Early detection of structual changes in random signal
International Nuclear Information System (INIS)
Kuroda, Yoshiteru; Yokota, Katsuhiro
1981-01-01
Early detection of structual changes in observed random signal is very important from the point of system diagnosis. In this paper, the following procedures are applied to this problem and the results are compared. (1) auto-regressive model to random signal to calculate the prediction error, i.e., the defference between observed and predicted values. (2) auto-regressive method to caluculate the sum of the prediction error. (3) a method is based on AIC (Akaike Information Criterion). Simulation is made of these procedures, indicating their merits and demerits as a diagostic tools. (author)
Convex analysis and global optimization
Tuy, Hoang
2016-01-01
This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;
Stochastic global optimization as a filtering problem
International Nuclear Information System (INIS)
Stinis, Panos
2012-01-01
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.
On the efficiency of chaos optimization algorithms for global optimization
International Nuclear Information System (INIS)
Yang Dixiong; Li Gang; Cheng Gengdong
2007-01-01
Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions
Essays and surveys in global optimization
Audet, Charles; Savard, Giles
2005-01-01
Global optimization aims at solving the most general problems of deterministic mathematical programming. In addition, once the solutions are found, this methodology is also expected to prove their optimality. With these difficulties in mind, global optimization is becoming an increasingly powerful and important methodology. This book is the most recent examination of its mathematical capability, power, and wide ranging solutions to many fields in the applied sciences.
Advances in stochastic and deterministic global optimization
Zhigljavsky, Anatoly; Žilinskas, Julius
2016-01-01
Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...
Global optimization methods for engineering design
Arora, Jasbir S.
1990-01-01
The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.
Introduction to Nonlinear and Global Optimization
Hendrix, E.M.T.; Tóth, B.
2010-01-01
This self-contained text provides a solid introduction to global and nonlinear optimization, providing students of mathematics and interdisciplinary sciences with a strong foundation in applied optimization techniques. The book offers a unique hands-on and critical approach to applied optimization
Conference on Convex Analysis and Global Optimization
Pardalos, Panos
2001-01-01
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...
Stochastic and global optimization
National Research Council Canada - National Science Library
Dzemyda, Gintautas; Šaltenis, Vydūnas; Zhilinskas, A; Mockus, Jonas
2002-01-01
... and Effectiveness of Controlled Random Search E. M. T. Hendrix, P. M. Ortigosa and I. García 129 9. Discrete Backtracking Adaptive Search for Global Optimization B. P. Kristinsdottir, Z. B. Zabinsky and...
Global optimization and simulated annealing
Dekkers, A.; Aarts, E.H.L.
1988-01-01
In this paper we are concerned with global optimization, which can be defined as the problem of finding points on a bounded subset of Rn in which some real valued functionf assumes its optimal (i.e. maximal or minimal) value. We present a stochastic approach which is based on the simulated annealing
Directory of Open Access Journals (Sweden)
A. P. Karpenko
2014-01-01
Full Text Available We consider a class of stochastic search algorithms of global optimization which in various publications are called behavioural, intellectual, metaheuristic, inspired by the nature, swarm, multi-agent, population, etc. We use the last term.Experience in using the population algorithms to solve challenges of global optimization shows that application of one such algorithm may not always effective. Therefore now great attention is paid to hybridization of population algorithms of global optimization. Hybrid algorithms unite various algorithms or identical algorithms, but with various values of free parameters. Thus efficiency of one algorithm can compensate weakness of another.The purposes of the work are development of hybrid algorithm of global optimization based on known algorithms of harmony search (HS and swarm of particles (PSO, software implementation of algorithm, study of its efficiency using a number of known benchmark problems, and a problem of dimensional optimization of truss structure.We set a problem of global optimization, consider basic algorithms of HS and PSO, give a flow chart of the offered hybrid algorithm called PSO HS , present results of computing experiments with developed algorithm and software, formulate main results of work and prospects of its development.
4th International Conference on Frontiers in Global Optimization
Pardalos, Panos
2004-01-01
Global Optimization has emerged as one of the most exciting new areas of mathematical programming. Global optimization has received a wide attraction from many fields in the past few years, due to the success of new algorithms for addressing previously intractable problems from diverse areas such as computational chemistry and biology, biomedicine, structural optimization, computer sciences, operations research, economics, and engineering design and control. This book contains refereed invited papers submitted at the 4th international confer ence on Frontiers in Global Optimization held at Santorini, Greece during June 8-12, 2003. Santorini is one of the few sites of Greece, with wild beauty created by the explosion of a volcano which is in the middle of the gulf of the island. The mystic landscape with its numerous mult-extrema, was an inspiring location particularly for researchers working on global optimization. The three previous conferences on "Recent Advances in Global Opti mization", "State-of-the-...
A Direct Search Algorithm for Global Optimization
Directory of Open Access Journals (Sweden)
Enrique Baeyens
2016-06-01
Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.
On benchmarking Stochastic Global Optimization Algorithms
Hendrix, E.M.T.; Lancinskas, A.
2015-01-01
A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
Global optimization and sensitivity analysis
International Nuclear Information System (INIS)
Cacuci, D.G.
1990-01-01
A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints
Microwave tomography global optimization, parallelization and performance evaluation
Noghanian, Sima; Desell, Travis; Ashtari, Ali
2014-01-01
This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.
Evolutionary global optimization, manifolds and applications
Aguiar e Oliveira Junior, Hime
2016-01-01
This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory....
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Zhang, Yong-Feng; Chiang, Hsiao-Dong
2017-09-01
A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.
3rd World Congress on Global Optimization in Engineering & Science
Ruan, Ning; Xing, Wenxun; WCGO-III; Advances in Global Optimization
2015-01-01
This proceedings volume addresses advances in global optimization—a multidisciplinary research field that deals with the analysis, characterization, and computation of global minima and/or maxima of nonlinear, non-convex, and nonsmooth functions in continuous or discrete forms. The volume contains selected papers from the third biannual World Congress on Global Optimization in Engineering & Science (WCGO), held in the Yellow Mountains, Anhui, China on July 8-12, 2013. The papers fall into eight topical sections: mathematical programming; combinatorial optimization; duality theory; topology optimization; variational inequalities and complementarity problems; numerical optimization; stochastic models and simulation; and complex simulation and supply chain analysis.
A Novel Particle Swarm Optimization Algorithm for Global Optimization.
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.
Acceleration techniques in the univariate Lipschitz global optimization
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela
2016-10-01
Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.
Global Optimization for Bus Line Timetable Setting Problem
Directory of Open Access Journals (Sweden)
Qun Chen
2014-01-01
Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.
Optimal design of RTCs in digital circuit fault self-repair based on global signal optimization
Institute of Scientific and Technical Information of China (English)
Zhang Junbin; Cai Jinyan; Meng Yafeng
2016-01-01
Since digital circuits have been widely and thoroughly applied in various fields, electronic systems are increasingly more complicated and require greater reliability. Faults may occur in elec-tronic systems in complicated environments. If immediate field repairs are not made on the faults, elec-tronic systems will not run normally, and this will lead to serious losses. The traditional method for improving system reliability based on redundant fault-tolerant technique has been unable to meet the requirements. Therefore, on the basis of (evolvable hardware)-based and (reparation balance technology)-based electronic circuit fault self-repair strategy proposed in our preliminary work, the optimal design of rectification circuits (RTCs) in electronic circuit fault self-repair based on global sig-nal optimization is deeply researched in this paper. First of all, the basic theory of RTC optimal design based on global signal optimization is proposed. Secondly, relevant considerations and suitable ranges are analyzed. Then, the basic flow of RTC optimal design is researched. Eventually, a typical circuit is selected for simulation verification, and detailed simulated analysis is made on five circumstances that occur during RTC evolution. The simulation results prove that compared with the conventional design method based RTC, the global signal optimization design method based RTC is lower in hardware cost, faster in circuit evolution, higher in convergent precision, and higher in circuit evolution success rate. Therefore, the global signal optimization based RTC optimal design method applied in the elec-tronic circuit fault self-repair technology is proven to be feasible, effective, and advantageous.
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2015-02-01
Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.
Parallel Global Optimization with the Particle Swarm Algorithm (Preprint)
National Research Council Canada - National Science Library
Schutte, J. F; Reinbolt, J. A; Fregly, B. J; Haftka, R. T; George, A. D
2004-01-01
.... To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the Particle Swarm Optimization (PSO) algorithm...
Global optimization of silicon nanowires for efficient parametric processes
DEFF Research Database (Denmark)
Vukovic, Dragana; Xu, Jing; Mørk, Jesper
2013-01-01
We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....
Competing intelligent search agents in global optimization
Energy Technology Data Exchange (ETDEWEB)
Streltsov, S.; Vakili, P. [Boston Univ., MA (United States); Muchnik, I. [Rutgers Univ., Piscataway, NJ (United States)
1996-12-31
In this paper we present a new search methodology that we view as a development of intelligent agent approach to the analysis of complex system. The main idea is to consider search process as a competition mechanism between concurrent adaptive intelligent agents. Agents cooperate in achieving a common search goal and at the same time compete with each other for computational resources. We propose a statistical selection approach to resource allocation between agents that leads to simple and efficient on average index allocation policies. We use global optimization as the most general setting that encompasses many types of search problems, and show how proposed selection policies can be used to improve and combine various global optimization methods.
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Interactive Cosegmentation Using Global and Local Energy Optimization
Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan
2015-01-01
We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...
Deterministic global optimization an introduction to the diagonal approach
Sergeyev, Yaroslav D
2017-01-01
This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed...
A Novel Hybrid Firefly Algorithm for Global Optimization.
Directory of Open Access Journals (Sweden)
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
Theory and Algorithms for Global/Local Design Optimization
National Research Council Canada - National Science Library
Watson, Layne T; Guerdal, Zafer; Haftka, Raphael T
2005-01-01
The motivating application for this research is the global/local optimal design of composite aircraft structures such as wings and fuselages, but the theory and algorithms are more widely applicable...
Theory and Algorithms for Global/Local Design Optimization
National Research Council Canada - National Science Library
Haftka, Raphael T
2004-01-01
... the component and overall design as well as on exploration of global optimization algorithms. In the former category, heuristic decomposition was followed with proof that it solves the original problem...
A Simple But Effective Canonical Dual Theory Unified Algorithm for Global Optimization
Zhang, Jiapu
2011-01-01
Numerical global optimization methods are often very time consuming and could not be applied for high-dimensional nonconvex/nonsmooth optimization problems. Due to the nonconvexity/nonsmoothness, directly solving the primal problems sometimes is very difficult. This paper presents a very simple but very effective canonical duality theory (CDT) unified global optimization algorithm. This algorithm has convergence is proved in this paper. More important, for this CDT-unified algorithm, numerous...
Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories
Ng, Hok Kwan; Sridhar, Banavar
2016-01-01
This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Global Optimization Ensemble Model for Classification Methods
Directory of Open Access Journals (Sweden)
Hina Anwar
2014-01-01
Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.
Conference on "State of the Art in Global Optimization : Computational Methods and Applications"
Pardalos, P
1996-01-01
Optimization problems abound in most fields of science, engineering, and technology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solvin...
A practical globalization of one-shot optimization for optimal design of tokamak divertors
Energy Technology Data Exchange (ETDEWEB)
Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Dekeyser, Wouter; Baelmans, Martine [KU Leuven, Department of Mechanical Engineering, 3001 Leuven (Belgium); Gauger, Nicolas R. [TU Kaiserslautern, Chair for Scientific Computing, 67663 Kaiserslautern (Germany); Reiter, Detlev [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany)
2017-01-01
In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.
A perturbed martingale approach to global optimization
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-08-01
A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.
A dynamic global and local combined particle swarm optimization algorithm
International Nuclear Information System (INIS)
Jiao Bin; Lian Zhigang; Chen Qunxian
2009-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.
Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Directory of Open Access Journals (Sweden)
Leilei Cao
2016-01-01
Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Global optimization for overall HVAC systems - Part I problem formulation and analysis
International Nuclear Information System (INIS)
Lu Lu; Cai Wenjian; Chai, Y.S.; Xie Lihua
2005-01-01
This paper presents the global optimization technologies for overall heating, ventilating and air conditioning (HVAC) systems. The objective function of global optimization and constraints are formulated based on mathematical models of the major components. All these models are associated with power consumption components and heat exchangers for transferring cooling load. The characteristics of all the major components are briefly introduced by models, and the interactions between them are analyzed and discussed to show the complications of the problem. According to the characteristics of the operating components, the complicated original optimization problem for overall HVAC systems is transformed and simplified into a compact form ready for optimization
Neoliberal Optimism: Applying Market Techniques to Global Health.
Mei, Yuyang
2017-01-01
Global health and neoliberalism are becoming increasingly intertwined as organizations utilize markets and profit motives to solve the traditional problems of poverty and population health. I use field work conducted over 14 months in a global health technology company to explore how the promise of neoliberalism re-envisions humanitarian efforts. In this company's vaccine refrigerator project, staff members expect their investors and their market to allow them to achieve scale and develop accountability to their users in developing countries. However, the translation of neoliberal techniques to the global health sphere falls short of the ideal, as profits are meager and purchasing power remains with donor organizations. The continued optimism in market principles amidst such a non-ideal market reveals the tenacious ideological commitment to neoliberalism in these global health projects.
Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches
Directory of Open Access Journals (Sweden)
Jui-Yu Wu
2013-01-01
Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.
Selective Segmentation for Global Optimization of Depth Estimation in Complex Scenes
Directory of Open Access Journals (Sweden)
Sheng Liu
2013-01-01
Full Text Available This paper proposes a segmentation-based global optimization method for depth estimation. Firstly, for obtaining accurate matching cost, the original local stereo matching approach based on self-adapting matching window is integrated with two matching cost optimization strategies aiming at handling both borders and occlusion regions. Secondly, we employ a comprehensive smooth term to satisfy diverse smoothness request in real scene. Thirdly, a selective segmentation term is used for enforcing the plane trend constraints selectively on the corresponding segments to further improve the accuracy of depth results from object level. Experiments on the Middlebury image pairs show that the proposed global optimization approach is considerably competitive with other state-of-the-art matching approaches.
DEFF Research Database (Denmark)
Sørensen, Søren N.; Stolpe, Mathias
2015-01-01
rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples...... but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited...... for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates....
Global Optimization of Minority Game by Smart Agents
Yan-Bo Xie; Bing-Hong Wang; Chin-Kun Hu; Tao Zhou
2004-01-01
We propose a new model of minority game with so-called smart agents such that the standard deviation and the total loss in this model reach the theoretical minimum values in the limit of long time. The smart agents use trail and error method to make a choice but bring global optimization to the system, which suggests that the economic systems may have the ability to self-organize into a highly optimized state by agents who are forced to make decisions based on inductive thinking for their lim...
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
Statistical distributions of optimal global alignment scores of random protein sequences
Directory of Open Access Journals (Sweden)
Tang Jiaowei
2005-10-01
Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.
Application of surrogate-based global optimization to aerodynamic design
Pérez, Esther
2016-01-01
Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto
A global optimization method for evaporative cooling systems based on the entransy theory
International Nuclear Information System (INIS)
Yuan, Fang; Chen, Qun
2012-01-01
Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.
2013-01-01
Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems
Global-local optimization of flapping kinematics in hovering flight
Ghommem, Mehdi; Hajj, M. R.; Mook, Dean T.; Stanford, Bret K.; Bé ran, Philip S.; Watson, Layne T.
2013-01-01
The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.
Global-local optimization of flapping kinematics in hovering flight
Ghommem, Mehdi
2013-06-01
The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.
An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions
Butler, Roger A. R.; Slaminka, Edward E.
1992-03-01
The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei
2014-04-01
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.
Directory of Open Access Journals (Sweden)
Abdulbaset El Hadi Saad
2017-10-01
Full Text Available Advanced global optimization algorithms have been continuously introduced and improved to solve various complex design optimization problems for which the objective and constraint functions can only be evaluated through computation intensive numerical analyses or simulations with a large number of design variables. The often implicit, multimodal, and ill-shaped objective and constraint functions in high-dimensional and “black-box” forms demand the search to be carried out using low number of function evaluations with high search efficiency and good robustness. This work investigates the performance of six recently introduced, nature-inspired global optimization methods: Artificial Bee Colony (ABC, Firefly Algorithm (FFA, Cuckoo Search (CS, Bat Algorithm (BA, Flower Pollination Algorithm (FPA and Grey Wolf Optimizer (GWO. These approaches are compared in terms of search efficiency and robustness in solving a set of representative benchmark problems in smooth-unimodal, non-smooth unimodal, smooth multimodal, and non-smooth multimodal function forms. In addition, four classic engineering optimization examples and a real-life complex mechanical system design optimization problem, floating offshore wind turbines design optimization, are used as additional test cases representing computationally-expensive black-box global optimization problems. Results from this comparative study show that the ability of these global optimization methods to obtain a good solution diminishes as the dimension of the problem, or number of design variables increases. Although none of these methods is universally capable, the study finds that GWO and ABC are more efficient on average than the other four in obtaining high quality solutions efficiently and consistently, solving 86% and 80% of the tested benchmark problems, respectively. The research contributes to future improvements of global optimization methods.
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
Directory of Open Access Journals (Sweden)
Wei Li
2015-01-01
Full Text Available We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.
International Nuclear Information System (INIS)
Xu, Yun-Chao; Chen, Qun
2013-01-01
The vapor-compression refrigeration systems have been one of the essential energy conversion systems for humankind and exhausting huge amounts of energy nowadays. Surrounding the energy efficiency promotion of the systems, there are lots of effectual optimization methods but mainly relied on engineering experience and computer simulations rather than theoretical analysis due to the complex and vague physical essence. We attempt to propose a theoretical global optimization method based on in-depth physical analysis for the involved physical processes, i.e. heat transfer analysis for condenser and evaporator, through introducing the entransy theory and thermodynamic analysis for compressor and expansion valve. The integration of heat transfer and thermodynamic analyses forms the overall physical optimization model for the systems to describe the relation between all the unknown parameters and known conditions, which makes theoretical global optimization possible. With the aid of the mathematical conditional extremum solutions, an optimization equation group and the optimal configuration of all the unknown parameters are analytically obtained. Eventually, via the optimization of a typical vapor-compression refrigeration system with various working conditions to minimize the total heat transfer area of heat exchangers, the validity and superior of the newly proposed optimization method is proved. - Highlights: • A global optimization method for vapor-compression systems is proposed. • Integrating heat transfer and thermodynamic analyses forms the optimization model. • A mathematical relation between design parameters and requirements is derived. • Entransy dissipation is introduced into heat transfer analysis. • The validity of the method is proved via optimization of practical cases
Optimal correction and design parameter search by modern methods of rigorous global optimization
International Nuclear Information System (INIS)
Makino, K.; Berz, M.
2011-01-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle
Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano
2012-05-10
The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits
Directory of Open Access Journals (Sweden)
Kajsa Ljungberg
2010-10-01
Full Text Available Kajsa Ljungberg1, Kateryna Mishchenko2, Sverker Holmgren11Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden; 2Department of Mathematics and Physics, Mälardalen University College, Västerås, SwedenAbstract: We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called QTL, and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms.Keywords: global optimization, QTL mapping, DIRECT
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review
Directory of Open Access Journals (Sweden)
M. K. Sakharov
2015-01-01
Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
Theoretical properties of the global optimizer of two layer neural network
Boob, Digvijay; Lan, Guanghui
2017-01-01
In this paper, we study the problem of optimizing a two-layer artificial neural network that best fits a training dataset. We look at this problem in the setting where the number of parameters is greater than the number of sampled points. We show that for a wide class of differentiable activation functions (this class involves "almost" all functions which are not piecewise linear), we have that first-order optimal solutions satisfy global optimality provided the hidden layer is non-singular. ...
Solving global optimization problems on GPU cluster
Energy Technology Data Exchange (ETDEWEB)
Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)
2016-06-08
The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan
2017-01-01
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.
An Algorithm for Global Optimization Inspired by Collective Animal Behavior
Directory of Open Access Journals (Sweden)
Erik Cuevas
2012-01-01
Full Text Available A metaheuristic algorithm for global optimization called the collective animal behavior (CAB is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.
Global optimization based on noisy evaluations: An empirical study of two statistical approaches
International Nuclear Information System (INIS)
Vazquez, Emmanuel; Villemonteix, Julien; Sidorkiewicz, Maryan; Walter, Eric
2008-01-01
The optimization of the output of complex computer codes has often to be achieved with a small budget of evaluations. Algorithms dedicated to such problems have been developed and compared, such as the Expected Improvement algorithm (El) or the Informational Approach to Global Optimization (IAGO). However, the influence of noisy evaluation results on the outcome of these comparisons has often been neglected, despite its frequent appearance in industrial problems. In this paper, empirical convergence rates for El and IAGO are compared when an additive noise corrupts the result of an evaluation. IAGO appears more efficient than El and various modifications of El designed to deal with noisy evaluations. Keywords. Global optimization; computer simulations; kriging; Gaussian process; noisy evaluations.
A global carbon assimilation system based on a dual optimization method
Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.
2015-02-01
Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.
International Nuclear Information System (INIS)
Dong, Huachao; Song, Baowei; Wang, Peng; Huang, Shuai
2015-01-01
In this paper, a novel kriging-based algorithm for global optimization of computationally expensive black-box functions is presented. This algorithm utilizes a multi-start approach to find all of the local optimal values of the surrogate model and performs searches within the neighboring area around these local optimal positions. Compared with traditional surrogate-based global optimization method, this algorithm provides another kind of balance between exploitation and exploration on kriging-based model. In addition, a new search strategy is proposed and coupled into this optimization process. The local search strategy employs a kind of improved 'Minimizing the predictor' method, which dynamically adjusts search direction and radius until finds the optimal value. Furthermore, the global search strategy utilizes the advantage of kriging-based model in predicting unexplored regions to guarantee the reliability of the algorithm. Finally, experiments on 13 test functions with six algorithms are set up and the results show that the proposed algorithm is very promising.
GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES
International Nuclear Information System (INIS)
Rogers, Adam; Fiege, Jason D.
2012-01-01
Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.
Global optimization of minority game by intelligent agents
Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao
2005-10-01
We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.
