common and effective approach to improve network performance, such as reducing the energy consumption and network interference, improving the network connectivity, etc. Many topology control algorithms reduce network interference by dynamically adjusting the node transmission range. However, reducing the network interference by adjusting the transmission range is probabilistic. Therefore, in this paper, we analyze the probability of interference-optimality for the WSNs and prove that the probability of interference-optimality increases with the increasing of the original transmission range. Under a specific transmission range, the probability reaches the maximum value when the transmission range is 0.85r in homogeneous networks and 0.84r in heterogeneous networks. In addition, we also prove that when the network is energy-efficient, the network is also interference-optimal with probability 1 both in the homogeneous and heterogeneous networks.
Risk-analysis of global climate tipping points
Energy Technology Data Exchange (ETDEWEB)
Frieler, Katja; Meinshausen, Malte; Braun, N [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group; and others
2012-09-15
vulnerable to climate change impacts. Here we focus on tipping elements within the physical / biological system. In the following two sections, we briefly highlight some of our methodological research regarding global mean precipitation and regional climate change. These methodological developments provided the underpinning for our subsequent analysis of individual large-scale climate impacts, as e.g. mass losses of the Greenland ice sheet, the release of greenhouse gases by the thawing of permafrost regions or the threat of coral reefs by high ocean temperatures.
QCD as a topologically ordered system
International Nuclear Information System (INIS)
Zhitnitsky, Ariel R.
2013-01-01
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied
Global exponential stability analysis on impulsive BAM neural networks with distributed delays
Li, Yao-Tang; Yang, Chang-Bo
2006-12-01
Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.
Global sensitivity analysis of computer models with functional inputs
International Nuclear Information System (INIS)
Iooss, Bertrand; Ribatet, Mathieu
2009-01-01
Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.
Topology optimization approaches
DEFF Research Database (Denmark)
Sigmund, Ole; Maute, Kurt
2013-01-01
Topology optimization has undergone a tremendous development since its introduction in the seminal paper by Bendsøe and Kikuchi in 1988. By now, the concept is developing in many different directions, including “density”, “level set”, “topological derivative”, “phase field”, “evolutionary...
Mendelson, Bert
1990-01-01
Highly regarded for its exceptional clarity, imaginative and instructive exercises, and fine writing style, this concise book offers an ideal introduction to the fundamentals of topology. It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.
Modeling Internet Topology Dynamics
Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.
Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,
Directory of Open Access Journals (Sweden)
Coghetto Roland
2015-12-01
If to each element x of a set X there corresponds a set B(x of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x is the set of neighborhoods of x in this topology.
Reconfigurable topological photonic crystal
Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.
2018-02-01
Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.
Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang
2017-08-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017
Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement
Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos
2001-01-01
For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...
Global Analysis of RNA Secondary Structure in Two Metazoans
Directory of Open Access Journals (Sweden)
Fan Li
2012-01-01
Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.
Topological Acoustic Delay Line
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan
2018-03-01
Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.
Topology without cooling: instantons and monopoles near to deconfinement
International Nuclear Information System (INIS)
Feurstein, M.; Markum, H.; Thurner, S.
1998-01-01
In an attempt to describe the change of topological structure of pure SU(2) gauge theory near deconfinement a renormalization group inspired method is tested. Instead of cooling, blocking and subsequent inverse blocking is applied to Monte Carlo configurations to capture topological features at a well-defined scale. We check that this procedure largely conserves long range physics like string tension. UV fluctuations and lattice artefacts are removed which otherwise spoil topological charge density and Abelian monopole currents. We report the behaviour of topological susceptibility and monopole current densities across the deconfinement transition and relate the two faces of topology to each other. First results of a cluster analysis are described. (orig.)
Introduction to set theory and topology
Kuratowski, Kazimierz; Stark, M
1972-01-01
Introduction to Set Theory and Topology describes the fundamental concepts of set theory and topology as well as its applicability to analysis, geometry, and other branches of mathematics, including algebra and probability theory. Concepts such as inverse limit, lattice, ideal, filter, commutative diagram, quotient-spaces, completely regular spaces, quasicomponents, and cartesian products of topological spaces are considered. This volume consists of 21 chapters organized into two sections and begins with an introduction to set theory, with emphasis on the propositional calculus and its applica
A global analysis of NMR distance constraints from the PDB
International Nuclear Information System (INIS)
Vranken, Wim
2007-01-01
Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to 'clean up' and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community
Daniell, James; Simpson, Alanna; Gunasekara, Rashmin; Baca, Abigail; Schaefer, Andreas; Ishizawa, Oscar; Murnane, Rick; Tijssen, Annegien; Deparday, Vivien; Forni, Marc; Himmelfarb, Anne; Leder, Jan
2015-04-01
Over the past few decades, a plethora of open access software packages for the calculation of earthquake, volcanic, tsunami, storm surge, wind and flood have been produced globally. As part of the World Bank GFDRR Review released at the Understanding Risk 2014 Conference, over 80 such open access risk assessment software packages were examined. Commercial software was not considered in the evaluation. A preliminary analysis was used to determine whether the 80 models were currently supported and if they were open access. This process was used to select a subset of 31 models that include 8 earthquake models, 4 cyclone models, 11 flood models, and 8 storm surge/tsunami models for more detailed analysis. By using multi-criteria analysis (MCDA) and simple descriptions of the software uses, the review allows users to select a few relevant software packages for their own testing and development. The detailed analysis evaluated the models on the basis of over 100 criteria and provides a synopsis of available open access natural hazard risk modelling tools. In addition, volcano software packages have since been added making the compendium of risk software tools in excess of 100. There has been a huge increase in the quality and availability of open access/source software over the past few years. For example, private entities such as Deltares now have an open source policy regarding some flood models (NGHS). In addition, leaders in developing risk models in the public sector, such as Geoscience Australia (EQRM, TCRM, TsuDAT, AnuGA) or CAPRA (ERN-Flood, Hurricane, CRISIS2007 etc.), are launching and/or helping many other initiatives. As we achieve greater interoperability between modelling tools, we will also achieve a future wherein different open source and open access modelling tools will be increasingly connected and adapted towards unified multi-risk model platforms and highly customised solutions. It was seen that many software tools could be improved by enabling user
Topology optimization based on spline-based meshfree method using topological derivatives
International Nuclear Information System (INIS)
Hur, Junyoung; Youn, Sung-Kie; Kang, Pilseong
2017-01-01
Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.