Energy Technology Data Exchange (ETDEWEB)
Cho, Su Gil; Jang, Jun Yong; Kim, Ji Hoon; Lee, Tae Hee [Hanyang University, Seoul (Korea, Republic of); Lee, Min Uk [Romax Technology Ltd., Seoul (Korea, Republic of); Choi, Jong Su; Hong, Sup [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)
2015-04-15
Sequential surrogate model-based global optimization algorithms, such as super-EGO, have been developed to increase the efficiency of commonly used global optimization technique as well as to ensure the accuracy of optimization. However, earlier studies have drawbacks because there are three phases in the optimization loop and empirical parameters. We propose a united sampling criterion to simplify the algorithm and to achieve the global optimum of problems with constraints without any empirical parameters. It is able to select the points located in a feasible region with high model uncertainty as well as the points along the boundary of constraint at the lowest objective value. The mean squared error determines which criterion is more dominant among the infill sampling criterion and boundary sampling criterion. Also, the method guarantees the accuracy of the surrogate model because the sample points are not located within extremely small regions like super-EGO. The performance of the proposed method, such as the solvability of a problem, convergence properties, and efficiency, are validated through nonlinear numerical examples with disconnected feasible regions.
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Directory of Open Access Journals (Sweden)
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
Dual Schroedinger Equation as Global Optimization Algorithm
International Nuclear Information System (INIS)
Huang Xiaofei; eGain Communications, Mountain View, CA 94043
2011-01-01
The dual Schroedinger equation is defined as replacing the imaginary number i by -1 in the original one. This paper shows that the dual equation shares the same stationary states as the original one. Different from the original one, it explicitly defines a dynamic process for a system to evolve from any state to lower energy states and eventually to the lowest one. Its power as a global optimization algorithm might be used by nature for constructing atoms and molecules. It shall be interesting to verify its existence in nature.
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2007-01-01
this problem is well-studied for continuous bar areas, we consider in this study the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single available bar area, i.......e., a 0/1 problem. In contrast to the heuristic methods considered in many other approaches, our goal is to compute guaranteed globally optimal structures. This is done by a branch-and-bound method for which convergence can be proven. In this branch-and-bound framework, lower bounds of the optimal......-integer problems. The main intention of this paper is to provide optimal solutions for single and multiple load benchmark examples, which can be used for testing and validating other methods or heuristics for the treatment of this discrete topology design problem....
Economic optimization of a global strategy to address the pandemic threat.
Pike, Jamison; Bogich, Tiffany; Elwood, Sarah; Finnoff, David C; Daszak, Peter
2014-12-30
Emerging pandemics threaten global health and economies and are increasing in frequency. Globally coordinated strategies to combat pandemics, similar to current strategies that address climate change, are largely adaptive, in that they attempt to reduce the impact of a pathogen after it has emerged. However, like climate change, mitigation strategies have been developed that include programs to reduce the underlying drivers of pandemics, particularly animal-to-human disease transmission. Here, we use real options economic modeling of current globally coordinated adaptation strategies for pandemic prevention. We show that they would be optimally implemented within 27 y to reduce the annual rise of emerging infectious disease events by 50% at an estimated one-time cost of approximately $343.7 billion. We then analyze World Bank data on multilateral "One Health" pandemic mitigation programs. We find that, because most pandemics have animal origins, mitigation is a more cost-effective policy than business-as-usual adaptation programs, saving between $344.0.7 billion and $360.3 billion over the next 100 y if implemented today. We conclude that globally coordinated pandemic prevention policies need to be enacted urgently to be optimally effective and that strategies to mitigate pandemics by reducing the impact of their underlying drivers are likely to be more effective than business as usual.
Energy Technology Data Exchange (ETDEWEB)
Rattá, G.A., E-mail: giuseppe.ratta@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, J. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Murari, A. [Consorzio RFX, Associazione EURATOM/ENEA per la Fusione, Padua (Italy); Dormido-Canto, S. [Dpto. de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid (Spain); Moreno, R. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain)
2016-11-15
Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.
International Nuclear Information System (INIS)
Rattá, G.A.; Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.
2016-01-01
Highlights: • A global optimization method based on genetic algorithms was developed. • It allowed improving the prediction of disruptions using APODIS architecture. • It also provides the potential opportunity to develop a spectrum of future predictors using different training datasets. • The future analysis of how their structures reassemble and evolve in each test may help to improve the development of disruption predictors for ITER. - Abstract: Since year 2010, the APODIS architecture has proven its accuracy predicting disruptions in JET tokamak. Nevertheless, it has shown margins for improvements, fact indisputable after the enhanced performances achieved in posterior upgrades. In this article, a complete optimization driven by Genetic Algorithms (GA) is applied to it aiming at considering all possible combination of signals, signal features, quantity of models, their characteristics and internal parameters. This global optimization targets the creation of the best possible system with a reduced amount of required training data. The results harbor no doubts about the reliability of the global optimization method, allowing to outperform the ones of previous versions: 91.77% of predictions (89.24% with an anticipation higher than 10 ms) with a 3.55% of false alarms. Beyond its effectiveness, it also provides the potential opportunity to develop a spectrum of future predictors using different training datasets.
Global optimization for quantum dynamics of few-fermion systems
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
An Optimal Method for Developing Global Supply Chain Management System
Directory of Open Access Journals (Sweden)
Hao-Chun Lu
2013-01-01
Full Text Available Owing to the transparency in supply chains, enhancing competitiveness of industries becomes a vital factor. Therefore, many developing countries look for a possible method to save costs. In this point of view, this study deals with the complicated liberalization policies in the global supply chain management system and proposes a mathematical model via the flow-control constraints, which are utilized to cope with the bonded warehouses for obtaining maximal profits. Numerical experiments illustrate that the proposed model can be effectively solved to obtain the optimal profits in the global supply chain environment.
Global structural optimizations of surface systems with a genetic algorithm
International Nuclear Information System (INIS)
Chuang, Feng-Chuan
2005-01-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Global Network Alignment Method Using Discrete Particle Swarm Optimization.
Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia
2016-10-19
Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Directory of Open Access Journals (Sweden)
Younes Saadi
Full Text Available The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive and exploitation (intensive of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be
Simulated Annealing-Based Krill Herd Algorithm for Global Optimization
Directory of Open Access Journals (Sweden)
Gai-Ge Wang
2013-01-01
Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.
Economic optimization of a global strategy to address the pandemic threat
Pike, Jamison; Bogich, Tiffany; Elwood, Sarah; Finnoff, David C.; Daszak, Peter
2014-01-01
Emerging pandemics threaten global health and economies and are increasing in frequency. Globally coordinated strategies to combat pandemics, similar to current strategies that address climate change, are largely adaptive, in that they attempt to reduce the impact of a pathogen after it has emerged. However, like climate change, mitigation strategies have been developed that include programs to reduce the underlying drivers of pandemics, particularly animal-to-human disease transmission. Here, we use real options economic modeling of current globally coordinated adaptation strategies for pandemic prevention. We show that they would be optimally implemented within 27 y to reduce the annual rise of emerging infectious disease events by 50% at an estimated one-time cost of approximately $343.7 billion. We then analyze World Bank data on multilateral “One Health” pandemic mitigation programs. We find that, because most pandemics have animal origins, mitigation is a more cost-effective policy than business-as-usual adaptation programs, saving between $344.0.7 billion and $360.3 billion over the next 100 y if implemented today. We conclude that globally coordinated pandemic prevention policies need to be enacted urgently to be optimally effective and that strategies to mitigate pandemics by reducing the impact of their underlying drivers are likely to be more effective than business as usual. PMID:25512538
A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions
Fowkes, Jaroslav M.
2012-06-21
We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.
A Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Dispositional Optimism and Terminal Decline in Global Quality of Life
Zaslavsky, Oleg; Palgi, Yuval; Rillamas-Sun, Eileen; LaCroix, Andrea Z.; Schnall, Eliezer; Woods, Nancy F.; Cochrane, Barbara B.; Garcia, Lorena; Hingle, Melanie; Post, Stephen; Seguin, Rebecca; Tindle, Hilary; Shrira, Amit
2015-01-01
We examined whether dispositional optimism relates to change in global quality of life (QOL) as a function of either chronological age or years to impending death. We used a sample of 2,096 deceased postmenopausal women from the Women's Health Initiative clinical trials who were enrolled in the 2005-2010 Extension Study and for whom at least 1…
Identification of metabolic system parameters using global optimization methods
Directory of Open Access Journals (Sweden)
Gatzke Edward P
2006-01-01
Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.
Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle
Directory of Open Access Journals (Sweden)
B. Mashadi
Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.
Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan
2017-09-01
While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a "Global-to-Global" approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2 , is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
Annealing evolutionary stochastic approximation Monte Carlo for global optimization
Liang, Faming
2010-04-08
In this paper, we propose a new algorithm, the so-called annealing evolutionary stochastic approximation Monte Carlo (AESAMC) algorithm as a general optimization technique, and study its convergence. AESAMC possesses a self-adjusting mechanism, whose target distribution can be adapted at each iteration according to the current samples. Thus, AESAMC falls into the class of adaptive Monte Carlo methods. This mechanism also makes AESAMC less trapped by local energy minima than nonadaptive MCMC algorithms. Under mild conditions, we show that AESAMC can converge weakly toward a neighboring set of global minima in the space of energy. AESAMC is tested on multiple optimization problems. The numerical results indicate that AESAMC can potentially outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.
SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization
Energy Technology Data Exchange (ETDEWEB)
Li, Dengwang; Wang, Jie [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong (China); Kapp, Daniel S.; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)
2015-06-15
Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is
SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization
International Nuclear Information System (INIS)
Li, Dengwang; Wang, Jie; Kapp, Daniel S.; Xing, Lei
2015-01-01
Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is
QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.
Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon
2012-01-01
Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Optimizing rice yields while minimizing yield-scaled global warming potential.
Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A
2014-05-01
To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.
Spatiotemporal radiotherapy planning using a global optimization approach
Adibi, Ali; Salari, Ehsan
2018-02-01
This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.
Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.
Global optimization in the adaptive assay of subterranean uranium nodules
International Nuclear Information System (INIS)
Vulkan, U.; Ben-Haim, Y.
1989-01-01
An adaptive assay is one in which the design of the assay system is modified during operation in response to measurements obtained on-line. The present work has two aims: to design an adaptive system for borehole assay of isolated subterranean uranium nodules, and to investigate globality of optimal design in adaptive assay. It is shown experimentally that reasonably accurate estimates of uranium mass are obtained for a wide range of nodule shapes, on the basis of an adaptive assay system based on a simple geomorphological model. Furthermore, two concepts are identified which underlie the optimal design of the assay system. The adaptive assay approach shows promise for successful measurement of spatially random material in many geophysical applications. (author)
Global optimization numerical strategies for rate-independent processes
Czech Academy of Sciences Publication Activity Database
Benešová, Barbora
2011-01-01
Roč. 50, č. 2 (2011), s. 197-220 ISSN 0925-5001 R&D Projects: GA ČR GAP201/10/0357 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : rate-independent processes * numerical global optimization * energy estimates based algorithm Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2011 http://math.hnue.edu.vn/portal/rss.viewpage.php?id=0000037780&ap=L3BvcnRhbC9ncmFiYmVyLnBocD9jYXRpZD0xMDEyJnBhZ2U9Mg==
Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert
2011-08-25
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Sorribas Albert
2011-08-01
Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing
Rais-Rohani, Masound
1999-01-01
This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).
GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.
Energy Technology Data Exchange (ETDEWEB)
D' Helon, CD
2004-08-18
The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.
Comparison of global optimization approaches for robust calibration of hydrologic model parameters
Jung, I. W.
2015-12-01
Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Directory of Open Access Journals (Sweden)
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
International Nuclear Information System (INIS)
Göktürkler, G; Balkaya, Ç
2012-01-01
Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-potential (SP) anomalies originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP anomalies observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the anomaly. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms. (paper)
A concept for global optimization of topology design problems
DEFF Research Database (Denmark)
Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi
2006-01-01
We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...
Global warming and carbon taxation. Optimal policy and the role of administration costs
International Nuclear Information System (INIS)
Williams, M.
1995-01-01
This paper develops a model relating CO 2 emissions to atmosphere concentrations, global temperature change and economic damages. For a variety of parameter assumptions, the model provides estimates of the marginal cost of emissions in various years. The optimal carbon tax is a function of the marginal emission cost and the costs of administering the tax. This paper demonstrates that under any reasonable assumptions, the optimal carbon tax is zero for at least several decades. (author)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-01-01
cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural
Liang, Faming
2014-04-03
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
Model-data fusion across ecosystems: from multisite optimizations to global simulations
Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.
2014-11-01
This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index
Global optimization methods for the aerodynamic shape design of transonic cascades
International Nuclear Information System (INIS)
Mengistu, T.; Ghaly, W.
2003-01-01
Two global optimization algorithms, namely Genetic Algorithm (GA) and Simulated Annealing (SA), have been applied to the aerodynamic shape optimization of transonic cascades; the objective being the redesign of an existing turbomachine airfoil to improve its performance by minimizing the total pressure loss while satisfying a number of constraints. This is accomplished by modifying the blade camber line; keeping the same blade thickness distribution, mass flow rate and the same flow turning. The objective is calculated based on an Euler solver and the blade camber line is represented with non-uniform rational B-splines (NURBS). The SA and GA methods were first assessed for known test functions and their performance in optimizing the blade shape for minimum loss is then demonstrated on a transonic turbine cascade where it is shown to produce a significant reduction in total pressure loss by eliminating the passage shock. (author)
Del Rio, Beatriz G; Dieterich, Johannes M; Carter, Emily A
2017-08-08
The accuracy of local pseudopotentials (LPSs) is one of two major determinants of the fidelity of orbital-free density functional theory (OFDFT) simulations. We present a global optimization strategy for LPSs that enables OFDFT to reproduce solid and liquid properties obtained from Kohn-Sham DFT. Our optimization strategy can fit arbitrary properties from both solid and liquid phases, so the resulting globally optimized local pseudopotentials (goLPSs) can be used in solid and/or liquid-phase simulations depending on the fitting process. We show three test cases proving that we can (1) improve solid properties compared to our previous bulk-derived local pseudopotential generation scheme; (2) refine predicted liquid and solid properties by adding force matching data; and (3) generate a from-scratch, accurate goLPS from the local channel of a non-local pseudopotential. The proposed scheme therefore serves as a full and improved LPS construction protocol.
Implementation and verification of global optimization benchmark problems
Posypkin, Mikhail; Usov, Alexander
2017-12-01
The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.
Directory of Open Access Journals (Sweden)
Weitian Lin
2014-01-01
Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions
Fowkes, Jaroslav M.; Gould, Nicholas I. M.; Farmer, Chris L.
2012-01-01
We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation
Implementation and verification of global optimization benchmark problems
Directory of Open Access Journals (Sweden)
Posypkin Mikhail
2017-12-01
Full Text Available The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its’ gradient at a given point and the interval estimates of a function and its’ gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.
External costs in the global energy optimization models. A tool in favour of sustain ability
International Nuclear Information System (INIS)
Cabal Cuesta, H.
2007-01-01
The aim of this work is the analysis of the effects of the GHG external costs internalization in the energy systems. This may provide a useful tool to support decision makers to help reaching the energy systems sustain ability. External costs internalization has been carried out using two methods. First, CO 2 externalities of different power generation technologies have been internalized to evaluate their effects on the economic competitiveness of these present and future technologies. The other method consisted of analysing and optimizing the global energy system, from an economic and environmental point of view, using the global energy optimization model generator, TIMES, with a time horizon of 50 years. Finally, some scenarios regarding environmental and economic strategic measures have been analysed. (Author)
International Nuclear Information System (INIS)
Zou, Dexuan; Li, Steven; Li, Zongyan; Kong, Xiangyong
2017-01-01
Highlights: • A new global particle swarm optimization (NGPSO) is proposed. • NGPSO has strong convergence and desirable accuracy. • NGPSO is used to handle the economic emission dispatch with or without transmission losses. • The equality constraint can be satisfied by solving a quadratic equation. • The inequality constraints can be satisfied by using penalty function method. - Abstract: A new global particle swarm optimization (NGPSO) algorithm is proposed to solve the economic emission dispatch (EED) problems in this paper. NGPSO is different from the traditional particle swarm optimization (PSO) algorithm in two aspects. First, NGPSO uses a new position updating equation which relies on the global best particle to guide the searching activities of all particles. Second, it uses the randomization based on the uniform distribution to slightly disturb the flight trajectories of particles during the late evolutionary process. The two steps enable NGPSO to effectively execute a number of global searches, and thus they increase the chance of exploring promising solution space, and reduce the probabilities of getting trapped into local optima for all particles. On the other hand, the two objective functions of EED are normalized separately according to all candidate solutions, and then they are incorporated into one single objective function. The transformation steps are very helpful in eliminating the difference caused by the different dimensions of the two functions, and thus they strike a balance between the fuel cost and emission. In addition, a simple and common penalty function method is employed to facilitate the satisfactions of EED’s constraints. Based on these improvements in PSO, objective functions and constraints handling, high-quality solutions can be obtained for EED problems. Five examples are chosen to testify the performance of three improved PSOs on solving EED problems with or without transmission losses. Experimental results show that
Global Optimization using Interval Analysis : Interval Optimization for Aerospace Applications
Van Kampen, E.
2010-01-01
Optimization is an important element in aerospace related research. It is encountered for example in trajectory optimization problems, such as: satellite formation flying, spacecraft re-entry optimization and airport approach and departure optimization; in control optimization, for example in
Directory of Open Access Journals (Sweden)
Carlos Pozo
Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study
Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano
2012-01-01
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the
Negotiation and Optimality in an Economic Model of Global Climate Change
International Nuclear Information System (INIS)
Gottinger, H.
2000-03-01
The paper addresses the problem of governmental intervention in a multi-country regime of controlling global climate change. Using a simplified case of a two-country, two-sector general equilibrium model the paper shows that the global optimal time path of economic outputs and temperature will converge to a unique steady state provided that consumers care enough about the future. To answer a set of questions relating to 'what will happen if governments decide to correct the problem of global warming?' we study the equilibrium outcome in a bargaining game where two countries negotiate an agreement on future consumption and production plans for the purpose of correcting the problem of climate change. It is shown that the agreement arising from such a negotiation process achieves the best outcome and that it can be implemented in decentralised economies by a system of taxes, subsidies and transfers. By employing the recent advances in non-cooperative bargaining theory, the agreement between two countries is derived endogenously through a well-specified bargaining procedure
Negotiation and Optimality in an Economic Model of Global Climate Change
Energy Technology Data Exchange (ETDEWEB)
Gottinger, H. [International Institute for Environmental Economics and Management IIEEM, University of Maastricht, Maastricht (Netherlands)
2000-03-01
The paper addresses the problem of governmental intervention in a multi-country regime of controlling global climate change. Using a simplified case of a two-country, two-sector general equilibrium model the paper shows that the global optimal time path of economic outputs and temperature will converge to a unique steady state provided that consumers care enough about the future. To answer a set of questions relating to 'what will happen if governments decide to correct the problem of global warming?' we study the equilibrium outcome in a bargaining game where two countries negotiate an agreement on future consumption and production plans for the purpose of correcting the problem of climate change. It is shown that the agreement arising from such a negotiation process achieves the best outcome and that it can be implemented in decentralised economies by a system of taxes, subsidies and transfers. By employing the recent advances in non-cooperative bargaining theory, the agreement between two countries is derived endogenously through a well-specified bargaining procedure.
Directory of Open Access Journals (Sweden)
Feng Zou
2016-01-01
Full Text Available An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO, which is considering the teacher’s behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.
Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions
Odat, Enas M.
2011-05-01
The purpose of this dissertation is to present a methodology to model global sequence alignment problem as directed acyclic graph which helps to extract all possible optimal alignments. Moreover, a mechanism to sequentially optimize sequence alignment problem relative to different cost functions is suggested. Sequence alignment is mostly important in computational biology. It is used to find evolutionary relationships between biological sequences. There are many algo- rithms that have been developed to solve this problem. The most famous algorithms are Needleman-Wunsch and Smith-Waterman that are based on dynamic program- ming. In dynamic programming, problem is divided into a set of overlapping sub- problems and then the solution of each subproblem is found. Finally, the solutions to these subproblems are combined into a final solution. In this thesis it has been proved that for two sequences of length m and n over a fixed alphabet, the suggested optimization procedure requires O(mn) arithmetic operations per cost function on a single processor machine. The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.
International Nuclear Information System (INIS)
Martorell, S.; Serradell, V.; Munoz, A.; Sanchez, A.
1997-01-01
Background, objective, scope, detailed working plan and follow-up and final product of the project ''Global optimization of maintenance and surveillance testing based on reliability and probabilistic safety assessment'' are described
International Nuclear Information System (INIS)
Frolov, A.M.
1986-01-01
The problem of exact variational calculations of few-particle systems in the exponential basis of the relative coordinates using nonlinear parameters is studied. The techniques of stepwise optimization and global chaos of nonlinear parameters are used to calculate the S and P states of homonuclear muonic molecules with an error of no more than +0.001 eV. The global-chaos technique also has proved to be successful in the case of the nuclear systems 3 H and 3 He
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-07
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
DEFF Research Database (Denmark)
Rasmussen, Marie-Louise Højlund; Stolpe, Mathias
2008-01-01
the physics, and the cuts (Combinatorial Benders’ and projected Chvátal–Gomory) come from an understanding of the particular mathematical structure of the reformulation. The impact of a stronger representation is investigated on several truss topology optimization problems in two and three dimensions.......The subject of this article is solving discrete truss topology optimization problems with local stress and displacement constraints to global optimum. We consider a formulation based on the Simultaneous ANalysis and Design (SAND) approach. This intrinsically non-convex problem is reformulated...
Lagos, Soledad R.; Velis, Danilo R.
2018-02-01
We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.
WFH: closing the global gap--achieving optimal care.
Skinner, Mark W
2012-07-01
For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan
Protein structure modeling for CASP10 by multiple layers of global optimization.
Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2014-02-01
In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Jinkui Liu
2012-01-01
Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Global optimization applied to GPS positioning by ambiguity functions
International Nuclear Information System (INIS)
Baselga, Sergio
2010-01-01
Differential GPS positioning with carrier-phase observables is commonly done in a process that involves determination of the unknown integer ambiguity values. An alternative approach, named the ambiguity function method, was already proposed in the early days of GPS positioning. By making use of a trigonometric function ambiguity unknowns are eliminated from the functional model before the estimation process. This approach has significant advantages, such as ease of use and insensitivity to cycle slips, but requires such high accuracy in the initial approximate coordinates that its use has been practically dismissed from consideration. In this paper a novel strategy is proposed so that the need for highly accurate initial coordinates disappears: the application of a global optimization method to the ambiguity functions model. The use of this strategy enables the ambiguity function method to compete with the present prevailing approach of ambiguity resolution
Adjusting process count on demand for petascale global optimization
Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.; Haftka, Rafael T.; Trosset, Michael W.