Topology optimization based on spline-based meshfree method using topological derivatives
Energy Technology Data Exchange (ETDEWEB)
Hur, Junyoung; Youn, Sung-Kie [KAIST, Daejeon (Korea, Republic of); Kang, Pilseong [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)
2017-05-15
Spline-based meshfree method (SBMFM) is originated from the Isogeometric analysis (IGA) which integrates design and analysis through Non-uniform rational B-spline (NURBS) basis functions. SBMFM utilizes trimming technique of CAD system by representing the domain using NURBS curves. In this work, an explicit boundary topology optimization using SBMFM is presented with an effective boundary update scheme. There have been similar works in this subject. However unlike the previous works where semi-analytic method for calculating design sensitivities is employed, the design update is done by using topological derivatives. In this research, the topological derivative is used to derive the sensitivity of boundary curves and for the creation of new holes. Based on the values of topological derivatives, the shape of boundary curves is updated. Also, the topological change is achieved by insertion and removal of the inner holes. The presented approach is validated through several compliance minimization problems.
Machine learning topological states
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-11-01
Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
Global sensitivity analysis using low-rank tensor approximations
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. - Highlights: • A new method is proposed for global sensitivity analysis of high-dimensional models. • Low-rank tensor approximations (LRA) are used as a meta-modeling technique. • Analytical formulas for the Sobol' indices in terms of LRA coefficients are derived. • The accuracy and efficiency of the approach is illustrated in application examples. • LRA-based indices are compared to indices based on polynomial chaos expansions.
Analysis of Global Urban Temperature Trends and Urbanization Impacts
Lee, K. I.; Ryu, J.; Jeon, S. W.
2018-04-01
Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.
Emerging Trends in Topological Insulators and Topological ...
Indian Academy of Sciences (India)
tems can lead to a state that supports zero energy Majorana fermions .... orbital motion is a relativistic effect most pronounced in heavy ... 1D helical edge states appear within the gap with a linear disper- ... free fermion in 1D. .... less, and electrically neutral. ... to be used as a building block for the next generation topological.
Satellite Imagery Analysis for Automated Global Food Security Forecasting
Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.
2017-12-01
The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.
Importance measures in global sensitivity analysis of nonlinear models
International Nuclear Information System (INIS)
Homma, Toshimitsu; Saltelli, Andrea
1996-01-01
The present paper deals with a new method of global sensitivity analysis of nonlinear models. This is based on a measure of importance to calculate the fractional contribution of the input parameters to the variance of the model prediction. Measures of importance in sensitivity analysis have been suggested by several authors, whose work is reviewed in this article. More emphasis is given to the developments of sensitivity indices by the Russian mathematician I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the most general, his formalism is employed throughout this paper where conceptual and computational improvements of the method are presented. The computational novelty of this study is the introduction of the 'total effect' parameter index. This index provides a measure of the total effect of a given parameter, including all the possible synergetic terms between that parameter and all the others. Rank transformation of the data is also introduced in order to increase the reproducibility of the method. These methods are tested on a few analytical and computer models. The main conclusion of this work is the identification of a sensitivity analysis methodology which is both flexible, accurate and informative, and which can be achieved at reasonable computational cost
Accuracy analysis of the 2014–2015 Global Shuttle Radar ...
Indian Academy of Sciences (India)
1KIIT University, Bhubaneswar 751 024, India. 2Continental ... Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth. Sciences ..... tional GNSS Service in a changing landscape of Global. Navigation ...
The global burden of dengue: an analysis from the Global Burden of Disease Study 2013
J.D. Stanaway (Jeffrey D.); D.S. Shepard (Donald); E.A. Undurraga (Eduardo); Halasa, Y.A. (Yara A); L.E. Coffeng (Luc); Brady, O.J. (Oliver J); Hay, S.I. (Simon I); Bedi, N. (Neeraj); I.M. Bensenor (Isabela M.); C.A. Castañeda-Orjuela (Carlos A); T.-W. Chuang (Ting-Wu); K.B. Gibney (Katherine B); Z.A. Memish (Ziad); A. Rafay (Anwar); K.N. Ukwaja (Kingsley N); N. Yonemoto (Naohiro); C.J.L. Murray (Christopher)
2016-01-01
textabstractBackground Dengue is the most common arbovirus infection globally, but its burden is poorly quantified. We estimated dengue mortality, incidence, and burden for the Global Burden of Disease Study 2013. Methods We modelled mortality from vital registration, verbal autopsy, and
Globalization and Shanghai Model: A Retrospective and Prospective Analysis
Directory of Open Access Journals (Sweden)
Linsun Cheng
2012-11-01
Full Text Available Intended to shed light on the debate on the results of globalization and providebetter understanding of the influences of globalization upon China as well as theworld, this article traces the history of Shanghai’s economic globalization over thepast 170 years since 1843 and demonstrates the benefits and problems Shanghaireceived from (or connected to its economic globalization. Divided into threesections (Globalization, de-globalization and re-globalization of Shanghai’s economy;Manufacturing-Oriented vs. Tertiary-oriented—Shanghai’s Double PriorityStrategy of Economic Growth; Free market, state enterprises, and Shanghai’s mixedeconomy the article summarizes and analyzes several characteristics that madeShanghai a unique model in the history of globalization: In adapting and adoptinginevitable economic globalization, Shanghai created its unique model of economicdevelopment—widely embracing economic globalization; placing Shanghai’seconomy on a solid foundation of both strong modern manufacturing and strongtertiary industry (consisting of finance and insurance, real estate, transportations,post and telecommunication, wholesale and retailing; and creating a mixedeconomic structure with hybrid of private and state owned enterprises. TheShanghai model proves that globalization has been an unavoidable trend as scienceand technology have made the world “smaller” and “smaller.” Actively engaging intoeconomic globalization is the only way for Shanghai, as well as many developingcountries, to accelerate its economic growth.
Woolley-Meza, O.; Thiemann, C.; Grady, D.; Lee, J. J.; Seebens, H.; Blasius, B.; Brockmann, D.
2011-12-01
We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.
GLobal Ocean Data Analysis Project (GLODAP) version 1.1 (NODC Accession 0001644)
National Oceanic and Atmospheric Administration, Department of Commerce — The GLobal Ocean Data Analysis Project (GLODAP) is a cooperative effort to coordinate global synthesis projects funded through NOAA/DOE and NSF as part of the Joint...
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
How to model wireless mesh networks topology
International Nuclear Information System (INIS)
Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M
2013-01-01
The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches
International Nuclear Information System (INIS)
Grigorenko, E.E.; Zelenyi, L.M.; Fedorov, A.O.; Sauvaud, J.-A.
2005-01-01
The paper is devoted to a statistical study of high-speed ion beams (beamlets) observed by the Interball-1 and Interball-2 satellites in the boundary region of the plasma sheet of the geomagnetic tail and in the high-latitude auroral regions of the Earth's magnetosphere. Beamlets result from nonlinear acceleration processes occurring in the current sheet in the distant regions of the geomagnetic tail. They propagate toward the Earth along the magnetic field lines and are detected in the boundary region of the plasma sheet and near the high-latitude boundary of the plasma sheet in the auroral region in the form of short (with a duration of 1-2 min) bursts of high-energy (with energies of about several tens of keV) ions. The sizes of the latitudinal zones where the beamlets are localized in the tail and in the auroral region are determined using the epoch superposition method. The relationship between the frequency of beamlet generation in the boundary region of the plasma sheet and the prehistory of the direction of the interplanetary magnetic field (the magnitude of a clock angle) is investigated. It was established that this direction exerts a global effect on the beamlet generation frequency; moreover, it was found that the beamlet generation frequency in the midnight local time sector of the tail and at the flanks depends differently on the direction of the interplanetary magnetic field. In the midnight sector, the beamlets are observed at almost all directions of the interplanetary field, whereas the frequency of their generation at the flanks is maximal only when the interplanetary magnetic field has a large y component
Global/local methods research using a common structural analysis framework
Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.
1991-01-01
Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.
Efficient Reanalysis Procedures in Structural Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded
This thesis examines efficient solution procedures for the structural analysis problem within topology optimization. The research is motivated by the observation that when the nested approach to structural optimization is applied, most of the computational effort is invested in repeated solutions...... on approximate reanalysis. For cases where memory limitations require the utilization of iterative equation solvers, we suggest efficient procedures based on alternative termination criteria for such solvers. These approaches are tested on two- and three-dimensional topology optimization problems including...
Directory of Open Access Journals (Sweden)
Hakan Ozbasaran
2017-01-01
Full Text Available Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.
A global sensitivity analysis of crop virtual water content
Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.
2015-12-01
The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for
Cross-covariance based global dynamic sensitivity analysis
Shi, Yan; Lu, Zhenzhou; Li, Zhao; Wu, Mengmeng
2018-02-01
For identifying the cross-covariance source of dynamic output at each time instant for structural system involving both input random variables and stochastic processes, a global dynamic sensitivity (GDS) technique is proposed. The GDS considers the effect of time history inputs on the dynamic output. In the GDS, the cross-covariance decomposition is firstly developed to measure the contribution of the inputs to the output at different time instant, and an integration of the cross-covariance change over the specific time interval is employed to measure the whole contribution of the input to the cross-covariance of output. Then, the GDS main effect indices and the GDS total effect indices can be easily defined after the integration, and they are effective in identifying the important inputs and the non-influential inputs on the cross-covariance of output at each time instant, respectively. The established GDS analysis model has the same form with the classical ANOVA when it degenerates to the static case. After degeneration, the first order partial effect can reflect the individual effects of inputs to the output variance, and the second order partial effect can reflect the interaction effects to the output variance, which illustrates the consistency of the proposed GDS indices and the classical variance-based sensitivity indices. The MCS procedure and the Kriging surrogate method are developed to solve the proposed GDS indices. Several examples are introduced to illustrate the significance of the proposed GDS analysis technique and the effectiveness of the proposed solution.
Global analysis of small molecule binding to related protein targets.
Directory of Open Access Journals (Sweden)
Felix A Kruger
2012-01-01
Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.
Global sensitivity analysis for models with spatially dependent outputs
International Nuclear Information System (INIS)
Iooss, B.; Marrel, A.; Jullien, M.; Laurent, B.
2011-01-01
The global sensitivity analysis of a complex numerical model often calls for the estimation of variance-based importance measures, named Sobol' indices. Meta-model-based techniques have been developed in order to replace the CPU time-expensive computer code with an inexpensive mathematical function, which predicts the computer code output. The common meta-model-based sensitivity analysis methods are well suited for computer codes with scalar outputs. However, in the environmental domain, as in many areas of application, the numerical model outputs are often spatial maps, which may also vary with time. In this paper, we introduce an innovative method to obtain a spatial map of Sobol' indices with a minimal number of numerical model computations. It is based upon the functional decomposition of the spatial output onto a wavelet basis and the meta-modeling of the wavelet coefficients by the Gaussian process. An analytical example is presented to clarify the various steps of our methodology. This technique is then applied to a real hydrogeological case: for each model input variable, a spatial map of Sobol' indices is thus obtained. (authors)
Signatures of topological superconductivity
Energy Technology Data Exchange (ETDEWEB)
Peng, Yang
2017-07-19
The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Topologically massive supergravity
Directory of Open Access Journals (Sweden)
S. Deser
1983-01-01
Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.
Sacramento, P. D.; Vieira, V. R.
2018-04-01
Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Topological pregauge-pregeometry
International Nuclear Information System (INIS)
Akama, Keiichi; Oda, Ichiro.
1990-12-01
The pregauge-pregeometric action, i.e. the fundamental matter action whose quantum fluctuations give rise to the Einstein-Hilbert and the Yang-Mills actions is investigated from the viewpoint of the topological field theory. We show that the scalar pregauge-pregeometric action is a topological invariant for appropriate choices of the internal gauge group. This model realizes the picture that the gravitational and internal gauge theory at the low energy scale is induced as the quantum effects of the topological field theory at the Planck scale. (author)
Elementary topology problem textbook
Viro, O Ya; Netsvetaev, N Yu; Kharlamov, V M
2008-01-01
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. The book is tailored for the reader who is determined to work actively. The proofs of theorems are separated from their formulations and are gathered at the end of each chapter. This makes the book look like a pure problem book and encourages the reader to think through each formulation. A reader who prefers a more traditional style can either find the pr
A Similarity Search Using Molecular Topological Graphs
Directory of Open Access Journals (Sweden)
Yoshifumi Fukunishi
2009-01-01
Full Text Available A molecular similarity measure has been developed using molecular topological graphs and atomic partial charges. Two kinds of topological graphs were used. One is the ordinary adjacency matrix and the other is a matrix which represents the minimum path length between two atoms of the molecule. The ordinary adjacency matrix is suitable to compare the local structures of molecules such as functional groups, and the other matrix is suitable to compare the global structures of molecules. The combination of these two matrices gave a similarity measure. This method was applied to in silico drug screening, and the results showed that it was effective as a similarity measure.
Global processing takes time: A meta-analysis on local-global visual processing in ASD
Van der Hallen, Ruth; Evers, Kris; Brewaeys, K.; Van Den Noortgate, Wim; Wagemans, Johan
2015-01-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a for...
Topology optimized microbioreactors
DEFF Research Database (Denmark)
Schäpper, Daniel; Lencastre Fernandes, Rita; Eliasson Lantz, Anna
2011-01-01
This article presents the fusion of two hitherto unrelated fields—microbioreactors and topology optimization. The basis for this study is a rectangular microbioreactor with homogeneously distributed immobilized brewers yeast cells (Saccharomyces cerevisiae) that produce a recombinant protein...