2013-01-01
There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, the modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.
Kleijnen, Jack P.C.; van Beers, W.C.M.; van Nieuwenhuyse, I.
2010-01-01
This paper uses a sequentialized experimental design to select simulation input com- binations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code). This
International Nuclear Information System (INIS)
Frolov, A.M.
1986-01-01
Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of ppμ, ddμ, ttμ homonuclear mesomolecules within the error ≤±0.001 eV. The global chaos method turned out to be well applicable to nuclear 3 H and 3 He systems
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
A New Method for Global Optimization Based on Stochastic Differential Equations.
1984-12-01
Serie Naranja, n. 204, IINAS-UNAM, Mx ic o D. F. , 1979. [6] A. V. Levy, A. Montalvo, S. G6mez, A. Cald’er6n, ’Topics in global optimi~zation", in: J...FTFOPT aF 455. £ 456. C S7ART SERIES OF TR IAL5 457. C 458. DO 30 IC x 1,M7RIA&. 459. C 46r’. C SET INITIALIZATION IN&EX FOR NOISE GENERATOR 461. C 1 462...Ia iunghezza del passo di integrazione temporale , t k =o+ hi+ h 2+ ... + h kl rk e u ksono due vettori aleatori in n.-dimensioni scelti ii primo da
Directory of Open Access Journals (Sweden)
Zhigang Lian
2010-01-01
Full Text Available The Job-shop scheduling problem (JSSP is a branch of production scheduling, which is among the hardest combinatorial optimization problems. Many different approaches have been applied to optimize JSSP, but for some JSSP even with moderate size cannot be solved to guarantee optimality. The original particle swarm optimization algorithm (OPSOA, generally, is used to solve continuous problems, and rarely to optimize discrete problems such as JSSP. In OPSOA, through research I find that it has a tendency to get stuck in a near optimal solution especially for middle and large size problems. The local and global search combine particle swarm optimization algorithm (LGSCPSOA is used to solve JSSP, where particle-updating mechanism benefits from the searching experience of one particle itself, the best of all particles in the swarm, and the best of particles in neighborhood population. The new coding method is used in LGSCPSOA to optimize JSSP, and it gets all sequences are feasible solutions. Three representative instances are made computational experiment, and simulation shows that the LGSCPSOA is efficacious for JSSP to minimize makespan.
Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization
Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi
Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.
Directory of Open Access Journals (Sweden)
Eline L Korenromp
Full Text Available BACKGROUND: The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. METHODOLOGY/PRINCIPAL FINDINGS: Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB, including antiretroviral treatment (ART during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA for 33%, sub-Saharan Africa (SSA for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need--an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8-12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa--with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. CONCLUSIONS/SIGNIFICANCE: These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and
Energy Technology Data Exchange (ETDEWEB)
Frolov, A M
1986-09-01
Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of pp..mu.., dd..mu.., tt..mu.. homonuclear mesomolecules within the error less than or equal to+-0.001 eV. The global chaos method turned out to be well applicable to nuclear /sup 3/H and /sup 3/He systems.
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Stolpe, Mathias
2009-01-01
we use the theory developed in Part I to design a convergent nonlinear branch-and-bound method tailored to solve large-scale instances of the original discrete problem. The problem formulation and the needed theoretical results from Part I are repeated such that this paper is self-contained. We focus...... the largest discrete topology design problems solved by means of global optimization....
The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps
Directory of Open Access Journals (Sweden)
Adriana NASTASE
2012-12-01
Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes
Dressel, F.; Kobe, S.
2004-01-01
A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.
Research on optimal investment path of transmission corridor under the global energy Internet
Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han
2018-02-01
Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.
Global stability, periodic solutions, and optimal control in a nonlinear differential delay model
Directory of Open Access Journals (Sweden)
Anatoli F. Ivanov
2010-09-01
Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.
Local search for optimal global map generation using mid-decadal landsat images
Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.
2007-01-01
NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Climate, Agriculture, Energy and the Optimal Allocation of Global Land Use
Steinbuks, J.; Hertel, T. W.
2011-12-01
The allocation of the world's land resources over the course of the next century has become a pressing research question. Continuing population increases, improving, land-intensive diets amongst the poorest populations in the world, increasing production of biofuels and rapid urbanization in developing countries are all competing for land even as the world looks to land resources to supply more environmental services. The latter include biodiversity and natural lands, as well as forests and grasslands devoted to carbon sequestration. And all of this is taking place in the context of faster than expected climate change which is altering the biophysical environment for land-related activities. The goal of the paper is to determine the optimal profile for global land use in the context of growing commercial demands for food and forest products, increasing non-market demands for ecosystem services, and more stringent GHG mitigation targets. We then seek to assess how the uncertainty associated with the underlying biophysical and economic processes influences this optimal profile of land use, in light of potential irreversibility in these decisions. We develop a dynamic long-run, forward-looking partial equilibrium framework in which the societal objective function being maximized places value on food production, liquid fuels (including biofuels), timber production, forest carbon and biodiversity. Given the importance of land-based emissions to any GHG mitigation strategy, as well as the potential impacts of climate change itself on the productivity of land in agriculture, forestry and ecosystem services, we aim to identify the optimal allocation of the world's land resources, over the course of the next century, in the face of alternative GHG constraints. The forestry sector is characterized by multiple forest vintages which add considerable computational complexity in the context of this dynamic analysis. In order to solve this model efficiently, we have employed the
Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet
Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)
2001-01-01
Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight
International Nuclear Information System (INIS)
Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin
2015-01-01
Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models
Energy Technology Data Exchange (ETDEWEB)
T. Hikmet Karakoc; Onder Turan [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)
2008-09-30
The main objective of the present study is to perform minimizing specific fuel consumption of a non afterburning high bypass turbofan engine with separate exhaust streams and unmixed flow for reducing global effect. The values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions, different fuel types and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB programming language, while objective function is determined for minimizing the specific fuel consumption. The input variables included the compressor pressure ratio ({pi}{sub c}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Hydrogen was selected as fuel type in real parametric cycle analysis of commercial turbofans. It may be concluded that the software program developed can successfully solve optimization problems at 10{le}{pi}{sub c}{le}20, 2{le}{alpha}{le}10 and h{sub PR} 120,000 with aircraft flight Mach number {le}0.8.
Prediction of energy demands using neural network with model identification by global optimization
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Ryohei; Wakui, Tetsuya; Satake, Ryoichi [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)
2009-02-15
To operate energy supply plants properly from the viewpoints of stable energy supply, and energy and cost savings, it is important to predict energy demands accurately as basic conditions. Several methods of predicting energy demands have been proposed, and one of them is to use neural networks. Although local optimization methods such as gradient ones have conventionally been adopted in the back propagation procedure to identify the values of model parameters, they have the significant drawback that they can derive only local optimal solutions. In this paper, a global optimization method called ''Modal Trimming Method'' proposed for non-linear programming problems is adopted to identify the values of model parameters. In addition, the trend and periodic change are first removed from time series data on energy demand, and the converted data is used as the main input to a neural network. Furthermore, predicted values of air temperature and relative humidity are considered as additional inputs to the neural network, and their effect on the prediction of energy demand is investigated. This approach is applied to the prediction of the cooling demand in a building used for a bench mark test of a variety of prediction methods, and its validity and effectiveness are clarified. (author)
3D prostate TRUS segmentation using globally optimized volume-preserving prior.
Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing
2014-01-01
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
Development of a fuzzy optimization model, supporting global warming decision-making
International Nuclear Information System (INIS)
Leimbach, M.
1996-01-01
An increasing number of models have been developed to support global warming response policies. The model constructors are facing a lot of uncertainties which limit the evidence of these models. The support of climate policy decision-making is only possible in a semi-quantitative way, as presented by a Fuzzy model. The model design is based on an optimization approach, integrated in a bounded risk decision-making framework. Given some regional emission-related and impact-related restrictions, optimal emission paths can be calculated. The focus is not only on carbon dioxide but on other greenhouse gases too. In the paper, the components of the model will be described. Cost coefficients, emission boundaries and impact boundaries are represented as Fuzzy parameters. The Fuzzy model will be transformed into a computational one by using an approach of Rommelfanger. In the second part, some problems of applying the model to computations will be discussed. This includes discussions on the data situation and the presentation, as well as interpretation of results of sensitivity analyses. The advantage of the Fuzzy approach is that the requirements regarding data precision are not so strong. Hence, the effort for data acquisition can be reduced and computations can be started earlier. 9 figs., 3 tabs., 17 refs., 1 appendix
A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm
Directory of Open Access Journals (Sweden)
Santhan Kumar Cherukuri
2016-11-01
Full Text Available To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG systems are to be operated at their maximum power point (MPP under both variable climatic and partial shaded condition (PSC. From literature most of conventional MPP tracking (MPPT methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented. From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed. Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016 A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3, 225-232. http://dx.doi.org/10.14710/ijred.5.3.225-232
A DE-Based Scatter Search for Global Optimization Problems
Directory of Open Access Journals (Sweden)
Kun Li
2015-01-01
Full Text Available This paper proposes a hybrid scatter search (SS algorithm for continuous global optimization problems by incorporating the evolution mechanism of differential evolution (DE into the reference set updated procedure of SS to act as the new solution generation method. This hybrid algorithm is called a DE-based SS (SSDE algorithm. Since different kinds of mutation operators of DE have been proposed in the literature and they have shown different search abilities for different kinds of problems, four traditional mutation operators are adopted in the hybrid SSDE algorithm. To adaptively select the mutation operator that is most appropriate to the current problem, an adaptive mechanism for the candidate mutation operators is developed. In addition, to enhance the exploration ability of SSDE, a reinitialization method is adopted to create a new population and subsequently construct a new reference set whenever the search process of SSDE is trapped in local optimum. Computational experiments on benchmark problems show that the proposed SSDE is competitive or superior to some state-of-the-art algorithms in the literature.
Automatic Construction and Global Optimization of a Multisentiment Lexicon
Directory of Open Access Journals (Sweden)
Xiaoping Yang
2016-01-01
Full Text Available Manual annotation of sentiment lexicons costs too much labor and time, and it is also difficult to get accurate quantification of emotional intensity. Besides, the excessive emphasis on one specific field has greatly limited the applicability of domain sentiment lexicons (Wang et al., 2010. This paper implements statistical training for large-scale Chinese corpus through neural network language model and proposes an automatic method of constructing a multidimensional sentiment lexicon based on constraints of coordinate offset. In order to distinguish the sentiment polarities of those words which may express either positive or negative meanings in different contexts, we further present a sentiment disambiguation algorithm to increase the flexibility of our lexicon. Lastly, we present a global optimization framework that provides a unified way to combine several human-annotated resources for learning our 10-dimensional sentiment lexicon SentiRuc. Experiments show the superior performance of SentiRuc lexicon in category labeling test, intensity labeling test, and sentiment classification tasks. It is worth mentioning that, in intensity label test, SentiRuc outperforms the second place by 21 percent.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Directory of Open Access Journals (Sweden)
Narinder Singh
2018-03-01
Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes
DEFF Research Database (Denmark)
Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren
1994-01-01
indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....
Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.
2010-03-01
Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.
Libraro, Paola
The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.
Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul
2018-01-01
We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when
Globalization, Inequality, Say’s Law, and Fiscal Globalism
Directory of Open Access Journals (Sweden)
Gerasimos T. Soldatos
2017-07-01
Full Text Available This is a brief note maintaining that financial globalization has been faster than the integration of the remaining sectors of the world economy, thus encouraging wealth inequality, under-production, and under-consumption in line with Say’s Law. Financial investment has become more profitable than real investment, discouraging production ventures, and weakening labor’s relative income position and purchasing power. Moreover, this article works out a model of international government indirect tax competition as a policy means against increasing inequality. The mentality under which this tax policy paradigm is put forward is that the competition of nation states in a fiscal globalism fashion crystallizes the optimal level of centralization under globalism; optimal, that is, from the viewpoint of safeguarding against the manipulation of world markets by financiers.
An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian
2018-03-01
Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)
Adaptive extremal optimization by detrended fluctuation analysis
International Nuclear Information System (INIS)
Hamacher, K.
2007-01-01
Global optimization is one of the key challenges in computational physics as several problems, e.g. protein structure prediction, the low-energy landscape of atomic clusters, detection of community structures in networks, or model-parameter fitting can be formulated as global optimization problems. Extremal optimization (EO) has become in recent years one particular, successful approach to the global optimization problem. As with almost all other global optimization approaches, EO is driven by an internal dynamics that depends crucially on one or more parameters. Recently, the existence of an optimal scheme for this internal parameter of EO was proven, so as to maximize the performance of the algorithm. However, this proof was not constructive, that is, one cannot use it to deduce the optimal parameter itself a priori. In this study we analyze the dynamics of EO for a test problem (spin glasses). Based on the results we propose an online measure of the performance of EO and a way to use this insight to reformulate the EO algorithm in order to construct optimal values of the internal parameter online without any input by the user. This approach will ultimately allow us to make EO parameter free and thus its application in general global optimization problems much more efficient
Global optima for the Zhou–Rozvany problem
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2011-01-01
We consider the minimum compliance topology design problem with a volume constraint and discrete design variables. In particular, our interest is to provide global optimal designs to a challenging benchmark example proposed by Zhou and Rozvany. Global optimality is achieved by an implementation o...... algorithms, we find global optimal designs for several values on the available volume. These designs can be used to validate other methods and heuristics for the considered class of problems....
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Population Structures in Russia: Optimality and Dependence on Parameters of Global Evolution
Directory of Open Access Journals (Sweden)
Yuri Yegorov
2016-07-01
Full Text Available The paper is devoted to analytical investigation of the division of geographical space into urban and rural areas with application to Russia. Yegorov (2005, 2006, 2009 has suggested the role of population density on economics. A city has an attractive potential based on scale economies. The optimal city size depends on the balance between its attractive potential and the cost of living that can be approximated by equilibrium land rent and commuting cost. For moderate scale effects optimal population of a city depends negatively on transport costs that are related positively with energy price index. The optimal agricultural density of population can also be constructed. The larger is a land slot per peasant, the higher will be the output from one unit of his labour force applied to this slot. But at the same time, larger farm size results in increase of energy costs, related to land development, collecting the crop and bringing it to the market. In the last 10 years we have observed substantial rise of both food and energy prices at the world stock markets. However, the income of farmers did not grow as fast as food price index. This can shift optimal rural population density to lower level, causing migration to cities (and we observe this tendency globally. Any change in those prices results in suboptimality of existing spatial structures. If changes are slow, the optimal infrastructure can be adjusted by simple migration. If the shocks are high, adaptation may be impossible and shock will persist. This took place in early 1990es in the former USSR, where after transition to world price for oil in domestic markets existing spatial infrastructure became suboptimal and resulted in persistent crisis, leading to deterioration of both industry and agriculture. Russia is the largest country but this is also its problem. Having large resource endowment per capita, it is problematic to build sufficient infrastructure. Russia has too low population
Global Simulation of Aviation Operations
Sridhar, Banavar; Sheth, Kapil; Ng, Hok Kwan; Morando, Alex; Li, Jinhua
2016-01-01
The simulation and analysis of global air traffic is limited due to a lack of simulation tools and the difficulty in accessing data sources. This paper provides a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASA's Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to present results on the evolution of global air traffic patterns from a concentration of traffic inside US, Europe and across the Atlantic Ocean to a more diverse traffic pattern across the globe with accelerated growth in Asia, Australia, Africa and South America. The simulation analyzes seasonal variation in the long-haul wind-optimal traffic patterns in six major regions of the world and provides potential time-savings of wind-optimal routes compared with either great circle routes or current flight-plans if available.
Energy Technology Data Exchange (ETDEWEB)
Weinrach, J.B.; Bennett, D.W.
1987-12-01
An algorithm for the optimization of data collection time has been written and a subsequent computer program tested for diffractometer systems. The program, which utilizes a global statistical approach to the traveling salesman problem, yields reasonable solutions in a relatively short time. The algorithm has been successful in treating very large data sets (up to 4000 points) in three dimensions with subsequent time savings of ca 30%.
Bayesian optimization for materials science
Packwood, Daniel
2017-01-01
This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While re...
Multi-Material Design Optimization of Composite Structures
DEFF Research Database (Denmark)
Hvejsel, Christian Frier
properties. The modeling encompasses discrete orientationing of orthotropic materials, selection between different distinct materials as well as removal of material representing holes in the structure within a unified parametrization. The direct generalization of two-phase topology optimization to any number...... of a relaxation-based search heuristic that accelerates a Generalized Benders' Decomposition technique for global optimization and enables the solution of medium-scale problems to global optimality. Improvements in the ability to solve larger problems to global optimality are found and potentially further...... improvements may be obtained with this technique in combination with cheaper heuristics....
Global shape optimization of airfoil using multi-objective genetic algorithm
International Nuclear Information System (INIS)
Lee, Ju Hee; Lee, Sang Hwan; Park, Kyoung Woo
2005-01-01
The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model
Global shape optimization of airfoil using multi-objective genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Lee, Ju Hee; Lee, Sang Hwan [Hanyang Univ., Seoul (Korea, Republic of); Park, Kyoung Woo [Hoseo Univ., Asan (Korea, Republic of)
2005-10-01
The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model.
Generalized Benders’ Decomposition for topology optimization problems
DEFF Research Database (Denmark)
Munoz Queupumil, Eduardo Javier; Stolpe, Mathias
2011-01-01
) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...
Jarrar, Mu'taman; Abdul Rahman, Hamzah; Don, Mohammad Sobri
2015-10-20
Demand for health care service has significantly increased, while the quality of healthcare and patient safety has become national and international priorities. This paper aims to identify the gaps and the current initiatives for optimizing the quality of care and patient safety in Malaysia. Review of the current literature. Highly cited articles were used as the basis to retrieve and review the current initiatives for optimizing the quality of care and patient safety. The country health plan of Ministry of Health (MOH) Malaysia and the MOH Malaysia Annual Reports were reviewed. The MOH has set four strategies for optimizing quality and sustaining quality of life. The 10th Malaysia Health Plan promotes the theme "1 Care for 1 Malaysia" in order to sustain the quality of care. Despite of these efforts, the total number of complaints received by the medico-legal section of the MOH Malaysia is increasing. The current global initiatives indicted that quality performance generally belong to three main categories: patient; staffing; and working environment related factors. There is no single intervention for optimizing quality of care to maintain patient safety. Multidimensional efforts and interventions are recommended in order to optimize the quality of care and patient safety in Malaysia.
Jarrar, Mu’taman; Rahman, Hamzah Abdul; Don, Mohammad Sobri
2016-01-01
Background and Objective: Demand for health care service has significantly increased, while the quality of healthcare and patient safety has become national and international priorities. This paper aims to identify the gaps and the current initiatives for optimizing the quality of care and patient safety in Malaysia. Design: Review of the current literature. Highly cited articles were used as the basis to retrieve and review the current initiatives for optimizing the quality of care and patient safety. The country health plan of Ministry of Health (MOH) Malaysia and the MOH Malaysia Annual Reports were reviewed. Results: The MOH has set four strategies for optimizing quality and sustaining quality of life. The 10th Malaysia Health Plan promotes the theme “1 Care for 1 Malaysia” in order to sustain the quality of care. Despite of these efforts, the total number of complaints received by the medico-legal section of the MOH Malaysia is increasing. The current global initiatives indicted that quality performance generally belong to three main categories: patient; staffing; and working environment related factors. Conclusions: There is no single intervention for optimizing quality of care to maintain patient safety. Multidimensional efforts and interventions are recommended in order to optimize the quality of care and patient safety in Malaysia. PMID:26755459
Recent Progress on Data-Based Optimization for Mineral Processing Plants
Directory of Open Access Journals (Sweden)
Jinliang Ding
2017-04-01
Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.
Corzo, Gerald; Solomatine, Dimitri
2007-05-01
Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.
Directory of Open Access Journals (Sweden)
Jarmo Nurmi
2017-05-01
Full Text Available This paper addresses the energy-inefficiency problem of four-degrees-of-freedom (4-DOF hydraulic manipulators through redundancy resolution in robotic closed-loop controlled applications. Because conventional methods typically are local and have poor performance for resolving redundancy with respect to minimum hydraulic energy consumption, global energy-optimal redundancy resolution is proposed at the valve-controlled actuator and hydraulic power system interaction level. The energy consumption of the widely popular valve-controlled load-sensing (LS and constant-pressure (CP systems is effectively minimised through cost functions formulated in a discrete-time dynamic programming (DP approach with minimum state representation. A prescribed end-effector path and important actuator constraints at the position, velocity and acceleration levels are also satisfied in the solution. Extensive field experiments performed on a forestry hydraulic manipulator demonstrate the performance of the proposed solution. Approximately 15–30% greater hydraulic energy consumption was observed with the conventional methods in the LS and CP systems. These results encourage energy-optimal redundancy resolution in future robotic applications of hydraulic manipulators.
Directory of Open Access Journals (Sweden)
JongHyup Lee
2016-08-01
Full Text Available For practical deployment of wireless sensor networks (WSN, WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
International Nuclear Information System (INIS)
Undarmaa, Baatarkhuu; Horio, Kenta; Fujii, Yasumasa; Komiyama, Ryoichi
2017-01-01
In order to sustain long-term energy security and to mitigate the climate change, nuclear power remains an important baseload option for the global power generation mix. To utilize nuclear power in long-term, some important concerns such as economics, stability of fuel supply and spent fuel amount should be evaluated. Model developed in this study optimizes the global use nuclear power considering such issues. The Model is based on linear programming and calculates the best mix of nuclear reactor types by minimizing the current value of total power generation cost within the target period (next 100 years). Possibility of fuel cycle options such as reprocessing, seawater uranium and thorium utilization are also taken in to account, along with remaining spent fuel and plutonium stock. As result. reprocessing and uranium from seawater become essential part of nuclear fuel cycle in the long run. Amount of stored spent fuel is reduced following the deployment of Fast Breeder Reactor. Also, as an extension of current model, a baseload power generation mix model, which estimates the optimal mix of nuclear and coal-fired power generation will be introduced. (author)
Directory of Open Access Journals (Sweden)
Akemi Gálvez
2014-01-01
for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing
2015-01-01
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.
Global stability-based design optimization of truss structures using ...