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
Topological Susceptibility from Slabs
Bietenholz, Wolfgang; Gerber, Urs
2015-01-01
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.
Topological susceptibility from slabs
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)
2015-12-14
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.
Contact and symplectic topology
Colin, Vincent; Stipsicz, András
2014-01-01
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.
Directory of Open Access Journals (Sweden)
Roshny Unnikrishnan
2015-04-01
Full Text Available This study is a result of the author’s inquisition to unearth the current values of Global Financial Inclusion and its relationship with economic growth measured by Gross Domestic product(GDP and human development measured by United Nations Human Development Index (HDI. The Financial Inclusion (FI levels are measured using Index for Financial Inclusion .The relationship between GDP and HDI with FI as mediator, using multiple regression, is validated on a global level based on data of 162 countries for the year 2011. An overall global mediation analysis is undertaken to establish Financial Inclusion as a mediating factor and partial mediation on human development is validated. The study is valid and unique in the global context of income inequality prevailing in developed, developing and underdeveloped countries as it validates the argument that an impressive GDP performance does not ensure equity in economic growth.
International Nuclear Information System (INIS)
Chen, Hua-Jun; Shi, Hai-Bin; Jiang, Long-Feng; Li, Lan; Chen, Rong
2018-01-01
To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chen, Hua-Jun [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Shi, Hai-Bin [The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Jiang, Long-Feng [The First Affiliated Hospital of Nanjing Medical University, Department of Infectious Diseases, Nanjing (China); Li, Lan [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Rong [University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD (United States); Beijing Institute of Technology, Advanced Innovation Center for Intelligent Robots and Systems, Beijing (China)
2018-01-15
To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)
Directory of Open Access Journals (Sweden)
Mingrui eXia
2016-04-01
Full Text Available White matter (WM tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption and topological contributions to the brain’s network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain’s hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.
Membrane topology of hedgehog acyltransferase.
Matevossian, Armine; Resh, Marilyn D
2015-01-23
Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Topology optimisation of natural convection problems
DEFF Research Database (Denmark)
Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe
2014-01-01
This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...
The topological filtration of gamma-structures
DEFF Research Database (Denmark)
Li, Thomas; Reidys, Christian
2013-01-01
In this paper we study gamma-structures filtered by topological genus. gamma-structures are a class of RNA pseudoknot structures that plays a key role in the context of polynomial time folding of RNA pseudoknot structures. A gamma-structure is composed by specific building blocks, that have...... topological genus less than or equal to gamma, where composition means concatenation and nesting of such blocks. Our main results are the derivation of a new bivariate generating function for gamma-structures via symbolic methods, the singularity analysis of the solutions and a central limit theorem...... for the distribution of topological genus in gamma-structures of given length. In our derivation specific bivariate polynomials play a central role. Their coefficients count particular motifs of fixed topological genus and they are of relevance in the context of genus recursion and novel folding algorithms....
Generalized Benders’ Decomposition for topology optimization problems
DEFF Research Database (Denmark)
Munoz Queupumil, Eduardo Javier; Stolpe, Mathias
2011-01-01
) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...
Fall Foliage Topology Seminars
1990-01-01
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis
Singh, R.; Percivall, G.
2009-12-01
Infrastructure and the broader GEOSS architecture. Of specific interest to this session is the work on geospatial workflows and geo-processing and data discovery and access. CCIP demonstrates standards-based interoperability between geospatial applications in the service of Climate Change analysis. CCIP is planned to be a yearly exercise. It consists of a network of online data services (WCS, WFS, SOS), analysis services (WPS, WCPS, WMS), and clients that exercise those services. In 2009, CCIP focuses on Australia, and the initial application of existing OGC services to climate studies. The results of the 2009 CCIP will serve as requirements for more complex geo-processing services to be developed for CCIP 2010. The benefits of CCIP include accelerating the implementation of the GCOS, and building confidence that implementations using multi-vendor interoperable technologies can help resolve vexing climate change questions. AIP-2: Architecture Implementation Pilot, Phase 2 CCIP: Climate Challenge Integration Plugfest GEO: Group on Earth Observations GEOSS: Global Earth Observing System of Systems GCOS: Global Climate Observing System OGC: Open Geospatial Consortium SOS: Sensor Observation Service WCS: Web Coverage Service WCPS: Web Coverage Processing Service WFS: Web Feature Service WMS: Web Mapping Service
Topology of Fermi surfaces and anomaly inflows
Energy Technology Data Exchange (ETDEWEB)
Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)
2016-11-14
We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.
Chimera states: Effects of different coupling topologies
Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž
2017-04-01
Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.
Topological Signals of Singularities in Ricci Flow
Directory of Open Access Journals (Sweden)
Paul M. Alsing
2017-08-01
Full Text Available We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point from local singularity formation (neckpinch. Finally, we discuss the interpretation and implication of these results and future applications.
Topological isomorphisms of human brain and financial market networks
Directory of Open Access Journals (Sweden)
Petra E Vértes
2011-09-01
Full Text Available Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the timeseries of 90 stocks from the New York Stock Exchange over a three-year period, and the fMRI-derived timeseries acquired from 90 brain regions over the course of a 10 min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimised for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph theoretically-mediated interface between systems neuroscience and the statistical physics of financial markets.
Topological isomorphisms of human brain and financial market networks.
Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T
2011-01-01
Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.
Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion
International Nuclear Information System (INIS)
Garcia-Cabrejo, Oscar; Valocchi, Albert
2014-01-01
Many mathematical and computational models used in engineering produce multivariate output that shows some degree of correlation. However, conventional approaches to Global Sensitivity Analysis (GSA) assume that the output variable is scalar. These approaches are applied on each output variable leading to a large number of sensitivity indices that shows a high degree of redundancy making the interpretation of the results difficult. Two approaches have been proposed for GSA in the case of multivariate output: output decomposition approach [9] and covariance decomposition approach [14] but they are computationally intensive for most practical problems. In this paper, Polynomial Chaos Expansion (PCE) is used for an efficient GSA with multivariate output. The results indicate that PCE allows efficient estimation of the covariance matrix and GSA on the coefficients in the approach defined by Campbell et al. [9], and the development of analytical expressions for the multivariate sensitivity indices defined by Gamboa et al. [14]. - Highlights: • PCE increases computational efficiency in 2 approaches of GSA of multivariate output. • Efficient estimation of covariance matrix of output from coefficients of PCE. • Efficient GSA on coefficients of orthogonal decomposition of the output using PCE. • Analytical expressions of multivariate sensitivity indices from coefficients of PCE
Global analysis of ICRF wave coupling on Tore Supra
International Nuclear Information System (INIS)
Goniche, M.; Bremond, S.; Colas, L.
2003-01-01
The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)
Global analysis of urban surface water supply vulnerability
International Nuclear Information System (INIS)
Padowski, Julie C; Gorelick, Steven M
2014-01-01
This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)
Global, exact cosmic microwave background data analysis using Gibbs sampling
International Nuclear Information System (INIS)
Wandelt, Benjamin D.; Larson, David L.; Lakshminarayanan, Arun
2004-01-01
We describe an efficient and exact method that enables global Bayesian analysis of cosmic microwave background (CMB) data. The method reveals the joint posterior density (or likelihood for flat priors) of the power spectrum C l and the CMB signal. Foregrounds and instrumental parameters can be simultaneously inferred from the data. The method allows the specification of a wide range of foreground priors. We explicitly show how to propagate the non-Gaussian dependency structure of the C l posterior through to the posterior density of the parameters. If desired, the analysis can be coupled to theoretical (cosmological) priors and can yield the posterior density of cosmological parameter estimates directly from the time-ordered data. The method does not hinge on special assumptions about the survey geometry or noise properties, etc., It is based on a Monte Carlo approach and hence parallelizes trivially. No trace or determinant evaluations are necessary. The feasibility of this approach rests on the ability to solve the systems of linear equations which arise. These are of the same size and computational complexity as the map-making equations. We describe a preconditioned conjugate gradient technique that solves this problem and demonstrate in a numerical example that the computational time required for each Monte Carlo sample scales as n p 3/2 with the number of pixels n p . We use our method to analyze the data from the Differential Microwave Radiometer on the Cosmic Background Explorer and explore the non-Gaussian joint posterior density of the C l from the Differential Microwave Radiometer on the Cosmic Background Explorer in several projections
Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.
Energy Technology Data Exchange (ETDEWEB)
Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.
2005-09-16
Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.
Learner Analysis Framework for Globalized E-Learning
Saxena, Mamta
2010-01-01
The digital shift to technology-mediated modes of instructional delivery and the increased global connectivity has led to the rise in globalized e-learning programs. Educational institutions face multiple challenges as they seek to design effective, engaging and culturally competent instruction for an increasingly diverse learner population. The…
An Analysis of Globalization and Higher Education in Malaysia
Arokiasamy, Anantha Raj A.
2011-01-01
This study aims to examine the impact of globalization on private higher education in Malaysia. The impact of globalization and the development of knowledge-based economy have caused much dramatic change to the character and functions of higher education in Malaysia. The major trend is the reforming and restructuring of private higher education in…
Global carbon monoxide cycle: Modeling and data analysis
Arellano, Avelino F., Jr.
The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other
Planck 2015 results. XVIII. Background geometry & topology
Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Feeney, S.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McEwen, J.D.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Tent, F. Van; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-01-01
Full-sky CMB maps from the 2015 Planck release allow us to detect departures from global isotropy on the largest scales. We present the first searches using CMB polarization for correlations induced by a non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance $\\chi_{rec}$). We specialize to flat spaces with toroidal and slab topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology at a scale below the diameter of the last scattering surface. The limits on the radius $R_i$ of the largest sphere inscribed in the topological domain (at log-likelihood-ratio $\\Delta\\ln{L}>-5$ relative to a simply-connected flat Planck best-fit model) are $R_i>0.97\\chi_{rec}$ for the cubic torus and $R_i>0.56\\chi_{rec}$ for the slab. The limit for the cubic torus from the matched-circles search is numerically equivalent, $R_i>0.97\\chi_{rec}...
Economic analysis of the global polio eradication initiative.
Duintjer Tebbens, Radboud J; Pallansch, Mark A; Cochi, Stephen L; Wassilak, Steven G F; Linkins, Jennifer; Sutter, Roland W; Aylward, R Bruce; Thompson, Kimberly M
2010-12-16
The global polio eradication initiative (GPEI), which started in 1988, represents the single largest, internationally coordinated public health project to date. Completion remains within reach, with type 2 wild polioviruses apparently eradicated since 1999 and fewer than 2000 annual paralytic poliomyelitis cases of wild types 1 and 3 reported since then. This economic analysis of the GPEI reflects the status of the program as of February 2010, including full consideration of post-eradication policies. For the GPEI intervention, we consider the actual pre-eradication experience to date followed by two distinct potential future post-eradication vaccination policies. We estimate GPEI costs based on actual and projected expenditures and poliomyelitis incidence using reported numbers corrected for underreporting and model projections. For the comparator, which assumes only routine vaccination for polio historically and into the future (i.e., no GPEI), we estimate poliomyelitis incidence using a dynamic infection transmission model and costs based on numbers of vaccinated children. Cost-effectiveness ratios for the GPEI vs. only routine vaccination qualify as highly cost-effective based on standard criteria. We estimate incremental net benefits of the GPEI between 1988 and 2035 of approximately 40-50 billion dollars (2008 US dollars; 1988 net present values). Despite the high costs of achieving eradication in low-income countries, low-income countries account for approximately 85% of the total net benefits generated by the GPEI in the base case analysis. The total economic costs saved per prevented paralytic poliomyelitis case drive the incremental net benefits, which become positive even if we estimate the loss in productivity as a result of disability as below the recommended value of one year in average per-capita gross national income per disability-adjusted life year saved. Sensitivity analysis suggests that the finding of positive net benefits of the GPEI remains
Evolution of topological features in finite antiferromagnetic Heisenberg chains
International Nuclear Information System (INIS)
Chen Changfeng
2003-01-01
We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed
Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space
Directory of Open Access Journals (Sweden)
Apu Kumar Saha
2015-06-01
Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.
Park, Chang-Hyun; Lee, Seungyup; Kim, Taewon; Won, Wang Yeon; Lee, Kyoung-Uk
2017-10-01
Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level. Copyright © 2017 Elsevier B.V. All rights reserved.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro, Marí a; Le Maitre, Olivier; Knio, Omar
2016-01-01
sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity
The credibility challenge for global fluvial flood risk analysis
Trigg, M.A.; Birch, C.E.; Neal, J.C.; Bates, P.D.; Smith, A.; Sampson, C.C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; Ward, P.J.; Winsemius, H.C.; Salamon, P.; Dottori, F.; Rudari, R.; Kappes, M.S.; Simpson, A.L.; Hadzilacos, G.; Fewtrell, T.J.