Indian Academy of Sciences (India)
Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...
Quantifying global fossil-fuel CO2 emissions: from OCO-2 to optimal observing designs
Ye, X.; Lauvaux, T.; Kort, E. A.; Oda, T.; Feng, S.; Lin, J. C.; Yang, E. G.; Wu, D.; Kuze, A.; Suto, H.; Eldering, A.
2017-12-01
Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil-fuel CO2 emissions, in an independent, objective way. Satellite platforms provide favorable temporal and spatial coverage to collect urban CO2 data to quantify the anthropogenic contributions to the global carbon budget. We present here the optimal observation design for future NASA's OCO-2 and Japanese GOSAT missions, based on real-data (i.e. OCO-2) experiments and Observing System Simulation Experiments (OSSE's) to address different error components in the urban CO2 budget calculation. We identify the major sources of emission uncertainties for various types of cities with different ecosystems and geographical features, such as urban plumes over flat terrains, accumulated enhancements within basins, and complex weather regimes in coastal areas. Atmospheric transport errors were characterized under various meteorological conditions using the Weather Research and Forecasting (WRF) model at 1-km spatial resolution, coupled to the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emissions. We propose and discuss the optimized urban sampling strategies to address some difficulties from the seasonality in cloud cover and emissions, vegetation density in and around cities, and address the daytime sampling bias using prescribed diurnal cycles. These factors are combined in pseudo data experiments in which we evaluate the relative impact of uncertainties on inverse estimates of CO2 emissions for cities across latitudinal and climatological zones. We propose here several sampling strategies to minimize the uncertainties in target mode for tracking urban fossil-fuel CO2 emissions over the globe for future satellite missions, such as OCO-3 and future
Globally Optimal Segmentation of Permanent-Magnet Systems
DEFF Research Database (Denmark)
Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders
2016-01-01
Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast...
Global Supply-Chain Strategy And Global Competitiveness
Asghar Sabbaghi; Navid Sabbaghi
2011-01-01
The purpose of this study is to provide an analysis of global supply chain in a broader context that encompasses not only the producing company, but suppliers and customers.The theme of this study is to identify global sourcing and selling options, to enhance customer service and value added, to optimize inventory performance, to reduce total delivered costs and lead times, to achieve lower break-even costs, and to improve operational flexibility, customization and partner relations. In this ...
Energy Technology Data Exchange (ETDEWEB)
Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael
2009-09-01
There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.
Optimal perturbations for nonlinear systems using graph-based optimal transport
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Directory of Open Access Journals (Sweden)
Jian-Guo Zheng
2015-01-01
Full Text Available Artificial bee colony (ABC algorithm is a popular swarm intelligence technique inspired by the intelligent foraging behavior of honey bees. However, ABC is good at exploration but poor at exploitation and its convergence speed is also an issue in some cases. To improve the performance of ABC, a novel ABC combined with grenade explosion method (GEM and Cauchy operator, namely, ABCGC, is proposed. GEM is embedded in the onlooker bees’ phase to enhance the exploitation ability and accelerate convergence of ABCGC; meanwhile, Cauchy operator is introduced into the scout bees’ phase to help ABCGC escape from local optimum and further enhance its exploration ability. Two sets of well-known benchmark functions are used to validate the better performance of ABCGC. The experiments confirm that ABCGC is significantly superior to ABC and other competitors; particularly it converges to the global optimum faster in most cases. These results suggest that ABCGC usually achieves a good balance between exploitation and exploration and can effectively serve as an alternative for global optimization.
Optimization strategies for discrete multi-material stiffness optimization
DEFF Research Database (Denmark)
Hvejsel, Christian Frier; Lund, Erik; Stolpe, Mathias
2011-01-01
Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack...... which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution....
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Cabrera, Natasha J.; Fagan, Jay; Wight, Vanessa; Schadler, Cornelia
2011-01-01
The association among mothers', fathers', and infants' risk and cognitive and social behaviors at 24 months was examined using structual equation modeling and data on 4,200 on toddlers and their parents from the Early Childhood Longitudinal Study, Birth Cohort. There were 3 main findings. First, for cognitive outcomes, maternal risk was directly…
Vaziri Yazdi Pin, Mohammad
practices. Single criterion optimization algorithms using mathematical programming for globally optimal solutions have been developed for three objectives of cost, reliability, and the social/environmental impacts. Additional algorithms for inclusions of upgrade and optimal load assignment possibilities have been developed. Algorithms have been developed to handle the expansion as a multiobjective decision process. Typical data from both major investor owned and major municipal utilities operating in California USA, have been utilized to implement and test the algorithms on practical test cases. Results of the case studies and associated analyses indicate that the developed algorithms also perform efficiently in solving the multistage and multiobjective expansion problem.
Multiple-copy state discrimination: Thinking globally, acting locally
International Nuclear Information System (INIS)
Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.; Doherty, A. C.; Bartlett, S. D.
2011-01-01
We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.
Global Optimization Employing Gaussian Process-Based Bayesian Surrogates
Directory of Open Access Journals (Sweden)
Roland Preuss
2018-03-01
Full Text Available The simulation of complex physics models may lead to enormous computer running times. Since the simulations are expensive it is necessary to exploit the computational budget in the best possible manner. If for a few input parameter settings an output data set has been acquired, one could be interested in taking these data as a basis for finding an extremum and possibly an input parameter set for further computer simulations to determine it—a task which belongs to the realm of global optimization. Within the Bayesian framework we utilize Gaussian processes for the creation of a surrogate model function adjusted self-consistently via hyperparameters to represent the data. Although the probability distribution of the hyperparameters may be widely spread over phase space, we make the assumption that only the use of their expectation values is sufficient. While this shortcut facilitates a quickly accessible surrogate, it is somewhat justified by the fact that we are not interested in a full representation of the model by the surrogate but to reveal its maximum. To accomplish this the surrogate is fed to a utility function whose extremum determines the new parameter set for the next data point to obtain. Moreover, we propose to alternate between two utility functions—expected improvement and maximum variance—in order to avoid the drawbacks of each. Subsequent data points are drawn from the model function until the procedure either remains in the points found or the surrogate model does not change with the iteration. The procedure is applied to mock data in one and two dimensions in order to demonstrate proof of principle of the proposed approach.
Kucukgoz, Mehmet; Harmanci, Oztan; Mihcak, Mehmet K.; Venkatesan, Ramarathnam
2005-03-01
In this paper, we propose a novel semi-blind video watermarking scheme, where we use pseudo-random robust semi-global features of video in the three dimensional wavelet transform domain. We design the watermark sequence via solving an optimization problem, such that the features of the mark-embedded video are the quantized versions of the features of the original video. The exact realizations of the algorithmic parameters are chosen pseudo-randomly via a secure pseudo-random number generator, whose seed is the secret key, that is known (resp. unknown) by the embedder and the receiver (resp. by the public). We experimentally show the robustness of our algorithm against several attacks, such as conventional signal processing modifications and adversarial estimation attacks.
Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong
2018-03-01
With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.
Directory of Open Access Journals (Sweden)
Ali Wagdy Mohamed
2014-11-01
Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.
International Nuclear Information System (INIS)
Auluck, S K H
2014-01-01
Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton–Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance. (paper)
Decentralized Control Using Global Optimization (DCGO) (Preprint)
National Research Council Canada - National Science Library
Flint, Matthew; Khovanova, Tanya; Curry, Michael
2007-01-01
The coordination of a team of distributed air vehicles requires a complex optimization, balancing limited communication bandwidths, non-instantaneous planning times and network delays, while at the...
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang
2017-10-01
The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.
Optimal beneficiation of global resources
Energy Technology Data Exchange (ETDEWEB)
Aloisi de Larderel, J. (Industry and Environment Office, Paris (France). United Nations Environment Programme)
1989-01-01
The growth of the world's population and related human activities are clearly leaving major effects on the environment and on the level of use of natural resources: forests are disappearing, air pollution is leading to acid rains, changes are occuring in the atmospheric ozone and global climate, more and more people lack access to reasonable safe supplies of water, soil pollution is becoming a problem, mineral and energy resources are increasingly being used. Producing more with less, producing more, polluting less, these are basic challenges that the world now faces. Low- and non-waste technologies are certainly one of the keys to those challenges.
Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge
1993-01-01
This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.
A global review of freshwater crayfish temperature tolerance, preference, and optimal growth
Westhoff, Jacob T.; Rosenberger, Amanda E.
2016-01-01
Conservation efforts, environmental planning, and management must account for ongoing ecosystem alteration due to a changing climate, introduced species, and shifting land use. This type of management can be facilitated by an understanding of the thermal ecology of aquatic organisms. However, information on thermal ecology for entire taxonomic groups is rarely compiled or summarized, and reviews of the science can facilitate its advancement. Crayfish are one of the most globally threatened taxa, and ongoing declines and extirpation could have serious consequences on aquatic ecosystem function due to their significant biomass and ecosystem roles. Our goal was to review the literature on thermal ecology for freshwater crayfish worldwide, with emphasis on studies that estimated temperature tolerance, temperature preference, or optimal growth. We also explored relationships between temperature metrics and species distributions. We located 56 studies containing information for at least one of those three metrics, which covered approximately 6 % of extant crayfish species worldwide. Information on one or more metrics existed for all 3 genera of Astacidae, 4 of the 12 genera of Cambaridae, and 3 of the 15 genera of Parastacidae. Investigations employed numerous methodological approaches for estimating these parameters, which restricts comparisons among and within species. The only statistically significant relationship we observed between a temperature metric and species range was a negative linear relationship between absolute latitude and optimal growth temperature. We recommend expansion of studies examining the thermal ecology of freshwater crayfish and identify and discuss methodological approaches that can improve standardization and comparability among studies.
Distributed Robust Optimization in Networked System.
Wang, Shengnan; Li, Chunguang
2016-10-11
In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
Characterization of PV panel and global optimization of its model parameters using genetic algorithm
International Nuclear Information System (INIS)
Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.
2013-01-01
Highlights: • Genetic Algorithm optimization ability had been utilized to extract parameters of PV panel model. • Effect of solar radiation and temperature variations was taken into account in fitness function evaluation. • We used Matlab-Simulink to simulate operation of the PV-panel to validate results. • Different cases were analyzed to ascertain which of them gives more accurate results. • Accuracy and applicability of this approach to be used as a valuable tool for PV modeling were clearly validated. - Abstract: This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimization ability of a genetic algorithm, with different parameters of the PV module being computed via this approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as it is imperative in the context of any further studies concerning different PV applications. Simulation, optimization and the design of the hybrid systems that include PV are examples of these applications. The global optimization of the parameters and the applicability for the entire range of the solar radiation and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet information is used as a basis for the purpose of parameter optimization, with an average absolute error fitness function formulated; and a numerical iterative method used to solve the voltage-current relation of the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain which of them are more accurate. Other cases are also analyzed in this paper for the purpose of comparison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending on the extracted parameters. The results of the simulation are compared with the Data Sheet information, which is obtained via experimentation in order to validate the reliability of the approach. Three types of PV modules
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
Global On-Chip Differential Interconnects with Optimally-Placed Twists
Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram
2005-01-01
Global on-chip communication is receiving quite some attention as global interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Recently, we proposed a bus-transceiver test chip in 0.13 μm CMOS using 10 mm long uninterrupted differential interconnects
Global optimization framework for solar building design
Silva, N.; Alves, N.; Pascoal-Faria, P.
2017-07-01
The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.
Two-stage collaborative global optimization design model of the CHPG microgrid
Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng
2017-06-01
With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.
Mechanical Design Optimization Using Advanced Optimization Techniques
Rao, R Venkata
2012-01-01
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...
Dispositional optimism and sleep quality: a test of mediating pathways.
Uchino, Bert N; Cribbet, Matthew; de Grey, Robert G Kent; Cronan, Sierra; Trettevik, Ryan; Smith, Timothy W
2017-04-01
Dispositional optimism has been related to beneficial influences on physical health outcomes. However, its links to global sleep quality and the psychological mediators responsible for such associations are less studied. This study thus examined if trait optimism predicted global sleep quality, and if measures of subjective well-being were statistical mediators of such links. A community sample of 175 participants (93 men, 82 women) completed measures of trait optimism, depression, and life satisfaction. Global sleep quality was assessed using the Pittsburgh Sleep Quality Index. Results indicated that trait optimism was a strong predictor of better PSQI global sleep quality. Moreover, this association was mediated by depression and life satisfaction in both single and multiple mediator models. These results highlight the importance of optimism for the restorative process of sleep, as well as the utility of multiple mediator models in testing distinct psychological pathways.
Tavakoli, Behnoosh; Zhu, Quing
2013-01-01
Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.
Introduction to Continuous Optimization
DEFF Research Database (Denmark)
Andreasson, Niclas; Evgrafov, Anton; Patriksson, Michael
optimal solutions for continuous optimization models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimization problems. Natural...... algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analyzed. The book answers many more questions of the form “Why?” and “Why not?” than “How?”. We use only elementary mathematics in the development of the book, yet are rigorous throughout...
Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui
2018-02-01
Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.
International Nuclear Information System (INIS)
Ioannou, Lawrence M.; Travaglione, Benjamin C.
2006-01-01
We focus on determining the separability of an unknown bipartite quantum state ρ by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is not a polytope and to characterize the class of entanglement witnesses (observables) that detect entangled states on opposite sides of the set of separable states. All this serves to motivate a classical algorithm which, given the expected values of a subset of an orthogonal basis of observables of an otherwise unknown quantum state, searches for an entanglement witness in the span of the subset of observables. The idea of such an algorithm, which is an efficient reduction of the quantum separability problem to a global optimization problem, was introduced by [Ioannou et al., Phys. Rev. A 70, 060303(R)], where it was shown to be an improvement on the naive approach for the quantum separability problem (exhaustive search for a decomposition of the given state into a convex combination of separable states). The last section of the paper discusses in more generality such algorithms, which, in our case, assume a subroutine that computes the global maximum of a real function of several variables. Despite this, we anticipate that such algorithms will perform sufficiently well on small instances that they will render a feasible test for separability in some cases of interest (e.g., in 3x3 dimensional systems)
Truss Structure Optimization with Subset Simulation and Augmented Lagrangian Multiplier Method
Directory of Open Access Journals (Sweden)
Feng Du
2017-11-01
Full Text Available This paper presents a global optimization method for structural design optimization, which integrates subset simulation optimization (SSO and the dynamic augmented Lagrangian multiplier method (DALMM. The proposed method formulates the structural design optimization as a series of unconstrained optimization sub-problems using DALMM and makes use of SSO to find the global optimum. The combined strategy guarantees that the proposed method can automatically detect active constraints and provide global optimal solutions with finite penalty parameters. The accuracy and robustness of the proposed method are demonstrated by four classical truss sizing problems. The results are compared with those reported in the literature, and show a remarkable statistical performance based on 30 independent runs.
Directory of Open Access Journals (Sweden)
Hongwen He
2013-01-01
Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
Xu, Gang; Li, Ming; Mourrain, Bernard; Rabczuk, Timon; Xu, Jinlan; Bordas, Stéphane P. A.
2018-01-01
In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.
Energy Technology Data Exchange (ETDEWEB)
Portnoy, David, E-mail: david.portnoy@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Feuerbach, Robert; Heimberg, Jennifer [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of
International Nuclear Information System (INIS)
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-01-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the 'threat' set of spectra
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra
Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem
Directory of Open Access Journals (Sweden)
Ibidun Christiana Obagbuwa
2016-09-01
Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
DEFF Research Database (Denmark)
Le, T.H.A.; Pham, D. T.; Canh, Nam Nguyen
2010-01-01
Both the efficient and weakly efficient sets of an affine fractional vector optimization problem, in general, are neither convex nor given explicitly. Optimization problems over one of these sets are thus nonconvex. We propose two methods for optimizing a real-valued function over the efficient...... and weakly efficient sets of an affine fractional vector optimization problem. The first method is a local one. By using a regularization function, we reformulate the problem into a standard smooth mathematical programming problem that allows applying available methods for smooth programming. In case...... the objective function is linear, we have investigated a global algorithm based upon a branch-and-bound procedure. The algorithm uses Lagrangian bound coupling with a simplicial bisection in the criteria space. Preliminary computational results show that the global algorithm is promising....
Energy Technology Data Exchange (ETDEWEB)
Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL
2017-01-01
Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.
Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Munish Rattan
2008-01-01
Full Text Available Particle swarm optimization (PSO is a new, high-performance evolutionary technique, which has recently been used for optimization problems in antennas and electromagnetics. It is a global optimization technique-like genetic algorithm (GA but has less computational cost compared to GA. In this paper, PSO has been used to optimize the gain, impedance, and bandwidth of Yagi-Uda array. To evaluate the performance of designs, a method of moments code NEC2 has been used. The results are comparable to those obtained using GA.
Optimal Design of Composite Structures Under Manufacturing Constraints
DEFF Research Database (Denmark)
Marmaras, Konstantinos
algorithms to perform the global optimization. The efficiency of the proposed models is examined on a set of well–defined discrete multi material and thickness optimization problems originating from the literature. The inclusion of manufacturing limitations along with structural considerations in the early...... mixed integer 0–1 programming problems. The manufacturing constraints have been treated by developing explicit models with favorable properties. In this thesis we have developed and implemented special purpose global optimization methods and heuristic techniques for solving this class of problems......This thesis considers discrete multi material and thickness optimization of laminated composite structures including local failure criteria and manufacturing constraints. Our models closely follow an immediate extension of the Discrete Material Optimization scheme, which allows simultaneous...
Routing Optimization of Intelligent Vehicle in Automated Warehouse
Directory of Open Access Journals (Sweden)
Yan-cong Zhou
2014-01-01
Full Text Available Routing optimization is a key technology in the intelligent warehouse logistics. In order to get an optimal route for warehouse intelligent vehicle, routing optimization in complex global dynamic environment is studied. A new evolutionary ant colony algorithm based on RFID and knowledge-refinement is proposed. The new algorithm gets environmental information timely through the RFID technology and updates the environment map at the same time. It adopts elite ant kept, fallback, and pheromones limitation adjustment strategy. The current optimal route in population space is optimized based on experiential knowledge. The experimental results show that the new algorithm has higher convergence speed and can jump out the U-type or V-type obstacle traps easily. It can also find the global optimal route or approximate optimal one with higher probability in the complex dynamic environment. The new algorithm is proved feasible and effective by simulation results.
Kumar, S.; Singh, A.; Dhar, A.
2017-08-01
The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
Simulation analysis of globally integrated logistics and recycling strategies
Energy Technology Data Exchange (ETDEWEB)
Song, S.J.; Hiroshi, K. [Hiroshima Inst. of Tech., Graduate School of Mechanical Systems Engineering, Dept. of In formation and Intelligent Systems Engineering, Hiroshima (Japan)
2004-07-01
This paper focuses on the optimal analysis of world-wide recycling activities associated with managing the logistics and production activities in global manufacturing whose activities stretch across national boundaries. Globally integrated logistics and recycling strategies consist of the home country and two free trading economic blocs, NAFTA and ASEAN, where significant differences are found in production and disassembly cost, tax rates, local content rules and regulations. Moreover an optimal analysis of globally integrated value-chain was developed by applying simulation optimization technique as a decision-making tool. The simulation model was developed and analyzed by using ProModel packages, and the results help to identify some of the appropriate conditions required to make well-performed logistics and recycling plans in world-wide collaborated manufacturing environment. (orig.)
Directory of Open Access Journals (Sweden)
Zhongbo Sun
2014-01-01
Full Text Available Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang type algorithm in such a way that the search direction is descent and satisfies Dai-Liao’s type conjugacy condition. The second simple three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but with different zk. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.
Optimally segmented permanent magnet structures
DEFF Research Database (Denmark)
Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders
2016-01-01
We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector......, with respect to a linear objective functional. We illustrate the approach with results for magnet design problems from different areas, such as a permanent magnet electric motor, a beam focusing quadrupole magnet for particle accelerators and a rotary device for magnetic refrigeration....
Optimal estimation of regional N2O emissions using a three-dimensional global model
Huang, J.; Golombek, A.; Prinn, R.
2004-12-01
In this study, we use the MATCH (Model of Atmospheric Transport and Chemistry) model and Kalman filtering techniques to optimally estimate N2O emissions from seven source regions around the globe. The MATCH model was used with NCEP assimilated winds at T62 resolution (192 longitude by 94 latitude surface grid, and 28 vertical levels) from July 1st 1996 to December 31st 2000. The average concentrations of N2O in the lowest four layers of the model were then compared with the monthly mean observations from six national/global networks (AGAGE, CMDL (HATS), CMDL (CCGG), CSIRO, CSIR and NIES), at 48 surface sites. A 12-month-running-mean smoother was applied to both the model results and the observations, due to the fact that the model was not able to reproduce the very small observed seasonal variations. The Kalman filter was then used to solve for the time-averaged regional emissions of N2O for January 1st 1997 to June 30th 2000. The inversions assume that the model stratospheric destruction rates, which lead to a global N2O lifetime of 130 years, are correct. It also assumes normalized emission spatial distributions from each region based on previous studies. We conclude that the global N2O emission flux is about 16.2 TgN/yr, with {34.9±1.7%} from South America and Africa, {34.6±1.5%} from South Asia, {13.9±1.5%} from China/Japan/South East Asia, {8.0±1.9%} from all oceans, {6.4±1.1%} from North America and North and West Asia, {2.6±0.4%} from Europe, and {0.9±0.7%} from New Zealand and Australia. The errors here include the measurement standard deviation, calibration differences among the six groups, grid volume/measurement site mis-match errors estimated from the model, and a procedure to account approximately for the modeling errors.
Krohling, Renato A; Coelho, Leandro dos Santos
2006-12-01
In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.
Generation of Articulated Mechanisms by Optimization Techniques
DEFF Research Database (Denmark)
Kawamoto, Atsushi
2004-01-01
optimization [Paper 2] 3. Branch and bound global optimization [Paper 3] 4. Path-generation problems [Paper 4] In terms of the objective of the articulated mechanism design problems, the first to third papers deal with maximization of output displacement, while the fourth paper solves prescribed path...... generation problems. From a mathematical programming point of view, the methods proposed in the first and third papers are categorized as deterministic global optimization, while those of the second and fourth papers are categorized as gradient-based local optimization. With respect to design variables, only...... directly affects the result of the associated sensitivity analysis. Another critical issue for mechanism design is the concept of mechanical degrees of freedom and this should be also considered for obtaining a proper articulated mechanism. The thesis treats this inherently discrete criterion in some...
Directory of Open Access Journals (Sweden)
Zdravko Bazdan
2010-12-01
Full Text Available The aim of this study is to point to the fact that economic diplomacy is a relatively new practice in international economics, specifically the expansion of the occurrence of Intelligence Revolution. The history in global relations shows that without economic diplomacy there is no optimal economic growth and social development. It is important to note that economic diplomacy should be important for our country and the political elite, as well as for the administration of Croatian economic subjects that want to compete in international market economy. Comparative analysis are particularly highlighted by French experience. Therefore, Croatia should copy the practice of those countries that are successful in economic diplomacy. And in the curricula - especially of our economic faculties - we should introduce the course of Economic Diplomacy. It is important to note, that in order to form our optimal model of economic diplomacy which would be headed by the President of Republic of Croatia formula should be based on: Intelligence Security Agency (SOA, Intelligence Service of the Ministry of Foreign Affairs and European Integration, Intelligence Service of the Croatian Chamber of Commerce and the Intelligence Service of the Ministry of Economy, Labor and Entrepreneurship. Described model would consist of intelligence subsystem with at least twelve components.
Truss topology optimization with discrete design variables by outer approximation
DEFF Research Database (Denmark)
Stolpe, Mathias
2015-01-01
Several variants of an outer approximation method are proposed to solve truss topology optimization problems with discrete design variables to proven global optimality. The objective is to minimize the volume of the structure while satisfying constraints on the global stiffness of the structure...... for classical outer approximation approaches applied to optimal design problems. A set of two- and three-dimensional benchmark problems are solved and the numerical results suggest that the proposed approaches are competitive with other special-purpose global optimization methods for the considered class...... under the applied loads. We extend the natural problem formulation by adding redundant force variables and force equilibrium constraints. This guarantees that the designs suggested by the relaxed master problems are capable of carrying the applied loads, a property which is generally not satisfied...
Directory of Open Access Journals (Sweden)
Li Ran
2017-01-01
Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.
DEFF Research Database (Denmark)
Rode, Carsten
2013-01-01
High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or ‘global’, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. This brief article reports the keynote...
DEFF Research Database (Denmark)
Rode, Carsten
2012-01-01
High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or “global”, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. The keynote lecture and this brief paper...
Unlocking the Secret of Global Education
Tavangar, Homa Sabet
2017-01-01
Homa Sabet Tavangar is the author of "Growing Up Global: Raising Children to Be At Home in the World" (Random House, 2009) and "The Global Education Toolkit for Elementary Learners" (Sage/Corwin, 2014). She works with diverse schools, corporations, non-profits, and children's media on optimizing learning, empathy, inclusion,…
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2014-02-01
Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Suzuki, Tadakazu
1979-11-01
Thirty two programs for linear and nonlinear optimization problems with or without constraints have been developed or incorporated, and their stability, convergence and efficiency have been examined. On the basis of these evaluations, the first version of the optimization code system SCOOP-I has been completed. The SCOOP-I is designed to be an efficient, reliable, useful and also flexible system for general applications. The system enables one to find global optimization point for a wide class of problems by selecting the most appropriate optimization method built in it. (author)
Multi-Objective Optimization of Managed Aquifer Recharge.
Fatkhutdinov, Aybulat; Stefan, Catalin
2018-04-27
This study demonstrates the utilization of a multi-objective hybrid global/local optimization algorithm for solving managed aquifer recharge (MAR) design problems, in which the decision variables included spatial arrangement of water injection and abstraction wells and time-variant rates of pumping and injection. The objective of the optimization was to maximize the efficiency of the MAR scheme, which includes both quantitative and qualitative aspects. The case study used to demonstrate the capabilities of the proposed approach is based on a published report on designing a real MAR site with defined aquifer properties, chemical groundwater characteristics as well as quality and volumes of injected water. The demonstration problems include steady-state and transient scenarios. The steady-state scenario demonstrates optimization of spatial arrangement of multiple injection and recovery wells, whereas the transient scenario was developed with the purpose of finding optimal regimes of water injection and recovery at a single location. Both problems were defined as multi-objective problems. The scenarios were simulated by applying coupled numerical groundwater flow and solute transport models: MODFLOW-2005 and MT3D-USGS. The applied optimization method was a combination of global - the Non-Dominated Sorting Genetic Algorithm (NSGA-2), and local - the Nelder-Mead Downhill Simplex search algorithms. The analysis of the resulting Pareto optimal solutions led to the discovery of valuable patterns and dependencies between the decision variables, model properties and problem objectives. Additionally, the performance of the traditional global and the hybrid optimization schemes were compared. This article is protected by copyright. All rights reserved.
Reloading optimization of pressurized water reactor core with burnable absorber fuel
International Nuclear Information System (INIS)
Shi Xiuan; Liu Zhihong; Hu Yongming
2008-01-01
The reloading optimization problem of PWR with burnable absorber fuel is very difficult, and common optimization algorithms are inefficient and have bad global performance for it. Characteristic statistic algorithm (CSA) is very fit for the problem. In the past, the reloading optimization using CSA has shortcomings of separating the fuel assemblies' loading pattern (LP) optimization from burnable absorber's placement (BP) optimization. In this study, LP and BP were optimized simultaneously using CSA coupled with CYCLE2D, which is a core analysis code. The corresponding reloading coupling optimization software, CSALPBP, was developed. The 10th cycle reloading design of Daya Bay Nuclear Power Plant was optimized using CSALPBP. The results show that CSALPBP has high efficiency and excellent global performance. (authors)
A Parallel Particle Swarm Optimizer
National Research Council Canada - National Science Library
Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D
2003-01-01
.... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...
International Nuclear Information System (INIS)
Jiang, He; Dong, Yao
2016-01-01
Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.
Protein structure modeling and refinement by global optimization in CASP12.
Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung
2018-03-01
For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.
Characteristic statistic algorithm (CSA) for in-core loading pattern optimization
International Nuclear Information System (INIS)
Liu Zhihong; Hu Yongming; Shi Gong
2007-01-01
To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)
The challenge of market power under globalization
David Arie Mayer-Foulkes
2014-01-01
The legacy of Adam Smith leads to a false confidence on the optimality of laissez faire policies for the global market economy. Instead, the polarized character of current globalization deeply affects both developed and underdeveloped economies. Current globalization is characterized by factor exchange between economies of persistently unequal development. This implies the existence of persistent extraordinary market power in transnational corporations, reflected in their disproportionate par...
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Optimization of large-scale industrial systems : an emerging method
Energy Technology Data Exchange (ETDEWEB)
Hammache, A.; Aube, F.; Benali, M.; Cantave, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre
2006-07-01
This paper reviewed optimization methods of large-scale industrial production systems and presented a novel systematic multi-objective and multi-scale optimization methodology. The methodology was based on a combined local optimality search with global optimality determination, and advanced system decomposition and constraint handling. The proposed method focused on the simultaneous optimization of the energy, economy and ecology aspects of industrial systems (E{sup 3}-ISO). The aim of the methodology was to provide guidelines for decision-making strategies. The approach was based on evolutionary algorithms (EA) with specifications including hybridization of global optimality determination with a local optimality search; a self-adaptive algorithm to account for the dynamic changes of operating parameters and design variables occurring during the optimization process; interactive optimization; advanced constraint handling and decomposition strategy; and object-oriented programming and parallelization techniques. Flowcharts of the working principles of the basic EA were presented. It was concluded that the EA uses a novel decomposition and constraint handling technique to enhance the Pareto solution search procedure for multi-objective problems. 6 refs., 9 figs.
Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei
2018-01-01
In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.
Glick, Meir; Rayan, Anwar; Goldblum, Amiram
2002-01-01
The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838
Quasiconvex optimization and location theory
Santos Gromicho, Jaoquim António
1998-01-01
grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason ...
Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions
Odat, Enas M.
2011-01-01
The algorithm has been simulated using C#.Net programming language and a number of experiments have been done to verify the proved statements. The results of these experiments show that the number of optimal alignments is reduced after each step of optimization. Furthermore, it has been verified that as the sequence length increased linearly then the number of optimal alignments increased exponentially which also depends on the cost function that is used. Finally, the number of executed operations increases polynomially as the sequence length increase linearly.
Directory of Open Access Journals (Sweden)
Narinder Singh
2017-01-01
Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.
Global Launcher Trajectory Optimization for Lunar Base Settlement
Pagano, A.; Mooij, E.
2010-01-01
The problem of a mission to the Moon to set a permanent outpost can be tackled by dividing the journey into three phases: the Earth ascent, the Earth-Moon transfer and the lunar landing. In this paper we present an optimization analysis of Earth ascent trajectories of existing launch vehicles
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Directory of Open Access Journals (Sweden)
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
Directory of Open Access Journals (Sweden)
Mohamed Zellagui
2017-09-01
Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
International Nuclear Information System (INIS)
Le, Van Long; Feidt, Michel; Kheiri, Abdelhamid; Pelloux-Prayer, Sandrine
2014-01-01
This paper presents the system efficiency optimization scenarios of basic and regenerative supercritical ORCs (organic Rankine cycles) using low-GWP (global warming potential) organic compounds as working fluid. A more common refrigerant, i.e. R134a, was also employed to make the comparison. A 150-°C, 5-bar-pressurized hot water is used to simulate the heat source medium. Power optimization was equally performed for the basic configuration of supercritical ORC. Thermodynamic performance comparison of supercritical ORCs using different working fluids was achieved by ranking method and exergy analysis method. The highest optimal efficiency of the system (η sys ) is always obtained with R152a in both basic (11.6%) and regenerative (13.1%) configurations. The highest value of optimum electrical power output (4.1 kW) is found with R1234ze. By using ranking method and considering low-GWP criterion, the best working fluids for system efficiency optimization of basic and regenerative cycles are R32 and R152a, respectively. The best working fluid for net electrical power optimization of basic cycle is R1234ze. Although CO 2 has many desirable environmental and safety properties (e.g. zero ODP (Ozone Depletion Potential), ultra low-GWP, non toxicity, non flammability, etc.), the worst thermodynamic performance is always found with the cycle using this compound as working fluid. - Highlights: • Performance optimizations were carried out for the supercritical ORCs using low-GWP working fluids. • Heat regeneration was used to improve the system efficiency of the supercritical ORC. • Thermodynamic performances of supercritical ORCs at the optima were evaluated by ranking method and exergy analysis
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Directory of Open Access Journals (Sweden)
Ahmed R. Abdelaziz
2015-08-01
Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.
Global corporate workplaces implementing new global workplace standards in a local context
Hodulak, Martin
2017-01-01
In recent years, multinational corporations were increasingly engaged in the development of standardized global workplace models. For their implementation and feasibility, it is decisive as how these standards fit the diverse regional workplace cultures. This topic was pursued in the course of a research project, comparing established workplaces in Germany, USA and Japan against global workplace standards of multinational corporations. The analysis confirmed the expected differences among local workplaces and on the other hand a predominant mainstream among global corporate workplace standards. Conspicuous however, are the fundamental differences between local models and corporate standards. For the implementation of global standards in local context, this implies multiple challenges on cultural, organizational and spatial level. The analysis findings provide information for assessing current projects and pinpointing optimization measures. The analysis framework further provides a tool to uncover and assess n...
AFRICAN BUFFALO OPTIMIZATION ico-pdf
Directory of Open Access Journals (Sweden)
Julius Beneoluchi Odili
2016-02-01
Full Text Available This is an introductory paper to the newly-designed African Buffalo Optimization (ABO algorithm for solving combinatorial and other optimization problems. The algorithm is inspired by the behavior of African buffalos, a species of wild cows known for their extensive migrant lifestyle. This paper presents an overview of major metaheuristic algorithms with the aim of providing a basis for the development of the African Buffalo Optimization algorithm which is a nature-inspired, population-based metaheuristic algorithm. Experimental results obtained from applying the novel ABO to solve a number of benchmark global optimization test functions as well as some symmetric and asymmetric Traveling Salesman’s Problems when compared to the results obtained from using other popular optimization methods show that the African Buffalo Optimization is a worthy addition to the growing number of swarm intelligence optimization techniques.
Improved Quantum Particle Swarm Optimization for Mangroves Classification
Directory of Open Access Journals (Sweden)
Zhehuang Huang
2016-01-01
Full Text Available Quantum particle swarm optimization (QPSO is a population based optimization algorithm inspired by social behavior of bird flocking which combines the ideas of quantum computing. For many optimization problems, traditional QPSO algorithm can produce high-quality solution within a reasonable computation time and relatively stable convergence characteristics. But QPSO algorithm also showed some unsatisfactory issues in practical applications, such as premature convergence and poor ability in global optimization. To solve these problems, an improved quantum particle swarm optimization algorithm is proposed and implemented in this paper. There are three main works in this paper. Firstly, an improved QPSO algorithm is introduced which can enhance decision making ability of the model. Secondly, we introduce synergetic neural network model to mangroves classification for the first time which can better handle fuzzy matching of remote sensing image. Finally, the improved QPSO algorithm is used to realize the optimization of network parameter. The experiments on mangroves classification showed that the improved algorithm has more powerful global exploration ability and faster convergence speed.
Thermodynamic optimization of geometry in engineering flow systems
Energy Technology Data Exchange (ETDEWEB)
Bejan, A.; Jones, J.A. [Duke Univ., Durham, NC (United States)
2000-07-01
This review draws attention to an emerging body of work that relies on global thermodynamic optimization in the pursuit of flow system architecture. Exergy analysis establishes the theoretical performance limit. Thermodynamic optimization (or entropy generation minimization) brings the design as closely as permissible to the theoretical limit. The design is destined to remain imperfect because of constraints (finite sizes, times, and costs). Improvements are registered by spreading the imperfection (e.g., flow resistances) through the system. Resistances compete against each other and must be optimized together. Optimal spreading means spatial distribution, geometric form, topology, and geography. System architecture springs out of constrained global optimization. The principle is illustrated by simple examples: the optimization of dimensions, spacings, and the distribution (allocation) of heat transfer surface to the two heat exchangers of a power plant. Similar opportunities for deducing flow architecture exist in more complex systems for power and refrigeration. Examples show that the complete structure of heat exchangers for environmental control systems of aircraft can be derived based on this principle. (authors)
Vibration behavior optimization of planetary gear sets
Directory of Open Access Journals (Sweden)
Farshad Shakeri Aski
2014-12-01
Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.
Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo
2017-01-01
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human
Reliability-redundancy optimization by means of a chaotic differential evolution approach
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos
2009-01-01
The reliability design is related to the performance analysis of many engineering systems. The reliability-redundancy optimization problems involve selection of components with multiple choices and redundancy levels that produce maximum benefits, can be subject to the cost, weight, and volume constraints. Classical mathematical methods have failed in handling nonconvexities and nonsmoothness in optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solution in reliability-redundancy optimization problems. Evolutionary algorithms (EAs) - paradigms of evolutionary computation field - are stochastic and robust meta-heuristics useful to solve reliability-redundancy optimization problems. EAs such as genetic algorithm, evolutionary programming, evolution strategies and differential evolution are being used to find global or near global optimal solution. A differential evolution approach based on chaotic sequences using Lozi's map for reliability-redundancy optimization problems is proposed in this paper. The proposed method has a fast convergence rate but also maintains the diversity of the population so as to escape from local optima. An application example in reliability-redundancy optimization based on the overspeed protection system of a gas turbine is given to show its usefulness and efficiency. Simulation results show that the application of deterministic chaotic sequences instead of random sequences is a possible strategy to improve the performance of differential evolution.
International Nuclear Information System (INIS)
Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure
2011-01-01
This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propose in this paper to study the contribution of exogenous meteorological data (multivariate method) as time series to our optimized MLP and compare with different forecasting methods: a naive forecaster (persistence), ARIMA reference predictor, an ANN with preprocessing using only endogenous inputs (univariate method) and an ANN with preprocessing using endogenous and exogenous inputs. The use of exogenous data generates an nRMSE decrease between 0.5% and 1% for two stations during 2006 and 2007 (Corsica Island, France). The prediction results are also relevant for the concrete case of a tilted PV wall (1.175 kWp). The addition of endogenous and exogenous data allows a 1% decrease of the nRMSE over a 6 months-cloudy period for the power production. While the use of exogenous data shows an interest in winter, endogenous data as inputs on a preprocessed ANN seem sufficient in summer. -- Research highlights: → Use of exogenous data as ANN inputs to forecast horizontal daily global irradiation data. → New methodology allowing to choice the adequate exogenous data - a systematic method comparing endogenous and exogenous data. → Different referenced mathematical predictors allows to conclude about the pertinence of the proposed methodology.
International Nuclear Information System (INIS)
Hu, Y.; Liu, Z.; Shi, X.; Wang, B.
2006-01-01
A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)
'Good Governance', Daya Saing dan Investasi Global
Directory of Open Access Journals (Sweden)
Zaenal Soedjais
2003-03-01
Full Text Available The on going process of globalization leaves no room for Indonesian access to global investment unless the country manage to ensure the competitivess its system. Improving institutional capacity to be able of delivering good governance and good corporate governenve are inevitable. The challenge is how to allow the market to perform optimally.
Avoiding spurious submovement decompositions: a globally optimal algorithm
International Nuclear Information System (INIS)
Rohrer, Brandon Robinson; Hogan, Neville
2003-01-01
Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.
Translations on Eastern Europe, Political, Sociological and Military Affairs, Number 1577.
1978-08-18
it, a palette of idealist visions and petty bourgeois dreams . Socialism was meant to leave science and return to the spheres of Utopia—to leave...This applies to structualism, psychoanalysis as well as to avant-guade libertinism." The revisionists denied the qualitative difference between...the Atomic Age": "It was like in a dream ! We read Communist newspapers and did not want to believe our eyes! We listened to the Communist
NABABAN, TONGAM SIHOL
2014-01-01
Global Entrepreneurship and Development Index or the Global Entrepreneurship and Development Index (GEDI) In 2013 positioned Indonesia at ranked 76 of 118 countries. Compared with the ASEAN countries, the position are still far below Singapore (13), and still below Malaysia (57), Brunei Darussalam (58), Thailand (65). This fact shows that Indonesia has not been optimal in building its entrepreneurial yet. To enhance the development of entrepreneurship, the Indonesian government has launched ...
Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems
Lang, Hans-Dieter; Sarris, Costas D.
2017-11-01
An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.
Formal Proofs for Nonlinear Optimization
Directory of Open Access Journals (Sweden)
Victor Magron
2015-01-01
Full Text Available We present a formally verified global optimization framework. Given a semialgebraic or transcendental function f and a compact semialgebraic domain K, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of f over K.This method allows to bound in a modular way some of the constituents of f by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent.The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.
Aeroelastic Wingbox Stiffener Topology Optimization
Stanford, Bret K.
2017-01-01
This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
The Tunneling Method for Global Optimization in Multidimensional Scaling.
Groenen, Patrick J. F.; Heiser, Willem J.
1996-01-01
A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)
Analysis and Optimization of Building Energy Consumption
Chuah, Jun Wei
Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit
Global stability-based design optimization of truss structures using ...
Indian Academy of Sciences (India)
The quality of current pareto front obtained in the end of a whole genetic search is assessed according to its closeness to the ...... better optimal designation with a lower displacement value of 0.3075 in. satisfying the service- .... Internal force. R.
Directory of Open Access Journals (Sweden)
B. Thamaraikannan
2014-01-01
Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.
Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization
Directory of Open Access Journals (Sweden)
Na Tian
2015-01-01
Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.
Optimal Wonderful Life Utility Functions in Multi-Agent Systems
Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)
2000-01-01
The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.
Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU and Many-Core GPU
Directory of Open Access Journals (Sweden)
Guangyuan Kan
2016-01-01
Full Text Available The famous global optimization SCE-UA method, which has been widely used in the field of environmental model parameter calibration, is an effective and robust method. However, the SCE-UA method has a high computational load which prohibits the application of SCE-UA to high dimensional and complex problems. In recent years, the hardware of computer, such as multi-core CPUs and many-core GPUs, improves significantly. These much more powerful new hardware and their software ecosystems provide an opportunity to accelerate the SCE-UA method. In this paper, we proposed two parallel SCE-UA methods and implemented them on Intel multi-core CPU and NVIDIA many-core GPU by OpenMP and CUDA Fortran, respectively. The Griewank benchmark function was adopted in this paper to test and compare the performances of the serial and parallel SCE-UA methods. According to the results of the comparison, some useful advises were given to direct how to properly use the parallel SCE-UA methods.
Optimization of Multiple Related Negotiation through Multi-Negotiation Network
Ren, Fenghui; Zhang, Minjie; Miao, Chunyan; Shen, Zhiqi
In this paper, a Multi-Negotiation Network (MNN) and a Multi- Negotiation Influence Diagram (MNID) are proposed to optimally handle Multiple Related Negotiations (MRN) in a multi-agent system. Most popular, state-of-the-art approaches perform MRN sequentially. However, a sequential procedure may not optimally execute MRN in terms of maximizing the global outcome, and may even lead to unnecessary losses in some situations. The motivation of this research is to use a MNN to handle MRN concurrently so as to maximize the expected utility of MRN. Firstly, both the joint success rate and the joint utility by considering all related negotiations are dynamically calculated based on a MNN. Secondly, by employing a MNID, an agent's possible decision on each related negotiation is reflected by the value of expected utility. Lastly, through comparing expected utilities between all possible policies to conduct MRN, an optimal policy is generated to optimize the global outcome of MRN. The experimental results indicate that the proposed approach can improve the global outcome of MRN in a successful end scenario, and avoid unnecessary losses in an unsuccessful end scenario.
Communication Optimizations for Fine-Grained UPCApplications
Energy Technology Data Exchange (ETDEWEB)
Chen, Wei-Yu; Iancu, Costin; Yelick, Katherine
2005-07-08
Global address space languages like UPC exhibit high performance and portability on a broad class of shared and distributed memory parallel architectures. The most scalable applications use bulk memory copies rather than individual reads and writes to the shared space, but finer-grained sharing can be useful for scenarios such as dynamic load balancing, event signaling, and distributed hash tables. In this paper we present three optimization techniques for global address space programs with fine-grained communication: redundancy elimination, use of split-phase communication, and communication coalescing. Parallel UPC programs are analyzed using static single assignment form and a data flow graph, which are extended to handle the various shared and private pointer types that are available in UPC. The optimizations also take advantage of UPC's relaxed memory consistency model, which reduces the need for cross thread analysis. We demonstrate the effectiveness of the analysis and optimizations using several benchmarks, which were chosen to reflect the kinds of fine-grained, communication-intensive phases that exist in some larger applications. The optimizations show speedups of up to 70 percent on three parallel systems, which represent three different types of cluster network technologies.
Lighting design for globally illuminated volume rendering.
Zhang, Yubo; Ma, Kwan-Liu
2013-12-01
With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.
Neuroanatomy and Global Neuroscience.
DeFelipe, Javier
2017-07-05
Our brains are like a dense forest-a complex, seemingly impenetrable terrain of interacting cells mediating cognition and behavior. However, we should view the challenge of understanding the brain with optimism, provided that we choose appropriate strategies for the development of global neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2015-09-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their
Effective Energy Methods for Global Optimization for Biopolymer Structure Prediction
National Research Council Canada - National Science Library
Shalloway, David
1998-01-01
.... Its main strength is that it uncovers and exploits the intrinsic "hidden structures" of biopolymer energy landscapes to efficiently perform global minimization using a hierarchical search procedure...
Biswas, A.; Sharma, S. P.
2012-12-01
Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the
Welding Robot Collision-Free Path Optimization
Directory of Open Access Journals (Sweden)
Xuewu Wang
2017-02-01
Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.
Vertical bifacial solar farms: Physics, design, and global optimization
Khan, M. Ryyan; Hanna, Amir; Sun, Xingshu; Alam, Muhammad A.
2017-01-01
10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a
A new approach of optimization procedure for superconducting integrated circuits
International Nuclear Information System (INIS)
Saitoh, K.; Soutome, Y.; Tarutani, Y.; Takagi, K.
1999-01-01
We have developed and tested a new circuit simulation procedure for superconducting integrated circuits which can be used to optimize circuit parameters. This method reveals a stable operation region in the circuit parameter space in connection with the global bias margin by means of a contour plot of the global bias margin versus the circuit parameters. An optimal set of parameters with margins larger than these of the initial values has been found in the stable region. (author)
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Annealing evolutionary stochastic approximation Monte Carlo for global optimization
Liang, Faming
2010-01-01
outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.
Energy Technology Data Exchange (ETDEWEB)
Stetter, Daniel
2014-04-10
As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool
International Nuclear Information System (INIS)
Stetter, Daniel
2014-01-01
As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool
Optimization over polynomials : Selected topics
Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon
2014-01-01
Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of
Cooperative Coevolution with Formula-Based Variable Grouping for Large-Scale Global Optimization.
Wang, Yuping; Liu, Haiyan; Wei, Fei; Zong, Tingting; Li, Xiaodong
2017-08-09
For a large-scale global optimization (LSGO) problem, divide-and-conquer is usually considered an effective strategy to decompose the problem into smaller subproblems, each of which can then be solved individually. Among these decomposition methods, variable grouping is shown to be promising in recent years. Existing variable grouping methods usually assume the problem to be black-box (i.e., assuming that an analytical model of the objective function is unknown), and they attempt to learn appropriate variable grouping that would allow for a better decomposition of the problem. In such cases, these variable grouping methods do not make a direct use of the formula of the objective function. However, it can be argued that many real-world problems are white-box problems, that is, the formulas of objective functions are often known a priori. These formulas of the objective functions provide rich information which can then be used to design an effective variable group method. In this article, a formula-based grouping strategy (FBG) for white-box problems is first proposed. It groups variables directly via the formula of an objective function which usually consists of a finite number of operations (i.e., four arithmetic operations "[Formula: see text]", "[Formula: see text]", "[Formula: see text]", "[Formula: see text]" and composite operations of basic elementary functions). In FBG, the operations are classified into two classes: one resulting in nonseparable variables, and the other resulting in separable variables. In FBG, variables can be automatically grouped into a suitable number of non-interacting subcomponents, with variables in each subcomponent being interdependent. FBG can easily be applied to any white-box problem and can be integrated into a cooperative coevolution framework. Based on FBG, a novel cooperative coevolution algorithm with formula-based variable grouping (so-called CCF) is proposed in this article for decomposing a large-scale white-box problem
A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization
Foster, John V.; Cunningham, Kevin
2010-01-01
Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the
Directory of Open Access Journals (Sweden)
Shouheng Tuo
Full Text Available Harmony Search (HS and Teaching-Learning-Based Optimization (TLBO as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
Synergy optimization and operation management on syndicate complementary knowledge cooperation
Tu, Kai-Jan
2014-10-01
The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm
Emery, Louis
2005-01-01
Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...
Fuel shuffling optimization for the Delft research reactor
Energy Technology Data Exchange (ETDEWEB)
Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)
1997-07-01
A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author) 5 figs., 4 refs.
Fuel shuffling optimization for the Delft research reactor
International Nuclear Information System (INIS)
Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M.; Quist, A.J.
1997-01-01
A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)
Fuel shuffling optimization for the Delft research reactor
Energy Technology Data Exchange (ETDEWEB)
Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)
1997-07-01
A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)
Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment
Directory of Open Access Journals (Sweden)
Winfried Schlee
2017-06-01
Full Text Available BackgroundThe assessment and treatment of complex disorders is challenged by the multiple domains and instruments used to evaluate clinical outcome. With the large number of assessment tools typically used in complex disorders comes the challenge of obtaining an integrative view of disease status to further evaluate treatment outcome both at the individual level and at the group level. Radar plots appear as an attractive visual tool to display multivariate data on a two-dimensional graphical illustration. Here, we describe the use of radar plots for the visualization of disease characteristics applied in the context of tinnitus, a complex and heterogeneous condition, the treatment of which has shown mixed success.MethodsData from two different cohorts, the Swedish Tinnitus Outreach Project (STOP and the Tinnitus Research Initiative (TRI database, were used. STOP is a population-based cohort where cross-sectional data from 1,223 non-tinnitus and 933 tinnitus subjects were analyzed. By contrast, the TRI contained data from 571 patients who underwent various treatments and whose Clinical Global Impression (CGI score was accessible to infer treatment outcome. In the latter, 34,560 permutations were tested to evaluate whether a particular ordering of the instruments could reflect better the treatment outcome measured with the CGI.ResultsRadar plots confirmed that tinnitus subtypes such as occasional and chronic tinnitus from the STOP cohort could be strikingly different, and helped appreciate a gender bias in tinnitus severity. Radar plots with greater surface areas were consistent with greater burden, and enabled a rapid appreciation of the global distress associated with tinnitus in patients categorized according to tinnitus severity. Permutations in the arrangement of instruments allowed to identify a configuration with minimal variance and maximized surface difference between CGI groups from the TRI database, thus affording a means of optimally
Roy, Satadru
Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network
Directory of Open Access Journals (Sweden)
Weixing Su
2017-03-01
Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Negatively correlated local and global stock externalities: tax or subsidy?
International Nuclear Information System (INIS)
Zili Yang
2006-01-01
Fossil fuel combustion generates both CO 2 and SO 2 . CO 2 is the most important greenhouse gas; SO 2 can cause serious local pollution. But it can alleviate the potential global warming because of negative radiative forcing. Such a phenomenon can be characterized as negatively correlated local and global stock externalities. In this paper, we set up an optimal control problem of negatively correlated local and global stock externality provision. The efficiency conditions for this problem are derived. These conditions modify the Samuelson rules for optimal provision of externalities. In addition, we examine several policy related scenarios of negatively correlated local and global stock externality provisions. Finally, we discuss policy implications and limitation of the theoretical results derived in this paper. We also indicate applications of the theoretical results here to empirical research, particularly to economic analysis of multiple-gas issues in climate change. (Author)
Particle Control in Phase Space by Global K-Means Clustering
DEFF Research Database (Denmark)
Frederiksen, Jacob Trier; Lapenta, G.; Pessah, M. E.
2015-01-01
We devise and explore an iterative optimization procedure for controlling particle populations in particle-in-cell (PIC) codes via merging and splitting of computational macro-particles. Our approach, is to compute an optimal representation of the global particle phase space structure while decre...
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2014-01-01
A new local search technique is proposed and used to improve the performance of particle swarm optimization algorithms by addressing the problem of premature convergence. In the proposed local search technique, a potential particle position in the solution search space is collectively constructed by a number of randomly selected particles in the swarm. The number of times the selection is made varies with the dimension of the optimization problem and each selected particle donates the value in the location of its randomly selected dimension from its personal best. After constructing the potential particle position, some local search is done around its neighbourhood in comparison with the current swarm global best position. It is then used to replace the global best particle position if it is found to be better; otherwise no replacement is made. Using some well-studied benchmark problems with low and high dimensions, numerical simulations were used to validate the performance of the improved algorithms. Comparisons were made with four different PSO variants, two of the variants implement different local search technique while the other two do not. Results show that the improved algorithms could obtain better quality solution while demonstrating better convergence velocity and precision, stability, robustness, and global-local search ability than the competing variants. PMID:24723827
International Nuclear Information System (INIS)
Maaroufi, Ghofrane; Chelbi, Anis; Rezg, Nidhal
2013-01-01
This paper considers a selective maintenance policy for multi-component systems for which a minimum level of reliability is required for each mission. Such systems need to be maintained between consecutive missions. The proposed strategy aims at selecting the components to be maintained (renewed) after the completion of each mission such that a required reliability level is warranted up to the next stop with the minimum cost, taking into account the time period allotted for maintenance between missions and the possibility to extend it while paying a penalty cost. This strategy is applied to binary-state systems subject to propagated failures with global effect, and failure isolation phenomena. A set of rules to reduce the solutions space for such complex systems is developed. A numerical example is presented to illustrate the modeling approach and the use of the reduction rules. Finally, the Monte-Carlo simulation is used in combination with the selective maintenance optimization model to deal with a number of successive missions
Optimal covariate designs theory and applications
Das, Premadhis; Mandal, Nripes Kumar; Sinha, Bikas Kumar
2015-01-01
This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for...
E.L. Korenromp (Eline); P. Glaziou (Philippe); C. Fitzpatrick (Christopher); K. Floyd (Katherine); M. Hosseini (Mehran); M.C. Raviglione (Mario); R. Atun (Rifat); B. Williams (Brian)
2012-01-01
textabstractBackground: The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments
Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances
Directory of Open Access Journals (Sweden)
E. V. Blagin
2014-01-01
Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.
Tractable Pareto Optimization of Temporal Preferences
Morris, Robert; Morris, Paul; Khatib, Lina; Venable, Brent
2003-01-01
This paper focuses on temporal constraint problems where the objective is to optimize a set of local preferences for when events occur. In previous work, a subclass of these problems has been formalized as a generalization of Temporal CSPs, and a tractable strategy for optimization has been proposed, where global optimality is defined as maximizing the minimum of the component preference values. This criterion for optimality, which we call 'Weakest Link Optimization' (WLO), is known to have limited practical usefulness because solutions are compared only on the basis of their worst value; thus, there is no requirement to improve the other values. To address this limitation, we introduce a new algorithm that re-applies WLO iteratively in a way that leads to improvement of all the values. We show the value of this strategy by proving that, with suitable preference functions, the resulting solutions are Pareto Optimal.
Optimal stomatal behaviour around the world
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa
2015-05-01
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
Global Convergence of a Modified LS Method
Directory of Open Access Journals (Sweden)
Liu JinKui
2012-01-01
Full Text Available The LS method is one of the effective conjugate gradient methods in solving the unconstrained optimization problems. The paper presents a modified LS method on the basis of the famous LS method and proves the strong global convergence for the uniformly convex functions and the global convergence for general functions under the strong Wolfe line search. The numerical experiments show that the modified LS method is very effective in practice.
Truss systems and shape optimization
Pricop, Mihai Victor; Bunea, Marian; Nedelcu, Roxana
2017-07-01
Structure optimization is an important topic because of its benefits and wide applicability range, from civil engineering to aerospace and automotive industries, contributing to a more green industry and life. Truss finite elements are still in use in many research/industrial codesfor their simple stiffness matrixand are naturally matching the requirements for cellular materials especially considering various 3D printing technologies. Optimality Criteria combined with Solid Isotropic Material with Penalization is the optimization method of choice, particularized for truss systems. Global locked structures areobtainedusinglocally locked lattice local organization, corresponding to structured or unstructured meshes. Post processing is important for downstream application of the method, to make a faster link to the CAD systems. To export the optimal structure in CATIA, a CATScript file is automatically generated. Results, findings and conclusions are given for two and three-dimensional cases.
Optimization model for the design of distributed wastewater treatment networks
Directory of Open Access Journals (Sweden)
Ibrić Nidret
2012-01-01
Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.
Global issues and opportunities for optimized retinoblastoma care.
Gallie, Brenda L; Zhao, Junyang; Vandezande, Kirk; White, Abigail; Chan, Helen S L
2007-12-01
The RB1 gene is important in all human cancers. Studies of human retinoblastoma point to a rare retinal cell with extreme dependency on RB1 for initiation but not progression to full malignancy. In developed countries, genetic testing within affected families can predict children at high risk of retinoblastoma before birth; chemotherapy with local therapy often saves eyes and vision; and mortality is 4%. In less developed countries where 92% of children with retinoblastoma are born, mortality reaches 90%. Global collaboration is building for the dramatic change in mortality that awareness, simple expertise and therapies could achieve in less developed countries. Copyright 2007 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
Ratko Zelenika
2007-05-01
Full Text Available The main objective of the scientific research of this doctoral thesis is the effect of the logistics operator in the function of cutting total costs of the global logistics chain. In order to achieve the objective of the research, a number of scientific methods have been applied such as survey methods, methods of dynamic programming and mixed convex programming. Owing to the applied scientific methodology,Drago Pupovac, M.Sc. has successfully interpreted the obtained results by proving that the selective model approach to active participants of the logistics chain gives the logistics operator the insight into potential logistics network, depicts skills of individual operators in the logistics network, specifies logistics activitiesof each logistics venture, provides information on costs of specific logistics activities and in that way proves that it enables logistics operator to optimize logistics chains by protecting them from the demand instability and changes.
Constraint-based query distribution framework for an integrated global schema
DEFF Research Database (Denmark)
Malik, Ahmad Kamran; Qadir, Muhammad Abdul; Iftikhar, Nadeem
2009-01-01
and replicated data sources. The provided system is all XML-based which poses query in XML form, transforms, and integrates local results in an XML document. Contributions include the use of constraints in our existing global schema which help in source selection and query optimization, and a global query...
Global Optimization for Transport Network Expansion and Signal Setting
Liu, Haoxiang; Wang, David Z. W.; Yue, Hao
2015-01-01
This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two pr...
Dynamical System Approaches to Combinatorial Optimization
DEFF Research Database (Denmark)
Starke, Jens
2013-01-01
of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....
Trust regions in Kriging-based optimization with expected improvement
Regis, Rommel G.
2016-06-01
The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Directory of Open Access Journals (Sweden)
Ruisheng Sun
2016-01-01
Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.
Towards Optimal PDE Simulations
International Nuclear Information System (INIS)
Keyes, David
2009-01-01
The Terascale Optimal PDE Solvers (TOPS) Integrated Software Infrastructure Center (ISIC) was created to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. These simulations often involve the solution of partial differential equations (PDEs) on terascale computers. The TOPS Center researched, developed and deployed an integrated toolkit of open-source, optimal complexity solvers for the nonlinear partial differential equations that arise in many DOE application areas, including fusion, accelerator design, global climate change and reactive chemistry. The algorithms created as part of this project were also designed to reduce current computational bottlenecks by orders of magnitude on terascale computers, enabling scientific simulation on a scale heretofore impossible.
Terascale Optimal PDE Simulations
Energy Technology Data Exchange (ETDEWEB)
David Keyes
2009-07-28
The Terascale Optimal PDE Solvers (TOPS) Integrated Software Infrastructure Center (ISIC) was created to develop and implement algorithms and support scientific investigations performed by DOE-sponsored researchers. These simulations often involve the solution of partial differential equations (PDEs) on terascale computers. The TOPS Center researched, developed and deployed an integrated toolkit of open-source, optimal complexity solvers for the nonlinear partial differential equations that arise in many DOE application areas, including fusion, accelerator design, global climate change and reactive chemistry. The algorithms created as part of this project were also designed to reduce current computational bottlenecks by orders of magnitude on terascale computers, enabling scientific simulation on a scale heretofore impossible.
Optimized packings with applications
Pintér, János
2015-01-01
This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...
An Efficient Algorithm for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Sergio Gerardo de-los-Cobos-Silva
2015-01-01
Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2017-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2015-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Directory of Open Access Journals (Sweden)
Sarvesh Varatharajan
2009-10-01
Full Text Available We consider the problem of all-to-one selfish routing in the absence of a payment scheme in wireless sensor networks, where a natural model for cost is the power required to forward, referring to the resulting game as a Locally Minimum Cost Forwarding (LMCF. Our objective is to characterize equilibria and their global costs in terms of stretch and diameter, in particular finding incentive compatible algorithms that are also close to globally optimal. We find that although social costs for equilibria of LMCF exhibit arbitrarily bad worst-case bounds and computational infeasibility of reaching optimal equilibria, there exist greedy and local incentive compatible heuristics achieving near-optimal global costs.
DEFF Research Database (Denmark)
Clausen, Jens; Zilinskas, A,
2002-01-01
We consider the problem of optimizing a Lipshitzian function. The branch and bound technique is a well-known solution method, and the key components for this are the subdivision scheme, the bound calculation scheme, and the initialization. For Lipschitzian optimization, the bound calculations are...
Solving non-standard packing problems by global optimization and heuristics
Fasano, Giorgio
2014-01-01
This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploit...
Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer
Directory of Open Access Journals (Sweden)
Lianbo Ma
2014-01-01
Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.
Global Optimization of a Periodic System using a Genetic Algorithm
Stucke, David; Crespi, Vincent
2001-03-01
We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.
Optimal Foraging in Semantic Memory
Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.
2012-01-01
Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…
Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal
Steinley, Douglas; Hubert, Lawrence
2008-01-01
This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…
Peng, NaiFu; Guan, Hui; Wu, ChuiJie
2016-04-01
In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.
Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.
2017-12-01
Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Global surgery: current evidence for improving surgical care.
Fuller, Jennifer C; Shaye, David A
2017-08-01
The field of global surgery is undergoing rapid transformation, owing to several recent prominent reports positioning it as a cost-effective means of relieving global disease burden. The purpose of this article is to review the recent advances in the field of global surgery. Efforts to grow the global surgical workforce and procedural capacity have focused on innovative methods to increase surgeon training, enhance international collaboration, leverage technology, optimize existing health systems, and safely implement task-sharing. Computer modeling offers a novel means of informing policy to optimize timely access to care, equitably promote health and financial protection, and efficiently grow infrastructure. Tools and checklists have recently been developed to enhance data collection and ensure methodologically rigorous publications to inform planning, benchmark surgical systems, promote accurate modeling, track key health indicators, and promote safety. Creation of institutional partnerships and trainee exchanges can enrich training, stimulate commitment to humanitarian work, and promote the equal exchange of ideas and expertise. The recent body of work creates a strong foundation upon which work toward the goal of universal access to safe, affordable surgical care can be built; however, further collection and analysis of country-specific data is necessary for accurate modeling and outcomes research into the efficacy of policies such as task-sharing is greatly needed.
Analytic clock frequency selection for global DVFS
Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria
2014-01-01
Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to implement, it is used in modern multicore processors like the IBM Power 7, ARM Cortex A9 and NVIDIA Tegra 2. This theory oriented paper discusses energy optimal DVFS algorithms for such processors....
Optimizing data access in the LAMPF control system
International Nuclear Information System (INIS)
Schaller, S.C.; Corley, J.K.; Rose, P.A.
1985-01-01
The LAMPF control system data access software offers considerable power and flexibility to application programs through symbolic device naming and an emphasis on hardware independence. This paper discusses optimizations aimed at improving the performance of the data access software while retaining these capabilities. The only aspects of the optimizations visible to the application programs are ''vector devices'' and ''aggregate devices.'' A vector device accesses a set of hardware related data items through a single device name. Aggregate devices allow run-time optimization of references to groups of unrelated devices. Optimizations not visible on the application level include careful handling of: network message traffic; the sharing of global resources; and storage allocation
Directory of Open Access Journals (Sweden)
An Liu
2012-01-01
Full Text Available Coordination optimization of directional overcurrent relays (DOCRs is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS and pickup current (Ip values of each DOCR. The optimal results should have the shortest primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO algorithm has been considered an effective tool for linear/nonlinear optimization problems with application in the protection and coordination of power systems. With a limited runtime period, the conventional PSO considers the optimal solution as the final solution, and an early convergence of PSO results in decreased overall performance and an increase in the risk of mistaking local optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex search method and particle swarm optimization (proposed NM-PSO algorithm to solve the DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead simplex search method is used to improve the efficiency of PSO due to its potential for rapid convergence. To validate the proposal, this study compared the performance of the proposed algorithm with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility.
Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
Poluyan, Sergey; Ershov, Nikolay
2018-02-01
In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.
Ong, M L; Ng, E Y K
2005-12-01
In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.
Global curriculum in research literacy for the surgical oncologist.
Are, C; Yanala, U; Malhotra, G; Hall, B; Smith, L; Cummings, C; Lecoq, C; Wyld, L; Audisio, R A; Berman, R S
2018-01-01
The ability to provide optimal care to cancer patients depends on awareness of current evidence-based practices emanating from research or involvement in research where circumstances permit. The significant global variations in cancer-related research activity and its correlation to cancer-specific outcomes may have an influence on the care provided to cancer patients and their outcomes. The aim of this project is to develop a global curriculum in research literacy for the surgical oncologist. The leadership of the Society of Surgical Oncology and European Society of Surgical Oncology convened a global curriculum committee to develop a global curriculum in research literacy for the Surgical Oncologist. A global curriculum in research literacy is developed to incorporate the required domains considered to be essential to interpret the published research or become involved in research activity where circumstances permit. The purpose of this curriculum is to promote research literacy for the surgical oncologist, wherever they are based. It does not mandate direct research participation which may not be feasible due to restrictions within the local health-care delivery environment, socio-economic priorities and the educational environment of the individual institution where they work. A global curriculum in research literacy is proposed which may promote research literacy or encourage involvement in research activity where circumstances permit. It is hoped that this will enhance cancer-related research activity, promote awareness of optimal evidence-based practices and improve outcomes for cancer patients globally. Copyright © 2017 Society of Surgical Oncology, European Society of Surgical Oncology. Published by Elsevier Ltd.. All rights reserved.
Directory of Open Access Journals (Sweden)
Simon Fong
2014-01-01
Full Text Available Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
BUILDING A SUSTAINABLE ENTREPRENEURSHIP IN INCREASING GLOBAL COMPETITIVENESS
NABABAN, TONGAM SIHOL
2014-01-01
Global Entrepreneurship and Development Index or the Global Entrepreneurship and Development Index (GEDI) In 2013 positioned Indonesia at ranked 76 of 118 countries. Compared with the ASEAN countries, the position are still far below Singapore (13), and still below Malaysia (57), Brunei Darussalam (58), Thailand (65). This fact shows that Indonesia has not been optimal in building its entrepreneurial yet. To enhance the development of entrepreneurship, the Indonesian government has launched a...
Optimization Problems in Supply Chain Management
D. Romero Morales (Dolores)
2000-01-01
textabstractMaria Dolores Romero Morales was born on Augustus 5th, 1971, in Sevilla (Spain). She studied Mathematics at University of Sevilla from 1989 to 1994 and specialized in Statistics and Operations Research. She wrote her Master's thesis on Global Optimization in Location Theory under the
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
Complicated problem solution techniques in optimal parameter searching
International Nuclear Information System (INIS)
Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.
1992-01-01
An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs
Enders, Philip; Adler, Werner; Schaub, Friederike; Hermann, Manuel M; Diestelhorst, Michael; Dietlein, Thomas; Cursiefen, Claus; Heindl, Ludwig M
2017-10-24
To compare a simultaneously optimized continuous minimum rim surface parameter between Bruch's membrane opening (BMO) and the internal limiting membrane to the standard sequential minimization used for calculating the BMO minimum rim area in spectral domain optical coherence tomography (SD-OCT). In this case-control, cross-sectional study, 704 eyes of 445 participants underwent SD-OCT of the optic nerve head (ONH), visual field testing, and clinical examination. Globally and clock-hour sector-wise optimized BMO-based minimum rim area was calculated independently. Outcome parameters included BMO-globally optimized minimum rim area (BMO-gMRA) and sector-wise optimized BMO-minimum rim area (BMO-MRA). BMO area was 1.89 ± 0.05 mm 2 . Mean global BMO-MRA was 0.97 ± 0.34 mm 2 , mean global BMO-gMRA was 1.01 ± 0.36 mm 2 . Both parameters correlated with r = 0.995 (P < 0.001); mean difference was 0.04 mm 2 (P < 0.001). In all sectors, parameters differed by 3.0-4.2%. In receiver operating characteristics, the calculated area under the curve (AUC) to differentiate glaucoma was 0.873 for BMO-MRA, compared to 0.866 for BMO-gMRA (P = 0.004). Among ONH sectors, the temporal inferior location showed the highest AUC. Optimization strategies to calculate BMO-based minimum rim area led to significantly different results. Imposing an additional adjacency constraint within calculation of BMO-MRA does not improve diagnostic power. Global and temporal inferior BMO-MRA performed best in differentiating glaucoma patients.
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A
Estimation of the Carbon Footprint and Global Warming Potential in Rice Production Systems
International Nuclear Information System (INIS)
Dastan, S.; Soltani, F.; Noormohamadi, G.; Madani, H.; Yadi, R.
2016-01-01
Optimal management approaches can be adopted in order to increase crop productivity and lower the carbon footprint of grain products. The objective of this study was to estimate the carbon (C) footprint and global warming potential of rice production systems. In this experiment, rice production systems (including SRI, improved and conventional) were studied. All activities, field operations and data in production methods and at different input rates were monitored and recorded during 2012. Results showed that average global warming potential across production systems was equal to 2803.25 kg CO 2 -eq ha-1. The highest and least global warming potential were observed in the SRI and conventional systems, respectively. global warming potential per unit energy input was the least and most in SRI and conventional systems, respectively. Also, the SRI and conventional systems had the maximum and minimum global warming potential per unit energy output, respectively. SRI and conventional system had the greatest and least global warming potential per unit energy output, respectively. Therefore, the optimal management approach found in SRI resulted in a reduction in GHGs, global warming potential and the carbon footprint.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
Optimization of the Energy Output of Osmotic Power Plants
Directory of Open Access Journals (Sweden)
Florian Dinger
2013-01-01
Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2010-07-01
An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differs significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus, a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterized by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. The optimization procedure applied to the single crystalline phase compares well with the experimental data. Apparent enhancement of piezoelectric coefficient d33 is observed in an optimally oriented BaTiO3 single crystal. Based on the good agreement of results with the published data in single crystals, we proceed to apply the methodology in polycrystals. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3 is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centered around 45°. The piezoelectric coefficient in such a ceramic is found to
Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review
Directory of Open Access Journals (Sweden)
Maria Ferrara
2018-06-01
Full Text Available Since the introduction of the recast of the EPBD European Directive 2010/31/EU, many studies on the cost-effective feasibility of nearly zero-energy buildings (NZEBs were carried out either by academic research bodies and by national bodies. In particular, the introduction of the cost-optimal methodology has given a strong impulse to research in this field. This paper presents a comprehensive and significant review on scientific works based on the application of cost-optimal analysis applications in Europe since the EPBD recast entered into force, pointing out the differences in the analyzed studies and comparing their outcomes before the new recast of EPBD enters into force in 2018. The analysis is conducted with special regard to the methods used for the energy performance assessment, the global cost calculation, and for the selection of the energy efficiency measures leading to design optimization. A critical discussion about the assumptions on which the studies are based and the resulting gaps between the resulting cost-optimal performance and the zero energy target is provided together with a summary of the resulting cost-optimal set of technologies to be used for cost-optimal NZEB design in different contexts. It is shown that the cost-optimal approach results as an effective method for delineating the future of NZEB design throughout Europe while emerging criticalities and open research issues are presented.
Directory of Open Access Journals (Sweden)
Gómez Susana
2014-07-01
Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.
Man's impact on his global environment
International Nuclear Information System (INIS)
Knox, J.B.
1976-07-01
The experience and awareness growing from research activities leads to several important concerns for policy makers: there is a need to move towards a policy of conservation of our global air resources in its totality from earth's surface to stratosphere; the technical data base and level of understanding should be systematically improved for the rational implementation of standards for the whole atmosphere; the U.S. should establish a focal point for regional and global environmental assessments responsive to policy-makers' needs and concerns, and interactive with the UN's Global Environmental Monitoring System; and the environmental consequences of increased U.S. dependence on coal should receive greater attention so that optimal choices between control technology, tall stacks, and synthetic fuels may be achieved with conservation of total air resources
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Directory of Open Access Journals (Sweden)
Lihong Guo
2013-01-01
Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Slepoy, A; Peters, M D; Thompson, A P
2007-11-30
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.
Towards continuous global measurements and optimal emission estimates of NF3
Arnold, T.; Muhle, J.; Salameh, P.; Harth, C.; Ivy, D. J.; Weiss, R. F.
2011-12-01
We present an analytical method for the continuous in situ measurement of nitrogen trifluoride (NF3) - an anthropogenic gas with a global warming potential of ~16800 over a 100 year time horizon. NF3 is not included in national reporting emissions inventories under the United Nations Framework Convention on Climate Change (UNFCCC). However, it is a rapidly emerging greenhouse gas due to emission from a growing number of manufacturing facilities with increasing output and modern end-use applications, namely in microcircuit etching, and in production of flat panel displays and thin-film photovoltaic cells. Despite success in measuring the most volatile long lived halogenated species such as CF4, the Medusa preconcentration GC/MS system of Miller et al. (2008) is unable to detect NF3 under remote operation. Using altered techniques of gas separation and chromatography after initial preconcentration, we are now able to make continuous atmospheric measurements of NF3 with average precisions NF3 produced. Emission factors are shown to have reduced over the last decade; however, rising production and end-use have caused the average global atmospheric concentration to double between 2005 and 2011 i.e. half the atmospheric NF3 present today originates from emissions after 2005. Finally we show the first continuous in situ measurements from La Jolla, California, illustrating how global deployment of our technique could improve the temporal and spatial scale of NF3 'top-down' emission estimates over the coming years. These measurements will be important for independent verification of emissions should NF3 be regulated under a new climate treaty.
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
Ouma, Brian D O; Dimaras, Helen
2013-07-26
The body of research and practice regarding student volunteer abroad experiences largely focuses on ensuring the optimal learning experience for the student from the Global North, without equivalent attention to the benefits, if any, to the host institution in the Global South. In this debate article, we examine an often overlooked component of global student volunteer programs: the views of the local partner on what makes for a mutually beneficial partnership between volunteers from the Global North and institutions in the Global South. To guide our discussion, we drew upon the experiences of a Kenyan NGO with a Canadian student volunteer in the summer of 2012, organized via a formalized partnership with a Canadian university. We found that the approach of the NGO to hosting the student mirrored the organizational behaviour theories of Margaret J. Wheatley, who emphasized a disorderly or 'chaotic' approach to acquiring impactful change, coupled with a focus on building solid human relationships. Rather than following a set of rigid goals or tasks, the student was encouraged to critically engage and participate in all aspects of the culture of the organization and country, to naturally discover an area where his priorities aligned with the needs of the NGO. Solid networks and interpersonal connections resulted in a process useful for the organization long after the student's short-term placement ended. Our discussion reveals key features of successful academic volunteer abroad placements: equal partnership in the design phase between organizations in the Global North and Global South; the absence of rigid structures or preplanned tasks during the student's placement; participatory observation and critical engagement of the student volunteer; and a willingness of the partners to measure impact by the resultant process instead of tangible outcomes.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
CSIR Research Space (South Africa)
Debba, Pravesh
2010-11-01
Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...
International Nuclear Information System (INIS)
Baron, J.
2006-01-01
Attitudes toward global warming are influenced by various heuristics, which may distort policy away from what is optimal for the well-being of people. These possible distortions, or biases, include: a focus on harms that we cause, as opposed to those that we can remedy more easily; a feeling that those who cause a problem should fix it; a desire to undo a problem rather than compensate for its presence; parochial concern with one's own group (nation); and neglect of risks that are not available. Although most of these biases tend to make us attend relatively too much to global warming, other biases, such as wishful thinking, cause us to attend too little. I discuss these possible effects and illustrate some of them with an experiment conducted on the World Wide Web
Vertical bifacial solar farms: Physics, design, and global optimization
Khan, M. Ryyan
2017-09-04
There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms
Niu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Law, B.E.; Ammann, C.; Moors, E.J.
2012-01-01
It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally
Hybrid particle swarm optimization algorithm and its application in nuclear engineering
International Nuclear Information System (INIS)
Liu, C.Y.; Yan, C.Q.; Wang, J.J.
2014-01-01
Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%
Detailed design of a lattice composite fuselage structure by a mixed optimization method
Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.
2016-10-01
In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.
FUEL CONSUMPTION EFFECT OF COMMERCIAL TURBOFANS ON GLOBAL WARMING
Energy Technology Data Exchange (ETDEWEB)
Onder Turan; T. Hikmet Karakoc [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)
2008-09-30
The main objective pursued in this study is to parametrically investigate the fuel consumption effect of commercial turbofans on global warming. In this regard, Of the important parameters, specific fuel consumption of a commercial turbofans is taken into consideration. In order to minimize the effect of fuel consumption on global warming, the values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB, while objective function is determined for minimizing the specific fuel consumption by considering the following parameters such as the fan pressure ratio ({pi}{sub f}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Accordingly, it may be concluded that the software program developed can successfully solve optimization problems at 1.2{le}{pi}{sub f}{le}2, 2{le}{alpha}{le}10 and 23000{le}h{sub PR}{le}120000 with aircraft flight Mach number {le}0.8. Fuel types used in preliminary engine cycle analysis were JP-4, JP-5, JP-8 and hydrogen in this paper.
A global earthquake discrimination scheme to optimize ground-motion prediction equation selection
Garcia, Daniel; Wald, David J.; Hearne, Michael
2012-01-01
We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.
Directory of Open Access Journals (Sweden)
Kuei-Hsiang Chao
2016-11-01
Full Text Available The present study proposes a maximum power point tracking (MPPT method in which improved teaching-learning-based optimization (I-TLBO is applied to perform global MPPT of photovoltaic (PV module arrays under dissimilar shading situations to ensure the maximum power output of the module arrays. The proposed I-TLBO enables the automatic adjustment of teaching factors according to the self-learning ability of students. Incorporating smart-tracking and self-study strategies can effectively improve the tracking response speed and steady-state tracking performance. To evaluate the feasibility of the proposed I-TLBO, a HIP-2717 PV module array from Sanyo Electric was employed to compose various arrays with different serial and parallel configurations. The arrays were operated under different shading conditions to test the MPPT with double, triple, or quadruple peaks of power-voltage characteristic curves. Boost converters were employed with TMS320F2808 digital signal processors to test the proposed MPPT method. Empirical results confirm that the proposed method exhibits more favorable dynamic and static-state response tracking performance compared with that of conventional TLBO.
From the social learning theory to a social learning algorithm for global optimization
Gong, Yue-Jiao; Zhang, Jun; Li, Yun
2014-01-01
Traditionally, the Evolutionary Computation (EC) paradigm is inspired by Darwinian evolution or the swarm intelligence of animals. Bandura's Social Learning Theory pointed out that the social learning behavior of humans indicates a high level of intelligence in nature. We found that such intelligence of human society can be implemented by numerical computing and be utilized in computational algorithms for solving optimization problems. In this paper, we design a novel and generic optimization...
Low emittance lattice optimization using a multi-objective evolutionary algorithm
International Nuclear Information System (INIS)
Gao Weiwei; Wang Lin; Li Weimin; He Duohui
2011-01-01
A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)
Implicit geometric representations for optimal design of gas turbine blades
International Nuclear Information System (INIS)
Mansour, T.; Ghaly, W.
2004-01-01
Shape optimization requires a proper geometric representation of the blade profile; the parameters of such a representation are usually taken as design variables in the optimization process. This implies that the model must possess three specific features: flexibility, efficiency, and accuracy. For the specific task of aerodynamic optimization for turbine blades, it is critical to have flexibility in both the global and local design spaces in order to obtain a successful optimization. This work is concerned with the development of two geometric representations of turbine blade profiles that are appropriate for aerodynamic optimization: the Modified Rapid Axial Turbine Design (MRATD) model where the blade is represented by five low-order curves that satisfy eleven designer parameters; this model is suitable for a global search of the design space. The second model is NURBS parameterization of the blade profile that can be used for a local refinement. The two models are presented and are assessed for flexibility and accuracy when representing several typical turbine blade profiles. The models will be further discussed in terms of curve smoothness and blade shape representation with a multi-NURBS curve versus one curve and its effect on the flow field, in particular the pressure distribution along the blade surfaces, will be elaborated. (author)
Analyses of Methods and Algorithms for Modelling and Optimization of Biotechnological Processes
Directory of Open Access Journals (Sweden)
Stoyan Stoyanov
2009-08-01
Full Text Available A review of the problems in modeling, optimization and control of biotechnological processes and systems is given in this paper. An analysis of existing and some new practical optimization methods for searching global optimum based on various advanced strategies - heuristic, stochastic, genetic and combined are presented in the paper. Methods based on the sensitivity theory, stochastic and mix strategies for optimization with partial knowledge about kinetic, technical and economic parameters in optimization problems are discussed. Several approaches for the multi-criteria optimization tasks are analyzed. The problems concerning optimal controls of biotechnological systems are also discussed.
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy
Energy Technology Data Exchange (ETDEWEB)
Nguyen, D; Lyu, Q; Ruan, D; O’Connor, D; Low, D; Sheng, K [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)
2016-06-15
Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.
The concept of 'optimal' path in classical mechanics
International Nuclear Information System (INIS)
Passos, E.J.V. de; Cruz, F.F. de S.
1986-01-01
The significance of the concept of 'optimal' path in the framework of classical mechanics is discussed. The derivation of the local harmonic approximation and self-consistent collective coordinate method equations of the optimal path is based on a careful study of the concepts of local maximal decoupling and global maximal decoupling respectively. This exhibits the nature of the differences between these two theories and allows one to establish the conditions under which they become equivalent. (author)
Design Optimization of a Hybrid Electric Vehicle Powertrain
Mangun, Firdause; Idres, Moumen; Abdullah, Kassim
2017-03-01
This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.
Bifurcations of optimal vector fields: an overview
Kiseleva, T.; Wagener, F.; Rodellar, J.; Reithmeier, E.
2009-01-01
We develop a bifurcation theory for the solution structure of infinite horizon optimal control problems with one state variable. It turns out that qualitative changes of this structure are connected to local and global bifurcations in the state-costate system. We apply the theory to investigate an
Energy Technology Data Exchange (ETDEWEB)
Thu, Hien Cao Thi; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)
2013-12-15
A novel analytical design method of industrial proportional-integral (PI) controllers was developed for the optimal control of first-order processes with operational constraints. The control objective was to minimize a weighted sum of the controlled variable error and the rate of change in the manipulated variable under the maximum allowable limits in the controlled variable, manipulated variable and the rate of change in the manipulated variable. The constrained optimal servo control problem was converted to an unconstrained optimization to obtain an analytical tuning formula. A practical shortcut procedure for obtaining optimal PI parameters was provided based on graphical analysis of global optimality. The proposed PI controller was found to guarantee global optimum and deal explicitly with the three important operational constraints.
Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization.
Modiri, Arezoo; Gu, Xuejun; Hagan, Aaron M; Sawant, Amit
2017-05-01
Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach. We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm-a popular RT optimization technique is also implemented and used. The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations. The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO. RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.
Analysis Balance Parameter of Optimal Ramp metering
Li, Y.; Duan, N.; Yang, X.
2018-05-01
Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.
Bare-Bones Teaching-Learning-Based Optimization
Directory of Open Access Journals (Sweden)
Feng Zou
2014-01-01
Full Text Available Teaching-learning-based optimization (TLBO algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Yuelin Gao; Siqiao Jin
2013-01-01
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...
Medical Image Registration by means of a Bio-Inspired Optimization Strategy
Directory of Open Access Journals (Sweden)
Hariton Costin
2012-07-01
Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.
DEFF Research Database (Denmark)
Bech, Michael Møller; Nørgård, Christian; Roemer, Daniel Beck
2016-01-01
This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri-objectiv......This paper illustrates how the relatively simple constrained multi-objective optimization algorithm Generalized Differential Evolution 3 (GDE3), can assist with the practical sizing of mechatronic components used in e.g. digital displacement fluid power machinery. The studied bi- and tri...... different optimization control parameter settings and it is concluded that GDE3 is a reliable optimization tool that can assist mechatronic engineers in the design and decision making process....
Kim, Seongho; Li, Lang
2014-02-01
The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Multi-Objective Optimization in Physical Synthesis of Integrated Circuits
A Papa, David
2013-01-01
This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products. It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima; Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...
A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material
Energy Technology Data Exchange (ETDEWEB)
Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)
2011-08-15
In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.
Mathematical programming model for heat exchanger design through optimization of partial objectives
International Nuclear Information System (INIS)
Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.
2013-01-01
Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature
Directory of Open Access Journals (Sweden)
Caleb Iddissah Yakubu
2017-11-01
Full Text Available The selection of a global geopotential model (GGM for modeling the long-wavelength for geoid computation is imperative not only because of the plethora of GGMs available but more importantly because it influences the accuracy of a geoid model. In this study, we propose using the Gaussian averaging function for selecting an optimal GGM and degree and order (d/o for the remove-compute-restore technique as a replacement for the direct comparison of terrestrial gravity anomalies and GGM anomalies, because ground data and GGM have different frequencies. Overall, EGM2008 performed better than all the tested GGMs and at an optimal d/o of 222. We verified the results by computing geoid models using Heck and Grüninger’s modification and validated them against GPS/trigonometric data. The results of the validation were consistent with those of the averaging process with EGM2008 giving the smallest standard deviation of 0.457 m at d/o 222, resulting in an 8% improvement over the previous geoid model. In addition, this geoid model, the Ghanaian Gravimetric Geoid 2017 (GGG 2017 may be used to replace second-order class II leveling, with an expected error of 6.8 mm/km for baselines ranging from 20 to 225 km.
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Directory of Open Access Journals (Sweden)
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the daily 25km global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis, supplemented with AVHRR Pathfinder...
Transmission Dynamics and Optimal Control of Malaria in Kenya
Directory of Open Access Journals (Sweden)
Gabriel Otieno
2016-01-01
Full Text Available This paper proposes and analyses a mathematical model for the transmission dynamics of malaria with four-time dependent control measures in Kenya: insecticide treated bed nets (ITNs, treatment, indoor residual spray (IRS, and intermittent preventive treatment of malaria in pregnancy (IPTp. We first considered constant control parameters and calculate the basic reproduction number and investigate existence and stability of equilibria as well as stability analysis. We proved that if R0≤1, the disease-free equilibrium is globally asymptotically stable in D. If R0>1, the unique endemic equilibrium exists and is globally asymptotically stable. The model also exhibits backward bifurcation at R0=1. If R0>1, the model admits a unique endemic equilibrium which is globally asymptotically stable in the interior of feasible region D. The sensitivity results showed that the most sensitive parameters are mosquito death rate and mosquito biting rates. We then consider the time-dependent control case and use Pontryagin’s Maximum Principle to derive the necessary conditions for the optimal control of the disease using the proposed model. The existence of optimal control problem is proved. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that the optimal control strategy for malaria control in endemic areas is the combined use of treatment and IRS; for epidemic prone areas is the use of treatment and IRS; for seasonal areas is the use of treatment; and for low risk areas is the use of ITNs and treatment. Control programs that follow these strategies can effectively reduce the spread of malaria disease in different malaria transmission settings in Kenya.
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle
International Nuclear Information System (INIS)
Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian
2016-01-01
In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.
Optimization of fuel cycle strategies with constraints on uranium availability
International Nuclear Information System (INIS)
Silvennoinen, P.; Vira, J.; Westerberg, R.
1982-01-01
Optimization of nuclear reactor and fuel cycle strategies is studied under the influence of reduced availability of uranium. The analysis is separated in two distinct steps. First, the global situation is considered within given high and low projections of the installed capacity up to the year 2025. Uranium is regarded as an exhaustible resource whose production cost would increase proportionally to increasing cumulative exploitation. Based on the estimates obtained for the uranium cost, a global strategy is derived by splitting the installed capacity between light water reactor (LWR) once-through, LWR recycle, and fast breeder reactor (FBR) alternatives. In the second phase, the nuclear program of an individual utility is optimized within the constraints imposed from the global scenario. Results from the global scenarios indicate that in a reference case the uranium price would triple by the year 2000, and the price escalation would continue throughout the planning period. In a pessimistic growth scenario where the global nuclear capacity would not exceed 600 GW(electric) in 2025, the uranium price would almost double by 2000. In both global scenarios, FBRs would be introduced, in the reference case after 2000 and in the pessimistic case after 2010. In spite of the increases in the uranium prices, the levelized power production cost would increase only by 45% up to 2025 in the utility case provided that the plutonium is incinerated as a substitute fuel
Block assembly for global registration of building scans
Yan, Feilong; Nan, Liangliang; Wonka, Peter
2016-01-01
We propose a framework for global registration of building scans. The first contribution of our work is to detect and use portals (e.g., doors and windows) to improve the local registration between two scans. Our second contribution is an optimization based on a linear integer programming formulation. We abstract each scan as a block and model the blocks registration as an optimization problem that aims at maximizing the overall matching score of the entire scene. We propose an efficient solution to this optimization problem by iteratively detecting and adding local constraints. We demonstrate the effectiveness of the proposed method on buildings of various styles and that our approach is superior to the current state of the art.
Block assembly for global registration of building scans
Yan, Feilong
2016-11-11
We propose a framework for global registration of building scans. The first contribution of our work is to detect and use portals (e.g., doors and windows) to improve the local registration between two scans. Our second contribution is an optimization based on a linear integer programming formulation. We abstract each scan as a block and model the blocks registration as an optimization problem that aims at maximizing the overall matching score of the entire scene. We propose an efficient solution to this optimization problem by iteratively detecting and adding local constraints. We demonstrate the effectiveness of the proposed method on buildings of various styles and that our approach is superior to the current state of the art.
Group leaders optimization algorithm
Daskin, Anmer; Kais, Sabre
2011-03-01
We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.
Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation
Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.
2018-01-01
Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…
Singularities in Structural Optimization of the Ziegler Pendulum
Directory of Open Access Journals (Sweden)
O. N. Kirillov
2011-01-01
Full Text Available Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for nonconservative optimization problems only numerically optimized designs have been reported. The proof of optimality in non-conservative optimization problems is a mathematical challenge related to multiple eigenvalues, singularities in the stability domain, and non-convexity of the merit functional. We present here a study of optimal mass distribution in a classical Ziegler pendulum where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the optimization is highlighted, and an extension to the damped case as well as to the case of higher degrees of freedom is discussed.
International Nuclear Information System (INIS)
Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang
2014-01-01
The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)
Global Health Diplomacy, "San Francisco Values," and HIV/AIDS: From the Local to the Global.
Kevany, Sebastian
2015-01-01
San Francisco has a distinguished history as a cosmopolitan, progressive, and international city, including extensive associations with global health. These circumstances have contributed to new, interdisciplinary scholarship in the field of global health diplomacy (GHD). In the present review, we describe the evolution and history of GHD at the practical and theoretical levels within the San Francisco medical community, trace related associations between the local and the global, and propose a range of potential opportunities for further development of this dynamic field. We provide a historical overview of the development of the "San Francisco Model" of collaborative, community-owned HIV/AIDS treatment and care programs as pioneered under the "Ward 86" paradigm of the 1980s. We traced the expansion and evolution of this model to the national level under the Ryan White Care Act, and internationally via the President's Emergency Plan for AIDS Relief. In parallel, we describe the evolution of global health diplomacy practices, from the local to the global, including the integration of GHD principles into intervention design to ensure social, political, and cultural acceptability and sensitivity. Global health programs, as informed by lessons learned from the San Francisco Model, are increasingly aligned with diplomatic principles and practices. This awareness has aided implementation, allowed policymakers to pursue related and progressive social and humanitarian issues in conjunction with medical responses, and elevated global health to the realm of "high politics." In the 21st century, the integration between diplomatic, medical, and global health practices will continue under "smart global health" and GHD paradigms. These approaches will enhance intervention cost-effectiveness by addressing and optimizing, in tandem with each other, a wide range of (health and non-health) foreign policy, diplomatic, security, and economic priorities in a synergistic manner
Optimization of hydraulic turbine governor parameters based on WPA
Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao
2018-01-01
The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.
A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Mojarrad, Hassan Doagou; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-04-15
This paper proposes a novel method for solving the Non-convex Economic Dispatch (NED) problems, by the Fuzzy Adaptive Modified Particle Swarm Optimization (FAMPSO). Practical ED problems have non-smooth cost functions with equality and inequality constraints when generator valve-point loading effects are taken into account. Modern heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution for ED problems. PSO is one of modern heuristic algorithms, in which particles change place to get close to the best position and find the global minimum point. However, the classic PSO may converge to a local optimum solution and the performance of the PSO highly depends on the internal parameters. To overcome these drawbacks, in this paper, a new mutation is proposed to improve the global searching capability and prevent the convergence to local minima. Also, a fuzzy system is used to tune its parameters such as inertia weight and learning factors. In order to evaluate the performance of the proposed algorithm, it is applied to a system consisting of 13 and 40 thermal units whose fuel cost function is calculated by taking account of the effect of valve-point loading. Simulation results demonstrate the superiority of the proposed algorithm compared to other optimization algorithms presented in literature. (author)
Optimal pinnate leaf-like network/matrix structure for enhanced conductive cooling
International Nuclear Information System (INIS)
Hu, Liguo; Zhou, Han; Zhu, Hanxing; Fan, Tongxiang; Zhang, Di
2015-01-01
Highlights: • We present a pinnate leaf-like network/matrix structure for conductive cooling. • We study the effect of matrix thickness on network conductive cooling performance. • Matrix thickness determines optimal distance between collection channels in network. • We determine the optimal network architecture from a global perspective. • Optimal network greatly reduces the maximum temperature difference in the network. - Abstract: Heat generated in electronic devices has to be effectively removed because excessive temperature strongly impairs their performance and reliability. Embedding a high thermal conductivity network into an electronic device is an effective method to conduct the generated heat to the outside. In this study, inspired by the pinnate leaf, we present a pinnate leaf-like network embedded in the matrix (i.e., electronic device) to cool the matrix by conduction and develop a method to construct the optimal network. In this method, we first investigate the effect of the matrix thickness on the conductive cooling performance of the network, and then optimize the network architecture from a global perspective so that to minimize the maximum temperature difference between the heat sink and the matrix. The results indicate that the matrix thickness determines the optimal distance of the neighboring collection channels in the network, which minimizes the maximum temperature difference between the matrix and the network, and that the optimal network greatly reduces the maximum temperature difference in the network. The results can serve as a design guide for efficient conductive cooling of electronic devices
Reslink, C. F.; Matott, L. S.
2012-12-01
Designing cost-effective systems to safeguard national water supplies from contaminated sites is often aided by simulation-based optimization - where a flow or transport model is linked with an "off-the-shelf" global optimization search algorithm. However, achieving good performance from these types of optimizers within a reasonable computational budget has proven to be difficult. Therefore, this research seeks to boost optimization efficiency by augmenting search procedures with non-traditional information, such as site-specific knowledge and practitioner rules-of-thumb. An example application involving pump-and-treat optimization is presented in which a series of extraction wells are to be installed to intercept pollutants at a contaminated site in Billings, Montana. Selected heuristic algorithms (e.g. Genetic Algorithm) are interfaced with a rules engine that makes inline adjustments to the well locations of candidate pump-and-treat designs. If necessary, the rules engine modifies a given pump-and-treat design so that: (1) wells are placed within plume boundaries; and (2) well placement is biased toward areas where, if left untreated, the plume is predicted to spread most rapidly. Results suggest that incorporating this kind of expert knowledge can significantly increase the search efficiency of many popular global optimizers.
An interactive and flexible approach to stamping design and optimization
International Nuclear Information System (INIS)
Roy, Subir; Kunju, Ravi; Kirby, David
2004-01-01
This paper describes an efficient method that integrates finite element analysis (FEA), mesh morphing and response surface based optimization in order to implement an automated and flexible software tool to optimize stamping tool and process design. For FEA, a robust and extremely fast inverse solver is chosen. For morphing, a state of the art mesh morpher that interactively generates shape variables for optimization studies is used. The optimization algorithm utilized in this study enables a global search for a multitude of parameters and is highly flexible with regards to the choice of objective functions. A quality function that minimizes formability defects resulting from stretching and compression is implemented
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.
Active load sharing technique for on-line efficiency optimization in DC microgrids
DEFF Research Database (Denmark)
Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.
2017-01-01
Recently, DC power distribution is gaining more and more importance over its AC counterpart achieving increased efficiency, greater flexibility, reduced volumes and capital cost. In this paper, a 24-120-325V two-level DC distribution system for home appliances, each including three parallel DC......-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table......, is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed...
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja
2018-05-01
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet
An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids
Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun
2017-07-01
Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Micron R&D: Global Scope and Nano-Scale in N-Dimensions
Durcan, Mark
2006-03-01
The Globalization of world markets and the globally dispersed manufacturing that supports them, drives complexity in managing today's leading edge R&D organizations beyond that historically experienced. The dimensions involve not only location, but time, economics, government relations, complex supply and customer chains, and Intellectual Property strategy. Each must be contemplated and optimized in light of the nature of worldwide 24 hour a day competition.
Investing in Global Markets: Big Data and Applications of Robust Regression
Directory of Open Access Journals (Sweden)
John eGuerard
2016-02-01
Full Text Available In this analysis of the risk and return of stocks in global markets, we apply several applications of robust regression techniques in producing stock selection models and several optimization techniques in portfolio construction in global stock universes. We find that (1 the robust regression applications are appropriate for modeling stock returns in global markets; and (2 mean-variance techniques continue to produce portfolios capable of generating excess returns above transaction costs and statistically significant asset selection. We estimate expected return models in a global equity markets using a given stock selection model and generate statistically significant active returns from various portfolio construction techniques.
Topology optimization under stochastic stiffness
Asadpoure, Alireza
for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Fletcher-Reeves based Particle Swarm Optimization for prediction of molecular structure.
Agrawal, Shikha; Silakari, Sanjay
2014-04-01
The determination of the most stable conformers of a molecule can be formulated as a global optimization problem. Knowing the stable conformers of a molecule is important because it allows us to understand its properties and behavior based on its structure. The most stable conformation is that involving the global minimum of potential energy. The problem of finding this global minimum is highly complex, and is computationally difficult because of the number of local minima, which grows exponentially with molecular size. In this paper, we propose a hybrid approach combining Particle Swarm Optimization (PSO) and the Fletcher-Reeves algorithm to minimize the potential energy function. The proposed hybrid algorithm is applied to a simplified molecular potential energy function in problems with up to 100 degrees of freedom and also to a realistic potential energy function modeling a pseudoethane molecule. The computational results for both the cases show that the proposed method performs significantly better than the other algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
Optimal phase estimation with arbitrary a priori knowledge
International Nuclear Information System (INIS)
Demkowicz-Dobrzanski, Rafal
2011-01-01
The optimal-phase estimation strategy is derived when partial a priori knowledge on the estimated phase is available. The solution is found with the help of the most famous result from the entanglement theory: the positive partial transpose criterion. The structure of the optimal measurements, estimators, and the optimal probe states is analyzed. This Rapid Communication provides a unified framework bridging the gap in the literature on the subject which until now dealt almost exclusively with two extreme cases: almost perfect knowledge (local approach based on Fisher information) and no a priori knowledge (global approach based on covariant measurements). Special attention is paid to a natural a priori probability distribution arising from a diffusion process.
Optimization Case Study: ISR Allocation in the Global Force Management Process
2016-09-01
assets available to meet the GCC requirements. The Joint Staff, in concert with USSTRATCOM, use many factors to prioritize allocation of assets to...include determining which GCC gets the assets and for how long. The decision influencers recommend a resource allocation solution based on experience...The allocation process illustrated in Figure 1 is the OV-1 diagram from the Joint Staff Global Force Management Enterprise Integration
Toward solving the sign problem with path optimization method
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2017-12-01
We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.
Role of controllability in optimizing quantum dynamics
International Nuclear Information System (INIS)
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-01-01
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
A Global Optimization Algorithm for Sum of Linear Ratios Problem
Directory of Open Access Journals (Sweden)
Yuelin Gao
2013-01-01
Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.
Analysis of a slow-dissolving medicine by EPMA
International Nuclear Information System (INIS)
Sasayama, Tetsuaki; Kohara, Kiyohiro; Araki, Takeshi
1995-01-01
Along with a dissolution test of a slow-dissolving medicine, the change in distribution of the drug in solution can be observed by using EPMA, and the structual factors and dissolution mechanism which determine the bioavailability of medicine can be clarified. In the evaluation of physical, chemical and pharmaceutical qualities, it is concluded that EPMA is very effective in elemental and state analyses with observation of microscopic areas on the micrometer order. Especially, the color mapping method clarifies the distribution of a drug in the total image field and enables us to analyze the mechanism of a dissolution medicine. (author)
Hybrid Optimization in the Design of Reciprocal Structures
DEFF Research Database (Denmark)
Parigi, Dario; Kirkegaard, Poul Henning; Sassone, Mario
2012-01-01
that explore the global domain of solutions as genetic algorithms (GAs). The benchmark tests show that when the control on the topology is required the best result is obtained by a hybrid approach that combines the global search of the GA with the local search of a GB algorithm. The optimization method......The paper presents a method to generate the geometry of reciprocal structures by means of a hybrid optimization procedure. The geometry of reciprocal structures where elements are sitting on the top or in the bottom of each other is extremely difficult to predict because of the non....... In this paper it is shown that the geometrically compatible position of the elements could be determined by local search algorithm gradient-based (GB). However the control on which bar sit on the top or in the bottom at each connection can be regarded as a topological problem and require the use of algorithms...
Design and optimizing factors of PACS network architecture
International Nuclear Information System (INIS)
Tao Yonghao; Miao Jingtao
2001-01-01
Objective: Exploring the design and optimizing factors of picture archiving and communication system (PACS) network architecture. Methods: Based on the PACS of shanghai first hospital to performed the measurements and tests on the requirements of network bandwidth and transmitting rate for different PACS functions and procedures respectively in static and dynamic network traffic situation, utilizing the network monitoring tools which built-in workstations and provided by Windows NT. Results: No obvious difference between switch equipment and HUB when measurements and tests implemented in static situation except route which slow down the rate markedly. In dynamic environment Switch is able to provide higher bandwidth utilizing than HUB and local system scope communication achieved faster transmitting rate than global system. Conclusion: The primary optimizing factors of PACS network architecture design include concise network topology and disassemble tremendous global traffic to multiple distributed local scope network communication to reduce the traffic of network backbone. The most important issue is guarantee essential bandwidth for diagnosis procedure of medical imaging
Globalization theories of crime
Directory of Open Access Journals (Sweden)
Kostić Miomira
2014-01-01
Full Text Available The process of globalization is affecting all areas of social life, and thus no exception crime. Its effect is most evident in the development of new forms of crime that transcends national borders and states receive a supranational character. This primarily refers to the various forms of organized crime, but also in certain of its forms, which are a kind of state violence and the consequences of which are reflected in the systematic violation of human rights. Also, the process of globalization of crime has caused the formation of international organizations aimed at combating of crime which transcends national boundaries. New forms of crime are conditioned by globalization demanded a new approach to their study. Existing criminological theories have proven inadequate in explaining all the causes that lead to crime. It was necessary to create new theories and new doctrines about the causes of crime. In the continuous process of development of criminology, in constant search for new explanations of the causes of crime, within the sociological theories have emerged and globalization theories of criminality, which the authors in their work special attention. The focus of the globalization theory on crime just on its prevention, to reduce the risk of its occurrence. This is certainly a positive step because it shifts the focus of criminologists with immediate causes of crime and focus on the study of their interactions, which is largely socially conditioned, which is especially prominent in the work. The aim of this paper is to point out that globalization theories should not be viewed in isolation from other criminological theories and doctrines, but that one, although relatively new, contribute to the creation of complete systems of criminological doctrines in order to find the optimal social response to crime.
Directory of Open Access Journals (Sweden)
Dymski Gary A.
2011-01-01
Full Text Available The current global context poses several paradoxes: the recovery from the 2009 recession was not a recovery; investment, normally driven by profit rates, is lagging and not leading economic activity; the crisis is global but debate involves sub-global levels; and public safety-nets, which have helped to stabilize national income, are being cut. These paradoxes can be traced, in part, to the impact of the “truce” that followed the Keynesian-Monetarist controversy on economists’ ideas about policy activism. This implicit “truce” has removed activist macro policy from discussion, and shifted attention toward institutions as mechanisms for solving game-theoretic coordination problems. Policy activism then centers on how the “agents” (nations can achieve optimal use of their available resources (or optimal access to resources at the global level; and this involves creating and fine-tuning compacts - neoliberal mechanism designs - that can capture rents and attract globally mobile capital. This approach leads economists to see the key problem in the current global crisis as fixing broken neoliberal mechanisms. However, a global economy dominated by mechanisms that feed on aggregate demand without generating it faces the prospect of stagnation or collapse.
DEGAS: Dynamic Exascale Global Address Space Programming Environments
Energy Technology Data Exchange (ETDEWEB)
Demmel, James [Univ. of California, Berkeley, CA (United States)
2018-02-23
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.
Optimal tilt-angles for solar collectors used in China
International Nuclear Information System (INIS)
Tang Runsheng; Wu Tong
2004-01-01
A reasonable estimation of the optimal tilt angle of a fixed collector for maximizing its energy collection must be done based on the monthly global and diffuse radiation on a horizontal surface. However, the monthly diffuse radiation is not always available in many places. In this paper, a simple mathematical procedure for the estimation of the optimal tilt angle of a collector is presented based on the monthly horizontal radiation. A comparison of the optimal tilt angles of collectors obtained from expected monthly diffuse radiation and that from the actual monthly diffuse radiation showed that this method gives a good estimation of the optimal tilt angle, except for places with a considerably lower clearness index. A contour map of the optimal tilt angle of the south-facing collectors used for the entire year in China is also outlined, based on monthly horizontal radiation of 152 places around the country, combing the optimal tilt angle of another 30 cities based on the actual monthly diffuse radiation
Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin
2016-01-15
Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. Copyright © 2015 Elsevier B.V. All rights reserved.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
International Nuclear Information System (INIS)
Rogers, Adam; Fiege, Jason D.
2011-01-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Malekzadeh, Reza
2013-02-07
Identification of squamous dysplasia and esophageal squamous cell carcinoma (ESCC) is of great importance in prevention of cancer incidence. Computer aided algorithms can be very useful for identification of people with higher risks of squamous dysplasia, and ESCC. Such method can limit the clinical screenings to people with higher risks. Different regression methods have been used to predict ESCC and dysplasia. In this paper, a Fuzzy Neural Network (FNN) model is selected for ESCC and dysplasia prediction. The inputs to the classifier are the risk factors. Since the relation between risk factors in the tumor system has a complex nonlinear behavior, in comparison to most of ordinary data, the cost function of its model can have more local optimums. Thus the need for global optimization methods is more highlighted. The proposed method in this paper is a Chaotic Optimization Algorithm (COA) proceeding by the common Error Back Propagation (EBP) local method. Since the model has many parameters, we use a strategy to reduce the dependency among parameters caused by the chaotic series generator. This dependency was not considered in the previous COA methods. The algorithm is compared with logistic regression model as the latest successful methods of ESCC and dysplasia prediction. The results represent a more precise prediction with less mean and variance of error. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Alejandro MURRIETA-MENDOZA
2017-08-01
Full Text Available With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graph-tree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm’s ability to find the global optimal solution, a heuristic methodology introducing a parameter called “optimism coefficient was used in order to estimate the trajectory’s flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS. The global optimal solution was validated against an exhaustive search algorithm(ESA, other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.
Bayesian optimization for computationally extensive probability distributions.
Tamura, Ryo; Hukushima, Koji
2018-01-01
An efficient method for finding a better maximizer of computationally extensive probability distributions is proposed on the basis of a Bayesian optimization technique. A key idea of the proposed method is to use extreme values of acquisition functions by Gaussian processes for the next training phase, which should be located near a local maximum or a global maximum of the probability distribution. Our Bayesian optimization technique is applied to the posterior distribution in the effective physical model estimation, which is a computationally extensive probability distribution. Even when the number of sampling points on the posterior distributions is fixed to be small, the Bayesian optimization provides a better maximizer of the posterior distributions in comparison to those by the random search method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayesian optimization improves the results efficiently by combining the steepest descent method and thus it is a powerful tool to search for a better maximizer of computationally extensive probability distributions.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Evolutionary optimization methods for accelerator design
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained
Determination of Pareto frontier in multi-objective maintenance optimization
International Nuclear Information System (INIS)
Certa, Antonella; Galante, Giacomo; Lupo, Toni; Passannanti, Gianfranco
2011-01-01
The objective of a maintenance policy generally is the global maintenance cost minimization that involves not only the direct costs for both the maintenance actions and the spare parts, but also those ones due to the system stop for preventive maintenance and the downtime for failure. For some operating systems, the failure event can be dangerous so that they are asked to operate assuring a very high reliability level between two consecutive fixed stops. The present paper attempts to individuate the set of elements on which performing maintenance actions so that the system can assure the required reliability level until the next fixed stop for maintenance, minimizing both the global maintenance cost and the total maintenance time. In order to solve the previous constrained multi-objective optimization problem, an effective approach is proposed to obtain the best solutions (that is the Pareto optimal frontier) among which the decision maker will choose the more suitable one. As well known, describing the whole Pareto optimal frontier generally is a troublesome task. The paper proposes an algorithm able to rapidly overcome this problem and its effectiveness is shown by an application to a case study regarding a complex series-parallel system.
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-01
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the
Biochemical systems identification by a random drift particle swarm optimization approach
2014-01-01
Background Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have been employed to find the global solution of the problem. Results This paper presents an effective search strategy for a particle swarm optimization (PSO) algorithm that enhances the ability of the algorithm for estimating the parameters of complex dynamic biochemical pathways. The proposed algorithm is a new variant of random drift particle swarm optimization (RDPSO), which is used to solve the above mentioned inverse problem and compared with other well known stochastic optimization methods. Two case studies on estimating the parameters of two nonlinear biochemical dynamic models have been taken as benchmarks, under both the noise-free and noisy simulation data scenarios. Conclusions The experimental results show that the novel variant of RDPSO algorithm is able to successfully solve the problem and obtain solutions of better quality than other global optimization methods used for finding the solution to the inverse problems in this study. PMID:25078435