2016-01-01
Quantifying flood hazard is an essential component of resilience planning, emergency response, and mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently, efforts have intensified to estimate flood risk globally to better allow consistent and equitable
Topological Phases in the Real World
Hsu, Yi-Ting
enhance the T c of the existing leading candidate Sr2RuO 4 and to propose new material candidates for topological superconductors. First, by carrying out perturbative renormalization group (RG) analysis, we predicted that straining the ruthenate films will maximize the T c for triplet pairing channel when the Fermi surface is close to van Hove singularities without tuning on to the singularity. Then with a similar RG approach and a self-consistent calculation for the gap equations, we investigated the repulsion-mediated intrinsic and proximity-induced superconductivity in a family of lightly hole-doped noncentrosymmetric semiconductors, monolayer transition metal dichalcogenides (TMDs). We found that thanks to the spin-valley locking in lightly hole-doped TMDs, two distinct topological pairing states are favored for the intrinsically superconducting case: an interpocket paired state with Chern number 2 and an intrapocket paired state with finite pair momentum. Moreover, nematic odd-parity pairing with a possibly high Tc can be induced when proximitized by a cuprate. A confirmation of our predictions will open up possibilities for manipulating unconventional and topological superconductivity at a higher temperature on the device-friendly platform of strained ruthenate films and monolayer TMDs. In the second part, I will discuss our studies on the stability of the Dirac surface states in 3D TIs in the presence of bulk states and in TI-ferromagnetic metal heterostructures. We constructed simple microscopic models with Fano-type couplings between localized and extended states for each situation. Then with ab initio calculations we investigated the fate of the Dirac surface states in terms of the spectrum, the spatial profile and the spin-texture. Based on our results, we proposed explanations for existing experimental spectroscopic and spin-torque results.
Globalization and health: a framework for analysis and action.
Woodward, D.; Drager, N.; Beaglehole, R.; Lipson, D.
2001-01-01
Globalization is a key challenge to public health, especially in developing countries, but the linkages between globalization and health are complex. Although a growing amount of literature has appeared on the subject, it is piecemeal, and suffers from a lack of an agreed framework for assessing the direct and indirect health effects of different aspects of globalization. This paper presents a conceptual framework for the linkages between economic globalization and health, with the intention that it will serve as a basis for synthesizing existing relevant literature, identifying gaps in knowledge, and ultimately developing national and international policies more favourable to health. The framework encompasses both the indirect effects on health, operating through the national economy, household economies and health-related sectors such as water, sanitation and education, as well as more direct effects on population-level and individual risk factors for health and on the health care system. Proposed also is a set of broad objectives for a programme of action to optimize the health effects of economic globalization. The paper concludes by identifying priorities for research corresponding with the five linkages identified as critical to the effects of globalization on health. PMID:11584737
LHCb Topological Trigger Reoptimization
International Nuclear Information System (INIS)
Likhomanenko, Tatiana; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Ilten, Philip; Williams, Michael
2015-01-01
The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays. (paper)
p-topological Cauchy completions
Directory of Open Access Journals (Sweden)
J. Wig
1999-01-01
Full Text Available The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular, p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and only if it is “cushioned,” meaning that each equivalence class of nonconvergent Cauchy filters contains a smallest filter. For a Cauchy space allowing a p-topological completion, it is shown that a certain class of Reed completions preserve the p-topological property, including the Wyler and Kowalsky completions, which are, respectively, the finest and the coarsest p-topological completions. However, not all p-topological completions are Reed completions. Several extension theorems for p-topological completions are obtained. The most interesting of these states that any Cauchy-continuous map between Cauchy spaces allowing p-topological and p′-topological completions, respectively, can always be extended to a θ-continuous map between any p-topological completion of the first space and any p′-topological completion of the second.
Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian
2014-02-01
In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter
Warren, Ashley E; Wyss, Kaspar; Shakarishvili, George; Atun, Rifat; de Savigny, Don
2013-01-01
Background: Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific a...
Rotavirus - Global research density equalizing mapping and gender analysis.
Köster, Corinna; Klingelhöfer, Doris; Groneberg, David A; Schwarzer, Mario
2016-01-02
Rotaviruses are the leading reason for dehydration and severe diarrheal disease and in infants and young children worldwide. An increasing number of related publications cause a crucial challenge to determine the relevant scientific output. Therefore, scientometric analyses are helpful to evaluate quantity as well as quality of the worldwide research activities on Rotavirus. Up to now, no in-depth global scientometric analysis relating to Rotavirus publications has been carried out. This study used scientometric tools and the method of density equalizing mapping to visualize the differences of the worldwide research effort referring to Rotavirus. The aim of the study was to compare scientific output geographically and over time by using an in-depth data analysis and New quality and quantity indices in science (NewQIS) tools. Furthermore, a gender analysis was part of the data interpretation. We retrieved all Rotavirus-related articles, which were published on "Rotavirus" during the time period from 1900 to 2013, from the Web of Science by a defined search term. These items were analyzed regarding quantitative and qualitative aspects, and visualized with the help of bibliometric methods and the technique of density equalizing mapping to show the differences of the worldwide research efforts. This work aimed to extend the current NewQIS platform. The 5906 Rotavirus associated articles were published in 138 countries from 1900 to 2013. The USA authored 2037 articles that equaled 34.5% of all published items followed by Japan with 576 articles and the United Kingdom - as the most productive representative of the European countries - with 495 articles. Furthermore, the USA established the most cooperations with other countries and was found to be in the center of an international collaborative network. We performed a gender analysis of authors per country (threshold was set at a publishing output of more than 100 articles by more than 50 authors whose names could be
Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model
Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance
2014-01-01
Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...
Probing the topological properties of complex networks modeling short written texts.
Directory of Open Access Journals (Sweden)
Diego R Amancio
Full Text Available In recent years, graph theory has been widely employed to probe several language properties. More specifically, the so-called word adjacency model has been proven useful for tackling several practical problems, especially those relying on textual stylistic analysis. The most common approach to treat texts as networks has simply considered either large pieces of texts or entire books. This approach has certainly worked well-many informative discoveries have been made this way-but it raises an uncomfortable question: could there be important topological patterns in small pieces of texts? To address this problem, the topological properties of subtexts sampled from entire books was probed. Statistical analyses performed on a dataset comprising 50 novels revealed that most of the traditional topological measurements are stable for short subtexts. When the performance of the authorship recognition task was analyzed, it was found that a proper sampling yields a discriminability similar to the one found with full texts. Surprisingly, the support vector machine classification based on the characterization of short texts outperformed the one performed with entire books. These findings suggest that a local topological analysis of large documents might improve its global characterization. Most importantly, it was verified, as a proof of principle, that short texts can be analyzed with the methods and concepts of complex networks. As a consequence, the techniques described here can be extended in a straightforward fashion to analyze texts as time-varying complex networks.
Indian Handicrafts in Globalization Times: An analysis of Global-Local Dynamics
Directory of Open Access Journals (Sweden)
Pradeep Kumar Jena
2010-12-01
Full Text Available Globalization – which refers to the growing integration of societies, economies and cultures around the world, has become one of the most hotly-debated topics and key area of research among the policy makers, statesmen, corporate, politicians and academia respectively over the past few years. As India opens up her doors to the multinationals during the era of economic reform and liberalized market, putting an end to the ‘license raj’, it is not only the economies that often meet in the global market sphere, but also the people and cultures, which bring a new dimension to the multi-cultural setting. What we can see in present day modern world is that there is always a cross-cultural interaction between the ‘local’ and ‘global’ and the much discussed ‘global village’, is now not just a possibility but a reality despite many contradictions. Talking about Indian Handicrafts, which constitutes a significant segment of the decentralized sector of the economy, its export has reached at a commendable height. Indian folk art and crafts which are the integral parts of the Indian culture and tradition, are in high demand among the western consumers. Again, foreign fashion industry borrows a great deal from Indian appliquéd motifs Saree designs, an ethnic Indian wear. Needless to say, the borders between the world cultures are now eroding out and becoming irrelevant, therefore prompting to call it as a deterritorialized world.But notwithstanding, the real concern for many of us is that, can the ‘local’ really meet with the ‘global’ by truly sustaining its localness? The biggest problem in the Indian Handicraft industry is that the village craftsmen remain concerned that with free trade and mass production, hand-made products from other parts of the world will out price the products of their hard labour. So the basic question arises, is globalization a panacea for every human problems that the mother earth is facing now? With a
Supplementary Material for: A global sensitivity analysis approach for morphogenesis models
Boas, Sonja; Navarro, Marí a; Merks, Roeland; Blom, Joke
2015-01-01
) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided
Manufacturing tolerant topology optimization
DEFF Research Database (Denmark)
Sigmund, Ole
2009-01-01
In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...
Aganagic, M; Marino, M; Vafa, C; Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun
2005-01-01
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact Calabi-Yau toric threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of Calabi-Yau. We interpret this result as an operator computation of the amplitudes in the B-model mirror which is the Kodaira-Spencer quantum theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
Riemann, topology, and physics
Monastyrsky, Michael I
2008-01-01
This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...
International Nuclear Information System (INIS)
Zou, L.P.; Zhang, P.M.; Pak, D.G.
2013-01-01
We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed
Sadun, Lorenzo
2008-01-01
Aperiodic tilings are interesting to mathematicians and scientists for both theoretical and practical reasons. The serious study of aperiodic tilings began as a solution to a problem in logic. Simpler aperiodic tilings eventually revealed hidden "symmetries" that were previously considered impossible, while the tilings themselves were quite striking. The discovery of quasicrystals showed that such aperiodicity actually occurs in nature and led to advances in materials science. Many properties of aperiodic tilings can be discerned by studying one tiling at a time. However, by studying families of tilings, further properties are revealed. This broader study naturally leads to the topology of tiling spaces. This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to ...
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
Directory of Open Access Journals (Sweden)
Ogrean Claudia
2017-08-01
Full Text Available For better or for worse, the “corporations rule the world” assertion is nowadays more actual and accurate than ever before, as multinational companies represent the undisputable engine of the globalization process, and the latter continuously (recreates the background against which global multinationals are flourishing, while reinforcing their “domination”. Since 1995, the Fortune Global 500 ranking (FG 500 annually provides a comprehensive and eloquent image of the world of global multinationals; the merits of the FG 500 ranking go beyond the synchronic approach of the characteristics of global multinationals (in terms of revenues, profits, assets and employees - by sector, industry and country, as it also favors diachronic analysis and comparisons - which are essential for strategists in identifying evolving trends and substantiating corporate strategies able to lead to sustainable competitiveness. The paper aims to determine the contribution of sectors to FG 500 ranking in 2016, on one hand, and to emphasize on some industry-based dynamics in FG 500 - by comparatively analyzing the 2016 and 1996 rankings, on the other hand.
Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program
Moore, Berrien, III; Sahagian, Dork
1997-01-01
The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.
Topological and non-topological soliton solutions to some time
Indian Academy of Sciences (India)
Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...
Application of wavelet analysis in determining the periodicity of global warming
Feng, Xiao
2018-04-01
In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.
Filters in topology optimization
DEFF Research Database (Denmark)
Bourdin, Blaise
1999-01-01
In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...
Kostov, Ivan
2010-01-01
We study the quasiclassical expansion associated with a complex curve. In a more specific context this is the 1/N expansion in U(N)-invariant matrix integrals. We compare two approaches, the CFT approach and the topological recursion, and show their equivalence. The CFT approach reformulates the problem in terms of a conformal field theory on a Riemann surface, while the topological recursion is based on a recurrence equation for the observables representing symplectic invariants on the complex curve. The two approaches lead to two different graph expansions, one of which can be obtained as a partial resummation of the other.
Coghetto Roland
2015-01-01
Using Mizar [9], and the formal topological space structure (FMT_Space_Str) [19], we introduce the three U-FMT conditions (U-FMT filter, U-FMT with point and U-FMT local) similar to those VI, VII, VIII and VIV of the proposition 2 in [10]: If to each element x of a set X there corresponds a set B(x) of subsets of X such that the properties VI, VII, VIII and VIV are satisfied, then there is a unique topological structure on X such that, for each x ∈ X, B(x) is the set of neighborhoods of x ...
Monastyrsky, M I
2006-01-01
This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.
Free topological vector spaces
Gabriyelyan, Saak S.; Morris, Sidney A.
2016-01-01
We define and study the free topological vector space $\\mathbb{V}(X)$ over a Tychonoff space $X$. We prove that $\\mathbb{V}(X)$ is a $k_\\omega$-space if and only if $X$ is a $k_\\omega$-space. If $X$ is infinite, then $\\mathbb{V}(X)$ contains a closed vector subspace which is topologically isomorphic to $\\mathbb{V}(\\mathbb{N})$. It is proved that if $X$ is a $k$-space, then $\\mathbb{V}(X)$ is locally convex if and only if $X$ is discrete and countable. If $X$ is a metrizable space it is shown ...
Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea
Directory of Open Access Journals (Sweden)
Liting Chen
2018-06-01
Full Text Available Impaired spontaneous regional activity and altered topology of the brain network have been observed in obstructive sleep apnea (OSA. However, the mechanisms of disrupted functional connectivity (FC and topological reorganization of the default mode network (DMN in patients with OSA remain largely unknown. We explored whether the FC is altered within the DMN and examined topological changes occur in the DMN in patients with OSA using a graph theory analysis of resting-state functional magnetic resonance imaging data and evaluated the relationship between neuroimaging measures and clinical variables. Resting-state data were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers (GSs. We specifically selected 20 DMN subregions to construct the DMN architecture. The disrupted FC and topological properties of the DMN in patients with OSA were characterized using graph theory. The OSA group showed significantly decreased FC of the anterior–posterior DMN and within the posterior DMN, and also showed increased FC within the DMN. The DMN exhibited small-world topology in both OSA and GS groups. Compared to GSs, patients with OSA showed a decreased clustering coefficient (Cp and local efficiency, and decreased nodal centralities in the left posterior cingulate cortex and dorsal medial prefrontal cortex, and increased nodal centralities in the ventral medial prefrontal cortex and the right parahippocampal cortex. Finally, the abnormal DMN FC was significantly related to Cp, path length, global efficiency, and Montreal cognitive assessment score. OSA showed disrupted FC within the DMN, which may have contributed to the observed topological reorganization. These findings may provide further evidence of cognitive deficits in patients with OSA.
Analysis of textbooks in terms of interpretation of global issues
Brodníček, Daniel
2017-01-01
In the contemporary world, when the whole world is connected, the fact saying that anything what happens on the other side of the world does not have influence to our lives is not truthful anymore. We live in an era of globalization. Therefore, it is important to focus on the global issues already at school and also on the way in which they concern us. However, it should be borne in the mind that, the most important thing is the way, how teachers explain it to their students. The main aim of ...
Topological Optimization of Continuum Structure based on ANSYS
Directory of Open Access Journals (Sweden)
Li Xue-ping
2017-01-01
Full Text Available Topology optimization is at the phase of structural concept design and the result of it is foundation for succeeding design, therefore, structural topology optimization is more important to engineering design. in this thesis, in order to seek the optimal structure shape of the winch’s mounting bracket of ROV simulator, topology optimization design of it by finite element analysis software ANSYS was carried out. the results show that the topology optimization method is an effective optimization method and indicate that the method is correct and effective, it has a certain engineering application prospect.
Protein structure: geometry, topology and classification
Energy Technology Data Exchange (ETDEWEB)
Taylor, William R.; May, Alex C.W.; Brown, Nigel P.; Aszodi, Andras [Division of Mathematical Biology, National Institute for Medical Research, London (United Kingdom)
2001-04-01
The structural principals of proteins are reviewed and analysed from a geometric perspective with a view to revealing the underlying regularities in their construction. Computer methods for the automatic comparison and classification of these structures are then reviewed with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of the classification of proteins, more abstract geometric and topological representations are explored, including the occurrence of knotted topologies. The review concludes with a consideration of the origin of higher-level symmetries in protein structure. (author)
Topological zero modes in Monte Carlo simulations
International Nuclear Information System (INIS)
Dilger, H.
1994-08-01
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
Topological superconductivity, topological confinement, and the vortex quantum Hall effect
International Nuclear Information System (INIS)
Diamantini, M. Cristina; Trugenberger, Carlo A.
2011-01-01
Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.
Photoinduced Topological Phase Transitions in Topological Magnon Insulators.
Owerre, S A
2018-03-13
Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.
Facilitation of the PED analysis of large molecules by using global coordinates.
Jamróz, Michał H; Ostrowski, Sławomir; Dobrowolski, Jan Cz
2015-10-05
Global coordinates have been found to be useful in the potential energy distribution (PED) analyses of the following large molecules: [13]-acene and [33]-helicene. The global coordinate is defined based on much distanced fragments of the analysed molecule, whereas so far, the coordinates used in the analysis were based on stretchings, bendings, or torsions of the adjacent atoms. It has been shown that the PED analyses performed using the global coordinate and the classical ones can lead to exactly the same PED contributions. The global coordinates may significantly improve the facility of the analysis of the vibrational spectra of large molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs)
DEFF Research Database (Denmark)
Ryt-Hansen, Pia; Hagberg, E. E.; Chriél, Mariann
2017-01-01
a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain. To the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can...
Maximum-entropy clustering algorithm and its global convergence analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.
The yield gap of global grain production: A spatial analysis
Neumann, K.; Verburg, P.H.; Stehfest, E.; Muller, C.
2010-01-01
Global grain production has increased dramatically during the past 50 years, mainly as a consequence of intensified land management and introduction of new technologies. For the future, a strong increase in grain demand is expected, which may be fulfilled by further agricultural intensification
Characterization and global analysis of a family of Poisson structures
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito
2006-01-01
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given
Characterization and global analysis of a family of Poisson structures
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es
2006-06-26
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.
A comparability analysis of global burden sharing GHG reduction scenarios
International Nuclear Information System (INIS)
Ciscar, Juan-Carlos; Saveyn, Bert; Soria, Antonio; Szabo, Laszlo; Van Regemorter, Denise; Van Ierland, Tom
2013-01-01
The distribution of the mitigation burden across countries is a key issue regarding the post-2012 global climate policies. This article explores the economic implications of alternative allocation rules, an assessment made in the run-up to the COP15 in Copenhagen (December 2009). We analyse the comparability of the allocations across countries based on four single indicators: GDP per capita, GHG emissions per GDP, GHG emission trends in the recent past, and population growth. The multi-sectoral computable general equilibrium model of the global economy, GEM-E3, is used for that purpose. Further, the article also compares a perfect carbon market without transaction costs with the case of a gradually developing carbon market, i.e. a carbon market with (gradually diminishing) transaction costs. - Highlights: ► Burden sharing of global mitigation efforts should consider equity and efficiency. ► The comparability of allocations across countries is based on four indicators. ► The four indicators are GDP/capita, GHG/GDP, population growth, and GHG trend. ► Any possible agreement on effort comparability needs a combination of indicators. ► We analyse the role played by the degree of flexibility in global carbon trading
Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis
National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...
The Global Physical Inactivity Pandemic: An Analysis of Knowledge Production
Piggin, Joe; Bairner, Alan
2016-01-01
In July 2012, "The Lancet" announced a pandemic of physical inactivity and a global call to action to effect change. The worldwide pandemic is said to be claiming millions of lives every year. Asserting that physical inactivity is pandemic is an important moment. Given the purported scale and significance of physical inactivity around…
The Global Financial Crisis: Analysis and Policy Implications
2009-05-12
Ministerio de Economia y Finanzas Publicas. Instituto Nacional de Estadistica y Censos (INDEC). Utilizacion de la Capacidid Instalada en la Industria...2008 and International Monetary Fund. Global Markets Monitor. March 17, 2009. 102 Republica Argentina. Ministerio de Economia y Finanzas Publicas
Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis
National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...
Topological field theories and duality
International Nuclear Information System (INIS)
Stephany, J.; Universidad Simon Bolivar, Caracas
1996-05-01
Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs