WorldWideScience

Sample records for global storage technologies

  1. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  2. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...

  3. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  4. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people......Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels....... The boundaries of firms and countries are increasingly porous and imprecise, because firms use alliances and outsourcing, and countries are rarely technologically self-sufficient. On the other hand, locations remain distinct and idiosyncratic, with innovation systems remaining largely nationally bound. Knowledge...

  5. Energy storage technologies

    International Nuclear Information System (INIS)

    Brunet, Y.

    2009-01-01

    This book takes stock of the advantages and drawbacks of the different energy storage solutions apart from the classical fossil fuels (oil, uranium, gas), and details the technologies developed for an electric end-use. Storage is one of the most critical point for the development of new energy technologies, in particular those that use the electricity vector all along the energy source chain (generation, production, transport, utilisation). Storage is important not only for individual or independent applications, that use renewable energies or not, often intermittent, but also to secure coupled systems like power transportation and distribution systems. The development and choice of the most relevant technologies is dependent of technical-economical parameters. It can also supply new services, in particular in the framework of new electricity markets. Content: power film-capacitors, magnetic storage, kinetic energy storage, compressed air energy storage (CAES), hydro-pneumatic storage, high-temperature thermal storage of electricity, hydraulic gravity storage, power electronic systems for energy storage. (J.S.)

  6. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  7. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  8. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  9. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  10. Optical Storage Technology Subgroup (FIMUG)

    Science.gov (United States)

    1990-04-01

    by a scanning device and transforming these data into a form suitable for computer use. Computer-Output Microfilms containing data produced by a...CD-ROM and optical storage technologies for the storage and distribution of digitar data is strongly recommended. It is obvious that optical storage

  11. Technology and Global Change

    Science.gov (United States)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  12. Globalization, technology and inequality

    OpenAIRE

    Gancia, Gino

    2012-01-01

    What are the effects of international integration on inequality, both between and within countries? The growing evidence that technology is the main determinant of wage and income differences may seem to imply that the forces of globalization only play a secondary role. Such a conclusion is however premature, in that it neglects the effect of international integration on technology itself. This opuscle summarizes recent and ongoing research studying how two important aspects of globalization,...

  13. Globalization and Technology

    Directory of Open Access Journals (Sweden)

    Traian-Alexandru Miu

    2016-01-01

    Full Text Available Globalization, very complex phenomenon, involves overcoming the barriers between different states, which allowed the rapid transfer of capital, technology, information, and the "toxins" from one country to another. First, the technology formed the basis of rapid expansion of great ideas promoted by globalization. Undeniable progress in the field of technology and science, has conferred to the man extraordinary powers that have been used most often to the detriment of his spiritual progress. We must not deny that science and technology have brought many benefits to human, and he could expand the knowledge horizon upon the world in which he lives, exploiting information acquired and share them with others. Science and technology must become for postmodern man ways of talk and communion between human and divinity, all to the praise of God and the perfection of the creature.

  14. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  15. The globalization of technology

    Energy Technology Data Exchange (ETDEWEB)

    Reid, P.P. (National Academy of Engineering, Washington, DC (USA))

    1991-01-01

    The past two decades have seen dramatic change in the distribution and organization of corporate technical activities worldwide. Japan's rapid ascent to the status of technological superpower, the steady rise in technical strength of Europe's leading economies, and the rapid growth in technical competence of an expanding group of newly industrialized nations have put an end to the era of U.S. technological supremacy. Meanwhile, a rapid expansion of private foreign direct investment and a proliferation of international corporate alliances have increased the economic and technological interdependence of industrialized nations. As a result of these changes, the process of technology development, application, and diffusion in a growing number of industries has become increasingly globalized. The following figures document this trend, which will have far-reaching implications for U.S. business practices and federal competitiveness policies. The diagrams address R and D personnel per 10,000 labor force, nondefense R and D spending, high-technology exports, investments in other countries, foreign investment in the United States, and transnational alliances.

  16. Globally distributed software defined storage (proposal)

    Science.gov (United States)

    Shevel, A.; Khoruzhnikov, S.; Grudinin, V.; Sadov, O.; Kairkanov, A.

    2017-10-01

    The volume of the coming data in HEP is growing. The volume of the data to be held for a long time is growing as well. Large volume of data – big data – is distributed around the planet. The methods, approaches how to organize and manage the globally distributed data storage are required. The distributed storage has several examples for personal needs like own-cloud.org, pydio.com, seafile.com, sparkleshare.org. For enterprise-level there is a number of systems: SWIFT - distributed storage systems (part of Openstack), CEPH and the like which are mostly object storage. When several data center’s resources are integrated, the organization of data links becomes very important issue especially if several parallel data links between data centers are used. The situation in data centers and in data links may vary each hour. All that means each part of distributed data storage has to be able to rearrange usage of data links and storage servers in each data center. In addition, for each customer of distributed storage different requirements could appear. The above topics are planned to be discussed in data storage proposal.

  17. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  18. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  19. Logistical networking: a global storage network

    International Nuclear Information System (INIS)

    Beck, Micah; Moore, Terry

    2005-01-01

    The absence of an adequate distributed storage infrastructure for data buffering has become a significant impediment to the flow of work in the wide area, data intensive collaborations that are increasingly characteristic of leading edge research in several fields. One solution to this problem, pioneered under DOE's SciDAC program, is Logistical Networking, which provides a framework for a globally scalable, maximally interoperable storage network based on the Internet Backplane Protocol (IBP). This paper provides a brief overview of the Logistical Networking (LN) architecture, the middleware developed to exploit its value, and a few of the applications that some of research communities have made of it

  20. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  1. Development of hydrogen storage technologies

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-10-01

    Full Text Available -how” The hydrogen storage challenge Hydrogen: • Lightest element, lowest density • Strong covalent bond • Low polarisation ability → Weak interaction between H2 molecules • At room temp and atm pressure: 5 kg H2 occupies vessel of ≈ 5 m diameter (5 kg... and manufacturing methods to improve the characteristics of hydrogen storage tanks • Composite = Carbon fibre + resin + fillers • Resin modification (improve mechanical properties) • Finite element modelling (design capabilities) http...

  2. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  3. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  4. Global ocean storage of anthropogenic carbon

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2013-04-01

    Full Text Available The global ocean is a significant sink for anthropogenic carbon (Cant, absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty. This estimate includes a

  5. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  6. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NARCIS (Netherlands)

    Wisser, D.; Frolking, S.; Hagen, Stephen; Bierkens, M.F.P.|info:eu-repo/dai/nl/125022794

    2013-01-01

    Water storage is an important way to cope with temporal variation in water supply anddemand. The storage capacity and the lifetime of water storage reservoirs can besignificantly reduced by the inflow of sediments. A global, spatially explicit assessment ofreservoir storage loss in conjunction with

  7. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  8. Capacity Expansion Modeling for Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Stoll, Brady; Mai, Trieu

    2017-04-03

    The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.

  9. COSTS OF THERMAL ENERGY STORAGE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2017-10-01

    Full Text Available Thermal accumulation facilities allow energy to be available in the absence of sunlight. This fact reduces the difficulty of the intermittence in the incidence of the king star in our planet. Thermal accumulation technology also contributes to smooth the fluctuations in energy demand during different times of the day. This contribution identifies the nations with the most favorable research results in this area; as well as the main research lines that are being developed today. A compendium of various thermal energy storage materials, their current costs per unit mass, and their physical properties are presented. Techniques for implementing thermal accumulation technologies can be classified as areas of high, medium and low temperature. In the high temperature area, inorganic materials such as nitrate salts are the most widely used thermal energy storage materials, while in the medium and lower temperature areas; organic materials such as commercial paraffin are more common. Currently, one of the research trends in this area are the projects aimed at optimizing the chemical and physical characteristics of thermal storage materials, because the success of any thermos-energetic storage technology has a strong dependence on the cost of the materials selected for thermal storage.

  10. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  11. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Bowen, Frances

    2011-01-01

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO 2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  12. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies

    OpenAIRE

    Smallbone, A.; Jülch, V.; Wardle, R.; Roskilly, A.P.

    2017-01-01

    Future electricity systems which plan to use large proportions of intermittent (e.g. wind, solar or tidal generation) or inflexible (e.g. nuclear, coal, etc.) electricity generation sources require an increasing scale-up of energy storage to match the supply with hourly, daily and seasonal electricity demand profiles. Evaluation of how to meet this scale of energy storage has predominantly been based on the deployment of a handful of technologies including batteries, Pumped Hydroelectricity S...

  13. Smart storage technologies applied to fresh foods: A review.

    Science.gov (United States)

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  14. The economics of aquifer storage recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    David, R.; Pyne, G.

    2014-10-01

    Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)

  15. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...

  16. Global business networks and technology

    Directory of Open Access Journals (Sweden)

    Pomykalski Andrzej

    2015-05-01

    Full Text Available The current economic development changes the perception of technology innovation and business cooperation. Global business networks create very competitive markets characterised by constant innovation and dynamic changes. Further changes may come with growing involvement of active consumers and the development of Internet of Things. Focusing mainly on activities of multinational business networks operating in Poland the author describes selected aspects of gradual adoption of innovation management concepts in firms. The article provides with an overview of concepts described in innovation management literature during the last decade and of new concepts evolving.

  17. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  18. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  19. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  20. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  1. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  2. Global Health Innovation Technology Models

    Directory of Open Access Journals (Sweden)

    Kimberly Harding

    2016-04-01

    Full Text Available Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

  3. Global Health Innovation Technology Models

    Directory of Open Access Journals (Sweden)

    Kimberly Harding

    2016-04-01

    Full Text Available Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC research collaborators directly prevent the growth of sustainable Global Health innova‐ tion for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utiliz‐ ing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to acceler‐ ate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

  4. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  5. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  6. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  7. Global root zone storage capacity from satellite-based evaporation

    Science.gov (United States)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  8. Study on Global GIS architecture and its key technologies

    Science.gov (United States)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2010-11-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  9. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  10. The Impact Of Optical Storage Technology On Image Processing Systems

    Science.gov (United States)

    Garges, Daniel T.; Durbin, Gerald T.

    1984-09-01

    The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.

  11. Influence of multiple global change drivers on terrestrial carbon storage

    DEFF Research Database (Denmark)

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum...... of their individual effects) rather than synergistic or antagonistic. We further show that (1) elevated CO2 , warming, N addition, P addition and increased rainfall, all exerted positive individual effects on plant C pools at both single-plant and plant-community levels; (2) plant C pool responses to individual...... additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems....

  12. Global energy and technology trends

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2008-01-01

    Economic development translates into growing demand for energy services. However, more than 1.6 billion people at present still do not have access to modern energy services. Continued population growth compounds this demand for energy, which is central to achieving sustainable development goals. Poverty eradication calls for affordable energy services. There is a need to minimize health and environmental impacts of energy use. Nuclear power's share of global electricity rose to 16% in 1986. Near the end of the 1980s growth stagnated. Regulatory interventions often stretched out licensing times and increased costs. Inflation and rising energy costs resulting from the oil shocks of 1973 and 1979 brought about a significant drop in electricity demand and raised the costs of capital intensive power plants, like nuclear power plants. Some utilities found the regulatory and transaction costs of nuclear power simply too high to manage costs-effectively. The 1979 Three Mile Island accident and the Chernobyl accident in 1986 retarded the expansion of nuclear power. The electricity market liberalization and privatization exposed excess capacity, pushed electricity prices lower and made power plant investments more risky. Other things being equal, nuclear power's front-loaded cost structure was a disadvantage in markets that emphasize short term profits and rapid returns. In the 1990s, growth in nuclear electricity generation exceeded the growth in nuclear capacity as management efficiencies and technological advances progressively raised the average energy availability of the world's nuclear plants. The energy availability factor measures the percentage of time that a power reactor is available to generate electricity, rather than being shutdown for refuelling, maintenance and other reasons. The global average for nuclear power reactors has risen from 67% in 1990 to 81% in 2004. This increase is equivalent to the addition of 34 new 1000 MW reactors. Electricity generation

  13. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  14. Economic Operation of Supercritical CO2 Refrigeration Energy Storage Technology

    Science.gov (United States)

    Hay, Ryan

    With increasing penetration of intermittent renewable energy resources, improved methods of energy storage are becoming a crucial stepping stone in the path toward a smarter, greener grid. SuperCritical Technologies is a company based in Bremerton, WA that is developing a storage technology that can operate entirely on waste heat, a resource that is otherwise dispelled into the environment. The following research models this storage technology in several electricity spot markets around the US to determine if it is economically viable. A modification to the storage dispatch scheme is then presented which allows the storage unit to increase its profit in real-time markets by taking advantage of extreme price fluctuations. Next, the technology is modeled in combination with an industrial load profile on two different utility rate schedules to determine potential cost savings. The forecast of facility load has a significant impact on savings from the storage dispatch, so an exploration into this relationship is then presented.

  15. DoD Technology Management in a Global Technology Environment

    Science.gov (United States)

    2005-05-01

    DoD Technology Management in a Global Technology Environment Richard H. Van Atta, Project Leader Michael J. Lippitz Robert L. Bovey I N S T I T U T E...Paper P-4017 DoD Technology Management in a Global Technology Environment Richard H. Van Atta, Project Leader Michael J. Lippitz Robert L. Bovey...changes in the economic and technological arena—often referred to under the rubric “ globalization ”—bear upon the Department of Defense’s approach to

  16. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  17. Integrating new Storage Technologies into EOS

    Science.gov (United States)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  18. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  19. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  20. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    Science.gov (United States)

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  1. Integrating new Storage Technologies into EOS

    CERN Document Server

    Peters, Andreas J; Rocha, Joaquim; Lensing, Paul

    2015-01-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D; and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issu...

  2. Data Storage and Management for Global Research Data Infrastructures - Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Erwin Laure

    2013-07-01

    Full Text Available In the vision of Global Research Data Infrastructures (GRDIs, data storage and management plays a crucial role. A successful GRDI will require a common globally interoperable distributed data system, formed out of data centres, that incorporates emerging technologies and new scientific data activities. The main challenge is to define common certification and auditing frameworks that will allow storage providers and data communities to build a viable partnership based on trust. To achieve this, it is necessary to find a long-term commitment model that will give financial, legal, and organisational guarantees of digital information preservation. In this article we discuss the state of the art in data storage and management for GRDIs and point out future research directions that need to be tackled to implement GRDIs.

  3. Technology and demand forecasting for carbon capture and storage technology in South Korea

    International Nuclear Information System (INIS)

    Shin, Jungwoo; Lee, Chul-Yong; Kim, Hongbum

    2016-01-01

    Among the various alternatives available to reduce greenhouse gas (GHG) emissions, carbon capture and storage (CCS) is considered to be a prospective technology that could both improve economic growth and meet GHG emission reduction targets. Despite the importance of CCS, however, studies of technology and demand forecasting for CCS are scarce. This study bridges this gap in the body of knowledge on this topic by forecasting CCS technology and demand based on an integrated model. For technology forecasting, a logistic model and patent network analysis are used to compare the competitiveness of CCS technology for selected countries. For demand forecasting, a competition diffusion model is adopted to consider competition among renewable energies and forecast demand. The results show that the number of patent applications for CCS technology will increase to 16,156 worldwide and to 4,790 in Korea by 2025. We also find that the United States has the most competitive CCS technology followed by Korea and France. Moreover, about 5 million tCO 2 e of GHG will be reduced by 2040 if CCS technology is adopted in Korea after 2020. - Highlights: • Carbon capture and storage (CCS) can help mitigate climate change globally. • It can both improve economic growth and meet GHG emission reduction targets. • We forecast CCS technology and demand based on an integrated model. • The US has the most competitive CCS technology followed by Korea and France. • 5 million tCO 2 e of GHG will be reduced by 2040 if CCS is adopted in Korea.

  4. Energetic and economic evaluations on hydrogen storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Arca, S.; Di Profio, P.; Germani, R. [Perugia Univ., Perugia (Italy). Centro di Eccellenza Materiali Innovativi Nanostrutturati, Dip. Chimica; Savelli, G.; Cotana, F.; Rossi, F.; Amantini, M. [Universita degli Studi di Perugia, Perugia (Italy). Dipartimento di Ingegneria Industriale, Sezione di Fisica Tecnica

    2008-07-01

    With the development of the hydrogen economy and fuel cell vehicles, a major technological issue has emerged regarding the storage and delivery of large amounts of hydrogen. Several hydrogen storage methodologies are available while other technologies are being developed aside from the classical compression and liquefaction of hydrogen. A novel technology is also in rapid process, which is based on clathrate hydrates of hydrogen. The features and performances of available storage systems were evaluated in an effort to determine the best technology throughout the hydrogen chain. For each of the storage solutions presented, the key parameters were compared. These key parameters included interaction energy between hydrogen and support; real and practical storage capacity; and specific energy consumption. The paper presented the study methods and discussed hydrogen storage technologies using compressed hydrogen; metal hydrides; liquefied hydrogen; carbon nanotubes; ammonia; and gas hydrates. Carbon dioxide emissions were also evaluated for each storage system analyzed. The paper also presented the worst scenario. It was concluded that a technology based on clathrate hydrates of hydrogen, while being far from optimized, was highly competitive with the classical approaches. 21 refs., 9 figs.

  5. WATTec '90: Global competitiveness - managing technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Welding and Testing Technology Exhibition and Conference has grown into a forum for interdisciplinary discussion of important technical, social, and economic issues affecting the nations's future. The 141 presentations this year are related to the improvement and preservation of our environment, the significance of quality management in science and industry, fundamental and continuing education, and other topics focusing on the role technology plays in global competitiveness. Sessions were held on the following topics: technology education; technology and environmental responsibility; global warming and the greenhouse effect; understanding risks; industrial hygiene; hazardous waste management; advanced nondestructive testing technology; municipal wastes utilization to enhance agricultural production; status of new isotope production reactors; computer systems and software; environmental restoration and the Superfund; joining technologies; information and communications systems; fire protection systems; remedial action at nuclear sites; corrosion and materials performance; nuclear materials safeguards; and managing technology for competitiveness. Seventy papers were indexed separately

  6. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of.

  7. EMC Corporation Provides Colleges with a Course in Storage Technologies

    Science.gov (United States)

    Van Sickle, Ed

    2008-05-01

    EMC Corporation, the world leader in data storage, created the EMC Academic Alliance Program to educate students on storage and close the education gap that exists. EMC developed a Storage Technology course to teach students about the design of storage technologies and the "big picture" of an information infrastructure. The course is "open" and focused on storage technologies, not products. College and universities use the course to teach students about a very important topic in IT: Storage. EMC collaborates with colleges and universities by providing the course, knowledge transfer sessions to faculty and program support. There is no cost to join and no cost to obtain the courses. EMC requires partners to sign an agreement for course use. Several colleges are using the course as an upper level elective and the course is taught by faculty. The alliance program has reduced faculty time to develop a storage course and time to learn the topic. Faculty is responsible for credentialing students and they supplement the course with additional materials. Students are being recruited for jobs by EMC and others, including internships. The Alliance program provides academic institutions with a way to differentiate. This paper will explain the program and the Storage Technology course.

  8. Lean and global technology start-ups

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Rasmussen, Erik Stavnsager; Zijdemans, Erik

    2015-01-01

    In this paper the authors introduce the concept of Lean Global Start-up (LGS) as a way of emphasizing the impossibility for new technology start-ups to deal separately with business development, innovation and early internationalization. For a newly established technology firm the task of being...... of their products and the insights from business supporting organizations....

  9. Data centric storage technologies: analysis and enhancement.

    Science.gov (United States)

    Rumín, Ángel Cuevas; Pascual, Manuel Urueña; Ortega, Ricardo Romeral; López, David Larrabeiti

    2010-01-01

    This paper surveys the most relevant works of Data Centric Storage (DCS) for Wireless Sensor Networks. DCS is a research area that covers data dissemination and storage inside an ad-hoc sensor network. In addition, we present a Quadratic Adaptive Replication (QAR) scheme for DCS, which is a more adaptive multi-replication DCS system and outperforms previous proposals in the literature by reducing the overall network traffic that has a direct impact on energy consumption. Finally, we discuss the open research challenges for DCS.

  10. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  11. The global potential for carbon capture and storage from forestry.

    Science.gov (United States)

    Ni, Yuanming; Eskeland, Gunnar S; Giske, Jarl; Hansen, Jan-Petter

    2016-12-01

    Discussions about limiting anthropogenic emissions of CO[Formula: see text] often focus on transition to renewable energy sources and on carbon capture and storage (CCS) of CO[Formula: see text]. The potential contributions from forests, forest products and other low-tech strategies are less frequently discussed. Here we develop a new simulation model to assess the global carbon content in forests and apply the model to study active annual carbon harvest 100 years into the future. The numerical experiments show that under a hypothetical scenario of globally sustainable forestry the world's forests could provide a large carbon sink, about one gigatonne per year, due to enhancement of carbon stock in tree biomass. In addition, a large amount of wood, 11.5 GT of carbon per year, could be extracted for reducing CO[Formula: see text] emissions by substitution of wood for fossil fuels. The results of this study indicate that carbon harvest from forests and carbon storage in living forests have a significant potential for CCS on a global scale.

  12. Reducing storage of global wind ensembles with stochastic generators

    KAUST Repository

    Jeong, Jaehong

    2018-03-09

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth’s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  13. The global politics of science and technology

    CERN Document Server

    Carpes, Mariana; Knoblich, Ruth

    2014-01-01

    An increasing number of scholars have begun to see science and technology as relevant issues in International Relations (IR), acknowledging the impact of material elements, technical instruments, and scientific practices on international security, statehood, and global governance. This two-volume collection brings the debate about science and technology to the center of International Relations. It shows how integrating science and technology translates into novel analytical frameworks, conceptual approaches and empirical puzzles, and thereby offers a state-of-the-art review of various methodological and theoretical ways in which sciences and technologies matter for the study of international affairs and world politics. The authors not only offer a set of practical examples of research frameworks for experts and students alike, but also propose a conceptual space for interdisciplinary learning in order to improve our understanding of the global politics of science and technology.

  14. Dynamics of energy technologies and global change

    Energy Technology Data Exchange (ETDEWEB)

    Gruebler, A.; Nakicenovic, N.; Victor, D.G. [International Institute for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies Project

    1999-05-01

    Based on work at IIASA, typology for technology analysis is presented and methods to analyze the impact of technological changes on the global environment, especially global warming are discussed, focusing on energy technologies. Much improved treatment of technology is possible using both historical analysis and new modeling techniques. In the historical record characteristic `learning rates` are identified that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. Patterns, processes and timescales typifying the diffusion of new technologies in competitive markets are identified. Technologies that are long-lived and are components of interlocking networks require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These observations allow improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has `decarbonized` the global primary energy supply 0.3% per year. Most baseline projections for emissions of carbon ignore this historical trend and show little decarbonization. A second improvement is that by incorporating learning curves and uncertainty into micro scale models it is possible to endogenously generate patterns of technological choice that mirror the real world. Thirdly, learning phenomena can be included stylistically in macro-scale models. Arriving on that path by the year 2100 depends on intervening actions, such as incentives to promote greater diversity in technology. 112 refs., 15 figs., 3 tabs.

  15. Nuclear technology for global markets

    International Nuclear Information System (INIS)

    1995-01-01

    Energy fuels the future. It powers economic and social advances that drive the progress of nations. In Canada, we've been in the business of nuclear energy for fifty years. Our CANDU reactors are consistently in the world's top ten for lifetime performance. Established in 1952 by the Canadian Government, Atomic Energy of Canada Limited (AECL) leads Canada's nuclear export industry which comprises the utilities operating CANDU plants, private sector consulting engineering and construction companies and more than 100 large, medium and small manufacturers and equipment suppliers. AECL-led activities are anticipated to contribute $3.5 billion to Canada's gross domestic product (GDP) over the next five years. Moreover, between 1962 and 1992, the Canadian nuclear industry contributed at least $23 billion to Canada's GDP, with substantive economic benefits in electricity and other goods and services. AECL develops and markets CANDU power reactors and MAPLE research reactors, supplies power and research reactor support services, and offers radioactive waste management products and services. An important component of AECL's success has been its ability to transfer technology to clients. The CANDU reactor comprises components that can be manufactured in other countries, under appropriate agreements. (author)

  16. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Grubler, A.; Nakicenovic, N.; Victor, D.G.

    1999-01-01

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  17. Economic issues of storage technologies in different applications

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; De Noord, M.

    2004-09-01

    For evaluating energy storage technologies, economical parameters are of considerable importance. A qualitative assessment is given of storage technologies in general, contributing to success or failure of their use. Based on data of nine storage technologies that are defined in the INVESTIRE Network (Investigation on storage technologies for intermittent renewable energies: evaluation and recommended R and D strategy), results of a quantitative cost analysis are presented, based on device-specific key parameters. The costs have been defined as additional costs, effected by the required investments and operation and maintenance expenditures, the efficiency of a device and its lifetime. In order to compare the technologies properly, categories of typical use have been defined, ranging from stand-alone small applications (typical storage capacity of 0.1 kWh) to levelling of power production (approximately 1 MWh). The outcome is presented in such a way that for each category of typical use, the best technological options are identified, based on a cost analysis

  18. Innovation and technology for global public health.

    Science.gov (United States)

    Piot, Peter

    2012-01-01

    Recent decades have been marked by the explosive development of innovative scientific, technological and business products and processes. Despite their immense impact on health globally, little has been accomplished in the field of global public health to incorporate, address and harness such innovations in practice. In order to meet the world's growing health needs, it is essential that global public health accepts and adapts to these innovations. Moreover, such innovations must be implemented equitably in ways that will best serve their intended recipients, without deepening health- and access-related disparities. This article will briefly discuss the wide array of technologies in the pipeline that will affect global public health practice, their impact on the field and on populations and the issues facing the field in adopting these innovations.

  19. Global Action to Advance Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors. CCS is already proven in some industrial sectors, such as natural gas processing. Yet, the commercial-scale demonstration stage in key sectors such as iron and steel, cement or some processes in the refining sector has not been reached. To achieve decarbonisation goals, policy makers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  20. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    OpenAIRE

    Huang Qiyuan; Wang Zhijie; Zhu Jun; Wang Dongwei; Du Bin

    2015-01-01

    This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES), super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid w...

  1. Possibilities for global governance of converging technologies

    International Nuclear Information System (INIS)

    Roco, Mihail C.

    2008-01-01

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and

  2. Possibilities for global governance of converging technologies

    Science.gov (United States)

    Roco, Mihail C.

    2008-01-01

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and

  3. Possibilities for global governance of converging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roco, Mihail C. [National Science Foundation (NSF) (United States)], E-mail: mroco@nsf.gov

    2008-01-15

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and

  4. Global Assessment of Groundwater Sustainability Based On Storage Anomalies

    Science.gov (United States)

    Thomas, Brian F.; Caineta, Júlio; Nanteza, Jamiat

    2017-11-01

    The world's largest aquifers are a fundamental source of freshwater used for agricultural irrigation and to meet human water needs. Therefore, their stored volume of groundwater is linked with water security, which becomes more relevant during periods of drought. This work focuses on understanding large-scale groundwater changes, where we introduce an approach to evaluate groundwater sustainability at a global scale. We employ a groundwater drought index to assess performance metrics (reliability, resilience, vulnerability, and a combined sustainability index) for the largest and most productive global aquifers. Spatiotemporal changes in total water storage are derived from remote sensing observations of gravity anomalies, from which the groundwater drought index is inferred. The results reveal a complex relationship between the indicators, while considering monthly variability in groundwater storage. Combining the drought and sustainability indexes, as presented in this work, constitutes a measure for quantifying groundwater sustainability. This framework integrates changes in groundwater resources due to human influences and climate changes, thus opening a path to assess progress toward sustainable use and water security.

  5. Global Terrestrial Water Storage Changes and Connections to ENSO Events

    Science.gov (United States)

    Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong

    2018-01-01

    Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.

  6. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  7. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  8. Information Technology Training in India toward Globalization

    Science.gov (United States)

    Yamashita, Katsuhiko

    This paper describes Toshiba‧s training program in Information Technology in India. It is not a simple technology training, but a training for globalization of Japanese engineers so that they can cope with people from different culture and business practices. We first describe why such training program became necessary. We then describe how the training courses and contents are developed. The operation of the training program and our effort in continual improvement are explained. The effectiveness of the program is also evaluated. The training program presented is a first in its kind and we believe that it can contribute to changing Toshiba from inside toward more globalized corporation. We also believe that this kind of overseas training is effective in training young students so that they can cope with globalizing society after graduation.

  9. Global Impact of Land Use on Soil Carbon Storage

    Science.gov (United States)

    Sanderman, J.; Hengl, T.; Fiske, G. J.; Cheney, E.

    2016-12-01

    Land use and land cover change has resulted in substantial losses of carbon from soils globally. This historic loss in soil organic carbon now represents a significant climate mitigation opportunity. Current estimates of the potential soil organic carbon (SOC) sink strength generally come from simplistic bookkeeping calculations that have been disaggregated to at best the continental scale. Others have taken a modeling approach whereby agroecosystem models have been run using alternative management practices to estimate SOC sequestration potential. A third approach which is adopted here is to use a data-driven spatial modeling approach whereby measured SOC stocks from minimally distrubed regions are projected across the highly managed regions of the world. The International Soil Reference and Information Center (www.isric.org) curates the largest repository of spatially explicit soil data which now includes data from over 150,000 soil profiles globally. From this dataset, we have masked out data from profiles collected from used parts of the globe. Then SOC stocks were related to factors which are known to control SOC storage using machine learning algorithms. Spatially continuous data layers included climate, topography, lithology and potential vegetation class. The trained machine learning algorithms were then used to project potential SOC stocks across the entire global land surface at a resolution of 1 km. In addition to an assessment of model performance in the development stage, an independent test set of over 400 paired-plot (native v. agricultural) measurements of SOC stocks within major agricultural regions was collected to help validate model output. Land area with the largest carbon debit and thus the greatest potential of SOC storage was revealed by comparison of this potential SOC map with a map of actual SOC values (SoilGrids250m) that was produced using a consistent spatial modeling approach.

  10. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  11. COSTS OF THERMAL ENERGY STORAGE TECHNOLOGIES

    OpenAIRE

    Bravo Hidalgo. Debrayan

    2017-01-01

    Thermal accumulation facilities allow energy to be available in the absence of sunlight. This fact reduces the difficulty of the intermittence in the incidence of the king star in our planet. Thermal accumulation technology also contributes to smooth the fluctuations in energy demand during different times of the day. This contribution identifies the nations with the most favorable research results in this area; as well as the main research lines that are being developed today. A compendium o...

  12. Energy storage technologies;Technologies du stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y.

    2009-07-01

    This book takes stock of the advantages and drawbacks of the different energy storage solutions apart from the classical fossil fuels (oil, uranium, gas), and details the technologies developed for an electric end-use. Storage is one of the most critical point for the development of new energy technologies, in particular those that use the electricity vector all along the energy source chain (generation, production, transport, utilisation). Storage is important not only for individual or independent applications, that use renewable energies or not, often intermittent, but also to secure coupled systems like power transportation and distribution systems. The development and choice of the most relevant technologies is dependent of technical-economical parameters. It can also supply new services, in particular in the framework of new electricity markets. Content: power film-capacitors, magnetic storage, kinetic energy storage, compressed air energy storage (CAES), hydro-pneumatic storage, high-temperature thermal storage of electricity, hydraulic gravity storage, power electronic systems for energy storage. (J.S.)

  13. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  14. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    Directory of Open Access Journals (Sweden)

    Huang Qiyuan

    2015-01-01

    Full Text Available This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES, super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid work were given full into consideration, the current micro-grid energy storage technology research problems and development trend in the future were pointed out.

  15. Application of new physical storage technology in fruit and ...

    African Journals Online (AJOL)

    With the development of science and technology, consumers not only require food to be safe, but also require them to keep the original natural flavor and nutritional value as well, while the traditional chemical storage method has been increasingly unable to satisfy consumers' demand. When compared with chemical ...

  16. Science and technology and global competition

    International Nuclear Information System (INIS)

    Lanzavecchia, G.

    1992-01-01

    The impacts of R ampersand D and technological innovation on economic development are discussed with reference to the current and probable future status of various industrialized countries in highly competitive marketing areas such as micro- electronics. An assessment is made of international trends in approaches towards: corporate planning, organizing, sizing, on-the-job training and the modelling of employee attitudes; methods for dealing with risk and uncertainty in non-linear and complex global economic markets; research and development orientation and investment; and government policy making regarding education, economic growth and technological innovation

  17. Technology Application of Environmental Friendly Refrigeration (Green Refrigeration) on Cold Storage for Fishery Industry

    Science.gov (United States)

    Rasta, IM; Susila, IDM; Subagia, IWA

    2018-01-01

    The application of refrigeration technology to postharvest fishery products is an very important. Moreover, Indonesia is a tropical region with relatively high temperatures. Fish storage age can be prolonged with a decrease in temperature. Frozen fish can even be stored for several months. Fish freezing means preparing fish for storage in low-temperature cold storage. The working fluid used in cold storage to cool low-temperature chambers and throw heat into high-temperature environments is refrigerant. So far refrigerant used in cold storage is Hydrochloroflourocarbons (HCFC) that is R-22. Chlor is a gas that causes ODP (Ozone Depleting Potential), while Flour is a gas that causes GWP (Global Warming Potential). Government policy began in 2015 to implement Hydrochloroflourocarbons Phase-Out Management Plan. Hydrocarbon (HC) is an alternative substitute for R-22. HC-22 (propane ≥ 99.5%) has several advantages, among others: environmentally friendly, indicated by a zero ODP value, and GWP = 3 (negligible), thermophysical property and good heat transfer characteristics, vapor phase density Which is low, and good solubility with mineral lubricants. The use of HC-22 in cold storage is less than R-22. From the analysis results obtained, cold storage system using HC-22 has better performance and energy consumption is more efficient than the R-22.

  18. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  19. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  20. Digitalization and the global technology trends

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    Digitalization, connected products and services, and shortening innovation cycles are widely discussed topics in management practice and theory and demand for new concepts. We analysed how companies innovated their business models and how are the new the technology trends. We found out, that have a positive approach to digitalization but the technology strategy still runs its original business model. Digitalization forces to new solution orientation. For companies it is necessary to master the digital transformation, new innovations have to be developed. Furthermore, digitalization / Industry 4.0 linking the real-life factory with virtual reality, will play an increasingly important role in global manufacturing. Companies have to obtain new digital capabilities, in order to make their company sustainable for the future. A long term growth and welfare in Europe could be guaranteed only by new technology innovation.

  1. Clean coal technologies and global climate change

    International Nuclear Information System (INIS)

    Long, R.S.

    1993-01-01

    The role for Clean Coal Technologies is discussed in the context of the global climate change debate. Global climate change is, of course as the name implies, a global issue. This clearly distinguishes this issue from acid rain or ozone non-attainment, which are regional in nature. Therefore, the issue requires a global perspective, one that looks at the issue not just from a US policy standpoint but from an international policy view. This includes the positions of other individual nations, trading blocks, common interest groups, and the evolving United Nations bureaucracy. It is assumed that as the global economy continues to grow, energy demand will also grow. With growth in economic activity and energy use, will come growth in worldwide greenhouse gas emissions, including growth in carbon dioxide (CO 2 ) emissions. Much of this growth will occur in developing economies which intend to fuel their growth with coal-fired power, especially China and India. Two basic premises which set out the boundaries of this topic are presented. First, there is the premise that global climate change is occurring, or is about to occur, and that governments must do something to mitigate the causes of climate change. Although this premise is highly rebuttable, and not based on scientific certainty, political science has driven it to the forefront of the debate. Second is the premise that advanced combustion CCTs, with their higher efficiencies, will result in lower CO 2 emissions, and hence lessen any contribution of greater coal use to potential global climate change. This promise is demonstrably true. This discussion focuses on recent and emerging public sector policy actions, which may in large part establish a new framework in which the private sector will find new challenges and new opportunities

  2. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  3. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  4. Dynamics of energy technologies and global change

    Energy Technology Data Exchange (ETDEWEB)

    Odell, P.R. [Erasmus University, Rotterdam (Netherlands). International Energy Studies

    1999-11-01

    The author comments on the paper with the same title published in Energy Policy, volume 27, part 5, page 247-280, May 1999 by Gruebler, Nakicenovic and Vidor. Peter Odell says that the article incorporates an inherent internal contradiction between their acceptance of the status quo view of oil and gas and their insistence on the power of the 'incentives for innovation... to enable new technologies (such as solar and nuclear) to diffuse into widespread use'. He concludes that Gruebler et al.'s recommendation for a frontal approach to global change, requiring attention more directly to technology policy with specific reference to the development of solar and nuclear sources of energy, is unlikely to be the preferred 21st option. Instead, a technologically oriented frontal approach which concentrates first, on enhancing the efficiency of the exploration for, and the exploration of, the world's remaining large (or even unlimited) reserves of oil and gas; and second, on the abatement of atmospheric emissions from the use of these energy resources, would seem to offer a more certain and lower cost way of tackling global change problems in the 21st century: a century in which dependence on liquid and gaseous hydrocarbons will be the natural sequel to the world's previous near-200 years' dependence on coal. 22 refs., 7 figs.

  5. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  6. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  7. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  8. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  9. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  10. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  11. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  12. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  13. The global carbon nation: Status of CO2 capture, storage and utilization

    Directory of Open Access Journals (Sweden)

    Kocs Elizabeth A.

    2017-01-01

    Full Text Available As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  14. Recent experiences and future expectations in data storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, J.

    1990-04-01

    For more than 10 years the conventional media for High Energy Physics has been 9 track magnetic tape in various densities. More recently, especially in Europe, the IBM 3480 technology has been adopted while in the United States, especially at Fermilab, 8mm is being used by the largest experiments as a primary recording media and where possible they are using 8mm for the production, analysis and distribution of data summary tapes. VHS and Digital Audio tape have recurrently appeared but seem to serve primarily as back-up storage media. The reasons for what appear to be a radical departure are many. Economics, form factor, and convenience are dominant among the reasons. The traditional data media suppliers seem to have been content to evolve the traditional media at their own pace with only modest enhancements primarily in value engineering'' of extant products. Meanwhile, start-up companies providing small system and workstations sought other media both to reduce the price of their offerings and respond to the real need of lower cost back-up for lower cost systems. This happening in a market context where traditional computer systems vendors were leaving the tape market altogether or shifting to 3480'' technology which has certainly created a climate for reconsideration and change. The newest data storage products, in most cases, are not coming from the technologies developed by the computing industry but by the audio and video industry. Just where these flopticals, opticals, 19 mm tape and the new underlying technologies, such as, digital paper'' may fit in the HEP computing requirement picture will be reviewed. What these technologies do for and to HEP will be discussed along with some suggestions for a methodology for tracking and evaluating extant and emerging technologies.

  15. dCache, agile adoption of storage technology

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. Over that time, it has satisfied the requirements of various demanding scientific user communities to store their data, transfer it between sites and fast, site-local access. When the dCache project started, the focus was on managing a relatively small disk cache in front of large tape archives. Over the project's lifetime storage technology has changed. During this period, technology changes have driven down the cost-per-GiB of harddisks. This resulted in a shift towards systems where the majority of data is stored on disk. More recently, the availability of Solid State Disks, while not yet a replacement for magnetic disks, offers an intriguing opportunity for significant performance improvement if they can be used intelligently within an existing system. New technologies provide new opportunities and dCache user communities' computi...

  16. Water storage in marine sediment and implications for inferences of past global ice volume

    Science.gov (United States)

    Ferrier, K.; Li, Q.; Pico, T.; Austermann, J.

    2017-12-01

    Changes in past sea level are of wide interest because they provide information on the sensitivity of ice sheets to climate change, and thus inform predictions of future sea-level change. Sea level changes are influenced by many processes, including the storage of water in sedimentary pore space. Here we use a recent extension of gravitationally self-consistent sea-level models to explore the effects of marine sedimentary water storage on the global seawater balance and inferences of past global ice volume. Our analysis suggests that sedimentary water storage can be a significant component of the global seawater budget over the 105-year timescales associated with glacial-interglacial cycles, and an even larger component over longer timescales. Estimates of global sediment fluxes to the oceans suggest that neglecting marine sedimentary water storage may produce meter-scale errors in estimates of peak global mean sea level equivalent (GMSL) during the Last Interglacial (LIG). These calculations show that marine sedimentary water storage can be a significant contributor to the overall effects of sediment redistribution on sea-level change, and that neglecting sedimentary water storage can lead to substantial errors in inferences of global ice volume at past interglacials. This highlights the importance of accounting for the influences of sediment fluxes and sedimentary water storage on sea-level change over glacial-interglacial timescales.

  17. REAC technology as optimizer of stallion spermatozoa liquid storage.

    Science.gov (United States)

    Berlinguer, Fiammetta; Pasciu, Valeria; Succu, Sara; Cossu, Ignazio; Caggiu, Sabrina; Addis, Daniela; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore; Passino, Eraldo Sanna

    2017-02-08

    REAC technology (acronym for Radio Electric Asymmetric Conveyor) is a technology platform for neuro and bio modulation. It has already proven to optimize the ions fluxes at the molecular level and the molecular mechanisms driving cellular asymmetry and polarization. This study was designed to verify whether this technology could extend spermatozoa life-span during liquid storage, while preserving their functions, DNA integrity and oxidative status. At 0, 24, 48, and 72 h. of storage at 4 °C, a battery of analyses was performed to assess spermatozoa viability, motility parameters, acrosome status, and DNA integrity during REAC treatment. Spermatozoa oxidative status was assessed by determining lipid peroxidation, the activity of superoxide dismutase (SOD), and the total antioxidant capacity. During liquid storage REAC treated spermatozoa, while not showing an increased viability nor motility compared to untreated ones, had a higher acrosome (p > 0.001) and DNA integrity (p > 0.01). Moreover, the analysis of the oxidative status indicated that the mean activity of the intracellular superoxide dismutase (SOD) was significantly higher in REAC treated spermatozoa compared to untreated controls (p  0.05). The REAC efficacy on spermatozoa oxidative status was also evidenced by the higher trolox equivalent antioxidant capacity (TEAC) found in both the cellular extract (p spermatozoa compared to untreated controls (p spermatozoa acrosome membrane and DNA integrity, likely due to the enhancement of sperm antioxidant defenses. These results open new perspective about the extending of spermatozoa functions in vitro and the clinical management of male infertility.

  18. Cryogenic storage technology readiness for First Lunar Outpost

    Science.gov (United States)

    Schuster, John R.

    1992-01-01

    The topics are presented in viewgraph form and include the following: an assessment of cryogenic storage technology; cryogenic boiloff predictions; Space Shuttle/Centaur thermodynamic vent system; zero-g thermodynamic vent system; heat exchanger/mixer pump module; the thick multilayer insulation (MLI) development program; blanket geometry concept evaluations; four-inch thick MLI system on 1/4-scale test tank; combined environments of vibration, acceleration, and temperature testing (CEVAT); Centaur fixed foam insulation; insulation system design; and fixed foam on operational Atlas 2.

  19. dCache, agile adoption of storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Millar, A. P. [Hamburg U.; Baranova, T. [Hamburg U.; Behrmann, G. [Unlisted, DK; Bernardt, C. [Hamburg U.; Fuhrmann, P. [Hamburg U.; Litvintsev, D. O. [Fermilab; Mkrtchyan, T. [Hamburg U.; Petersen, A. [Hamburg U.; Rossi, A. [Fermilab; Schwank, K. [Hamburg U.

    2012-01-01

    For over a decade, dCache has been synonymous with large-capacity, fault-tolerant storage using commodity hardware that supports seamless data migration to and from tape. In this paper we provide some recent news of changes within dCache and the community surrounding it. We describe the flexible nature of dCache that allows both externally developed enhancements to dCache facilities and the adoption of new technologies. Finally, we present information about avenues the dCache team is exploring for possible future improvements in dCache.

  20. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  1. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  2. Wearable Technology for Global Surgical Teleproctoring.

    Science.gov (United States)

    Datta, Néha; MacQueen, Ian T; Schroeder, Alexander D; Wilson, Jessica J; Espinoza, Juan C; Wagner, Justin P; Filipi, Charles J; Chen, David C

    2015-01-01

    In underserved communities around the world, inguinal hernias represent a significant burden of surgically-treatable disease. With traditional models of international surgical assistance limited to mission trips, a standardized framework to strengthen local healthcare systems is lacking. We established a surgical education model using web-based tools and wearable technology to allow for long-term proctoring and assessment in a resource-poor setting. This is a feasibility study examining wearable technology and web-based performance rating tools for long-term proctoring in an international setting. Using the Lichtenstein inguinal hernia repair as the index surgical procedure, local surgeons in Paraguay and Brazil were trained in person by visiting international expert trainers using a formal, standardized teaching protocol. Surgeries were captured in real-time using Google Glass and transmitted wirelessly to an online video stream, permitting real-time observation and proctoring by mentoring surgeon experts in remote locations around the world. A system for ongoing remote evaluation and support by experienced surgeons was established using the Lichtenstein-specific Operative Performance Rating Scale. Data were collected from 4 sequential training operations for surgeons trained in both Paraguay and Brazil. With continuous internet connectivity, live streaming of the surgeries was successful. The Operative Performance Rating Scale was immediately used after each operation. Both surgeons demonstrated proficiency at the completion of the fourth case. A sustainable model for surgical training and proctoring to empower local surgeons in resource-poor locations and "train trainers" is feasible with wearable technology and web-based communication. Capacity building by maximizing use of local resources and expertise offers a long-term solution to reducing the global burden of surgically-treatable disease. Copyright © 2015 Association of Program Directors in Surgery

  3. Using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.

    2016-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and software systems developed for NASA data repositories were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Object storage services are provided through all the leading public (Amazon Web Service, Microsoft Azure, Google Cloud, etc.) and private (Open Stack) clouds, and may provide a more cost-effective means of storing large data collections online. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows superior performance for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  4. Carbon capture and storage: Fundamental thermodynamics and current technology

    International Nuclear Information System (INIS)

    Page, S.C.; Williamson, A.G.; Mason, I.G.

    2009-01-01

    Carbon capture and storage (CCS) is considered a leading technology for reducing CO 2 emissions from fossil-fuelled electricity generation plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. However considerable energy is required for the capture, compression, transport and storage steps involved. In this paper, energy penalty information in the literature is reviewed, and thermodynamically ideal and 'real world' energy penalty values are calculated. For a sub-critical pulverized coal (PC) plant, the energy penalty values for 100% capture are 48.6% and 43.5% for liquefied CO 2 , and for CO 2 compressed to 11 MPa, respectively. When assumptions for supercritical plants were incorporated, results were in broad agreement with published values arising from process modelling. However, we show that energy use in existing capture operations is considerably greater than indicated by most projections. Full CCS demonstration plants are now required to verify modelled energy penalty values. However, it appears unlikely that CCS will deliver significant CO 2 reductions in a timely fashion. In addition, many uncertainties remain over the permanence of CO 2 storage, either in geological formations, or beneath the ocean. We conclude that further investment in CCS should be seriously questioned by policy makers.

  5. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  6. GLOBALIZATION, TECHNOLOGY AND COMPETITIVENESS: FROM INDUSTRIAL REVOLUTION TO KNOWLEDGE ECONOMY

    OpenAIRE

    Silvia Marginean

    2009-01-01

    The world is experiencing a new revolution – the knowledge revolution – fuelled by the technological change. In the same time, globalization and competitiveness are two concepts used to explain modern trends in economic development. This paper analyzes the relationship between globalization, technology and competitiveness. Globalization and technology are linked and they have generated great shifts in the national competitiveness of countries. In a broad sense, industrial revolution can be se...

  7. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  8. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    International Nuclear Information System (INIS)

    Rai, Varun; Victor, David G.; Thurber, Mark C.

    2010-01-01

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO 2 -scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  9. Center for Global Health announces grants to support portable technologies

    Science.gov (United States)

    NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm

  10. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  11. INFORMATION AND COMMUNICATION TECHNOLOGIES – ONE ENGINE OF GLOBALIZATION

    Directory of Open Access Journals (Sweden)

    Daniela Popescul

    2009-12-01

    Full Text Available Technological changes are “the main engine of capitalism and evolution” (A. Toffler, “the fundamental driving force in transformation of an economy” (C. Freeman. The paper proposes a theoretical investigation of information and communication technologies evolution and their impact on the globalization of economy. It defines terms like globalization - with special attention focused on its economical dimension, technological change, and information and communication technologies.

  12. Global Public Leadership in a Technological Era

    Science.gov (United States)

    Masciulli, Joseph

    2011-01-01

    Good (ethical and effective) global public leadership--by national politicians, intergovernmental and nongovernmental international organizational leaders, multinational corporate leaders, and technoscientists--will make a significant positive difference in our global system's capacity to solve contemporary and futuristic global problems. High…

  13. Health information management using optical storage technology: case studies.

    Science.gov (United States)

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  14. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  15. Storage Technologies to Enhance Longevity in Paddy ( Oryza sativa ...

    African Journals Online (AJOL)

    Storage conditions, storage containers and seed treatments prior to storage are important factors responsible for retaining seed longevity. But ideal storage environment are seldom available for the precious seed, especially under tropical conditions. Maintenance of seed germination in vulnerable parental lines IR 58025A ...

  16. Innovative Technologies for Global Space Exploration

    Science.gov (United States)

    Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.

    2012-01-01

    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.

  17. Technological Progress, Globalization, and Secular Stagnation

    Directory of Open Access Journals (Sweden)

    Popović Milenko

    2018-01-01

    Full Text Available After the 2008 crisis, despite economic recovery that started in 2009, the world economy has experienced a downward shift of its growth path and a consequent decline. As shown at the beginning of this paper, this shift and growth rate stagnation are totally attributable to the economic dynamics in developed economies, the USA and the EU. Explanations of this phenomenon can be divided into two large groups: explanations that belong to the demand side and those that belong to the supply side. The aim of this paper is to give a critical survey of the most important explanations for the ongoing growth stagnation in developed countries and consequently in the entire world economy. This ongoing prolonged stagnation can only be explained by looking at both, the demand and supply sides of the explanation, and particularly by taking a closer look at the interaction between aggregate demand and aggregate supply. In other words, secular stagnation manifests itself as a problem of the limitation of long run growth of aggregate demand. However, in order to explain the causes of those demand limitations, we have to undertake a careful analysis of the supply side dynamics, especially the dynamics of innovations, which bring us to circular and cumulative causation. In order to explain the numerous consequences of this stagnation and to solve some important puzzles, like the productivity paradox for example, a special emphasis is given to the analysis of deindustrialization and the consequent strange reoccurrence of a dual economy within most developed countries during the period of the IT revolution and hyper-globalization. It will also be shown that this new dual economy presents serious limitations for further technological advancement and economic development, quite contrary to the old dualism which contributed to an acceleration of economic growth.

  18. Information Technologies and Globalization: New Perspectives of Teaching Learning Process

    Science.gov (United States)

    Hussain, Irshad

    2008-01-01

    This article discusses how information technologies and globalization have opened new avenues and horizons for educators and learners. It discusses different experiences of using information and communication technologies (ICTs) in teaching learning process the world over in the age of globalization. It focuses on the ways these new trends have…

  19. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  20. Satellite observed global variations in ecosystem-scale plant water storage

    Science.gov (United States)

    Tian, F.; Wigneron, J. P.; Brandt, M.; Fensholt, R.

    2017-12-01

    Plant water storage is a key component in ecohydrological processes and tightly coupled with global carbon and energy budgets. Field measurements of individual trees have revealed diurnal and seasonal variations in plant water storage across different tree species and sizes. However, global estimation of plant water storage is challenged by up-scaling from individual trees to an ecosystem scale. The L-band passive microwaves are sensitive to water stored in the stems, branches and leaves, with dependence on the vegetation structure. Thus, the L-band vegetation optical depth (L-VOD) parameter retrieved from satellite passive microwave observations can be used as a proxy for ecosystem-scale plant water storage. Here, we employ the recently developed SMOS (Soil Moisture and Ocean Salinity) L-VOD dataset to investigate spatial patterns in global plant water storage and its diurnal and seasonal variations. In addition, we compare the spatiotemporal patterns between plant water storage and canopy greenness (i.e., enhanced vegetation indices, EVI) to gain ecohydrological insights among different territorial biomes, including boreal forest and tropical woodland. Generally, seasonal dynamics of plant water storage is much smaller than canopy greenness, yet the temporal coupling of these two traits is totally different between boreal and tropical regions, which could be related to their strategies in plant water regulation.

  1. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian; Nijssen, Bart; Gao, Huilin; Lettenmaier, Dennis P.

    2016-12-21

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.

  2. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  3. Japan's Science and Technology Aim toward Globalization.

    Science.gov (United States)

    Lepkowski, Wil

    1989-01-01

    Investigates Japanese efforts to enter a new phase of its postwar technological period with a focus on internationalization of its economy and industry. Analyzes which technologies will dominate the early 21st century and their relationships to each other. (MVL)

  4. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  5. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  6. Global Citizenship Education, Technology, and Being

    Science.gov (United States)

    Gardner-McTaggart, Alexander; Palmer, Nicholas

    2018-01-01

    Despite the widespread promotion of the global school, it remains unclear as to how citizenship education (global citizenship education, GCE) is developed. Educational bodies such as UNESCO, Oxfam, and the International Baccalaureate are in the full throws of developing models for GCE yet questions remain as to how such a sweeping notion might…

  7. GHOST: global hepatitis outbreak and surveillance technology.

    Science.gov (United States)

    Longmire, Atkinson G; Sims, Seth; Rytsareva, Inna; Campo, David S; Skums, Pavel; Dimitrova, Zoya; Ramachandran, Sumathi; Medrzycki, Magdalena; Thai, Hong; Ganova-Raeva, Lilia; Lin, Yulin; Punkova, Lili T; Sue, Amanda; Mirabito, Massimo; Wang, Silver; Tracy, Robin; Bolet, Victor; Sukalac, Thom; Lynberg, Chris; Khudyakov, Yury

    2017-12-06

    Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Effective HCV outbreak investigation requires comprehensive surveillance and robust case investigation. We previously developed and validated a methodology for the rapid and cost-effective identification of HCV transmission clusters. Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based system enabling users, regardless of computational expertise, to analyze and visualize transmission clusters in an independent, accurate and reproducible way. We present and explore performance of several GHOST implemented algorithms using next-generation sequencing data experimentally obtained from hypervariable region 1 of genetically related and unrelated HCV strains. GHOST processes data from an entire MiSeq run in approximately 3 h. A panel of seven specimens was used for preparation of six repeats of MiSeq libraries. Testing sequence data from these libraries by GHOST showed a consistent transmission linkage detection, testifying to high reproducibility of the system. Lack of linkage among genetically unrelated HCV strains and constant detection of genetic linkage between HCV strains from known transmission pairs and from follow-up specimens at different levels of MiSeq-read sampling indicate high specificity and sensitivity of GHOST in accurate detection of HCV transmission. GHOST enables automatic extraction of timely and relevant public health information suitable for guiding effective intervention measures. It is designed as a virtual diagnostic system intended for use in molecular surveillance and outbreak investigations rather than in research. The system produces accurate and reproducible information on HCV transmission clusters for all users, irrespective of their level of bioinformatics

  8. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    Van Alphen, Klaas; Van Voorst tot Voorst, Quirine; Hekkert, Marko P.; Smits, Ruud E.H.M.

    2007-01-01

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  9. New energy technology cope with global environmental problems

    International Nuclear Information System (INIS)

    Tsuchimoto, Tatsuya

    1991-01-01

    At present, the national and private storage of oil is the quantity for about 140 days in total, and it can cope with the temporary fear of oil supply, but if the Gulf War was prolonged, the large effect should be exerted to the energy supply. The reduction of the degree of oil dependence and the increase of the dependence on nonfossil fuel are taken up as the basic idea of the long term energy demand and supply in Japan. Also in the action plan for preventing global warming, the further promotion of energy conservation and the adoption of clean energy were decided to be carried out for decreasing carbon dioxide. In this report, among clean energies, the technology of electric power generation by sun beam, wind force and geotherm is described. The power generation by sun beam has many features, but the energy density is low, and the area for installation becomes large. The cost of power generation is relatively high. The power generation by wind force is superior in its environmental characteristics, and has been already put in practical use in USA and Europe. The problem is the reliability of the system. The geothermal power generation is available also in Japan, and is important for the energy security. The plants of about 270 MW are installed in Japan. (K.I.)

  10. Technical and Economic Assessment of Storage Technologies for Power-Supply Grids

    Directory of Open Access Journals (Sweden)

    H. Meiwes

    2009-01-01

    Full Text Available Fluctuating power generation from renewable energies such as wind and photovoltaic are a technical challenge for grid stability. Storage systems are an option to stabilise the grid and to maximise the utilisation factors of renewable power generators. This paper analyses the state of the art of storage technologies, including a detailed life cycle cost comparison. Beside this, benefits of using storage systems in electric vehicles are analysed and quantified. A comprehensive overview of storage technologies as well as possible applications and business cases for storage systems is presented. 

  11. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    International Nuclear Information System (INIS)

    Kangas, M.T.; Lund, P.D.

    1994-01-01

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, District heating and utilities

  12. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  13. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data.

    Science.gov (United States)

    Scanlon, Bridget R; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y; Müller Schmied, Hannes; van Beek, Ludovicus P H; Wiese, David N; Wada, Yoshihide; Long, Di; Reedy, Robert C; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F P

    2018-02-06

    Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤-0.5 km 3 /y) and increasing (≥0.5 km 3 /y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km 3 /y, whereas most models estimate decreasing trends (-71 to 11 km 3 /y). Land water storage trends, summed over all basins, are positive for GRACE (∼71-82 km 3 /y) but negative for models (-450 to -12 km 3 /y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. Copyright © 2018 the Author(s). Published by PNAS.

  14. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

    Science.gov (United States)

    Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae

    2016-09-01

    Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

  15. Comparison of Decadal Water Storage Trends from Global Hydrological Models and GRACE Satellite Data

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z. Z.; Save, H.; Sun, A. Y.; Mueller Schmied, H.; Van Beek, L. P.; Wiese, D. N.; Wada, Y.; Long, D.; Reedy, R. C.; Doll, P. M.; Longuevergne, L.

    2017-12-01

    Global hydrology is increasingly being evaluated using models; however, the reliability of these global models is not well known. In this study we compared decadal trends (2002-2014) in land water storage from 7 global models (WGHM, PCR-GLOBWB, and GLDAS: NOAH, MOSAIC, VIC, CLM, and CLSM) to storage trends from new GRACE satellite mascon solutions (CSR-M and JPL-M). The analysis was conducted over 186 river basins, representing about 60% of the global land area. Modeled total water storage trends agree with those from GRACE-derived trends that are within ±0.5 km3/yr but greatly underestimate large declining and rising trends outside this range. Large declining trends are found mostly in intensively irrigated basins and in some basins in northern latitudes. Rising trends are found in basins with little or no irrigation and are generally related to increasing trends in precipitation. The largest decline is found in the Ganges (-12 km3/yr) and the largest rise in the Amazon (43 km3/yr). Differences between models and GRACE are greatest in large basins (>0.5x106 km2) mostly in humid regions. There is very little agreement in storage trends between models and GRACE and among the models with values of r2 mostly <0.1. Various factors can contribute to discrepancies in water storage trends between models and GRACE, including uncertainties in precipitation, model calibration, storage capacity, and water use in models and uncertainties in GRACE data related to processing, glacier leakage, and glacial isostatic adjustment. The GRACE data indicate that land has a large capacity to store water over decadal timescales that is underrepresented by the models. The storage capacity in the modeled soil and groundwater compartments may be insufficient to accommodate the range in water storage variations shown by GRACE data. The inability of the models to capture the large storage trends indicates that model projections of climate and human-induced changes in water storage may be

  16. Long term, non-anthropogenic groundwater storage changes simulated by a global land surface model

    Science.gov (United States)

    Li, B.; Rodell, M.; Sheffield, J.; Wood, E. F.

    2017-12-01

    Groundwater is crucial for meeting agricultural, industrial and municipal water needs, especially in arid, semi-arid and drought impacted regions. Yet, knowledge on groundwater response to climate variability is not well understood due to lack of systematic and continuous in situ measurements. In this study, we investigate global non-anthropogenic groundwater storage variations with a land surface model driven by a 67-year (1948-204) meteorological forcing data set. Model estimates were evaluated using in situ groundwater data from the central and northeastern U.S. and terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellites and found to be reasonable. Empirical orthogonal function (EOF) analysis was employed to examine modes of variability of groundwater storage and their relationship with atmospheric effects such as precipitation and evapotranspiration. The result shows that the leading mode in global groundwater storage reflects the influence of the El Niño Southern Oscillation (ENSO). Consistent with the EOF analysis, global total groundwater storage reflected the low frequency variability of ENSO and decreased significantly over 1948-2014 while global ET and precipitation did not exhibit statistically significant trends. This study suggests that while precipitation and ET are the primary drivers of climate related groundwater variability, changes in other forcing fields than precipitation and temperature are also important because of their influence on ET. We discuss the need to improve model physics and to continuously validate model estimates and forcing data for future studies.

  17. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  18. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    Directory of Open Access Journals (Sweden)

    T Nagatsuma

    2014-10-01

    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  19. Emerging technologies for the changing global market

    Science.gov (United States)

    Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt

    1993-01-01

    This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi-quantative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.

  20. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  1. Technology Learning Ratios in Global Energy Models; Ratios de Aprendizaje Tecnologico en Modelos Energeticos Globales

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M.

    2001-07-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this tend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy systems including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs.

  2. The Global Technology Revolution 2020: Executive Summary

    National Research Council Canada - National Science Library

    Silberglitt, Richard S; Anton, Philip S; Howell, David R; Wong, Anny; Bohandy, S. R; Gassman, Natalie; Jackson, Brian A; Landree, Eric; Lawrence Pfleeger, Shari; Newton, Elaine M; Wu, Felicia

    2006-01-01

    .... A sample of 29 countries across the spectrum of scientific advancement (low to high) was assessed with respect to the countries' ability to acquire and implement 16 key technology applications (e.g...

  3. Coadunation of technologies: Cogeneration and thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, S.; Drost, M. K.; Brown, D. R.; Antoniak, Z. A.

    1993-09-01

    Cogeneration is playing an increasingly important role in providing an independent and on-site high-efficiency source of power generation and thermal energy for space heating and cooling, as well as industrial process heat applications. However, the range of applications of cogeneration technology could be further extended if the generation of electricity could be decoupled from the generation of thermal energy for process use or space conditioning. The technology of thermal energy storage (TES) provides just such a decoupling that allows for the production of dispatchable power while fully utilizing the thermal energy available from the prime mover of the cogeneration system. The thermal energy from the prime mover exhaust can be stored either as sensible heat or as latent heat and used during peak demand periods to produce electric power or process steam/hot water. However, the additional materials and equipment necessary for a TES system will add to the capital as well as maintenance costs. Therefore, the economic benefits of adding TES to a conventional cogeneration system would have to outweigh the increased costs of the combined system. This paper addresses some of the TES systems that are readily applicable to be combined with cogeneration systems, as well as provide an update on the current status of these TES systems. TES allows a cogeneration facility to (1) provide dispatchable electric power while providing a constant thermal load, and (2) increase peak capacity by providing economical cooling of the combustion turbine inlet air. The particular systems addressed are high-temperature diurnal TES, and TES for cooling the combustion turbine inlet air.

  4. Modeling the Global Workplace Using Emerging Technologies

    Science.gov (United States)

    Dorazio, Patricia; Hickok, Corey

    2008-01-01

    The Fall 2006 term of COM495, Senior Practicum in Communication, offered communication and information design students the privilege of taking part in a transatlantic intercultural virtual project. To emulate real world experience in today's global workplace, these students researched and completed a business communication project with German…

  5. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    Science.gov (United States)

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  6. Warehousing in the Global Supply Chain Advanced Models, Tools and Applications for Storage Systems

    CERN Document Server

    2012-01-01

    With increased globalization and offshore sourcing, global supply chain management is becoming an important issue for many businesses as it involves a company's worldwide interests and suppliers rather than simply a local or national orientation. The storage systems significantly affect the level of quality of products, the customer’s service level, and the global logistic cost. The mission of warehousing systems design, control and optimization is to effectively ship products in the right place, at the right time, and in the right quantity (i.e. in any configuration) without any damages or alterations, and minimizing costs. Warehousing in the Global Supply Chain presents and discusses a set of models, tools and real applications, including a few case studies rarely presented with a sufficient detail by other literature, to illustrate the main challenges in warehousing activities. This includes all warehouse operations (from receiving to shipping), problems and issues (e.g. storage allocation, assignment,...

  7. The FTC at 100: The Impact of Globalization and Technology

    OpenAIRE

    Christopher Yoo

    2014-01-01

    The challenges posed by both globalization and new technologies underscore the importance of adhering to consumer welfare as the guide to antitrust policy. Christopher S. Yoo (University of Pennsylvania Law School)

  8. Japanese policy on science and technology for the global environment

    International Nuclear Information System (INIS)

    Kawasaki, M.

    1994-01-01

    The current state of Japanese science and technology policy is discussed within the framework of overall global environmental policy. Principles of Japanese environmental policy include participation in international schemes for conservation of the global environment, promotion of Japanese research on the global environment, development and diffusion of technologies contributing to conservation of the global environment, contribution to conservation of the environment in developing countries, and maintenance of economic and social activities in Japan at an environmentally beneficial level. The Japanese environmental budget includes expenditures for earth observation and monitoring by satellite, energy-related research and development, and control of greenhouse gas emissions. The proportion of overall Japanese research and development (R ampersand D) expenditures which were spent on the global environment was about 2% in 1991. Of governmental research expenditures, ca 22% involve the global environment; however, some part of the expenditures on energy R ampersand D and on earth observation satellite R ampersand D are also environment-related. 5 figs

  9. Globalization, Technology Transfer and the Knowledge Gap: Case ...

    African Journals Online (AJOL)

    This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of oligopolistic research has ...

  10. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  11. Selection of Technology in Global Manufacturing Industries

    DEFF Research Database (Denmark)

    Bruun, Peter

    1997-01-01

    Transferring a manufacturing system to another country has proven to be problematic for most multinational firms. Selection of the appropriate production process and technology is a critical decision as transplantation of an existing system from another country without adaptation usually does not...... choosing the key operational methods and human resource policies....

  12. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... process. It includes basic process design or certain types of engineering designs. The peripheral components correspond to the body of knowledge that is needed for the application of core technologies in producing goods and service activities. (Junta del Acuerdo de categena, 1976). This component also ...

  13. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)

    ABDULLAH MENGAL

    2017-04-01

    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  14. INFLUENCE OF GLOBAL MEDIA TECHNOLOGY ON THE SOCIAL ...

    African Journals Online (AJOL)

    GRAB INTERNATIONAL VENTURES

    and telecommunications, have acted as catalysts for e-commerce. This has been made possible as a result of the opening up of global markets in telecommunication services and information technology products that are building blocks for electronic commerce. Lessons to be Learnt from Technology use in Countries of the ...

  15. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  16. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  17. Physics and technology of optical storage in polymer thin films

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, Søren; Ujhelyi, F.

    2001-01-01

    We discuss different strategies for optical storage of information in polymeric films. An outline of the existing trends is given. The synthesis and characterization of side-chain azobenzene polyester films for holographic storage of information is described. A compact holographic memory card...... system based on polarization holography is described. A storage density of greater than 10MB/cm2 has been achieved so far, with a potential increase to 100MB/cm(2) using multiplexing techniques and software correction. Finally the role of surface relief in azobenzene polymers on irradiation...

  18. Transforming global health with mobile technologies and social enterprises: global health and innovation conference.

    Science.gov (United States)

    Kayingo, Gerald

    2012-09-01

    More than 2,000 people convened for the ninth annual Global Health and Innovation Conference at Yale University on April 21-22, 2012. Participants discussed the latest innovations, ideas in development, lessons learned, opportunities and challenges in global health activities. Several themes emerged, including the important role of frontline workers, strengthening health systems, leveraging social media, and sustainable and impact-driven philanthropy. Overall, the major outcome of the conference was the increased awareness of the potential of mobile technologies and social enterprises in transforming global health. Experts warned that donations and technological advances alone will not transform global health unless there are strong functioning health infrastructures and improved workforce. It was noted that there is a critical need for an integrated systems approach to global health problems and a need for scaling up promising pilot projects. Lack of funding, accountability, and sustainability were identified as major challenges in global health.

  19. Application of Intelligent Measurement and Control Technology in Grain Storage

    Directory of Open Access Journals (Sweden)

    Xiaoai Zhang

    2014-05-01

    Full Text Available It’s of strategic importance that China takes the grain as the reserve material. The final quality of the grain is directly related to its storage process. Proper storage measures and methods can extend the shelf life of the grain. In the process of grain storage, the technical indicators, such as temperature and humidity of the stored grain, indoor temperature and air humidity, should be strictly controlled. The intelligent network-based measurement and control system composed by the PCI bus- based intelligent network interface card, the measurement nodes with the neuron chip as the core and LON bus is used to perform real-time measurement on various condition parameters of the grain bin, and transmit the measurement results to the server over the network for controlling and regulating the device after the server processes the results to ensure the safety of grain storage.

  20. Global priorities for conservation of threatened species, carbon storage, and freshwater services

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Londoño-Murcia, Maria C.; Turner, Will R.

    2011-01-01

    The potential of global biodiversity conservation efforts to also deliver critical benefits, such as carbon storage and freshwater services, is still unclear. Using spatially explicit data on 3,500 range-restricted threatened species, carbon storage, and freshwater provision to people, we conducted...... tradeoff analyses, explicitly addressing both biodiversity and ecosystem services in selection of priority areas, to explore the potential for aligning these objectives. These analyses revealed a promising scope for aligning objectives, in particular for biodiversity and freshwater, which is not evident...

  1. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  2. The dynamics of energy technologies and global change

    Energy Technology Data Exchange (ETDEWEB)

    Gruebler, A.; Nakicenovic, N.; Victor, D.G.

    1999-08-01

    Typology for technology analysis is presented and methods to analyze the impact of technological changes on the global environment, especially global warming are discussed, focusing on energy technologies Much improved treatment of technology is possible using both historical analysis and new modelling techniques. In the historical record characteristics 'learning rates' are identified that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. Patterns, processes and timescales typifying the diffusion of new technologies in competitive markets are identified. Technologies that are long-lived and are components of interlocking networks require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These observations allow improvements to modelling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. Most baseline projections for emissions of carbon ignore this historical trend and show little decarbonization. A second improvement is that by incorporating learning curves and uncertainty into micro scale models it is possible to endogenously generate patterns of technological choice that mirror the real world. Thirdly, learning phenomena can be included stylistically in macro-scale models. Arriving on that path by the year 2100 depends on intervening actions, such as incentives to promote greater diversity in technology. 112 refs., 15 figs., 3 tabs.

  3. Adoption of homestead grain storage technology in the south-west ...

    African Journals Online (AJOL)

    The major types of grains and pulses that are stored in Ekiti, Ondo, Edo, Delta, Oyo, Ogun, Osun and Lagos states of Nigeria at homestead level are maize, guinea corn, rice, cowpea, Soya bean and groundnut. Bags, hermetic containers and room spaces are used for storage. The adoption of improved storage technology in ...

  4. Nuclear imaging technology and global requirements

    International Nuclear Information System (INIS)

    Lele, R.D.

    1991-01-01

    After a brief review of the present state of availability of nuclear medicine services in the countries of world, a mention has been made of WHO programme on nuclear medicine. Nuclear medicine services in the developing countries are dependent on the availability of appropriate instrumentation and radiopharmaceuticals at affordable costs and existence of basic infrastructure required for giving such services. Basic infrastructure requirements are stable power supplies, air-conditioning systems, preventive maintenance and repair facilities. These are discussed. It is pointed out that the use of rectilinear scanners with 113m In instead of costly gamma cameras is still relevant in the third world countries. Need to develop a too low-cost gamma camera is emphasized. Electronics Corporation of India Ltd has plans to manufacture such cameras. Design of this camera is described. Foreign collaboration or technology transfer through concerned governement department needs to be explored so that the benefits of nuclear medicine can be brought to the third world countries by 2000 AD. (M.G.B.). 2 tabs

  5. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  6. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  7. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  8. Information technologies for global resources management and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.P.; Wang, Hua

    1992-09-01

    Recent advances in computer and communications technologies offer unprecedented opportunities to develop sophisticated information resources management systems for global resources management and environment assessment in an efficient, effective, and systematic manner. In this paper, the emerging global energy and environmental issues are identified. Since satellite-based remote sensing systems are becoming increasingly available and produce massive data collections, the utilization of imaging processing techniques and their applications for regional and global resources management and environmental studies are described. Interoperability and interconnectivity among heterogeneous computer systems are major issues in designing a totally integrated, multimedia-based, information resources management system that operates in a networking environment. Discussions of the future technology trends are focused on a number of emerging information management technologies and communications standards which will aid in achieving seamless system integration and offer user-friendly operations. It can be foreseen that advances in computer and communications technologies, increasingly sophisticated image processing techniques and Geographical Information Systems (GIS), and the development of globally comprehensive data bases will bring ``global visualization`` onto multimedia desktop computers before the end of this decade.

  9. Information technologies for global resources management and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.P.; Wang, Hua.

    1992-01-01

    Recent advances in computer and communications technologies offer unprecedented opportunities to develop sophisticated information resources management systems for global resources management and environment assessment in an efficient, effective, and systematic manner. In this paper, the emerging global energy and environmental issues are identified. Since satellite-based remote sensing systems are becoming increasingly available and produce massive data collections, the utilization of imaging processing techniques and their applications for regional and global resources management and environmental studies are described. Interoperability and interconnectivity among heterogeneous computer systems are major issues in designing a totally integrated, multimedia-based, information resources management system that operates in a networking environment. Discussions of the future technology trends are focused on a number of emerging information management technologies and communications standards which will aid in achieving seamless system integration and offer user-friendly operations. It can be foreseen that advances in computer and communications technologies, increasingly sophisticated image processing techniques and Geographical Information Systems (GIS), and the development of globally comprehensive data bases will bring global visualization'' onto multimedia desktop computers before the end of this decade.

  10. Application of advanced flywheel technology for energy storage on space station

    Science.gov (United States)

    Olszewski, Mitchell

    1987-01-01

    In space power applications where solar inputs are the primary thermal source, energy storage is necessary to provide a continuous power supply during the eclipse portion of the orbit. Because of their potentially high storage density, flywheels are being considered for use as the storage system on the proposed orbiting space station. During the past several years, graphite fiber technology has advanced, leading to significant gains in flywheel storage density. Use of these improved fibers in experimental flywheel rims has resulted in ultimate storage densities of 878 kJ/kg. With these high strength graphite fibers, operational storage densities for flywheel storage modules applicable to the space station power storage could reach 200 kJ/kg. This module would also be volumetrically efficient occupying only about 1 cu m. Because the size and mass of the flywheel storage module are controlled by the storage density, improvements in fiber strength can have a significant impact on these values. With the improvements anticipated within the next five years, operational storage density on the order of 325 kJ/kg may be possible for the flywheel module.

  11. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Science.gov (United States)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  12. The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kelvin O. Yoro

    2016-09-01

    Full Text Available The global atmospheric concentration of anthropogenic gases, such as carbon dioxide, has increased substantially over the past few decades due to the high level of industrialization and urbanization that is occurring in developing countries, like South Africa. This has escalated the challenges of global warming. In South Africa, carbon capture and storage (CCS from coal-fired power plants is attracting increasing attention as an alternative approach towards the mitigation of carbon dioxide emission. Therefore, innovative strategies and process optimization of CCS systems is essential in order to improve the process efficiency of this technology in South Africa. This review assesses the potential of CCS as an alternative approach to reducing the amount CO2 emitted from the South African coal-fired power plants. It examines the various CCS processes that could be used for capturing the emitted CO2. Finally, it proposes the use of new adsorbents that could be incorporated towards the improvement of CCS technology.

  13. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  14. Status and recommendadtions for RD&D on energy storage technologies in a Danish context

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Christensen, Claus Hviid; Kjøller, Claus

    2014-01-01

    . The work has been based on an assessment of the technical needs for energy storage in the future Danish energy system towards 2030 and further on. In particular, the report does not present new information or data on future economic performance of storage technologies. Within the given timeframes......The report briefly describes analyses of the future need for energy storage in a Danish perspective and assesses which sectors of the energy system, where energy storage can be expected to play a role and what kind of services it could provide to give flexibility in the sustainable energy system...... and resources for the work, it has also not been possible to provide an exhaustive catalogue or comprehensive descriptions of energy storage technologies....

  15. Globalization and the trends of medical technology trade in Turkey.

    Science.gov (United States)

    Semin, Semih; Güldal, Dilek; Demiral, Yücel

    2007-05-01

    Medical technology trade is one of the most affected health areas by global regulations in the developing countries. The aim of the study is to examine recent changes in medical technology import and export and their results in Turkey. Data show that the total medical technology imports (MTI) increased from $ 34.6 million to $ 3427.9 million between 1970 and 2003. While MTI constituted 3.6% of total imports in 1970 and 1.3% in 1980, this ratio raised up to 4.9% in 2003. The ratio of MTI in total health expenditures were also increased from 7.6% in 1970 to 31.5% in 2003. Medical technology exports (MTE) have been increased from $ 0.9 million in 1970 to $ 303.2 million in 2003. The ratio of MTE to MTI increased from 2.7% to 13.9% between 1970 and 1990 and decreased after 1990, to 8.8%. Our study implied that the medical technology trade in Turkey has been negatively affected and in some respects differs from some other important industries in the globalization era. Nevertheless, detailed comparative studies in different developing countries such as China, Brazil, Mexico and India, are needed to explore the real state of medical technology trade, use and the effects of globalization on these topics.

  16. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  17. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  18. Biomethane storage: Evaluation of technologies, end uses, business models, and sustainability

    International Nuclear Information System (INIS)

    Budzianowski, Wojciech M.; Brodacka, Marlena

    2017-01-01

    Highlights: • Biomethane storage integrates the different energy subsystems. • It facilitates adoption of solar and wind energy sources. • It is essential to adequately match storages with their end uses and business models. • Business models must propose, create, and capture value linked with gas storage. • Sustainable is economically viable, environmentally benign, and socially beneficial. - Abstract: Biomethane is a renewable gas that can be turned into dispatchable resource through applying storage techniques. The storage enables the discharge of stored biomethane at any time and place it is required as gas turbine power, heat or transport fuel. Thus the stored biomethane could more efficiently serve various energy applications in the power, transport, heat, and gas systems as well as in industry. Biomethane storage may therefore integrate the different energy subsystems making the whole energy system more efficient. This work provides an overview and evaluation of biomethane storage technologies, end uses, business models and sustainability. It is shown that storage technologies are versatile, have different costs and efficiencies and may serve different end uses. Business models may be created or selected to fit regional spatial contexts, realistic demands for gas storage related services, and the level of available subsidies. By applying storage the sustainability of biomethane is greatly improved in terms of economic viability, reduced environmental impacts and greater social benefits. Stored biomethane may greatly facilitate adoption of intermittent renewable energy sources such as solar and wind. Other findings show that biomethane storage needs to be combined with grid services and other similar services to reduce overall storage costs.

  19. Technical Solutions to Mitigate Reliability Challenges due to Technology Scaling of Charge Storage NVM

    Directory of Open Access Journals (Sweden)

    Meng Chuan Lee

    2013-01-01

    Full Text Available Charge storage nonvolatile memory (NVM is one of the main driving forces in the evolution of IT handheld devices. Technology scaling of charge storage NVM has always been the strategy to achieve higher density NVM with lower cost per bit in order to meet the persistent consumer demand for larger storage space. However, conventional technology scaling of charge storage NVM has run into many critical reliability challenges related to fundamental device characteristics. Therefore, further technology scaling has to be supplemented with novel approaches in order to surmount these reliability issues to achieve desired reliability performance. This paper is focused on reviewing critical research findings on major reliability challenges and technical solutions to mitigate technology scaling challenges of charge storage NVM. Most of these technical solutions are still in research phase while a few of them are more mature and ready for production phase. Three of the mature technical solutions will be reviewed in detail, that is, tunnel oxide top/bottom nitridation, nanocrystal, and phase change memory (PCM. Key advantages and reported reliability challenges of these approaches are thoroughly reviewed in this paper. This paper will serve as a good reference to understand the future trend of innovative technical solutions to overcome the reliability challenges of charge storage NVM due to technology scaling.

  20. Hydrogen storage for vehicular applications: Technology status and key development areas

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.L.; Handrock, J.L.

    1994-04-01

    The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

  1. The Alliance Capability of Technology-Based Born Globals

    DEFF Research Database (Denmark)

    Oxtorp, Liliya Altshuler; Elg, Ulf

    2015-01-01

    aspect, through initiation and management of the alliance, up until its objectives are achieved, or otherwise. Originality/value of paper: While earlier research discussed networking and alliance strategies of born globals on a strategic level, this paper investigates and analyses the specific......A detailed investigation of the aspects comprising the alliance capability of technology-based born globals. Alliance capability is regarded as a set of organizational skills necessary from the decision to search for a partner for a technology collaboration, which may also involve a marketing...... organisational skills that enable the firms to successfully initiate, manage and finish their R&D alliances with MNEs. The in-depth longitudinal methodology adds insight and value to the study. It is discussed how the specific aspects of the alliance capability can help born globals to counteract the challenges...

  2. TECHNOLOGICAL IMPERATIVE IMPACT OF GLOBALIZATION ON INTERNATIONAL AGRICULTURAL ECONOMY

    Directory of Open Access Journals (Sweden)

    А. Кozlova

    2014-09-01

    Full Text Available The article highlights the factors influencing agricultural production towards global market. The study consists basic fundamental imperatives of globalization on the agricultural sector in international economic relations. The article analyzes the strategic priorities of the international agricultural sector, which includes financial and credit support, legal aspects, processes and integration of organizational structures. Technological imperatives require a large structural and institutional turn in the Ukrainian economy on the basis of current trends in the global economy, scientific and technical potential. There is a growing importance of organizing and conducting international level in the field of technological forecasting. This type of prediction is considered as backbone component in strategic forecasting and economic development programming.

  3. A Massive Structured Data Storage Technology for Commodity Screening Applications

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-01-01

    Full Text Available With the rapid development of e-commerce, the number of goods has become more and more. When commodity screening system is used to store and process mass information, the existing models require all nodes in the distributed system to work in parallel, then the results of each node are integrated to get the final results, the process produces a lot of invalid queries. In order to solve this problem, proposed a new distributed structured data storage method. It statistics the history search results and chooses the high frequency or core columns to be key columns. The data can be stored based key columns and distribute system architecture. Then in the searching stage, only some nodes work when the search refer to key columns. The results show that this method can reduce the tasks and improve the throughout without extra storage consumption.

  4. Interim dry storage system technologies and innovations VARNA 2002

    International Nuclear Information System (INIS)

    Chollet, P.; Guenon, Y.

    2002-01-01

    The main concepts of the TN24 Family and NUHOMS System are explained in the paper. It is discussed how the NPPs specific requirements and economics trends contributes to the growing families of interim dry storage systems delivered under COGEMA LOGICTICS license. It is concluded that modular solutions are currently dominating because they are derived from main concepts evolved over time, benefited from both the transport aspects with internationally recognised stringent regulations, and various specific ISFSI requirements and economic trends

  5. Physics and technology of superthin internal targets in storage rings

    International Nuclear Information System (INIS)

    Popov, S.G.

    1989-01-01

    The new generation of accelerators for coincidence electronuclear investigations is discussed. The luminosity and beam parameters are calculated for an electron storage ring with an internal target operating in the superthin regime. The advantages and disadvantages in comparison with conventional operation using an external beam and target are described. The intermediate results for 2 GeV electron scattering on polarized internal deuterium target are given (joint Novosibirsk-Argonne experiment). 32 refs.; 5 figs

  6. Food Prices and Climate Extremes: A Model of Global Grain Price Variability with Storage

    Science.gov (United States)

    Otto, C.; Schewe, J.; Frieler, K.

    2015-12-01

    Extreme climate events such as droughts, floods, or heat waves affect agricultural production in major cropping regions and therefore impact the world market prices of staple crops. In the last decade, crop prices exhibited two very prominent price peaks in 2007-2008 and 2010-2011, threatening food security especially for poorer countries that are net importers of grain. There is evidence that these spikes in grain prices were at least partly triggered by actual supply shortages and the expectation of bad harvests. However, the response of the market to supply shocks is nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and trade policies. Quantifying the contributions of such different factors to short-term price variability remains difficult, not least because many existing models ignore the role of storage which becomes important on short timescales. This in turn impedes the assessment of future climate change impacts on food prices. Here, we present a simple model of annual world grain prices that integrates grain stocks into the supply and demand functions. This firstly allows us to model explicitly the effect of storage strategies on world market price, and thus, for the first time, to quantify the potential contribution of trade policies to price variability in a simple global framework. Driven only by reported production and by long--term demand trends of the past ca. 40 years, the model reproduces observed variations in both the global storage volume and price of wheat. We demonstrate how recent price peaks can be reproduced by accounting for documented changes in storage strategies and trade policies, contrasting and complementing previous explanations based on different mechanisms such as speculation. Secondly, we show how the integration of storage allows long-term projections of grain price variability under climate change, based on existing crop yield scenarios.

  7. Science and technology from global and historical perspectives

    CERN Document Server

    Karagözoğlu, Bahattin

    2017-01-01

    This book provides science and technology ethos to a literate person. It starts with a rather detailed treatment of basic concepts in human values, educational status and domains of education, development of science and technology and their contributions to the welfare of society. It describes ways and means of scientific progresses and technological advancements with their historical perspectives including scientific viewpoints of contributing scientists and technologists. The technical, social, and cultural dimensions are surveyed in relation to acquisition and application of science, and advantages and hindrances of technological developments. Science and Technology is currently taught as a college course in many universities with the intention to introduce topics from a global historical perspective so that the reader shall stretch his/her vision by mapping the past to the future. The book can also serve as a primary reference for such courses.

  8. The Ca-looping process for CO2 capture and energy storage: role of nanoparticle technology

    Science.gov (United States)

    Valverde, Jose Manuel

    2018-02-01

    The calcium looping (CaL) process, based on the cyclic carbonation/calcination of CaO, has come into scene in the last years with a high potential to be used in large-scale technologies aimed at mitigating global warming. In the CaL process for CO2 capture, the CO2-loaded flue gas is used to fluidize a bed of CaO particles at temperatures around 650 °C. The carbonated particles are then circulated into a calciner reactor wherein the CaO solids are regenerated at temperatures near 950 °C under high CO2 concentration. Calcination at such harsh conditions causes a marked sintering and loss of reactivity of the regenerated CaO. This main drawback could be however compensated from the very low cost of natural CaO precursors such as limestone or dolomite. Another emerging application of the CaL process is thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Importantly, carbonation/calcination conditions to maximize the global CaL-CSP plant efficiency could differ radically from those used for CO2 capture. Thus, carbonation could be carried out at high temperatures under high CO2 partial pressure for maximum efficiency, whereas the solids could be calcined at relatively low temperatures in the absence of CO2 to promote calcination. Our work highlights the critical role of carbonation/calcination conditions on the performance of CaO derived from natural precursors. While conditions in the CaL process for CO2 capture lead to a severe CaO deactivation with the number of cycles, the same material may exhibit a high and stable conversion at optimum CaL-CSP conditions. Moreover, the type of CaL conditions influences critically the reaction kinetics, which plays a main role on the optimization of relevant operation parameters such as the residence time in the reactors. This paper is devoted to a brief review on the latest research activity in our group concerning these issues as well as the possible role of nanoparticle technology to enhance the

  9. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  10. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  11. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  12. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  13. Playware ABC 2: a Disruptive Technology for Global Development

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2017-01-01

    The Playware ABC concept is used to create solutions that are usable by all kinds of users and contexts in our globalized society. In this paper, the Playware ABC can be exemplified with the development of the modular interactive tiles for health prevention and rehabilitation of anybody, anywhere......, anytime. The paper gives examples of how playware becomes a disruptive technology for global development, for instance in the health sector. For instance, in Tanzania doctors and community-based rehabilitation workers are constructing and combining modular playware tiles to easily create the right kind...

  14. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    Science.gov (United States)

    2015-10-05

    technology for use in solid-state Li-ion batteries. Solid-state Li-ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li-ion batteries. Solid-state Li-ion batteries could significantly improve safety and...conducting cubic Li, Nanotechnology , (10 2013): 0. doi: 10.1088/0957-4484/24/42/424005 TOTAL: 2 Received Paper TOTAL: Number of Papers published in

  15. A survey of contemporary enterprise storage technologies from a digital forensics perspective

    Directory of Open Access Journals (Sweden)

    Gregory H. Carlton

    2011-09-01

    Full Text Available As the proliferation of digital computational systems continue to expand, increasingly complex technologies emerge, including those regarding large, enterprise-wide, information storage and retrieval systems. Within this study, we examine four contemporary enterprise storage technologies. Our examination of these technologies is presented with an overview of the technological features of each offering and then followed with a discussion of the impact of these technologies on digital forensics methods, particularly regarding forensic data acquisition. We offer a general opinion concerning a recommended data acquisition method when faced with the task of obtaining a forensic image of data contained within these technologies, we discuss limitations of our study, and lastly, we suggest areas in which additional research would benefit the field of digital forensics.

  16. Pharmacogenomic technologies: a necessary "luxury" for better global public health?

    Science.gov (United States)

    Olivier, Catherine; Williams-Jones, Bryn

    2011-08-24

    Pharmacogenomic technologies aim to redirect drug development to increase safety and efficacy of individual care. There is much hope that their implementation in the drug development process will help respond to population health needs, particularly in developing countries. However, there is also fear that novel pharmacogenomic drugs will remain too costly, be designed for the needs of the wealthy nations, and so constitute an unnecessary "luxury" for most populations. In this paper, we analyse the promise that pharmacogenomic technologies hold for improving global public health and identify strategies and challenges associated with their implementation. This paper evaluates the capacity of pharmacogenomic technologies to meet six criteria described by the University of Toronto Joint Centre for Bioethics group: 1) impact of the technology, 2) technology appropriateness, 3) capacity to address local burdens, 4) feasibility to be implemented in reasonable time, 5) capacity to reduce the knowledge gap, and 6) capacity for indirect benefits. We argue that the implementation of pharmacogenomic technologies in the drug development process can positively impact population health. However, this positive impact depends on how and for which purposes the technologies are used. We discuss the potential of these technologies to stimulate drug discovery in the case of rare (orphan diseases) or neglected diseases, but also to reduce acute adverse drug reactions in infectious disease treatment and prevention, which promises to improve global public health. The implementation of pharmacogenomic technologies may lead to the development of drugs that appear to be a "luxury" for populations in need of numerous interventions that are known to have a demonstrable impact on population health (e.g., secure access to potable water, reduction of social inequities, health education). However, our analysis shows that pharmacogenomic technologies do have the potential to redirect drug

  17. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  18. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  19. A comparison of regional and global catastrophic hazards associated with energy technologies

    International Nuclear Information System (INIS)

    Heising, C.D.; Inhaber, H.

    1984-01-01

    The paper reviews some of what is known about the relative catastrophic hazards, on both a regional and global level, of energy technologies, and proposes a logical framework for their comparison. A review of the Inhaber study results is made indicating the relative position of overall nuclear power related risks. Then, concentration is placed on describing the catastrophic and global hazards of energy technologies. Regionally catastrophic hazards include sabotage and other malicious human activities, in addition to severe accidents caused inadvertently by man, such as fires, reactor core damage events, chemical and poisonous gas releases, fuel storage fires and explosions. Global risks include such hazards as nuclear proliferation, CO 2 buildup, oil shortages and possible national conflicts over dwindling energy fuels. The conclusion is drawn that both regional and global catastrophic risks must be taken into consideration in making energy decisions, and that further study is necessary to better quantify and compare these risks. A simple decision analytic framework for making energy decisions inclusive of catastrophic risks is proposed. (author)

  20. A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies

    Science.gov (United States)

    Kobler, Ben; McCall, Fritz; Smorul, Mike

    2006-01-01

    The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.

  1. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  2. Global high-resolution crustal deformations from simulated terrestrial water storage estimates

    Science.gov (United States)

    Dill, Robert

    2013-04-01

    Deformations of the continental crust due to non-tidal loading caused by variations in atmospheric pressure, ocean bottom pressure and terrestrially stored water frequently reach several mm at subdaily to seasonal periods. Space-geodetic receivers attached to the crust therefore experience positional changes that are large enough to affect epoch-wise parameters obtained from the analysis of global geodetic networks. In this contribution, we present predictions of loading deformations due to terrestrial water storage from the global hydrological model LSDM for the last two years. Load estimates are calculated daily in order to account together with the seasonal variations in terrestrial water storage also for rapid changes associated with major precipitation events. Additionally, we account for water mass anomalies stored within the river channels as they induce exceptionally high loading amplitudes at stations close to river banks, in many cases with distinct non-seasonal nature. We demonstrate the potential of using high spatial resolutions in particular at the GPS station in Manaus where loading calculations with lower resolutions fail so far to capture the observed amplitude of 0.5m in the vertical. In addition to the hydrological loading, global-scale deformations are also calculated for non-tidal atmospheric and oceanic loads to obtain a complete set of model-based global deformation fields that might be compared to GPS time series at specific stations of interest. Those atmospheric and oceanic fields are based on ECMWF and OMCT simulations which are also the background for the GRACE AOD1B products. This might principally allow to further homogenize the processing strategies among the geometric and the gravimetric techniques in Global Geodesy.

  3. Determinants of the Pace of Global Innovation in Energy Technologies

    Science.gov (United States)

    Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  4. Determinants of the pace of global innovation in energy technologies.

    Science.gov (United States)

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time.

  5. Will Technological Convergence Reverse Globalization (Strategic Forum, Number 297)

    Science.gov (United States)

    2016-07-01

    Mexico needs only six people per shift to produce thousands of cases of beer.9 The Changying Precision Technology Company in China has established...case, will be to discourage and undermine the case for globalization while potentially strengthening the U.S.-Canada- Mexico trading bloc. Similar...18, 2016, available at <www.bbc. com/news/business-36319141>. 72 Chris Keall, “Trump Trashes ‘Horrible’ TPP ,” National Business Review, March 13, 2016

  6. Global Welfare Impact of China: Trade Integration and Technology Change

    OpenAIRE

    Jing Zhang

    2013-01-01

    This paper evaluates the global welfare impact of China's trade integration and technological change in a multi-country quantitative Ricardian-Heckscher-Ohlin model. We simulate two alternative growth scenarios: a balanced one in which China's productivity grows at the same rate in each sector, and an unbalanced one in which China's comparative disadvantage sectors catch up disproportionately faster to the world productivity frontier. Contrary to a well-known conjecture (Samuelson 2004), the ...

  7. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  8. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  9. Review of thermal energy storage technologies based on PCM application in buildings

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Zhang, Yinping

    2013-01-01

    Thermal energy storage systems (TES), using phase change material (PCM) in buildings, are widely investigated technologies and a fast developing research area. Therefore, there is a need for regular and consistent reviews of the published studies. This review is focused on PCM technologies...... developed to serve the building industry. Various PCM technologies tailored for building applications are studied with respect to technological potential to improve indoor environment, increase thermal inertia and decrease energy use for building operation. What is more, in this review special attention...... is paid to discussion and identification of proper methods to correctly determine the thermal properties of PCM materials and their composites and as well procedures to determine their energy storage and saving potential. The purpose of the paper is to highlight promising technologies for PCM application...

  10. Global biosurveillance: enabling science and technology. Workshop background and motivation: international scientific engagement for global security

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Helen H [Los Alamos National Laboratory

    2011-01-18

    Through discussion the conference aims to: (1) Identify core components of a comprehensive global biosurveillance capability; (2) Determine the scientific and technical bases to support such a program; (3) Explore the improvement in biosurveillance to enhance regional and global disease outbreak prediction; (4) Recommend an engagement approach to establishing an effective international community and regional or global network; (5) Propose implementation strategies and the measures of effectiveness; and (6) Identify the challenges that must be overcome in the next 3-5 years in order to establish an initial global biosurveillance capability that will have significant positive impact on BioNP as well as public health and/or agriculture. There is also a look back at the First Biothreat Nonproliferation Conference from December 2007. Whereas the first conference was an opportunity for problem solving to enhance and identify new paradigms for biothreat nonproliferation, this conference is moving towards integrated comprehensive global biosurveillance. Main reasons for global biosurveillance are: (1) Rapid assessment of unusual disease outbreak; (2) Early warning of emerging, re-emerging and engineered biothreat enabling reduced morbidity and mortality; (3) Enhanced crop and livestock management; (4) Increase understanding of host-pathogen interactions and epidemiology; (5) Enhanced international transparency for infectious disease research supporting BWC goals; and (6) Greater sharing of technology and knowledge to improve global health.

  11. Global positioning system and associated technologies in animal behaviour and ecological research

    Science.gov (United States)

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  12. Thermal energy storage technologies for sustainability systems design, assessment and applications

    CERN Document Server

    Kalaiselvam, S

    2014-01-01

    Thermal Energy Storage Technologies for Sustainability is a broad-based overview describing the state-of-the-art in latent, sensible, and thermo-chemical energy storage systems and their applications across industries. Beginning with a discussion of the efficiency and conservation advantages of balancing energy demand with production, the book goes on to describe current state-of-the art technologies. Not stopping with description, the authors also discuss design, modeling, and simulation of representative systems, and end with several case studies of systems in use.Describes how thermal energ

  13. Being human in a global age of technology.

    Science.gov (United States)

    Whelton, Beverly J B

    2016-01-01

    This philosophical enquiry considers the impact of a global world view and technology on the meaning of being human. The global vision increases our awareness of the common bond between all humans, while technology tends to separate us from an understanding of ourselves as human persons. We review some advances in connecting as community within our world, and many examples of technological changes. This review is not exhaustive. The focus is to understand enough changes to think through the possibility of healthcare professionals becoming cyborgs, human-machine units that are subsequently neither human and nor machine. It is seen that human technology interfaces are a different way of interacting but do not change what it is to be human in our rational capacities of providing meaningful speech and freely chosen actions. In the highly technical environment of the ICU, expert nurses work in harmony with both the technical equipment and the patient. We used Heidegger to consider the nature of equipment, and Descartes to explore unique human capacities. Aristotle, Wallace, Sokolowski, and Clarke provide a summary of humanity as substantial and relational. © 2015 John Wiley & Sons Ltd.

  14. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  15. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  16. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  17. Tehachapi Wind Energy Storage Project - Technology Performance Report #3

    Energy Technology Data Exchange (ETDEWEB)

    Pinsky, Naum [Southern California Edison, Rosemead, CA (United States); O' Neill, Lori [Southern California Edison, Rosemead, CA (United States)

    2017-03-31

    The TSP is located at SCE’s Monolith Substation in Tehachapi, California. The 8 MW, 4 hours (32 MWh) BESS is housed in a 6,300 square foot facility and 2 x 4 MW/4.5 MVA smart inverters are on a concrete pad adjacent to the BESS facility. The project will evaluate the capabilities of the BESS to improve grid performance and assist in the integration of large-scale intermittent generation, e.g., wind. Project performance was measured by 13 specific operational uses: providing voltage support and grid stabilization, decreasing transmission losses, diminishing congestion, increasing system reliability, deferring transmission investment, optimizing renewable-related transmission, providing system capacity and resources adequacy, integrating renewable energy (smoothing), shifting wind generation output, frequency regulation, spin/non-spin replacement reserves, ramp management, and energy price arbitrage. Most of the operations either shift other generation resources to meet peak load and other electricity system needs with stored electricity, or resolve grid stability and capacity concerns that result from the interconnection of intermittent generation. SCE also demonstrated the ability of lithium ion battery storage to provide nearly instantaneous maximum capacity for supply-side ramp rate control to minimize the need for fossil fuel-powered back-up generation. The project began in October, 2010 and will continue through December, 2016.

  18. Gender, technology change and globalization: the case of China.

    Science.gov (United States)

    Guo, H; Zhao, M

    1999-01-01

    This paper reviews the experience of women workers in China while the country's economy is changing into a globalized, technologically advanced one. New computer-based technology is increasingly acknowledged as a powerful and pervasive force that can shape or, at least in many ways, affect employment. It is hailed for opening up fresh employment opportunities and reducing the physical stress involved in work. However, the possibilities of redundancies or intensification of workload also exist. By focusing on changes in women's work, the article reveals the contradictions inherent in following a development path based on ever-higher levels of technology in the context of an intensive mode of production, to which productivity is the core value. The economy is bolstered and some workers gain employment in expanding industries. However, workers, who lack access to training and who are reliant on the dwindling state support for their reproductive responsibilities, are marginalized and seek employment in the growing informal economy.

  19. Key Technologies of Phone Storage Forensics Based on ARM Architecture

    Science.gov (United States)

    Zhang, Jianghan; Che, Shengbing

    2018-03-01

    Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.

  20. Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M A

    1992-01-01

    This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

  1. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  2. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    Science.gov (United States)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  3. Law in Transition Biblioessay: Globalization, Human Rights, Environment, Technology

    Directory of Open Access Journals (Sweden)

    Michael Marien

    2012-04-01

    Full Text Available As globalization continues, many transformations in international and domestic laws areunderway or called for. There are too many laws and too few, too much law that is inadequateor obsolete, and too much law-breaking. This biblioessay covers some 100 recentbooks, nearly all recently published, arranged in four categories. 1 International Lawincludes six overviews/textbooks on comparative law, laws related to warfare and security,pushback against demands of globalization, and gender perspectives; 2 Human Rightsencompasses general overviews and normative visions, several books on how some statesviolate human rights, five items on how good laws can end poverty and promote prosperity,and laws regulating working conditions and health rights; 3 Environment/Resources coversgrowth of international environmental law, visions of law for a better environmental future,laws to govern genetic resources and increasingly stressed water resources, two books onprospects for climate change liability, and items on toxic hazards and problems of compliance;4 Technology, Etc. identifies eight books on global crime and the failed war on drugs,books on the response to terrorism and guarding privacy and mobility in our high-tech age,seven books on how infotech is changing law and legal processes while raising intellectualproperty questions, biomedical technologies and the law, and general views on the need forupdated laws and constitutions. In sum, this essay suggests the need for deeper and timelyanalysis of the many books on changes in law.

  4. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  5. Global Crop Yields, Climatic Trends and Technology Enhancement

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Khanbilvardi, R.; Kogan, F.

    2016-12-01

    During the last decades the global agricultural production has soared up and technology enhancement is still making positive contribution to yield growth. However, continuing population, water crisis, deforestation and climate change threaten the global food security. Attempts to predict food availability in the future around the world can be partly understood from the impact of changes to date. A new multilevel model for yield prediction at the country scale using climate covariates and technology trend is presented in this paper. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling and/or clustering to automatically group and reduce estimation uncertainties. El Niño Southern Oscillation (ENSO), Palmer Drought Severity Index (PDSI), Geopotential height (GPH), historical CO2 level and time-trend as a relatively reliable approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2007. Results show that these indicators can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications.

  6. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  7. On Global Electricity Usage of Communication Technology: Trends to 2030

    Directory of Open Access Journals (Sweden)

    Anders S. G. Andrae

    2015-04-01

    Full Text Available This work presents an estimation of the global electricity usage that can be ascribed to Communication Technology (CT between 2010 and 2030. The scope is three scenarios for use and production of consumer devices, communication networks and data centers. Three different scenarios, best, expected, and worst, are set up, which include annual numbers of sold devices, data traffic and electricity intensities/efficiencies. The most significant trend, regardless of scenario, is that the proportion of use-stage electricity by consumer devices will decrease and will be transferred to the networks and data centers. Still, it seems like wireless access networks will not be the main driver for electricity use. The analysis shows that for the worst-case scenario, CT could use as much as 51% of global electricity in 2030. This will happen if not enough improvement in electricity efficiency of wireless access networks and fixed access networks/data centers is possible. However, until 2030, globally-generated renewable electricity is likely to exceed the electricity demand of all networks and data centers. Nevertheless, the present investigation suggests, for the worst-case scenario, that CT electricity usage could contribute up to 23% of the globally released greenhouse gas emissions in 2030.

  8. Globalization of bioethics as an intercultural social tuning technology.

    Science.gov (United States)

    Sakamoto, Hyakudai

    2005-01-01

    Now, in the beginning of the 21st century, bioethics must be urgently globalized into a Global Bioethics which combines the ongoing Bioethics based on the modern European humanism with the newly arising Environmental Ethics based on the rather communitarian (or Asian) ways of thinking. This does not always mean that the new global bioethics is necessarily universalistic, for we should stand on the recognition of the wide spread variety of value systems in the world, north and south, east and west. However, it is not particularistic either, for in order to establish a post-modern global ethics, we have to accept and harmonize every kind of antagonistic values on the Globe. For this purpose we have to cultivate a new social technology of tuning social disorder of not only international but also inter-ethnic and inter-cultural level of ideology beyond the modern European humanism. Here the concept of "human rights" or the concept of "human dignity" may lose its significance as it has held in the past bioethical thinking in the western world.

  9. Global Positioning Radiometric Scanner System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The US DOE continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE OST sponsors the Large Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D and D tasks. One of the stated needs was for developing technologies that would reduce costs and shorten DDOE/EM--0552DOE/EM--0552 and D schedules by providing radiological characterizations to meet the free-release criteria. The Global Positioning Radiometric Scanner (GPRS system shown in Figure 1) utilizes a detection system; a portable computer, a differential global positioning system (d-gps), and a four wheel drive vehicle. Once the survey data has been collected, a software program called GeoSofttrademark generates a graphical representation of the radiological contamination extent. Baseline technology involves gridding the area and hand surveying each grid. This demonstration investigated the associated costs and the required time to evaluate the radiological characterization data from the GPRS with respect to the baseline technology. The GPRS system performs in-situ, real-time analyses to identify the extent of radiological contamination. Benefits expected from using the new innovative technology (GPRS) include: Reduced labor hours associated with performing the survey; Increased number of survey data points; Reduced

  10. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure.

    Science.gov (United States)

    Bialecki, Brian; Park, James; Tilkin, Mike

    2016-08-01

    The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future.

  11. Accelerating the deployment of carbon capture and storage technologies by strengthening the innovation system

    NARCIS (Netherlands)

    Alphen, K. van; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policymakers around the world. In this studywe evaluate and

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  13. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies

  14. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.|info:eu-repo/dai/nl/31517336X

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only

  15. An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities

    International Nuclear Information System (INIS)

    Nataf, Kalen; Bradley, Thomas H.

    2016-01-01

    Highlights: • Energy storage’s and efficiency technologies’ economic payback is compared. • Conventional efficiency technologies have shorter payback for the customers studied. • Hypothetical incentives can lower the payback periods of battery energy storage. - Abstract: Battery energy storage (BES) is one of a set of technologies that can be considered to reduce electrical loads, and to realize economic value for industrial customers. To directly compare the energy savings and economic effectiveness of BES to more conventional energy efficiency technologies, this study collected detailed information regarding the electrical loads associated with four Colorado manufacturing facilities. These datasets were used to generate a set of three scenarios for each manufacturer: implementation of a BES system, implementation of a set of conventional energy efficiency recommendations, and the implementation of both BES and conventional energy efficiency technologies. Evaluating these scenarios’ economic payback period allows for a direct comparison between the cost-effectiveness of energy efficiency technologies and that of BES, demonstrates the costs and benefits of implementing both BES and energy efficiency technologies, and characterizes the effectiveness of potential incentives in improving economic payback. For all of the manufacturing facilities modeled, results demonstrate that BES is the least cost-effective among the energy efficiency technologies considered, but that simultaneous implementation of both BES and energy efficiency technologies has a negligible effect on the BES payback period. Incentives are demonstrated to be required for BES to achieve near-term payback period parity with more conventional energy efficiency technologies.

  16. A global renewable mix with proven technologies and common materials

    International Nuclear Information System (INIS)

    García-Olivares, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emili; Turiel, Antonio

    2012-01-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. The mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. The most adequate deployment areas for the power stations are studied, as well as the required space. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that may be required for the proposed solution is obtained and compared with available reserves. Overall, the proposed global alternative to fossil fuels seems technically feasible. However, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling systems were implemented and rechargeable zinc–air batteries would not be developed; 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, they may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption. - Highlights: ▶ A global renewable mix with proven energy technologies and common materials. ▶ Wind turbines, concentrating solar power, hydroelectricity and wave attenuators. ▶ Mix technically feasible. Lithium, nickel and platinum may limit vehicles fleet. ▶ Sixty per cent of copper reserves used in the mix and in societal electrification. ▶ Power cannot growth exponentially. Future “spaceship economy” scenario expected.

  17. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  18. Global Sourcing, Technology, and Factor Intensity: Firm-level Relationships

    OpenAIRE

    TOMIURA Eiichi

    2007-01-01

    This paper empirically examines how technology and capital intensity are related with the firm's global sourcing decision. Firm-level data are derived from a survey covering all manufacturing industries in Japan without any firm-size threshold. Firms are disaggregated by their make-or-buy decision (in-house or outsourcing) and by their choice of sourcing location (offshore or domestic). Capital-intensive or R&D-intensive firms tend to source in-house from their FDI affiliates rather than outs...

  19. Science and technology in the global Cold War

    CERN Document Server

    Krige, John

    2014-01-01

    The Cold War period saw a dramatic expansion of state-funded science and technology research. Government and military patronage shaped Cold War technoscientific practices, imposing methods that were project oriented, team based, and subject to national-security restrictions. These changes affected not just the arms race and the space race but also research in agriculture, biomedicine, computer science, ecology, meteorology, and other fields. This volume examines science and technology in the context of the Cold War, considering whether the new institutions and institutional arrangements that emerged globally constrained technoscientific inquiry or offered greater opportunities for it. The contributors find that whatever the particular science, and whatever the political system in which that science was operating, the knowledge that was produced bore some relation to the goals of the nation-state. These goals varied from nation to nation; weapons research was emphasized in the United States and the Soviet Unio...

  20. Global change technology initiative architecture trade study plan

    Science.gov (United States)

    1991-01-01

    The overall objective of the trade study is to define the architectural mix of missions, spacecraft/platforms, and sensors to meet the science requirements of the Mission to Planet Earth/Global Change Technology Initiative (MPE/GCTI) beyond the early Earth Observing System (Eos) and Geosynchronous Earth Orbit (GEO) spacecraft missions. Within the overall objective, the study includes the following specific objectives: (1) Substantiate the selected mix of Low Earth Orbit (LEO), GEO, or intermediate orbit spacecraft/platforms; (2) Define the required number and size of spacecraft related to objective (1); (3) Define a generic sensor complement for the spacecraft/platforms; (4) Evaluate current spacecraft capabilities to meet the mission requirements and develop conceptual designs of spacecraft/platforms as required. (5) Identify advanced or new technology needed to most efficiently accomplish the MPE/GCTI Program.

  1. A global sustainability perspective on 3D printing technologies

    International Nuclear Information System (INIS)

    Gebler, Malte; Schoot Uiterkamp, Anton J.M.; Visser, Cindy

    2014-01-01

    Three-dimensional printing (3DP) represents a relative novel technology in manufacturing which is associated with potentially strong stimuli for sustainable development. Until now, research has merely assessed case study-related potentials of 3DP and described specific aspects of 3DP. This study represents the first comprehensive assessment of 3DP from a global sustainability perspective. It contains a qualitative assessment of 3DP-induced sustainability implications and quantifies changes in life cycle costs, energy and CO 2 emissions globally by 2025. 3DP is identified to cost-effectively lower manufacturing inputs and outputs in markets with low volume, customized and high-value production chains as aerospace and medical component manufacturing. This lowers energy use, resource demands and related CO 2 emissions over the entire product life cycle, induces changes in labour structures and generates shifts towards more digital and localized supply chains. The model calculations show that 3DP contains the potential to reduce costs by 170–593 billion US $, the total primary energy supply by 2.54–9.30 EJ and CO 2 emissions by 130.5–525.5 Mt by 2025. The great range within the saving potentials can be explained with the immature state of the technology and the associated uncertainties of predicting market and technology developments. The energy and CO 2 emission intensities of industrial manufacturing are reducible by maximally 5% through 3DP by 2025, as 3DP remains a niche technology. If 3DP was applicable to larger production volumes in consumer products or automotive manufacturing, it contains the (theoretical) potential to absolutely decouple energy and CO 2 emission from economic activity. - Highlights: • Global sustainability aspects of 3DP in manufacturing are assessed in two ways. • 3DP will strongly influence manufacturing in aerospace, medical components, tooling. • 3DP re-shifts production to consumer countries due to decreased labour costs.

  2. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  3. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Zhang, Xian; Fan, Jing-Li; Wei, Yi-Ming

    2013-01-01

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO 2 ) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO 2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  4. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  5. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  6. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  7. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  8. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  9. Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability

    Science.gov (United States)

    Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew

    2017-10-01

    This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.

  10. China's crop productivity and soil carbon storage as influenced by multifactor global change.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Huang, Yao; Pan, Shufen

    2012-09-01

    Much concern has been raised about how multifactor global change has affected food security and carbon sequestration capacity in China. By using a process-based ecosystem model, the Dynamic Land Ecosystem Model (DLEM), in conjunction with the newly developed driving information on multiple environmental factors (climate, atmospheric CO2 , tropospheric ozone, nitrogen deposition, and land cover/land use change), we quantified spatial and temporal patterns of net primary production (NPP) and soil organic carbon storage (SOC) across China's croplands during 1980-2005 and investigated the underlying mechanisms. Simulated results showed that both crop NPP and SOC increased from 1980 to 2005, and the highest annual NPP occurred in the Southeast (SE) region (0.32 Pg C yr(-1) , 35.4% of the total NPP) whereas the largest annual SOC (2.29 Pg C yr(-1) , 35.4% of the total SOC) was found in the Northeast (NE) region. Land management practices, particularly nitrogen fertilizer application, appear to be the most important factor in stimulating increase in NPP and SOC. However, tropospheric ozone pollution and climate change led to NPP reduction and SOC loss. Our results suggest that China's crop productivity and soil carbon storage could be enhanced through minimizing tropospheric ozone pollution and improving nitrogen fertilizer use efficiency. © 2012 Blackwell Publishing Ltd.

  11. Globalization, Information and Communication Technologies, and the Prospect of a "Global Village": Promises of Inclusion or Electronic Colonization?

    Science.gov (United States)

    Zembylas, Michalinos; Vrasidas, Charalambos

    2005-01-01

    This paper discusses the reciprocal relationships among globalization, information and communication technologies (ICT), and the prospect of a "global village". The current metaphor of a "global village" (regardless of physical access to ICT) is problematic, and can be interpreted as a form of electronic colonization. However, through such…

  12. A global renewable mix with proven technologies and common materials

    Science.gov (United States)

    Ballabrera, J.; Garcia-Olivares, A.; Garcia-Ladona, E.; Turiel, A.

    2012-04-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. Taking into account the availability of materials, the resulting mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that might be required for the proposed solution is obtained and compared with available reserves. While the proposed global alternative to fossil fuels seems technically feasible, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling system were implemented and rechargeable zinc-air batteries could not be developed. As much as 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, the availability of materials may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption.

  13. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach

    International Nuclear Information System (INIS)

    Mueller, Simon C.; Sandner, Philipp G.; Welpe, Isabell M.

    2015-01-01

    Highlights: • Grid effects of intermittent sources show increasing need for decentralized storage. • Novel patent classification is applied to monitor competing technologies. • Up-to-date geographical, organizational, and qualitative insight is given. • Redox flow patenting shows strong growth, lithium also strong absolute numbers. • Revealed patents allow the expectation of improved modules in the future. - Abstract: Due to the suitability to balance the intermittency in decentralized systems with renewable sources, electrochemical energy storage possibilities have been analyzed in several studies, all highlighting the need for improvements in relevant techno-economic parameters. Particularly a reduction in the costs per cycle is much needed, which could either come from innovation in more cost-efficient manufacturing methods, a higher endurance of charge/discharge sequences or higher capacities. Looking at patent applications as a metric allows us to determine whether the necessary technological progress is indeed occurring, as the mandatory publication of the underlying inventions provides access to otherwise hidden R and D activities. Our paper contributes to the literature with a compilation of technological classes related to important battery types in the novel Cooperative Patent Classification (CPC), which can be used to identify relevant patent applications of the competing technologies. Using the worldwide patent statistical database (PATSTAT), we find that promising technologies have been showing increasing patent counts in recent years. For example, the number of patent applications related to regenerative fuel cells (e.g. redox flow batteries) doubled from 2009 to 2011. Nevertheless, the volume of patent filings in technologies related to lithium remains unchallenged. Patent applications in this area are still growing, which indicates that the introduction of improved modules will continue. Using citation analysis, we have identified

  14. Safety of parsley intended for processing depending on the cultivation technology and storage

    Directory of Open Access Journals (Sweden)

    Pobereżny Jarosław

    2016-09-01

    Full Text Available The factors that affect the value of parsley for consumption include its taste, flavour and dietary utility (vitamins C and E, β-carotene, potassium, calcium, phosphorus and iron, raw fibre, proteins as well as the content of hazardous substances, especially nitrogen compounds. A study was carried out in 2013–2015 to determine the effect of the cultivation technology and storage on the safety of parsley intended for processing. The study material was taken from an experiment where the following fertilisers were applied to the ground: nitrogen (0, 40, 80, 120 kg N∙ha−1 and magnesium (0; 30 kg Mg∙ha−1. Parsley roots were stored for six months in a storage room at +1°C and RH 95%. The content of nitrates (V and (III was determined by the ion selective method immediately after the harvest and after storage in parsley roots.

  15. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies

    Directory of Open Access Journals (Sweden)

    Jason Moore

    2016-08-01

    Full Text Available This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California and high penetration rates of residential solar photovoltaics (PV (Germany. Therefore, Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.

  16. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  17. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    Science.gov (United States)

    Nur, M.; Kusdiyantini, E.; Wuryanti, W.; Winarni, T. A.; Widyanto, S. A.; Muharam, H.

    2015-06-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog.

  18. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    International Nuclear Information System (INIS)

    Nur, M; Kusdiyantini, E; Wuryanti, W; Winarni, T A; Widyanto, S A; Muharam, H

    2015-01-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog. (paper)

  19. Spent fuel storage technology demonstrations at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Schoonen, D.H.; Jensen, M.F.; Fisher, M.W.

    1987-01-01

    Spent nuclear fuel research and development activities are conducted in accordance with Section 218 of the 1982 Nuclear Waste Policy Act (NWPA). Major objectives of Section 218 are to encourage and expedite the efficient use of existing storage facilities and the addition of new at-reactor storage capacity. Activities at the Idaho Engineering Laboratory (INEL) are pertinent to the following objectives: A cooperative demonstration program with the private sector to develop dry storage technologies that the Nuclear Regulatory Commission (NRC) can generically approve; A cost-shared dry storage research and development program at Federal facilities to collect the necessary licensing data. These items are supported by tasks being performed at the INEL. Research and development programs include the testing of metal storage casks containing either consolidated or intact spent fuel in inert gas atmospheres. The casks, weighing nearly 90,718 kg (100 tons), are fabricated using nodular cast iron or forged carbon steel and contain basket assemblies which provide criticality control and spacing of fuel assemblies in individual cells. Small-scale rod consolidation systems are also being developed

  20. An International Relations perspective on the global politics of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, H. [Energy research Centre of the Netherlands ECN, Unit Policy Studies, Radarweg 60, 1043 NT Amsterdam (Netherlands); Baeckstrand, K. [Department of Political Science, Lund University, P.O. Box 52, 221 00 Lund (Sweden)

    2011-05-15

    With the publication of the IPCC Special Report on Carbon dioxide Capture and Storage (CCS), CCS has emerged as a focal issue in international climate diplomacy and energy collaboration. This paper has two goals. The first goal is to map CCS activities in and among various types of intergovernmental organisations; the second goal is to apply International Relations (IR) theories to explain the growing diversity, overlap and fragmentation of international organisations dealing with CCS. Which international organisations embrace CCS, and which refrain from discussing it at all? What role do these institutions play in bringing CCS forward? Why is international collaboration on CCS so fragmented and weak? We utilise realism, liberal institutionalism and constructivism to provide three different interpretations of the complex global landscape of CCS governance in the context of the similarly complicated architecture of global climate policy. A realist account of CCS's fragmented international politics is power driven. International fossil fuel and energy organisations, dominated by major emitter states, take an active role in CCS. An interest-based approach, such as liberal institutionalism, claims that CCS is part of a 'regime complex' rather than an integrated, hierarchical, comprehensive and international regime. Such a regime complex is exemplified by the plethora of international organisations with a role in CCS. Finally, constructivism moves beyond material and interest-based interpretations of the evolution of the institutionally fragmented architecture of global CCS governance. The 2005 IPCC Special Report on CCS demonstrates the pivotal role that ideas, norms and scientific knowledge have played in transforming the preferences of the international climate-change policy community.

  1. Dynamic water allocation policies improve the global efficiency of storage systems

    Science.gov (United States)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  2. Latitudinal variation in carbon storage can help predict changes in swamps affected by global warming

    Science.gov (United States)

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  3. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  4. Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network

    Science.gov (United States)

    Benato, Roberto; Cosciani, Nicola; Crugnola, Giorgio; Dambone Sessa, Sebastian; Lodi, Giuseppe; Parmeggiani, Carlo; Todeschini, Marco

    2015-10-01

    The extensive application of Sodium-Nickel Chloride (Na-NiCl2) secondary batteries in electric and hybrid vehicles, in which the safety requirements are more restrictive than these of stationary storage applications, depicts the Na-NiCl2 technology as perfectly suitable for the stationary storage applications. The risk of fire is negligible because of the intrinsic safety of the cell chemical reactions, related to the sodium-tetrachloroaluminate (NaAlCl4) content into the cell, which acts as a secondary electrolyte (the primary one being the ceramic β″-alumina as common for Na-Beta batteries). The 3 h rate discharge time makes this technology very attractive for load levelling, voltage regulation, time shifting and the power fluctuation mitigation of the renewable energy sources in both HV and EHV networks.

  5. Technology solutions for a global business. Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Tim

    2000-07-01

    Shell's relationship with Norway goes back a long way and is very important to our future as well, as is evident from this presentation, which describes some of the pressures on a global energy business like Shell. It also deals with the fundamental importance of technology in the way we respond to those pressures. The power of innovation, and of partnerships, in keeping us at the front of the wave and, using our experiences, it is described how we at Shell deal with these issues. It also gives some examples of the benefits that have come out of our partnerships here in Norway, and the challenges and opportunities confronting those partnerships in the future.

  6. Supporting global health goals with information and communications technology

    Science.gov (United States)

    Boman, Magnus; Kruse, Erik

    2017-01-01

    ABSTRACT The objective of this study is to critically assess the possible roles of information and communications technology (ICT) in supporting global health goals. This is done by considering privilege and connectibility. In short, ICT can contribute by providing health information via four different kinds of access, each with its own history and prospective future. All four are analyzed here, in two perspectives: business-as-usual and disruptive. Health data analytics is difficult since the digital representation of past, current, and future health information is lacking. The flow of analytics that may prove beneficial to the individual and not just meet abstract population-level goals or ambitions is analyzed in detail. Sensemaking is also needed, to meet the minimum requirement of making prospective future services understandable to policymakers. Drivers as well as barriers for areas in which policy decisions have the potential to drive positive developments for meeting the Sustainable Development Goals are identified. PMID:28838300

  7. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  8. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    Science.gov (United States)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  9. Technologies for increasing carbon storage in soil to mitigate climate change

    OpenAIRE

    Whitmore, A.P.; Kirk, G.J.D.; Rawlins, B.G.

    2015-01-01

    Means to enhance storage of carbon in soil or avoid its loss from soil are discussed and examined from the viewpoint of policy. In particular, technologies that have until now received little attention are assessed. The main means by which soil carbon might be increased are first listed. These are the following: (i) increasing the rate of input of organic matter; (ii) decreasing the rate of its decomposition by biological or chemical means; (iii) increasing the rate of its stabilization by ph...

  10. Capturing the Impact of Storage and Other Flexible Technologies on Electric System Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Power systems of the future are likely to require additional flexibility. This has been well studied from an operational perspective, but has been more difficult to incorporate into capacity expansion models (CEMs) that study investment decisions on the decadal scale. There are two primary reasons for this. First, the necessary input data, including cost and resource projections, for flexibility options like demand response and storage are significantly uncertain. Second, it is computationally difficult to represent both investment and operational decisions in detail, the latter being necessary to properly value system flexibility, in CEMs for realistically sized systems. In this work, we extend a particular CEM, NREL's Resource Planning Model (RPM), to address the latter issue by better representing variable generation impacts on operations, and then adding two flexible technologies to RPM's suite of investment decisions: interruptible load and utility-scale storage. This work does not develop full suites of input data for these technologies, but is rather methodological and exploratory in nature. We thus exercise these new investment decisions in the context of exploring price points and value streams needed for significant deployment in the Western Interconnection by 2030. Our study of interruptible load finds significant variation by location, year, and overall system conditions. Some locations find no system need for interruptible load even with low costs, while others build the most expensive resources offered. System needs can include planning reserve capacity needs to ensure resource adequacy, but there are also particular cases in which spinning reserve requirements drive deployment. Utility-scale storage is found to require deep cost reductions to achieve wide deployment and is found to be more valuable in some locations with greater renewable deployment. Differences between more solar- and wind-reliant regions are also found: Storage

  11. Pathfinder Technology Demonstrator: GlobalStar Testing and Results

    Science.gov (United States)

    Kuroda, Vanessa; Limes, Gregory L.; Han, Shi Lei; Hanson, John Eric; Christa, Scott E.

    2016-01-01

    The communications subsystem of a spacecraft is typically a SWaP (size, weight, and power) intensive subsystem in a SWaP constrained environment such as a CubeSat. Use of a satellite-based communication system, such as GlobalStars duplex GSP-1720 radio is a low SWaP potentially game-changing low-cost communication subsystem solution that was evaluated for feasibility for the NASA Pathfinder Technology Demonstrator (PTD) project. The PTD project is a series of 6U CubeSat missions to flight demonstrate and characterize novel small satellite payloads in low Earth orbit. GlobalStar is a low Earth orbit satellite constellation for satellite phone and low-speed data communications, and the GSP-1720 is their single board duplex radio most commonly used in satellite phones and shipment tracking devices. The PTD project tested the GSP-1720 to characterize its viability for flight using NASA GEVS (General Environmental Verification Standard) vibration and thermal vacuum levels, as well as testing the uplink-downlink connectivity, data throughput, and file transfer capabilities. This presentation will present the results of the environmental and capability testing of the GSP-1720 performed at NASA Ames Research Center, as well as the viability for CubeSat use in LEO.

  12. Global hemostasis testing thromboelastography: old technology, new applications.

    Science.gov (United States)

    Chen, Alice; Teruya, Jun

    2009-06-01

    Thromboelastography (TEG) as a method of assessing global hemostatic and fibrinolytic function has existed for more than 60 years. Improvements in TEG technology have led to increased reliability and thus increased usage. The TEG has been used primarily in the settings of liver transplant and cardiac surgery, with proven utility for monitoring hemostatic and fibrinolytic derangements. In recent years, indications for TEG testing have expanded to include managing extracorporeal membrane oxygenation (ECMO) therapy, assessing bleeding of unclear etiology, and assessing hypercoagulable states. In addition, TEG platelet mapping has been utilized to monitor antiplatelet therapy. Correlation between TEG platelet mapping and other platelet function tests such as the PFA-100 or platelet aggregation studies, however, has not been evaluated fully for clinical outcomes, and results may not be comparable. In general, the advantages of the TEG include evaluation of global hemostatic function using whole blood, a quick turn-around-time, the possibility of both point-of-care-testing and performance in central laboratories, the ability to detect hyperfibrinolysis, monitoring therapy with recombinant activated factor VII, and detection of low factor XIII activity. Potential applications include polycythemia and dysfibrinogenemia. Disadvantages of TEG include a relatively high coefficient of variation, poorly standardized methodologies, and limitations on specimen stability of native whole blood samples. In the pediatric setting, an additional advantage of the TEG is a relatively small sample volume, but a disadvantage is the difference in normal ranges between infants, especially newborns, and adults. In summary, TEG is an old concept with new applications that may provide a unique perspective on global hemostasis in various clinical settings.

  13. Investigating Student Use of Technology for Engaged Citizenship in A Global Age

    Directory of Open Access Journals (Sweden)

    Brad M. Maguth

    2012-05-01

    Full Text Available This study undertook a five month qualitative investigation into technology use amongst twelve high school social studies students in two different sites in the Midwestern United States. This study examined students’ use of technology and its relationship to three dimensions of citizenship in a global age: understand global events, issues, and perspectives, participate in global networks to communicate and collaborate with global audiences, and advocate on global problems and issues to think and act globally. Collecting data through semi-structured student interviews, online-threaded discussions and document analysis, I triangulated findings, and employed a qualitative approach. The study finds a relationship between student participants’ use of technology and their serving as engaged citizenship in a global age. In using technology, students accessed international news and information, joined global networks to communicate and collaborate with global audiences, and produced digital content for international audiences.

  14. Cryogenic Propellant Storage and Transfer Technology Demonstration: Prephase A Government Point-of-Departure Concept Study

    Science.gov (United States)

    Mulqueen, J. A.; Addona, B. M.; Gwaltney, D. A.; Holt, K. A.; Hopkins, R. C.; Matis, J. A.; McRight, P. S.; Popp, C. G.; Sutherlin, S. G.; Thomas, H. D.; hide

    2012-01-01

    The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studies

  15. Clean coal technologies. The capture and geological storage of CO{sub 2} - Panorama 2008; Les technologies du charbon propre. Captage et stockage geologique du CO{sub 2} - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO{sub 2} emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO{sub 2} capture and storage technologies are implemented, it will be very difficult to contain global warming.

  16. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Nutt, Mark; Shuler, James

    2012-01-01

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  17. The Globalization of Higher Education through the Lens of Technology and Accountability

    Science.gov (United States)

    Woodard, Howard C.; Shepherd, Sonya S.; Crain-Dorough, Mindy; Richardson, Michael D.

    2011-01-01

    Technology has ushered in a new era in higher education making knowledge of technology essential for administrators. Technology is transforming higher education by providing a global interconnectedness that reshapes educational, social, economic and cultural life. The globalization of networks based on travel, mobile phones, broad-band Internet…

  18. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  19. THE IMPACT OF ORGANIZATIONAL AND TECHNOLOGICAL FACTORS ON THE EXPENSE STRUCTURE OF THE GRAIN STORAGES CONSTRUCTION ENTERPRISE

    Directory of Open Access Journals (Sweden)

    MENEJLYUK A. I.

    2016-12-01

    Full Text Available Formulation of the problem. The deficit of grain storage capacities in Ukraine is about 15-20 mln. tons. Specific conditions of the realization of grain storage construction projects require systemic research to improve the efficiency of organizational and technological solutions in the management of specialized companies, to reduce costs of construction works and to increase the profit margin. Purpose. Research changes in the structure and the amount of the total production costs of the grain storage construction enterprise under the influence of organizational and technological factors. Conclusion. The account of features of grain storage construction, as well as developed research methodology: have resulted in analysis and the construction of a computer model of the operating activity of the grain storage construction enterprise; have allowed exploring experimental and statistical regularities of indicators changes of such operating activity from the influence of organizational and technological factors.

  20. Increases in the annual range of soil water storage at northern middle and high latitudes under global warming

    Science.gov (United States)

    Wu, Wen-Ying; Lan, Chia-Wei; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.

    2015-05-01

    Soil water storage is a fundamental signal in the land hydrological cycle and changes in soil moisture can affect regional climate. In this study, we used simulations from Coupled Model Intercomparison Project Phase 5 archives to investigate changes in the annual range of soil water storage under global warming at northern middle and high latitudes. Results show that future warming could lead to significant declines in snowfall, and a corresponding lack of snowmelt water recharge to the soil, which makes soil water less available during spring and summer. Conversely, more precipitation as rainfall results in higher recharge to soil water during its accumulating season. Thus, the wettest month of soil water gets wetter, and the driest month gets drier, resulting in an increase of the annual range and suggesting that stronger heterogeneity in global water distribution (changing extremes) could occur under global warming; this has implications for water management and water security under a changing climate.

  1. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  2. The technology of storage of a geno-fund of seeds of plants and animals

    International Nuclear Information System (INIS)

    Ombayev, A.M.; Tokhanov, M.T.; Burtebayeva, D.T.; Burtebayev, N.

    2002-01-01

    waves, of special frequencies and of a gaseous medium, created by the liquid nitrogen. There is established, that such way of the storage of ram sperms improves essentially a fertilization-ability of sheep and of a quality of sperms. The final object of our investigations consists in a creation of a new complex technology for the storage of the geno-fund of plant seeds, including various combinations of three ecologically - pure technological techniques. These are a pyramid, a gaseous medium and electromagnetic waves. It is necessary to note, that in some cases a choice of storages in the form of pyramids does not require a construction of special spaces with refrigerating machinery and large energetic and labour - consuming expenditures

  3. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  4. Meeting global temperature targets—the role of bioenergy with carbon capture and storage

    Science.gov (United States)

    Azar, Christian; Johansson, Daniel J. A.; Mattsson, Niclas

    2013-09-01

    In order to meet stringent temperature targets, active removal of CO2 from the atmosphere may be required in the long run. Such negative emissions can be materialized when well-performing bioenergy systems are combined with carbon capture and storage (BECCS). Here, we develop an integrated global energy system and climate model to evaluate the role of BECCS in reaching ambitious temperature targets. We present emission, concentration and temperature pathways towards 1.5 and 2 ° C targets. Our model results demonstrate that BECCS makes it feasible to reach temperature targets that are otherwise out of reach, provided that a temporary overshoot of the target is accepted. Additionally, stringent temperature targets can be met at considerably lower cost if BECCS is available. However, the economic benefit of BECCS nearly vanishes if an overshoot of the temperature target is not allowed. Finally, the least-cost emission pathway over the next 50 years towards a 1.5 ° C overshoot target with BECCS is almost identical to a pathway leading to a 2 ° C ceiling target.

  5. Disordering fantasies of coal and technology: Carbon capture and storage in Australia

    International Nuclear Information System (INIS)

    Marshall, Jonathan Paul

    2016-01-01

    One of the main ways that continued use of coal is justified, and compensated for, is through fantasies of technology. This paper explores the politics of 'Carbon Capture and Storage' (CCS) technologies in Australia. These technologies involve capturing CO 2 emissions, usually to store them 'safely' underground in a process called 'geo-sequestration'. In Australia the idea of 'clean coal' has been heavily promoted, and is a major part of CO 2 emissions reduction plans, despite the technological difficulties, the lack of large scale working prototypes, the lack of coal company investment in such research, and the current difficulties in detecting leaks. This paper investigates the ways that the politics of 'clean coal' have functioned as psycho-social defence mechanisms, to prolong coal usage, assuage political discomfort and anxiety, and increase the systemic disturbance produced by coal power. - Highlights: • Clean coal and geological sequestration is part of Australian climate policy. • Governments have offered much to carbon capture and storage (CCS) projects. • Coal, and coal power, industries have been relatively uninterested. • Progress with CCS is problematic and has not lived up to expectations. • CCS defends against tackling the connection between coal and climate.

  6. Energy and global warming impacts of CFC alternative technologies

    International Nuclear Information System (INIS)

    Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCs) are used in a number of applications, and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFSs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reduction in total equivalent warming impact (TEWI), lifetime equivalent CO 2 emission. Most of the reductions result from decreased direct effects without significant changes in energy use. 3 refs., 3 figs., 1 tab

  7. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  8. 77 FR 40638 - Syniverse Technologies, Inc., Including On-Site Leased Workers From Insight Global Stone Staffing...

    Science.gov (United States)

    2012-07-10

    ... Insight Global Stone Staffing, and Randstad Formerly Known as Sapphire Technologies, Watertown, MA... workers from Insight Global, Stone Staffing, Randstad formerly known as Sapphire Technologies, Watertown... telecommunication services. The company reports that workers leased from Insight Global, Stone Staffing, Randstad...

  9. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seasholtz, Jeff [East Penn Mfg. Co., Inc., Lyons, PA (United States)

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the East Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).

  10. Review of Ship Microgrids: System Architectures, Storage Technologies and Power Quality Aspects

    DEFF Research Database (Denmark)

    Gamini, Shantha; Meegahapola, Lasantha; Fernando, Nuwantha

    2017-01-01

    loads. The presence of such loads and sources with power-electronic converter interfaces lead to severe power quality issues in ship microgrids. Generally, these issues can be classified as voltage variations, frequency variations and waveform distortions which are commonly referred to as harmonic...... filtering is emerging as an alternative, which could be realised even within the same interfacing converter of the energy storage system. The aim of this paper is to investigate recent developments in these areas and provide readers with a critical review on power quality issues, energy storage technologies...... and strategies that could be used to improve Lasantha Meegahapola the power quality in ship microgrids. Moreover, a brief introduction to ship power system architectures is also presented in the paper. View Full-Text...

  11. Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

  12. HydroGrid: Technologies for Global Water Quality and Sustainability

    Science.gov (United States)

    Yeghiazarian, L.

    2017-12-01

    Humans have been transforming planet Earth for millennia. We have recently come to understand that the collective impact of our decisions and actions has brought about severe water quality problems, which are likely to worsen in the light of rapid population growth to the projected nine billion by 2050. To sustainably manage our global water resources and possibly reverse these effects requires efforts in real-time monitoring of water contamination, analysis of monitoring data, and control of the state of water contamination. We develop technologies to address all three areas: monitoring, analysis and control. These efforts are carried out in the conceptual framework of the HydroGrid, an interconnected water system, which is (1) firmly rooted in the fundamental understanding of processes that govern microbial dynamics on multiple scales; and (2) used to develop watershed-specific management strategies. In the area of monitoring we are developing mobile autonomous sensors to detect surface water contamination, an effort supported by extensive materials research to provide multifunctional materials. We analyze environmental data within a stochastic modeling paradigm that bridges microscopic particle interactions to macroscopic manifestation of microbial population behavior in time and space in entire watersheds. These models are supported with laboratory and field experiments. Finally, we combine control and graph theories to derive controllability metrics of natural watersheds.

  13. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage

  14. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  15. Definition of Storage Complex for the Technological Development Plant and the Evaluation Scenarios

    International Nuclear Information System (INIS)

    Recreo, F.; Hurtado, A.; Eguilior, S.

    2015-01-01

    This report intends a geological description of the site for the Technological Development Plant that CIUDEN is conducting in Hontomín (Burgos) for the improvement, both technological and economic, of the key aspects of geological storage of CO2 in deep permeable formations. Safety studies of this site began in 2008 with a preliminary appraisal of several pre-selected areas in the western part of the so-called C antabrian Basin . However, the modelling of the processes acting in the permanent sequestration of CO2 requires a much more detailed knowledge of the geological formations that form the complex storage and of its lithologic, petrophysical, hydrogeological, geochemical and geomechanical characteristics. This report presents a summary of the geological and hydrogeological information available from the documentation provided by the Geological Survey of Spain (IGME) and the published studies conducted in the area for oil research campaigns between 1965-68 and 1991–96. This information has allowed to deriving a preliminary conceptualization of what would be the system model of the geological system where the Technological Development Plant will be installed as well as identifying the remaining uncertainties.

  16. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  17. Evaluating the development of carbon capture and storage technologies in the United States

    International Nuclear Information System (INIS)

    van Alphen, Klaas; Noothout, Paul M.; Hekkert, Marko P.; Turkenburg, Wim C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies in the US between 2000 and 2009 and to come up with policy recommendations for technology managers that wish to accelerate the deployment of CCS. The analysis describes the successful built-up of an innovation system around CCS and pinpoints the key determinants for this achievement. However, the evaluation of the system's performance also indicates that America's leading role in the development of CCS should not be taken for granted. It shows that the large CCS R and D networks, as well as the extensive CCS knowledge base, which have been accumulated over the past decade, have not yet been valorized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. Therefore, it is argued that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS technologies in the US. This study provides a clear understanding of the current barriers to the technology's future deployment and outlines a policy strategy that (1) stimulates technological learning; (2) facilitates collaboration and coordination in CCS actor networks; (3) creates financial and market incentives for the technology; and (4) provides supportive regulation and sound communication on CCS. (author)

  18. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger

    KAUST Repository

    Baoua, Ibrahim B.

    2012-10-01

    Triple bagging technology for protecting postharvest cowpea grain from losses to the bruchid, Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae) is currently being adopted on a fairly large scale in ten West and Central African countries, including Niger. The triple bag consists of two inner high-density polyethylene bags acting as oxygen barriers, which in turn are encased in an outer woven polypropylene bag that serves primarily for mechanical strength. These hermetic bags, available in either 50 or 100 kg capacity, are called Purdue Improved Cowpea Storage (PICS) bags. Adoption of PICS technology in West and Central Africa has been driven by its effectiveness, simplicity, low cost, durability, and manufacture within the region. From surveys on adoption we discovered that farmers have begun to re-use bags they had used the previous year or even the previous two years. In the present study, we compared the performance of three different types of PICS bags: (1) new 50 kg (2) new 100 kg bags and (3) once-used 50 kg bags, all filled with naturally infested untreated cowpeas. In these PICS bags the O 2 levels within the bags initially fell to about 3 percent (v/v) while the CO 2 rose to nearly 5 percent (v/v). After five months of storage, new and used 50 kg bags and new 100 kg bags preserved the grain equally well. There were greatly reduced numbers of adults and larvae in the PICS bags versus the controls, which consisted of grain stored in single layer woven bags. The proportion of grain having C. maculatus emergence holes after five months of storage in PICS bags was little changed from that found when the grain was first put into the bags. The PICS technology is practical and useful in Sahelian conditions and can contribute to improved farmers\\' incomes as well as increase availability of high quality, insecticide-free cowpea grain as food. © 2012 Elsevier Ltd.

  19. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim [ed.

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  20. Evaluation of water stress and groundwater storage using a global hydrological model

    Science.gov (United States)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  1. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    Science.gov (United States)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  2. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  3. A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.

    2017-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  4. Capital cost estimates of selected advanced thermal energy storage technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, W.T.

    1980-06-01

    A method for evaluating the first cost of diverse advances TES concepts on a common basis is presented. For a total sample of at least 20 baseline and advanced TES technologies, the methodology developed was to be applied in the calculation of actual cost and performance measures. Work on the development of TES has focused on 5 types of application areas: electric power generation, with solar input in which TES is used to store energy for use during cloudy periods or at night; conventional fuel-fired electric power generation, in which TES is used to improve load factors; cyclic losses, in which TES is used to reduce losses that occur when devices start and stop; batch losses, in which TES is used to recover waste heat; and source/sink mismatch, in which TES is used to increase the efficiency of processes that are dependent upon ambient temperatures. Chapter 2 defines reference operating characteristics; Chapter 2 gives the costing methodology; Chapter 4 describes the system; Chapter 5 describes the baseline systems; Chapter 6 analyzes the effect of input-storage-temperature requirements on solar-collector-hardware costs and the input-temperature requirements of off-peak electric-storage systems on compressor operating costs; and in Chapter 7, the effects of chemical heat pump COP and collector temperature on storage size and collector area are considered. (MCW)

  5. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  6. 75 FR 60141 - International Business Machines (IBM), Global Technology Services Delivery Division, Including On...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,164] International Business... 25, 2010, applicable to workers of International Business Machines (IBM), Global Technology Services... hereby issued as follows: All workers of International Business Machines (IBM), Global Technology...

  7. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    Science.gov (United States)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  8. Archiving and Managing Remote Sensing Data using State of the Art Storage Technologies

    Science.gov (United States)

    Lakshmi, B.; Chandrasekhara Reddy, C.; Kishore, S. V. S. R. K.

    2014-11-01

    Integrated Multi-mission Ground Segment for Earth Observation Satellites (IMGEOS) was established with an objective to eliminate human interaction to the maximum extent. All emergency data products will be delivered within an hour of acquisition through FTP delivery. All other standard data products will be delivered through FTP within a day. The IMGEOS activity was envisaged to reengineer the entire chain of operations at the ground segment facilities of NRSC at Shadnagar and Balanagar campuses to adopt an integrated multi-mission approach. To achieve this, the Information Technology Infrastructure was consolidated by implementing virtualized tiered storage and network computing infrastructure in a newly built Data Centre at Shadnagar Campus. One important activity that influences all other activities in the integrated multi-mission approach is the design of appropriate storage and network architecture for realizing all the envisaged operations in a highly streamlined, reliable and secure environment. Storage was consolidated based on the major factors like accessibility, long term data protection, availability, manageability and scalability. The broad operational activities are reception of satellite data, quick look, generation of browse, production of standard and valueadded data products, production chain management, data quality evaluation, quality control and product dissemination. For each of these activities, there are numerous other detailed sub-activities and pre-requisite tasks that need to be implemented to support the above operations. The IMGEOS architecture has taken care of choosing the right technology for the given data sizes, their movement and long-term lossless retention policies. Operational costs of the solution are kept to the minimum possible. Scalability of the solution is also ensured. The main function of the storage is to receive and store the acquired satellite data, facilitate high speed availability of the data for further

  9. Social Software: A Powerful Paradigm for Building Technology for Global Learning

    Science.gov (United States)

    Wooding, Amy; Wooding, Kjell

    2018-01-01

    It is not difficult to imagine a world where internet-connected mobile devices are accessible to everyone. Can these technologies be used to help solve the challenges of global education? This was the challenge posed by the Global Learning XPRIZE--a $15 million grand challenge competition aimed at addressing this global teaching shortfall. In…

  10. Technological challenges in the retrieval of spent fuel from storage in sea vessels

    International Nuclear Information System (INIS)

    Egorov, N.N.; Ershov, V.N.; Tohernaenko, L.M.; Yanovskaya, N.S.; Barskov, M.K.; Grigorov, S.I.

    1999-01-01

    As discussed in this presentation, the decommissioning of scrapped nuclear vessels in Russia has been too fast for the existing waste management plants to keep pace with. Existing facilities were designed to service the fleet in operation and are filled up. The development of new infrastructure for handling radioactive waste and spent nuclear fuel is impeded by the lack of financial means. A large number of nuclear submarines are now laid up with the nuclear fuel still loaded, but the President and the Government have decided to speed up unloading of the spent fuel. The bottleneck is the discharge of the spent nuclear fuel. The Navy has three floating storage facilities for the purpose. The Navy performs many technological decommissioning operations that would have been more appropriately left for shipyards and specialised civil industrial enterprises. Coastal discharge plants at larger shipyards are planned on the North and the Pacific regions of Russia. These are built with US support. The containers used for transport to the Mayak storage are discussed. A metal-concrete container programme is executed in co-operation with Norway and the US. Mayak does not have the capacity for long-term storage of spent nuclear fuel. A temporary storage facility at Mayak has been designed by a consortium of enterprises from Norway, Sweden, UK and France. Lepse, a service-ship for the nuclear icebreaker fleet, was laid up in 1990. It contains spent nuclear fuel assemblies in such bad condition that they cannot easily be discharged. There is an international project for decommissioning Lepse. The Russians consider this a pilot project. The problems of the civil nuclear fleet are similar to those of the Navy

  11. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  12. Shifting fire regimes alter soil carbon and nutrient storage at the global scale: historical trends and future projections

    Science.gov (United States)

    Pellegrini, A.; Ahlström, A.; Randerson, J. T.; Nieradzik, L. P.; Jackson, R. B.

    2017-12-01

    Shifting fire frequencies are predicted to have large effects on carbon storage in ecosystems as the balance between biomass combustion during burning and carbon sequestration during plant re-growth changes. Although fire has little direct effect on soil pools, fire-driven changes in the growth and turnover of plant biomass may alter soil pools by changing soil inputs over long timescales. However, whether fire generally changes soils and the magnitude that these changes may contribute to the carbon balance globally are unknown. To test how fire frequency affects ecosystem carbon storage, we utilize a new dataset from 48 sites distributed globally that have manipulated fire frequencies for 30 years, on average, to empirically estimate shifts in soil carbon and nutrients. We then evaluate the ability of multiple dynamic global vegetation models to simulate realistic responses of soil carbon and nutrient storage to changes in fire frequency, and use these models to quantify the effect of fire on soil pools at the global scale. We find that fire frequency drives changes in soil carbon and nitrogen across grassland, savanna, and forest ecosystems globally. Changes occur over decadal timescales, such that significant effects emerge after 20 years, but continue to accumulate even after 65 years of altered fire frequencies. Models vary substantially in their ability to capture changes in soils, but particular models accurately simulate the broad decadal trends. Simulations estimate that increased fire frequencies produce losses of soil carbon amounting to 40% of the losses in plant biomass carbon, on average, when there are persistent alterations of fire frequencies. Moreover, nitrogen losses from fire are estimated to suppress net primary productivity by 10%, which is equivalent in magnitude to 20% of the total carbon emitted from combustion of plant biomass.

  13. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...sophisticated Global Positioning Systems (GPS) technology of isolated viruses and genetic characterization, spatial and temporal analysis are being...REPORT DATE December 2016 2. REPORT TYPE Final 3. DATES COVERED 27 Sept 2011 - 26 Sept 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Global

  14. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  15. CO2 capture and storage in the subsurface - A technological pathway for combating climate change

    International Nuclear Information System (INIS)

    2007-10-01

    The Earth is warning abnormally. The guilty parties are so-called 'greenhouse gases' (GHG), the main one being carbon dioxide (CO 2 ). Produced in large quantities by human activities such as transportation, domestic uses and industry, this gas is essentially given off when fossil fuels - coal, oil or gas - are burned. In addition to efforts to reduce energy consumption and develop renewable energy sources, CO 2 capture and storage emerges as an option insofar as fossil fuels will continue to be exploited. Since release of the IPCC special report in 2005, mobilization has flourished worldwide for the development of this technological pathway enabling the use of fossil fuels without CO 2 emissions, thus biding time until the arrival of alternate energy resources. This brochure goes back over the context of greenhouse gas emissions reductions and addresses at length the achievements and projects in the field of CO 2 capture and storage. It also provides a detailed description of on-going technological research and development programmes, highlighting both accomplishments and orientations where progress is expected. It takes stock of recent progress, particularly in France and Europe: - the consideration by political bodies of this option that contributes to reducing greenhouse gas emissions, - the first industrial operations worldwide, - the new European demonstration projects in Europe to generate electricity and produce hydrogen or steam, - the mounting interest amongst France's industry outside the energy sector: steel sector, cement production, waste processing, bio-fuel production, - the most pertinent achievements and new research initiatives in Europe for CO 2 capture, transport and storage, - the appropriate regulations and legal framework as well as economic incentives for cutting the costs and increasing the commitments of States

  16. Multicultural awareness and technology in higher education: global perspectives

    NARCIS (Netherlands)

    Issa, Tomayess; Isaias, Pedro; Kommers, Petrus A.M.

    2014-01-01

    This book encompasses information on the effects of international students' exchanges in higher education through e-learning technologies, providing the latest teaching and learning methods, technologies, and approaches in the higher education sector worldwide

  17. The Electric Power Research Institute and global environmental technology prospects

    Energy Technology Data Exchange (ETDEWEB)

    Andes, G.M.; Maybach, G.B. [Electric Power Research Inst., Palo Alto, CA (United States); Rosica, A.E. III [Reilly, Rosica and Associates, Arlington, VA (United States)

    1997-09-01

    The need for new environmental control technologies will continue to be an important part of the growth of the electric power industry in developing countries. Accordingly, R and D centers like the Environmental Control Technology Center (ECTC) will be needed to ensure technology transfers can occur effectively and personnel are properly trained to use them. The paper describes EPRI`s role in developing environmental technologies and the future for EPRI`s ECTC.

  18. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  19. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  20. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  1. Climate Change, Demographics, Technology, and Globalization: Their Impact on the Acquisition Community

    Science.gov (United States)

    2008-04-01

    changes in climate, demographics, technology , and globalization . History is replete with examples of unexpected events that startled and surprised...sensitive, and advanced technology will become more difficult to keep secure and shared only as intended by the United States. Globalization Local...located in low-lying coastal and other water-stressed areas will pose greater T R A N S F O R M A T I O N Climate Change, Demographics, Technology

  2. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.|info:eu-repo/dai/nl/310873754; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  3. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  4. Research Progress on 3D Printed Graphene Materials Synthesis Technology and Its Application in Energy Storage Field

    Directory of Open Access Journals (Sweden)

    WANG Nan

    2017-12-01

    Full Text Available Graphene is an ideal material for energy storage application as its excellent mechanical and physical properties. 3D printed graphene materials will be widely applied in energy storage field for its precisely controllable structure and it is easy to realize large-scale preparation. In this paper, the progress of 3D printed graphene materials synthesis technology and its application in energy storage field were reviewed. The viscosity and printability of graphene ink are key factors for realizing graphene 3D printing. Scalable preparation of graphene ink with facile process, controllable concentration and additive free will be the research focus of graphene 3D printing technologies in the future. The integrated printing of graphene energy storage devices such as graphene supercapacitor, lithium-sulfur battery and lithium ion battery is the development direction in this area.

  5. Extending the Global Dialogue about Media, Technology, Screen Time, and Young Children

    Science.gov (United States)

    Ernest, James M.; Causey, Cora; Newton, Allison B.; Sharkins, Kimberly; Summerlin, Jennifer; Albaiz, Najla

    2014-01-01

    Questions about the potential benefits and dangers of media and technology use abound, with competing theories regarding its effects among young children. This article explores global perspectives on children's exposure to media, technology, and screen time (MeTS) in the schools, homes, and communities of an increasingly technology-driven world.…

  6. The Enemy is Still Below: The Global Diffusion of Submarines and Related Technology

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, K G

    2012-06-05

    The spread of submarines and related technology is an end product of globalization. Globalization is not a new story. By one estimate, our ancestors first crossed out of Africa roughly 80,000 years ago, and began the process that they now call globalization. With the dispersion of people around the world came the development of culture and civilization as well as the spread of ideas, goods, and technology. The process of globalization then is a long-standing one, not an innovation of the late 20th and early 21st centuries. Over the millennia, this process has been an uneven one. Globalization has often cuased great disruptions even to the societies that initiated various innovations in culture and civilization, including science and technology. Indeed, many cultures and civilizations have disappeared while some regions failed to advance as rapidly as others, so the process of globalization is not just one of continuing progress. Globalization in the current era seems to be penetrating the most remote corners of the world at a remarkable rate as a result of advances in science and technology, particularly information technology. The diffusion of science and technology is not necessarily a benign development. It could increase the potential for a global military industrial base that may have an adverse affect on world stability in the future. For example, the spread of key military capabilities, like submarines, could still have an impact, especially over the longer term, on the US capability to project power overseas.

  7. Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage.

    Science.gov (United States)

    Michalak, Marcin; Barciszewska, Mirosława Z; Barciszewski, Jan; Plitta, Beata P; Chmielarz, Paweł

    2013-01-01

    The effects of storage and deep desiccation on structural changes of DNA in orthodox seeds are poorly characterized. In this study we analyzed the 5-methylcytosine (m(5)C) global content of DNA isolated from seeds of common pear (Pyrus communis L.) that had been subjected to extreme desiccation, and the seedlings derived from these seeds. Germination and seedling emergence tests were applied to determine seed viability after their desiccation. In parallel, analysis of the global content of m(5)C in dried seeds and DNA of seedlings obtained from such seeds was performed with a 2D TLC method. Desiccation of fresh seeds to 5.3% moisture content (mc) resulted in a slight reduction of DNA methylation, whereas severe desiccation down to 2-3% mc increased DNA methylation. Strong desiccation of seeds resulted in the subsequent generation of seedlings of shorter height. A 1-year period of seed storage induced a significant increase in the level of DNA methylation in seeds. It is possible that alterations in the m(5)C content of DNA in strongly desiccated pear seeds reflect a reaction of desiccation-tolerant (orthodox) seeds to severe desiccation. Epigenetic changes were observed not only in severely desiccated seeds but also in 3-month old seedlings obtained from these seeds. With regard to seed storage practices, epigenetic assessment could be used by gene banks for early detection of structural changes in the DNA of stored seeds.

  8. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    Science.gov (United States)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  9. Technology learning in a global - local perspective: - the interplay between technology diffusion, niche markets and experience curves

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2010-01-01

    Preventing dangerous global climate change requires timely deployment of nascent energy technologies with zero or low Co2 emissions. Managing the shift to a common sustainable technology path calls for insight about the influence of global technological change on the national energy system. Moreover, national policies are required to promote the shift to the new technology path. This calls for methods to analyse the national energy system within a global perspective. The objective of the work presented in this thesis was to investigate interplay between technology diffusion, niche markets and technology learning from the perspective of a small open economy like Norway. More specifically, develop methods to include the influence of technology learning manifested in experience and learning curves into national energy-economy-environment models. Moreover, apply the methods to investigate the potential influence and sensitivity to technology learning in a small open economy. In this thesis three such methods have been developed, applied and its importance assessed using Norway as an example. In this work three models have been linked. They are the global Energy Technology Perspectives model operated by the International Energy Agency, the Norwegian Markal model at the Institute for Energy Technology and the macro economic model MSG6 at Statistics Norway. Method one and two has been developed to manage the interplay between the models. In a local perspective technology learning in the global market is perceived as spillover. Based upon a review of the characteristics of technological change and learning curves and its application to energy system modelling some criteria important for the parameterization and modelling of spillover in a small open economy are suggested. The first method incorporates spillover into the national Markal model. The second method establishes a soft-link between the national models. The soft-link served two purposes; to provide input on demand

  10. Modelling the long-term deployment of electricity storage in the global energy system

    International Nuclear Information System (INIS)

    Despres, Jacques

    2015-01-01

    The current development of wind and solar power sources calls for an improvement of long-term energy models. Indeed, high shares of variable wind and solar productions have short- and long-term impacts on the power system, requiring the development of flexibility options: fast-reacting power plants, demand response, grid enhancement or electricity storage. Our first main contribution is the modelling of electricity storage and grid expansion in the POLES model (Prospective Outlook on Long-term Energy Systems). We set up new investment mechanisms, where storage development is based on several combined economic values. After categorising the long-term energy models and the power sector modelling tools in a common typology, we showed the need for a better integration of both approaches. Therefore, the second major contribution of our work is the yearly coupling of POLES to a short-term optimisation of the power sector operation, with the European Unit Commitment and Dispatch model (EUCAD). The two-way data exchange allows the long-term coherent scenarios of POLES to be directly backed by the short-term technical detail of EUCAD. Our results forecast a strong and rather quick development of the cheapest flexibility options: grid interconnections, pumped hydro storage and demand response programs, including electric vehicle charging optimisation and vehicle-to-grid storage. The more expensive battery storage presumably finds enough system value in the second half of the century. A sensitivity analysis shows that improving the fixed costs of batteries impacts more the investments than improving their efficiency. We also show the explicit dependency between storage and variable renewable energy sources. (author) [fr

  11. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  12. Extracting Biological Meaning From Global Proteomic Data on Circulating-Blood Platelets: Effects of Diabetes and Storage Time

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H.; Suleiman, Atef; Daly, Don S.; Springer, David L.; Spinelli, Sherry L.; Blumberg, Neil; Phipps, Richard P.

    2008-11-25

    Transfusion of platelets into patients suffering from trauma and a variety of disease is a common medical practice that involves millions of units per year. Partial activation of platelets can result in the release of bioactive proteins and lipid mediators that increase the risk of adverse post-transfusion effects. Type-2 diabetes and storage are two factors known to cause partial activation of platelets. A global proteomic study was undertaken to investigate these effects. In this paper we discuss the methods used to interpret these data in terms of biological processes affected by diabetes and storage. The main emphasis is on the processing of proteomic data for gene ontology enrichment analysis by techniques originally designed for microarray data.

  13. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  14. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    Science.gov (United States)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  15. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  16. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  17. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  18. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  19. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  20. Globalization

    OpenAIRE

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  1. Global power knowledge science and technology in international affairs

    CERN Document Server

    Barth, Kai-Henrik

    2006-01-01

    Osiris annualy examines a particular topic in the history of science, bringing together experts in the field to consider multiple aspects of the time period, episode, or theme. Volume 21, Historical Perspectives on Science, Technology, and International Affairs, explores the ways in which scientists and issues in science and technology have played significant roles in foreign policy and international relations, especially since the Second World War.

  2. Empirical Relationships among Technological Characteristics, Global Orientation, and Internationalisation of South Korean New Ventures

    Directory of Open Access Journals (Sweden)

    Junghyun Yoon

    2016-12-01

    Full Text Available International new ventures (INVs that pursue rapid internationalisation have received a growing amount of attention worldwide. This study, therefore, examined characteristics of INVs, and hence investigated empirically the relationships among the technological characteristics of INVs, the characteristics of their chief executive officers (CEOs (i.e., global orientation, and their internationalisation such as the level of internationalisation. The findings of this study can be summarised as follows: all of the technological characteristics (e.g., technological capacity, imitation, innovation, and standardisation have significant effects on the internationalisation of INVs. Furthermore, the CEO’s global orientation mediated the relationship between the technological characteristics and internationalisation.

  3. Global climate change--The technology challenge: China

    Science.gov (United States)

    Population growth and developmental pressures, spawned by an increasing demand for resource intensive goods, foods and services, are altering the planet in ways that threaten the long-term well-being of humans and other species. Global climate change and its associated impacts is...

  4. The Jet Principle: Technologies Provide Border Conditions for Global Learning

    Science.gov (United States)

    Ahamer, Gilbert

    2012-01-01

    Purpose: The purpose of this paper is to first define the "jet principle" of (e-)learning as providing dynamically suitable framework conditions for enhanced learning procedures that combine views from multiple cultures of science. Second it applies this principle to the case of the "Global Studies" curriculum, a unique…

  5. CODE ACCEPTANCE OF A NEW JOINING TECHNOLOGY FOR STORAGE CONTAINMENTS (REISSUE)

    International Nuclear Information System (INIS)

    Cannel, G.R.; Grant, G.J.; Hill, B.E.

    2009-01-01

    One of the activities associated with cleanup throughout the Department of Energy (DOE) complex is packaging radioactive materials into storage containers. Much of this work will be performed in high-radiation environments requiring fully remote operations, for which existing, proven systems do not currently exist. These conditions require a process that is capable of producing acceptable (defect-free) welds on a consistent basis; the need to perform weld repair, under fully-remote operations, can be extremely costly and time consuming. Current closure-welding technologies (fusion welding) are not well suited for this application and will present risk to cleanup cost and schedule. To address this risk, Fluor and the Pacific Northwest National Laboratory (PNNL) are proposing that a new and emerging joining technology, Friction Stir Welding (FSW), be considered for this work. FSW technology has been demonstrated in other industries (aerospace and marine) to produce near flaw-free welds on a consistent basis. FSW is judged capable of providing the needed performance for fully-remote closure welding of containers for radioactive materials for the following reasons: FSW is a solid-state process; material is not melted. FSW does not produce the type of defects associated with fusion welding, e.g., solidification-induced porosity, cracking, and distortion due to weld shrinkage. In addition, because FSW is a low-heat input process, material properties (mechanical, corrosion and environmental) experience less degradation in the heat affected zones than do fusion welds. When compared to fusion processes, FSW produces extremely high weld quality. FSW is performed using machine-tool technology. The equipment is simple and robust and well-suited for high radiation, fully-remote operations compared to the relatively complex equipment associated with fusion-welding processes. Additionally, for standard wall thicknesses of radioactive materials containers, the FSW process can

  6. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  7. Prospects of Russian Agriculture development under global climate and technological changes

    Science.gov (United States)

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  8. Cancer Detection, Diagnosis, and Treatment Technologies for Global Health: Supporting the developmen

    Science.gov (United States)

    NCI, Center for Global Health supports the development and validation of low-cost, portable technologies that can improve cancer detection, diagnosis, and treatment in low-and middle-income countries.

  9. MDOT implementation plan for global positioning systems (GPS) technology in planning, design, and construction delivery.

    Science.gov (United States)

    2010-09-13

    Global Positioning System (GPS) technology offers advantages to transportation agencies in the planning, design and construction stages of project delivery. This research study will develop a guide for Mississippi Department of Transportation (MDOT) ...

  10. Information Communication Technology, State building, and Globalization in the 21st Century: Regional Frameworks for Emerging State Assistance

    Science.gov (United States)

    2008-12-01

    COMMUNICATION TECHNOLOGY , STATE BUILDING, AND GLOBALIZATION IN THE 21ST CENTURY: REGIONAL FRAMEWORKS FOR EMERGING STATE ASSISTANCE by Justin Y...Communication Technology , State building, and Globalization in the 21st Century: Regional Frameworks for Emerging State Assistance 6. AUTHOR(S...SUBJECT TERMS Information Communication Technology (ICT), State building, Globalization , Political stability, Regionalism, Myanmar, Malaysia 16. PRICE

  11. Global Air Mobility Advanced Technologies (GAMAT) Advanced Technology Development (ATD) Phase II Research and Development

    National Research Council Canada - National Science Library

    Kuper, Samuel R; Scott, Ronald; Kazmierczak, Thomas; Roth, Emilie; Whitaker, Randall

    2004-01-01

    ...) Advanced Technology Development (ATD) research and development program. The goal of the GAMAT ATD was to further the development of a new type of user interface technology called Work-Centered Support System (WCSS) technology. The U.S...

  12. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  13. What Technology Startups Must Get Right to Globalize Early and Rapidly

    Directory of Open Access Journals (Sweden)

    Tony Bailetti

    2012-10-01

    Full Text Available Upon or shortly after inception, growth-oriented technology startups must operate in a market that is global. Management teams and investors of technology startups can benefit from approaches and models that can help them operate in a global market early and rapidly. How well a technology startup addresses the realities of globalization will determine its success. A better understanding of what management teams and investors of technology startups must get right to globalize their startups is needed. This article is an attempt to meet this need. In this article, lessons that have been extracted from six literature streams and from information on 21 startups founded in 12 countries are used to identify the six elements that a startup must get right to globalize early and rapidly. These six elements are: i Problem scope, ii Stakeholders’ commitments, iii Collaborative entrepreneurship, iv Relational capital, v Legitimacy, and vi Global capability. The main contribution of this article is that it throws the spotlight on the need to develop prescriptive rules and practitioner-oriented models that can help a technology startup operate globally from an early stage.

  14. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  15. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  16. Surveying the Need for Technology Management for Global Health Training Programmes

    Science.gov (United States)

    Balakrishnan, Usha R.; Troyer, Lisa; Brands, Edwin

    2007-01-01

    Technology licensing office managers often need to evaluate profitability and commercial potential in their decision making. However, increased consideration of important global public health goals requires forging new collaborative relationships, incorporating creative licensing practices and embracing global public good within the academic and…

  17. Public acceptance of CO2 capture and storage technology : a survey of public opinion to explore influential factors

    International Nuclear Information System (INIS)

    Itaoka, K.; Saito, A.; Akai, M.

    2005-01-01

    A potentially effective tool in managing carbon emissions is carbon capture and storage technology (CCS). However, its effectiveness depends on its acceptability by the public, and very little is known about how willing the general public will accept various options of CCS. This paper presented the results of a study that assessed general perceptions of various forms of CCS and identified various factors that influence public acceptance of CCS. Two versions of a survey were administered and conducted in Tokyo and Sapporo, Japan in December 2003. The paper discussed the design of the questionnaire as well as the administration of the survey. One version of the survey provided limited education about CCS, while another version, provided more extensive information about CCS. The data analysis methodology was also described with reference to factor analysis, comparisons of means and rank order distributions, and multiple regression. Last, the study findings and results were presented. The findings suggest that the general public was supportive of CCS as part of a larger national climate policy, although it was opposed to the implementation of specific CCS options involving deep-sea dilution option of ocean storage, lake type option of ocean storage, onshore option of geological storage, and offshore option of geological storage. In addition, it was found that education about CCS affected public acceptance. The more information respondents obtained about CCS, the more likely they were to be supportive of those storage options, except for onshore option of geological storage. 4 refs., 3 tabs

  18. Effect of Recipe and Production Technology of Chocolate Products on Their Quality During Storage

    Directory of Open Access Journals (Sweden)

    Lenka Machálková

    2017-01-01

    Full Text Available The effect of four storage temperature modes (6, 12, 20 and 30 °C on sensory properties of chocolate products and their colour changes in the experiment over a period of 6 months. The results were evaluated with regard to the production technology and composition of chocolate products. The experiment was performed on filled milk chocolate product called Orion Pistachio made in four versions such as a standard containing cocoa mass of 35 % referred to retempered variant (RS and not treated by retempering (NS variant and with higher proportion of cocoa mass (45 % stated as retempered variant (R45 and not treated by retempering (N45 variant. Retempering means the exposure of products for 24 hours at 24 °C immediately after the production and packaging. The results show that the technology of retempering can effectively increase the resistance of chocolate products to the fat bloom as reflected in the improved colour stability. Sensory most acceptable products were stored at 6 and 12 °C throughout the experiment.

  19. Evolution of Water Supply, Sanitation, Wastewater, and Stormwater Technologies Globally

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-02-01

    Full Text Available This paper provides an outline of history of hydro-technologies in the west and the east. It is an overview of the special issue on “the evolution of hydro-technologies globally”, in which the key topics regarding the history of water and sanitation worldwide, and its importance to future cities are presented and discussed. It covers a wide range of relevant historical issues, and is presented in three categories: productivity assessment, institutional framework and mechanisms, and governance aspects. This paper concludes by discussing the challenges on future research in this field of study.

  20. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  1. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    International Nuclear Information System (INIS)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment

  2. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme.

    Science.gov (United States)

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-11-06

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ'E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ'E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models.

  3. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme

    Science.gov (United States)

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ′E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ′E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  4. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  5. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  6. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    Roland, Vincent; Verdier, Antoine; Sicard, Damien; Neider, Tara

    2006-01-01

    ancillary equipment, Ready to move to final or centralized repository or reprocessing facility or other ISFSI, Compact systems, Easy rearrangement, Easy handling; - In favor of concrete shielded canisters based systems: Economics when initial quantity is sufficient to spread out up front equipment investment significant cost - Shielding advantage, Easy local production of the relatively light canisters. Both approaches of dry storage technologies can have a positive impact on their public acceptance because of their non-permanent characteristics and because their transport license refers to internationally recognized rules, standards and methods. Currently, more than 1,000 COGEMA Logistics/Transnuclear Inc. dry storage systems have been ordered in Belgium, Germany, Japan, Switzerland, Armenia and the US. Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues cannot be transported in the existing cask designs presently used. Therefore, COGEMA LOGISTICS has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN TM 81 casks currently in use in Switzerland and the TN TM 85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues. The TN TM 81 and the TN TM 85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production in existing reprocessing facilities. They also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing casks such as the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. In addition, years of feedback and experience in design and operations - together with ever improved

  7. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  8. Nuclear Technology, Global Warming, and the Politicization of Science

    Science.gov (United States)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  9. Women in Science and Technology: A Global Development Leadership Pilot Scheme

    Science.gov (United States)

    Turnbull, Sarah; Howe-Walsh, Liza; Shute, Janis

    2014-01-01

    In 2012 The University of Portsmouth piloted their first Global Development Leadership program for women in Science and Technology faculties. This was seen to be particularly important because of the wider under-representation of women in Science, Technology, Engineering and Maths (STEM) and the need to encourage more women into senior positions…

  10. Addressing AACSB Global and Technology Requirements: Exploratory Assessment of a Marketing Management Assignment

    Science.gov (United States)

    Greene, Scott; Bao, Yongchuan

    2009-01-01

    The Association to Advance Collegiate Schools of Business (AACSB) standards mandate knowledge of global and technology issues. Businesses desire employees with ability to analyze international markets and to be adept with technology. Taxpayers supporting public universities and organizations hiring business school graduates expect accountability…

  11. Gross world product and consumption in a global warming model with endogenous technological change

    NARCIS (Netherlands)

    Gerlagh, R.; van der Zwaan, B.C.C.

    2003-01-01

    This paper analyzes the macro-economic costs and effects on consumption and energy demand of limiting the global average atmospheric temperature increase to 2 °C. We use a macro-economic model in which there are two competing energy technologies (carbon and non-carbon, respectively), technological

  12. Information technology and regional development : global village or rural backwater?

    OpenAIRE

    Nordås, Hildegunn Kyvik

    2000-01-01

    The study discusses information and communication technology (ICT) and regional development. It first presents a case study of a small multinational company (Vik-Sandvik) producing naval architecture and ship design in an international market. The company's headquarter is in Fitjar, a rural community with about 3000 inhabitants, and it has affiliates in Iceland, Poland and China. The case study illustrates the business opportunities that new ICT bring to rural areas. However, the Vik-Sandvik ...

  13. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  14. Is there a technological fix for the current global stagnation?

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke

    2016-01-01

    Daniele Archibugi asks whether the 2007–8 financial and economic crisis was brought about by the exhaustion of the current techno-economic paradigm, and whether a new paradigm will lead to eventual recovery. My answer to both questions is ‘No’. Whilst it is useful to think in terms of techno-econ...... and ICTs. This regime might actually slow down the formation of a new techno-economic paradigm based around Blade Runner technologies such as genetic engineering, artificial intelligence and nanotechnology....

  15. Is there a technological fix for the current global stagnation?

    DEFF Research Database (Denmark)

    Lundvall, Bengt Åke

    2017-01-01

    Daniele Archibugi asks whether the 2007–8 financial and economic crisis was brought about by the exhaustion of the current techno-economic paradigm, and whether a new paradigm will lead to eventual recovery. My answer to both questions is ‘No’. Whilst it is useful to think in terms of techno-econ...... and ICTs. This regime might actually slow down the formation of a new techno-economic paradigm based around Blade Runner technologies such as genetic engineering, artificial intelligence and nanotechnology....

  16. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  17. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  18. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  19. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  20. Control of quality and silo storage of sunflower seeds using near infrared technology

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-05-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  1. Control of quality and silo storage of sunflower seeds using near infrared technology

    International Nuclear Information System (INIS)

    Gonzalez-Martin, I.; Vilaescusa-Garcia, V.; Lopez-Gonzalez, F.; Oiz-Jimenez, C.; Lobos-Ortega, I. A.; Gordillo, B.; Hernandez-Hierro, J. M.

    2013-01-01

    This work assesses the application of near infrared spectroscopy technology for the quality control of sunflower seeds direct from farmers and from a storage silo. The results show that the analytical method employing near infrared spectroscopy can be used as a rapid and non-destructive tool for the determination of moisture, fat and high/low oleic acid contents in samples of sunflower seeds. The ranges obtained were comparable to those reported for classic chemical methods, and were between 4.6-21.4% for moisture; 38.4-49.6% for fat, and 60.0-93.1% for oleic acid expressed as percentage of total fatty acids. A stepwise discriminant analysis was performed to determine the most useful wavelengths for classifying sunflower seeds in terms of their (high/low) oleic acid composition. The discriminant model allows the acid contents, with a prediction rate of 90.5% for internal validation and of 89.4% for cross-validation. (Author) 23 refs.

  2. Demand for biodiversity protection and carbon storage as drivers of global land change scenarios

    NARCIS (Netherlands)

    Eitelberg, D.A.; van Vliet, J.; Doelman, J.; Stehfest, E.; Verburg, P.H.

    2016-01-01

    Many global land change scenarios are driven by demand for food, feed, fiber, and fuel. However, novel demands for other ecosystem services give rise to nexus issues and can lead to different land system changes. In this paper we explore the effects of including multiple different demands in land

  3. The role of decentralized generation and storage technologies in future energy systems planning for a rural agglomeration in Switzerland

    International Nuclear Information System (INIS)

    Yazdanie, Mashael; Densing, Martin; Wokaun, Alexander

    2016-01-01

    This study presents a framework to quantitatively evaluate decentralized generation and storage technology (DGST) performance and policy impacts in a rural setting. The role of DGSTs in the future energy systems planning of a rural agglomeration in Switzerland is examined using a cost optimization modeling approach. Heat and electricity demand for major sectors are considered. Scenarios introduce DGSTs in a stepwise manner to measure incremental impacts on future capacity planning compared to a baseline scenario. Sub-scenarios also examine the impacts of carbon mitigation policies, and a sensitivity analysis is carried out for key energy carriers and conversion technologies. DGSTs enable a significant reduction in electricity grid usage for the community considered. Small hydro with a storage reservoir and photovoltaics enable the community to become largely self-sufficient with over 80% reductions in grid imports by 2050 compared to the baseline scenario. Storage enables maximum usage of the available hydro potential which also leads to network upgrade deferrals and a significant increase in photovoltaic installations. Investment decisions in small hydro are robust against cost variations, while heating technology investment decisions are sensitive to oil and grid electricity prices. Carbon pricing policies are found to be effective in mitigating local fossil fuel emissions. - Highlights: •Rural case study on decentralized generation and storage technology (DGST) benefits. •Cost optimization model and scenarios developed to assess DGSTs until 2050. •Small hydro and photovoltaics (PV) increase self-sufficiency of community. •Storage enables full hydro potential usage and increased PV penetration. •Carbon price policies effective in mitigating local fossil fuel emissions.

  4. Trend survey of the global environment adaptation type industry technology

    Science.gov (United States)

    1992-03-01

    A global CO2 recycling system which combines utilization of natural energy and CO2 recovered from combustion of fossil fuel is studied. In the model, CO2 recovered at the place of energy demand is transported to the place where energy is produced, and from the CO2 fuels are synthesized by use of solar energy and transported to the place of energy demand. Facilities worth a large amount of money are required to transmit electric power generated by the photovoltaic power generation in the desert to the fuel synthesizing plant. Therefore, production of electrolytic hydrogen by the on-site power generation and transport by pipe may be considered. As a synthetic fuel being sent back by ocean transport, methanol is considered, and synthetic methane (LNG) can also be a candidate. CO2 is recovered as liquid carbon dioxide. Possibility of CO2 recycling is dependent on development of the desert solar base, as well as depletion of fossil fuel and price increase, CO2 penalty. It has still been difficult to say which of the fuel synthesis, CO2 tanker or securing of the solar base becomes a bottleneck. Entry of recycling fuels to the market will be possible in proportion to restrictions on fossil fuels, and evaluation of the system depends almost on the rate of energy arriving from the energy-producing region.

  5. Information data systems for a global change technology initiative architecture trade study

    Science.gov (United States)

    Murray, Nicholas D.

    1991-01-01

    The Global Change Technology Initiative (GCTI) was established to develop technology which will enable use of satellite systems of Earth observations on a global scale, enable use of the observations to predictively model Earth's changes, and provide scientists, government, business, and industry with quick access to the resulting information. At LaRC, a GCTI Architecture Trade Study was undertaken to develop and evaluate the architectural implications to meet the requirements of the global change studies and the eventual implementation of a global change system. The output of the trade study are recommended technologies for the GCTI. That portion of the study concerned with the information data system is documented. The information data system for an earth global change modeling system can be very extensive and beyond affordability in terms of today's costs. Therefore, an incremental approach to gaining a system is most likely. An options approach to levels of capability versus needed technologies was developed. The primary drivers of the requirements for the information data system evaluation were the needed science products, the science measurements, the spacecraft orbits, the instruments configurations, and the spacecraft configurations and their attendant architectures. The science products requirements were not studied here; however, some consideration of the product needs were included in the evaluation results. The information data system technology items were identified from the viewpoint of the desirable overall information system characteristics.

  6. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  7. The Imperative of Virtue in the Age of Global Technology and Globalized Mass Culture: A Liberal-Humanist Response to the Heideggerian Challenge

    Science.gov (United States)

    Kowalsky, Borys M.

    2011-01-01

    How has the globalization of technology contributed to the globalization of the war against the Enlightenment liberal humanism of Western civilization--in particular, to the globalization of the war between religion and science--and with what problematic moral, cultural, and spiritual consequences? Liberal-humanist and Heideggerian perspectives on…

  8. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  9. The recent activities of nuclear power globalization. Our provision against global warming by global deployment of our own technologies as integrated nuclear power plant supply company'

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Suzuki, Shigemitsu

    2008-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) is striving to expand and spread nuclear power plants as an 'Integrated Nuclear Power Plant Supply Company' based on its engineering, manufacturing, and technological support capabilities. The company also has ample experience in the export of major components. MHI is accelerating its global deployment through the market introduction of large-sized strategic reactor US-APWR, the joint development of a mid-sized strategic reactor ATMEA1 with AREVA, and a small strategic reactor PBMR. The company also plans to internationally deploy technologies for the nuclear fuel cycle. We present here the leading-edge trends in the global deployment of these nuclear businesses, all of which help to solve the energy and environmental issues in the world. (author)

  10. Factors Influencing the Adoption of Cloud Storage by Information Technology Decision Makers

    Science.gov (United States)

    Wheelock, Michael D.

    2013-01-01

    This dissertation uses a survey methodology to determine the factors behind the decision to adopt cloud storage. The dependent variable in the study is the intent to adopt cloud storage. Four independent variables are utilized including need, security, cost-effectiveness and reliability. The survey includes a pilot test, field test and statistical…

  11. National hydrogen technology competitiveness analysis with an integrated fuzzy AHP and TOPSIS approaches: In case of hydrogen production and storage technologies

    Science.gov (United States)

    Lee, Seongkon; Mogi, Gento

    2017-02-01

    The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.

  12. 78 FR 41954 - TA-W-82,634, Prudential Global Business Technology Solutions Central Security Services Dresher...

    Science.gov (United States)

    2013-07-12

    ... Technology Solutions Central Security Services Dresher, Pennsylvania; TA-W-82,634A, Prudential Global Business Technology Solutions Central Security Services Iselin, New Jersey; TA-W-82,634B, Prudential Global Business Technology Solutions Central Security Services Plymouth, Minnesota; TA- W-82,634C, Prudential...

  13. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  14. Factors Affecting Use of Telepresence Technology in a Global Technology Company

    Science.gov (United States)

    Agnor, Robert Joseph

    2013-01-01

    Telepresence uses the latest video conferencing technology, with high definition video, surround sound audio, and specially constructed studios, to create a near face-to-face meeting experience. A Fortune 500 company which markets information technology has organizations distributed around the globe, and has extensive collaboration needs among…

  15. National Center of Excellence for Energy Storage Technology 168.10

    Energy Technology Data Exchange (ETDEWEB)

    Guezennec, Yann

    2011-12-31

    This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate ‘aging’ models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making

  16. Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation.

    Science.gov (United States)

    Zhang, Chao; Jansen, Mieke; De Meester, Luc; Stoks, Robby

    2016-11-01

    A key challenge for ecologists is to predict how single and joint effects of global warming and predation risk translate from the individual level up to ecosystem functions. Recently, stoichiometric theory linked these levels through changes in body stoichiometry, predicting that both higher temperatures and predation risk induce shifts in energy storage (increases in C-rich carbohydrates and reductions in N-rich proteins) and body stoichiometry (increases in C : N and C : P). This promising theory, however, is rarely tested and assumes that prey will divert energy away from reproduction under predation risk, while under size-selective predation, prey instead increase fecundity. We exposed the water flea Daphnia magna to 4 °C warming and fish predation risk to test whether C-rich carbohydrates increase and N-rich proteins decrease, and as a result, C : N and C : P increase under warming and predation risk. Unexpectedly, warming decreased body C : N, which was driven by reductions in C-rich fat and sugar contents while the protein content did not change. This reflected a trade-off where the accelerated intrinsic growth rate under warming occurred at the cost of a reduced energy storage. Warming reduced C : N less and only increased C : P and N : P in the fish-period Daphnia. These evolved stoichiometric responses to warming were largely driven by stronger warming-induced reductions in P than in C and N and could be explained by the better ability to deal with warming in the fish-period Daphnia. In contrast to theory predictions, body C : N decreased under predation risk due to a strong increase in the N-rich protein content that offsets the increase in C-rich fat content. The higher investment in fecundity (more N-rich eggs) under predation risk contributed to this stronger increase in protein content. Similarly, the lower body C : N of pre-fish Daphnia also matched their higher fecundity. Warming and predation risk independently shaped body

  17. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    COWGILL, M.G.; MOSKOWITZ, P.D.; CHERNAENKO, L.M.; NAZARIAN, A.; GRIFFITH, A.; DIASHEV, A.; ENGOY, T.

    2000-01-01

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  18. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  19. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  20. Lean and Global Technology Start-ups: Linking the Two Research Streams

    DEFF Research Database (Denmark)

    Lemminger, Roy; Svendsen, Lars Limkilde; Zijdemans, Erik

    2014-01-01

    stream is well established focuses on International New Ventures (INVs) or Born Global (BG) firms (Oviatt & McDougall, 1994; Knight and Cavusgil, 1996); the second one is in the process of emerging and deals with lean start-ups (Ries, 2011; Blank, 2013). It is our intention to show that the problems...... be summarized as follows: a) How do new technology start-ups narrow down the scope of their business activities by effectuating the global dimensions of their businesses? What are the reasons for such firms to look for global resources, partnerships or markets right from inception? b) What makes it possible...

  1. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  2. From blockchain technology to global health equity: can cryptocurrencies finance universal health coverage?

    Science.gov (United States)

    Till, Brian M; Peters, Alexander W; Afshar, Salim; Meara, John

    2017-01-01

    Blockchain technology and cryptocurrencies could remake global health financing and usher in an era global health equity and universal health coverage. We outline and provide examples for at least four important ways in which this potential disruption of traditional global health funding mechanisms could occur: universal access to financing through direct transactions without third parties; novel new multilateral financing mechanisms; increased security and reduced fraud and corruption; and the opportunity for open markets for healthcare data that drive discovery and innovation. We see these issues as a paramount to the delivery of healthcare worldwide and relevant for payers and providers of healthcare at state, national and global levels; for government and non-governmental organisations; and for global aid organisations, including the WHO, International Monetary Fund and World Bank Group.

  3. From blockchain technology to global health equity: can cryptocurrencies finance universal health coverage?

    Science.gov (United States)

    Till, Brian M; Peters, Alexander W; Afshar, Salim; Meara, John G

    2017-01-01

    Blockchain technology and cryptocurrencies could remake global health financing and usher in an era global health equity and universal health coverage. We outline and provide examples for at least four important ways in which this potential disruption of traditional global health funding mechanisms could occur: universal access to financing through direct transactions without third parties; novel new multilateral financing mechanisms; increased security and reduced fraud and corruption; and the opportunity for open markets for healthcare data that drive discovery and innovation. We see these issues as a paramount to the delivery of healthcare worldwide and relevant for payers and providers of healthcare at state, national and global levels; for government and non-governmental organisations; and for global aid organisations, including the WHO, International Monetary Fund and World Bank Group. PMID:29177101

  4. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  5. Nondestructive detection of total viable count changes of chilled pork in high oxygen storage condition based on hyperspectral technology

    Science.gov (United States)

    Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.

  6. A Strategic Analysis for the Creation of a Global MBA in Technology Management

    OpenAIRE

    Soliven, Jason

    2010-01-01

    In a time where globalization and technology are shaping the future of management education, the faculty of business at Simon Fraser University has engaged in talks with the Grenoble Graduate School of Business (GGSB) to create a joint MBA degree. The intent of this partnership is to leverage SFU's experience in technology management and international business training with Grenoble's strengths in implementing international business education in order to create a major destination program for...

  7. Cost-efficient demand-pull policies for multi-purpose technologies – The case of stationary electricity storage

    International Nuclear Information System (INIS)

    Battke, Benedikt; Schmidt, Tobias S.

    2015-01-01

    Highlights: • A definition of multi-purpose technologies (MPTs) is proposed. • Opportunities for a cost-efficient demand-pull policy strategy for MPTs are derived. • The multi-purpose character of stationary electricity storage (SES) is shown. • An exemplary profitability assessment of one SES technology supports the argument. - Abstract: Stationary electricity storage technologies (SES) allow to increase the shares of intermittent renewable energy technologies in electricity networks. As SES currently exhibit high costs, policy makers have started introducing demand-pull policies in order to foster their diffusion and drive these technologies further down the learning curve. However, as observed in the case of renewable energy technologies, demand-pull policies for technologies can come at high costs in cases where the profitability gap that needs to be covered by the policy support is large. Yet, SES can create value in multiple distinct applications in the power system – making it a “multi-purpose technology”. We argue that policy makers can make use of the multi-purpose character of SES to limit costs of demand-pull policies. We propose a policy strategy which grants support based on the profitability gap in the different applications, thereby moving down the learning curve efficiently. To support our argumentation, we firstly conduct a comprehensive literature review of SES applications exemplifying the multi-purpose character of these technologies. Second, we assess the profitability of one SES technology (vanadium redox flow battery) in five SES applications, highlighting a strong variation of the profitability gap across these applications

  8. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  9. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  10. Sensitivity of Global and Regional Terrestrial Carbon Storage to the Direct CO2 Effect and Climate Change Based on the CMIP5 Model Intercomparison

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  11. Developing global health technology standards: what can other industries teach us?

    Science.gov (United States)

    Masum, Hassan; Lackman, Rebecca; Bartleson, Karen

    2013-10-17

    There is a lack of effective and affordable technologies to address health needs in the developing world. One way to address problems of innovation and affordability is to design global health technologies to follow agreed-upon standards. This Debate article argues that we can better develop standards for global health technologies if we learn lessons from other industries. The article's Background section begins by explaining why standards are needed in global health. For example, if global health technologies can be modularized into independent interfacing parts, these parts can then interact via well-defined standards in a "plug and play" fashion. This can avoid development of mutually incompatible solutions by different organizations, speed the pace of innovation, unlock health systems from single providers and approaches, and lower barriers to entry. The Background then gives a brief primer on standards and discusses incentives for health standards. The article's Discussion section begins with brief relevant cases of standards development from other industries, including electricity, container shipping, CD standards, Universal Serial Bus (USB), and the Internet. It then explores lessons from these and other industries that suggest how to develop standards for global health technologies. The remainder of the Discussion considers intellectual property and regulatory issues and standards-based global health business models, and ends with a checklist of considerations for health standards development leaders. (The associated Additional file discusses observations from standards development for cell phones and semiconductors, as well as challenges in the standards development process itself.) Throughout the article, point-of-care diagnostics are used as an illustrative example. An initiative is already underway to explore standardized diagnostics platforms. This Debate article aims to convince the reader that standards can benefit global health technologies if we

  12. A review of existing and emerging digital technologies to combat the global trade in fake medicines.

    Science.gov (United States)

    Mackey, Tim K; Nayyar, Gaurvika

    2017-05-01

    The globalization of the pharmaceutical supply chain has introduced new challenges, chief among them, fighting the international criminal trade in fake medicines. As the manufacture, supply, and distribution of drugs becomes more complex, so does the need for innovative technology-based solutions to protect patients globally. Areas covered: We conducted a multidisciplinary review of the science/health, information technology, computer science, and general academic literature with the aim of identifying cutting-edge existing and emerging 'digital' solutions to combat fake medicines. Our review identified five distinct categories of technology including mobile, radio frequency identification, advanced computational methods, online verification, and blockchain technology. Expert opinion: Digital fake medicine solutions are unifying platforms that integrate different types of anti-counterfeiting technologies as complementary solutions, improve information sharing and data collection, and are designed to overcome existing barriers of adoption and implementation. Investment in this next generation technology is essential to ensure the future security and integrity of the global drug supply chain.

  13. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis

    Science.gov (United States)

    Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation. PMID:26372160

  14. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    Science.gov (United States)

    Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  15. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  16. Environmental governance and new ICTs : the impact of new information and communication technologies on global environmental governance

    OpenAIRE

    Duberry, Jérôme

    2015-01-01

    The doctoral dissertation deals with the impact of the use of new information and communication technologies (ICTs) on global environmental governance. The objective of the research is to analyze the influence of these technologies on the legitimacy of global governance tools and on the competences of global non-state actors –as part of global civil society– involved in processes of environmental politics. After defining the context in which new ICTs emerge, the thesis develops two case studi...

  17. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  18. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  19. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses to the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).

  20. High Temperature Energy Storage for In Situ Planetary Atmospheric Measurement Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of energy storage capable of operational temperatures of 380:C and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian...

  1. Legal Frontiers in the Global Dissemination of Technology and Knowledge: Three Case Studies

    DEFF Research Database (Denmark)

    Tang, Yi Shin

    2008-01-01

    This article explores a few alternatives to the traditional legal and economic theories regarding the problem of global dissemination of knowledge and technology to developing countries. In particular, it examines three cases in which the classical notion of intellectual property rights seems...

  2. Global Journal of Computer Science and Technology. Volume 1.2

    Science.gov (United States)

    Dixit, R. K.

    2009-01-01

    Articles in this issue of "Global Journal of Computer Science and Technology" include: (1) Input Data Processing Techniques in Intrusion Detection Systems--Short Review (Suhair H. Amer and John A. Hamilton, Jr.); (2) Semantic Annotation of Stock Photography for CBIR Using MPEG-7 standards (R. Balasubramani and V. Kannan); (3) An Experimental Study…

  3. Global Journal of Computer Science and Technology. Volume 9, Issue 5 (Ver. 2.0)

    Science.gov (United States)

    Dixit, R. K.

    2010-01-01

    This is a special issue published in version 1.0 of "Global Journal of Computer Science and Technology." Articles in this issue include: (1) [Theta] Scheme (Orthogonal Milstein Scheme), a Better Numerical Approximation for Multi-dimensional SDEs (Klaus Schmitz Abe); (2) Input Data Processing Techniques in Intrusion Detection…

  4. 76 FR 5834 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Science.gov (United States)

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,248] International Business..., applicable to workers of International Business Machines Corporation, Global Technology Services Business... certification to include workers in the Payroll, Travel, and Mobility Services Team of International Business...

  5. Globalization, Information Technology and Higher Education in Nigeria: The Roles of Library Professionals

    Science.gov (United States)

    Uwhekadom, Ejimaji Emmanuel; Olawolu, Oladunni Elizabeth

    2013-01-01

    The influence of globalization and information technology on higher education in Nigeria was investigated through a descriptive survey design. Forty-five professional librarians from University of Port Harcourt, Port Harcourt, Ignatius Ajuru University of Education, Rumuolumeni Port Harcourt, Federal College of Education (Technical) Omoku Rivers…

  6. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  7. Lean and Global Technology Start-ups: Linking the Two Research Streams

    DEFF Research Database (Denmark)

    Lemminger, Roy; Svendsen, Lars Limkilde; Zijdemans, Erik

    2014-01-01

    The focus of this research study is on newly established technology oriented firms that are both lean and global from their inception. The combination of lean and global characteristics will allow integrating two different research streams which, unfortunately, are currently separate. The first...... stream is well established focuses on International New Ventures (INVs) or Born Global (BG) firms (Oviatt & McDougall, 1994; Knight and Cavusgil, 1996); the second one is in the process of emerging and deals with lean start-ups (Ries, 2011; Blank, 2013). It is our intention to show that the problems...... for a firm to be innovative right from or near its founding? How does the degree of innovativeness of its products or services affect the business model formulation and early internationalization processes? c) How are relations and networks used by new technology firms to synergize radical innovation...

  8. The incoming global technological and industrial revolution towards competitive sustainable manufacturing

    DEFF Research Database (Denmark)

    Jovane, F.; Yoshikawa, H.; Alting, Leo

    2008-01-01

    The major global challenges we are facing today need to be addressed in the multifaceted context of economy, society, environment and technology (ESET). In recent years, the consensus of calling for sustainable development(SD) and implementation has emerged. Along with this belief, high added value......, knowledge-based, competitive sustainable manufacturing (CSM) has been widely considered as main enabler. This paper presents the necessary steps from economic growth to sustainable development. The reference model for proactive action (RMfPA) is proposed to develop and implement CSM, at national and global......PA is a good ground for pursuing CSM. Necessary actions by stakeholders at different levels, spanning from policymakers to Industry, University and Research Institutes, are also discussed. CIRP, as a global academy, can play a relevant role at strategic, scientific and technological levels for the incoming...

  9. Technology Analysis of Global Smart Light Emitting Diode (LED Development Using Patent Data

    Directory of Open Access Journals (Sweden)

    Sangsung Park

    2017-08-01

    Full Text Available Technological developments related to smart light emitting diode (LED systems have progressed rapidly in recent years. In this paper, patent documents related to smart LED technology are collected and analyzed to understand the technology development of smart LED systems. Most previous studies of the technology were dependent on the knowledge and experience of domain experts, using techniques such as Delphi surveys or technology road-mapping. These approaches may be subjective and lack robustness, because the results can vary according to the selected expert groups. We therefore propose a new technology analysis methodology based on statistical modeling to obtain objective and relatively stable results. The proposed method consists of visualization based on Bayesian networks and a linear count model to analyze patent documents related to smart LED technology. Combining these results, a global hierarchical technology structure is created that can enhance the sustainability in smart LED system technology. In order to show how this methodology could be applied to real-world problems, we carry out a case study on the technology analysis of smart LED systems.

  10. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service.

    Directory of Open Access Journals (Sweden)

    Paul S Lavery

    Full Text Available The recent focus on carbon trading has intensified interest in 'Blue Carbon'-carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon (C org stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09-20.14 mg C org cm(-3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively. Integrated over the top 25 cm of sediment, this equated to an areal stock of 262-4833 g C org m(-2. For some species, there was an effect of water depth on the C org stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated carbon storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014-15 fixed carbon price of A$25.40 t(-1 and an estimated market price of $35 t(-1 in 2020, the C org stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9-5.4 bill. The estimates of annual C org accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y(-1 (10.1 t. km(-2 y(-1. These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in carbon stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass carbon stock and accumulation rates, and the factors driving this variability, in order to improve global estimates of seagrass Blue Carbon storage.

  11. Influences of reverse outsourcing on green technological progress from the perspective of a global supply chain.

    Science.gov (United States)

    Wang, Shuhong; Song, Malin

    2017-10-01

    As a newly appeared trade mode in recent years, reverse outsourcing has made a great impact on traditional trade modes. This paper researched the influences of reverse outsourcing on green technological progress from the perspective of a global supply chain by using micro-data of enterprises. It worked out the rate of green technological progress from two innovative concepts: potential production technology and practical production technology. The empirical analysis results indicated that reverse outsourcing stimulates, and enterprise size and ownership type potentially affects, green technological progress. State-owned or foreign enterprises with high income levels would pay more attention to environmental protection, energy saving, and emission reduction, while small and micro enterprises with low incomes would choose to ignore environmental protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways].

    Science.gov (United States)

    Crager, Sara Eve

    2015-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  13. Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways.

    Science.gov (United States)

    Crager, Sara Eve

    2014-11-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  14. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  15. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  16. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  17. Impact of an innovated storage technology on the quality of preprocessed switchgrass bales

    Directory of Open Access Journals (Sweden)

    Christopher N. Boyer

    2016-03-01

    Full Text Available The purpose of this study was to determine the effects of three particle sizes of feedstock and two types of novel bale wraps on the quality of switchgrass by monitoring the chemical changes in cellulose, hemicellulose, lignin, extractives, and ash over a 225-day period. Using NIR (Near-infrared modeling to predict the chemical composition of the treated biomass, differences were found in cellulose, lignin, and ash content across switchgrass bales with different particle sizes. Enclosing bales in a net and film impacted the cellulose, lignin, and ash content. Cellulose, hemicellulose, lignin, extractives, and ash were different across the 225-day storage period. A quadratic response function made better prediction about cellulose, lignin, and ash response to storage, and a linear response function best described hemicellulose and extractives response to storage. This study yields valuable information regarding the quality of switchgrass at different intervals between the start and end date of storage, which is important to conversion facilities when determining optimal storage strategies to improve quality of the biomass feedstock, based on potential output yield of a bale over time.

  18. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  19. Globalization and advances in information and communication technologies: the impact on nursing and health.

    Science.gov (United States)

    Abbott, Patricia A; Coenen, Amy

    2008-01-01

    Globalization and information and communication technology (ICT) continue to change us and the world we live in. Nursing stands at an opportunity intersection where challenging global health issues, an international workforce shortage, and massive growth of ICT combine to create a very unique space for nursing leadership and nursing intervention. Learning from prior successes in the field can assist nurse leaders in planning and advancing strategies for global health using ICT. Attention to lessons learned will assist in combating the technological apartheid that is already present in many areas of the globe and will highlight opportunities for innovative applications in health. ICT has opened new channels of communication, creating the beginnings of a global information society that will facilitate access to isolated areas where health needs are extreme and where nursing can contribute significantly to the achievement of "Health for All." The purpose of this article is to discuss the relationships between globalization, health, and ICT, and to illuminate opportunities for nursing in this flattening and increasingly interconnected world.

  20. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  1. Dynamics of Selected Bioactive Substances Changes in Cucurbita Moschata Duch. Ex Poir. After Storage and Different Methods of Technological Processing

    Directory of Open Access Journals (Sweden)

    Alena Andrejiová

    2016-01-01

    Full Text Available The winter squash is an important source of antioxidants, especially carotenoids. The aim of submitted research work was to determine the effect of genotype, storage and different methods of technological processing (baking, boiling and sterilization on the content of ascorbic acid and total carotenoids in fruits of winter squash (Cucurbita moschata Duch. ex Poir.. The small-plot field experiment was established at Slovak University of Agriculture in Nitra in 2013. Five cultivars of winter squash (‘Liscia’, ‘Orange’, ‘Hannah’, ‘UG 205 F1’ and ‘Waltham’ were examined in experiment. The total carotenoids content in the pulp of fresh fruits was ranged from 9.33 to 15.10 mg.100 g−1. Its highest value was determined in case of ‘Orange’ variety. The storage and the thermal treatment of fruit pulp in case of baking had positive impact from the total carotenoid content point of view. The baking resulted in the increase of its value in winter squash. On the contrary, sterilization tended to the decrease of total carotenoid content in edible part of squash. The total carotenoids content in the baking pulp was ranged from 14.27 to 31.87 mg.100 g−1. The vitamin C content before storage and technological processing ranged in interval from 13.88 to 18.69 mg.100 g−1. Particular thermal methods of processing and storage resulted in decrease of vitamin C content in the pulp of all winter squash varieties.

  2. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage.

    Science.gov (United States)

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes.

  3. Hole mobility enhancement of p-MOSFETs using global and local Ge-channel technologies

    International Nuclear Information System (INIS)

    Takagi, Shinichi; Tezuka, T.; Irisawa, T.; Nakaharai, S.; Maeda, T.; Numata, T.; Ikeda, K.; Sugiyama, N.

    2006-01-01

    Mobility enhancement technologies have currently been recognized as mandatory for future scaled MOSFETs. In this paper, we review our recent results on high hole mobility p-MOSFETs using global/local SiGe or Ge channels. There are two directions for introducing SiGe or Ge channels into Si CMOS platform. One is to use SiGe or Ge global substrates and the other is to form SiGe or Ge-channel regions locally on Si wafers. In both cases, the Ge condensation technique, where Ge-channel layers are formed by oxidizing SiGe films on SOI substrates, are effectively utilized. As for the global technologies, ultrathin GOI substrates are prepared and used to fabricate high mobility GOI p-MOSFETs. As for the local technologies, SGOI or GOI channels are formed locally in the active area of p-MOSFETs on SOI wafers. It is shown that the hole mobility enhancement factor of as high as 10 is obtained in locally fabricated p-MOSFETs through the effects of high-Ge content and the compressive strain. Furthermore, the local Ge-channel technologies are combined with global SiGe or Ge substrates for pursuing the optimal and individual design of n-MOSFETs and p-MOSFETs on a single Si wafer. The CMOS device composed of strained-Si n-MOSFETs and SGOI p-MOSFETs is successfully integrated on a same wafer, which is a promising CMOS structure under deep sub 100 nm technology nodes

  4. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  5. Future role and significance of space activities in reflection of global social, technological and economic trends

    Science.gov (United States)

    Diekmann, Andreas; Richarz, Hans.-Peter

    The paper describes the interrelation of space activities and global socio-economic trends like "globalisation of markets" and "renaissance of fine arts". The interrelation reveals the economic strategic, technological and scientific dimension of space activities and their benefits to mankind. Then, the significance and perspectives of space activities in these dimensions are examined in more detail. The paper calls (1) for a more visible initiative to employ space activities to tackle urgent questions of global change and development, and (2) for a stronger impetus to secure European economic position in space sector as a key industry of the 21st century.

  6. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE

    Science.gov (United States)

    Felfelani, Farshid; Wada, Yoshihide; Longuevergne, Laurent; Pokhrel, Yadu N.

    2017-10-01

    Hydrological models and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been widely used to study the variations in terrestrial water storage (TWS) over large regions. However, both GRACE products and model results suffer from inherent uncertainties, calling for the need to make a combined use of GRACE and models to examine the variations in total TWS and their individual components, especially in relation to natural and human-induced changes in the terrestrial water cycle. In this study, we use the results from two state-of-the-art hydrological models and different GRACE spherical harmonic products to examine the variations in TWS and its individual components, and to attribute the changes to natural and human-induced factors over large global river basins. Analysis of the spatial patterns of the long-term trend in TWS from the two models and GRACE suggests that both models capture the GRACE-measured direction of change, but differ from GRACE as well as each other in terms of the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations over 30 river basins shows notable differences not only between models and GRACE but also among different GRACE products and between the two models. Further, it is found that while one model performs well in highly-managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-induced changes in TWS in some of the managed basins reveals a consistently declining TWS trend during 2002-2010, however; significant differences are again obvious both between GRACE and models and among different GRACE products and models. Results from the decomposition of the TWS signal into the general trend and seasonality indicate that both models do not adequately capture both the trend and seasonality in the managed or snow-dominated basins implying that the TWS variations from a

  7. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions.

    Science.gov (United States)

    Tong, Tiezheng; Elimelech, Menachem

    2016-07-05

    Zero liquid discharge (ZLD)-a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency - has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is constrained by high cost and intensive energy consumption. In this critical review, we discuss the drivers, incentives, technologies, and environmental impacts of ZLD. Within this framework, the global applications of ZLD in the United States and emerging economies such as China and India are examined. We highlight the evolution of ZLD from thermal- to membrane-based processes, and analyze the advantages and limitations of existing and emerging ZLD technologies. The potential environmental impacts of ZLD, notably greenhouse gas emission and generation of solid waste, are discussed and the prospects of ZLD technologies and research needs are highlighted.

  8. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  9. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  10. High Temperature Energy Storage for In Situ Planetary Atmospheric Measurement Technologies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of energy storage capable of operational temperatures of 380ºC and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian...

  11. The state of the-state-of-the-art in mass storage technology

    Science.gov (United States)

    Lancaster, Dale

    1993-01-01

    In the last couple years, there has been an abnormal amount of interest and activity in the automated mass storage application area. At Convex we have been heavily involved in some of these efforts. Some of our experiences are described and the trends that are occurring in this industry are also discussed.

  12. 40 CFR 63.119 - Storage vessel provisions-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... storage vessel in a continuous fashion. (iv) If the external floating roof is equipped with a liquid... air pollutants; (iii) Incorporated into a product; and/or (iv) Recovered. (2) If the emissions are... all reasons (except start-ups/shutdowns/malfunctions or product changeovers of flexible operation...

  13. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice...

  14. Development of a global computable general equilibrium model coupled with detailed energy end-use technology

    International Nuclear Information System (INIS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Detailed energy end-use technology information is considered within a CGE model. • Aggregated macro results of the detailed model are similar to traditional model. • The detailed model shows unique characteristics in the household sector. - Abstract: A global computable general equilibrium (CGE) model integrating detailed energy end-use technologies is developed in this paper. The paper (1) presents how energy end-use technologies are treated within the model and (2) analyzes the characteristics of the model’s behavior. Energy service demand and end-use technologies are explicitly considered, and the share of technologies is determined by a discrete probabilistic function, namely a Logit function, to meet the energy service demand. Coupling with detailed technology information enables the CGE model to have more realistic representation in the energy consumption. The proposed model in this paper is compared with the aggregated traditional model under the same assumptions in scenarios with and without mitigation roughly consistent with the two degree climate mitigation target. Although the results of aggregated energy supply and greenhouse gas emissions are similar, there are three main differences between the aggregated and the detailed technologies models. First, GDP losses in mitigation scenarios are lower in the detailed technology model (2.8% in 2050) as compared with the aggregated model (3.2%). Second, price elasticity and autonomous energy efficiency improvement are heterogeneous across regions and sectors in the detailed technology model, whereas the traditional aggregated model generally utilizes a single value for each of these variables. Third, the magnitude of emissions reduction and factors (energy intensity and carbon factor reduction) related to climate mitigation also varies among sectors in the detailed technology model. The household sector in the detailed technology model has a relatively higher reduction for both energy

  15. Closing the global immunization gap: delivery of lifesaving vaccines through innovation and technology.

    Science.gov (United States)

    Desai, Sachin N; Kamat, Deepak

    2014-07-01

    One of every 5 children does not receive basic vaccines because of concerns related to storage and delivery in resource limited countries. Transporting vaccines over long distances in extreme temperatures is a common challenge. Issues that involve production and formulation, delivery technologies, cold chain logistics, and safety factors need to be addressed to properly adapt vaccines to resource constrained settings. Current successful field interventions include United Nation Children's Fund cold boxes, which are used to store and distribute vaccine in disaster struck areas, and vaccine vial monitors, which allow health workers to gauge whether vaccine is still usable in areas with unreliable electricity and refrigeration. This review aims to provide a general overview of innovative approaches and technologies that positively affect vaccine coverage and save more lives. © American Academy of Pediatrics, 2014. All rights reserved.

  16. Developing sustainable global health technologies: insight from an initiative to address neonatal hypothermia.

    Science.gov (United States)

    Gupta, Rajesh; Patel, Rajan; Murty, Naganand; Panicker, Rahul; Chen, Jane

    2015-02-01

    Relative to drugs, diagnostics, and vaccines, efforts to develop other global health technologies, such as medical devices, are limited and often focus on the short-term goal of prototype development instead of the long-term goal of a sustainable business model. To develop a medical device to address neonatal hypothermia for use in resource-limited settings, we turned to principles of design theory: (1) define the problem with consideration of appropriate integration into relevant health policies, (2) identify the users of the technology and the scenarios in which the technology would be used, and (3) use a highly iterative product design and development process that incorporates the perspective of the user of the technology at the outset and addresses scalability. In contrast to our initial idea, to create a single device, the process guided us to create two separate devices, both strikingly different from current solutions. We offer insights from our initial experience that may be helpful to others engaging in global health technology development.

  17. Technology Transfer in the Global Automotive Value Chain. Lessons from the Turkish Automotive Industry

    OpenAIRE

    M. Teoman Pamukçu; Alper Sönmez

    2011-01-01

    The automotive industry is one of the main contributors to value added, employment and exports of the Turkish economy and it has undergone major changes since the mid-nineties. Most of the automotive manufacturers in Turkey are either joint ventures or wholly-owned affiliates of multinational companies. Literature on global value chains point to the possibility of technology transfer occurring through backward linkages from automotive manufacturers to their suppliers. We test for the existenc...

  18. Global brand of the country in modern technologies of the trade and marketing activity

    Directory of Open Access Journals (Sweden)

    Tetyana Tsyhankova

    2011-03-01

    Full Text Available In the article there have been studied the technologies of creation and measurement of country’s brand power. There was proved that the existing approach to formation of the international rating of countries’ brands needs methodological and organizational updating. There were suggested the priority-driven directions of positive image creation of Ukraine and formation of the brand-awareness in the format of global index determination of the national brand.

  19. Study/research report on development of the basic technologies for realization of tera-bit class information storage; Tera-bit kyu joho storage jitsugen ni muketa kiban gijutsu kenkyu kaihatsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-19

    The hardware which supports IT is composed of information processing (MPUs and memories), information communication (input/output and communication) and information storage as the three basic elements. This project studies development of the basic technologies for realization of tera-bit (1TB/in{sup 2}) class information storage, in order to cope with drastically increased volume of information as a result of progress of the IT revolution. An HDD (hard disk device) will be the sole device which can correspond to required large-capacity, high-speed storage. However, realization of the recording density for 1TB class storage needs materials and controlling technologies at the atomic and molecular levels, because all of the basic technologies therefor, e.g., those for recording medium, head device and positioning mechanisms, are characterized by nm-order technologies. In other words, it is important to promote the research and development activities for the technologies for three-dimensionally configuring/controlling the atoms, processing magnetic materials at the nm level, and superhigh-speed devices. The concerted efforts by the industrial, government and academic sectors are required for quickly realizing the technological breakthroughs, which need advanced processes based on new principles and development facilities. (NEDO)

  20. Strategies for Corporate Global Expansion of Pakistani Companies in the Age of Technology

    Directory of Open Access Journals (Sweden)

    Jawaid Ahmed Qureshi

    2015-04-01

    Full Text Available This study intends to meticulously probe about the applications of cutting-edge strategies of globally expanding companies operative in several industrial sectors of Pakistan. Many companies craft and execute various strategies to globalize their operations and networks in several continents, which can not only benefit them but add value in the domestic cum global economy. Many researchers expounded that along with many other factors, capacity-building and competitive edges of business provide these companies the competitive strengths to excel in their global operations. Regarding such strengths, advancement in technology inclusive of research in business R&D (Research & Development, and marketing and business research, process design, automation, and e-commerce play a decisive role in providing them the core competitive edges that they leverage to advance their growth and expansion in the global market. This paper employs hybrid research techniques including qualitative and quantitative research. Semi-structured interviews have been taken for qualitative enquiry and structured survey has been undertaken for quantitative enquiry. The samples are drawn from multiple populations pertaining top-five export sectors of Pakistan by applying convenience sampling procedures for interviews and proportionate stratified sampling articulated with systematic sampling for survey. The findings uncover that after turning as retrenched domestic entities, many of the companies in Pakistan prefer global expansion. They usually resume from export operations in various countries especially where they develop a network of business associates, and then gradually move to open subsidiaries abroad. They avail technological edges to upgrade their processes, plants, products

  1. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Science.gov (United States)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  2. Large-area printed supercapacitor technology for low-cost domestic green energy storage

    International Nuclear Information System (INIS)

    Tehrani, Z.; Thomas, D.J.; Korochkina, T.; Phillips, C.O.; Lupo, D.; Lehtimäki, S.; O'Mahony, J.; Gethin, D.T.

    2017-01-01

    In this research we demonstrate that a flexible ultra-thin supercapacitor can be fabricated using high volume screen printing process. This has enabled the sequential deposition of current collector, electrode, electrolyte materials and adhesive onto a Polyethylene terephthalate (PET) substrate in order to form flexible electrodes for reliable energy storage applications. The electrodes were based on an activated carbon ink and gel electrolyte each of which were formulated for this application. Supercapacitors that have surface areas from 100 to 1600 mm 2 and an assembled device thickness of 375 μm were demonstrated. The capacitance ranged from 50 to 400 mF. Capacitance of printed carbon electrodes is rarely reported in literature and no references were found. The chemistry developed during this study displayed long-term cycling potential and demonstrated the stability of the capacitor for continued usage. The gel electrolyte developed within this work showed comparable performance to that of a liquid counterpart. This improvement resulted in the reduction in gel resistance from 90Ω to 0.5Ω. Significant reduction was observed for all resistances. The solid-state supercapacitors with the gel electrolyte showed comparable performance to the supercapacitors that used a liquid electrolyte. This large area printed device can be used in future houses for reliable green energy storage. - Highlights: • It has been demonstrated that a flexible supercapacitors with large area storage has been developed. • The simplified architecture has the potential to lead to a new class of printable, thin storage devices. • The specific capacitance of 21 F/g was measured.

  3. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  4. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  5. IMPACT OF AMARANTH (AMARANTH SP. ON TECHNOLOGICAL QUALITY OF BAKERY PRODUCTS DURING FROZEN STORAGE

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2014-02-01

    Full Text Available Frozen baking semi-finished meals and dough bring to consumer daily fresh products with the added value from the point of view of comfort and storage, as well as fresh products of comparable quality with baking yeasts products. The aim of this study was to observe the impact of adding 30% of flour from amaranth to the wheat flour T 650 on the quality of immediately baked products stored one, three and six months in a freezer at the temperature of -18°. The overall quality of baked loaves from frozen dough was declining gradually depending on the length of storage in the freezing box, while the highest decline in quality was recorded after three and six months of storage. Specifically, after one month there was a decline in the loaf volume - the one of the most important indicators for bakery quality - by 10.5% and after three and six months by 26.3% in comparison to fresh loaves. The decline in bakery quality was caused mainly by decreasing activity of yeast cells which were damaged by crystals of ice, by the afterward loss of their ability to yeast and by gradual decrease of dough firmness.

  6. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the

  7. Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage

    Science.gov (United States)

    Yang, Tao; Wang, Chao; Yu, Zhongbo; Xu, Feng

    2013-10-01

    Since the launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided us with a new method to estimate terrestrial water storage (TWS) variations by measuring earth gravity change with unprecedented accuracy. Thus far, a number of standardized GRACE-born TWS products are published by different international research teams. However, no characterization of spatio-temporal patterns for different GRACE hydrology products from the global perspective could be found. It is still a big challenge for the science community to identify the reliable global measurement of TWS anomalies due to our limited knowledge on the true value. Hence, it is urgently necessary to evaluate the uncertainty for various global estimates of the GRACE-born TWS changes by a number of international research organizations. Toward this end, this article presents an in-depth analysis for various GRACE-born and GLDAS-based estimates for changes of global terrestrial water storage. The work characterizes the inter-annual and intra-annual variability, probability density variations, and spatial patterns among different GRACE-born TWS estimates over six major continents, and compares them with results from GLDAS simulations. The underlying causes of inconsistency between GRACE- and GLDAS-born TWS estimates are thoroughly analyzed with an aim to improve our current knowledge in monitoring global TWS change. With a comprehensive consideration of the advantages and disadvantages among GRACE- and GLDAS-born TWS anomalies, a summary is thereafter recommended as a rapid reference for scientists, end-users, and policy-makers in the practices of global TWS change research. To our best knowledge, this work is the first attempt to characterize difference and uncertainty among various GRACE-born terrestrial water storage changes over the major continents estimated by a number of international research organizations. The results can provide beneficial reference to usage of

  8. A report from the second US/Japan workshop on global change research: Environmental response technologies (mitigation and adaptation). United States-Japan Science and Technology Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Edgerton, S. [comp.] [National Science Foundation, Washington, DC (United States). Committee on Earth and Environmental Sciences; Mizuno, Tateki [comp.] [National Inst. for Resources and Environment, MITI (Japan)

    1993-12-31

    The Second US - Japan Workshop on Global Change: Environmental Response Technologies for Global Change was hosted by the Program on Resources at the East-West Center, in Honolulu, Hawaii on February 1--3, 1993, on behalf of the United States Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET). This workshop brought together over fifty leading scientists from the two countries to review existing technologies and to identify needed research on the development of new technologies for mitigation and adaptation of global change. The Workshop was organized around three areas of research: (1) capture, fixation/utilization, and disposal of CO{sub 2} (e.g. CO{sub 2}, separation and capture technologies, ocean and land disposal of CO{sub 2}; (2) energy production and conservation technologies to reduce greenhouse gas emissions (e.g. combustion efficiency, non-carbon based energy technologies, energy conservation technologies); and (3) adaptation technologies and practices related to global climate change (e.g., adaptation responses of crops to climate change, adapting urban infrastructure for climate change). Priorities for joint research in each of these areas were discussed. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  10. Back-illuminated voltage-domain global shutter CMOS image sensor with 3.75μm pixels and dual in-pixel storage nodes

    OpenAIRE

    Stark, Laurence; Raynor, J. M.; Lalanne, Frederic; Henderson, Robert

    2016-01-01

    A 1024x800 image sensor with voltage-domain global shutterpixels and dual in-pixel storage is implemented in a90nm/65nm back-illuminated (BSI) imaging process. Thepixel has a 3.75μm pitch, achieves -80dB PLS operating in itscorrelated double sampling mode and has a maximumdynamic range in its high-dynamic range imaging mode of102dB.

  11. Global Swindle or Global Warming. How technology can deal with it; Global Swindle of Global Warming. Hoe moet de techniek hiermee omgaan?

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W. [Kropman Installatietechniek, Breda (Netherlands)

    2008-02-15

    Some people are still not convinced that human-caused global warming is taking place. The media tend to pay attention to both proponents and opponents of their points of view. The impression is that the subject is still widely open to debate. One of the best-known contributions is Al Gore's film 'An Inconvenient Truth'. Channel 4 Television in the United Kingdom countered Gore's arguments with the documentary 'The Great Global Warming Swindle' (TGGWS), a production which went on to enjoy worldwide media exposure. Both Al Gore and the makers of TGGWS play on the viewer's emotions. The Climate Portal, the Dutch website of the Platform for Communication on Climate Change (PCCC), examines the arguments presented in TGGWS in the light of current knowledge on climate change. It is also clear from the recently published Fourth Assessment Report of the IPCC, that not one of the arguments of TGGWS is scientifically valid. The makers of the film created arguments by manipulating graphs and making selective use of the data. [Dutch] Voor sommige mensen is het nog steeds niet aannemelijk dat we te maken hebben met de effecten van 'Global Warming'. In de media worden voor- en tegenstanders aan het woord gelaten. Hierdoor ontstaat een beeld dat er nog veel discussie over dit onderwerp mogelijk is. Het meest bekend is AI Gore's 'An Inconvenient truth', maar als antwoord daarop heeft het Engelse Channel 4 de documentaire 'The Great Global Warming Swindle' (TGGWS), ook een wereldtournee door de media gemaakt. Zowel Al Gore als de makers van deze documentaire spelen in op de emoties van het publiek. Op het klimaatportaal, de site van het Platform Communication on Climate Change (PCCC) worden de beweringen in TGGWS in de context van de kennis over klimaatverandering geplaatst. Daaruit blijkt, zoals onder andere in het recent verschenen vierde Assessment Report van het IPCC te lezen is, dat geen van de in de TGGWS

  12. Globalization

    Directory of Open Access Journals (Sweden)

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  13. Globalization

    OpenAIRE

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  14. Standardization of technology for preparation and storage of wild apricot fruit bar.

    Science.gov (United States)

    Sharma, Satish Kumar; Chaudhary, Shyam Prakash; Rao, Virendra Kumar; Yadav, Vijay Kumar; Bisht, Tejpal Singh

    2013-08-01

    The study was conducted to standardize the protocol for preparation of wild apricot fruit bar. Wild apricot fruits were harvested at optimum maturity from Distt Tehri Garhwal, Uttarakhand and after thorough sorting and proper washing, used for hot extraction of pulp through a pulper. Pulp was preserved in 500 ppm SO2 (using potassium metabisulphite). For preparation of fruit bars, additives like sugar and pectin were added to the pulp in different proportions and the mixture dried in mechanical dehydrator. Dried fruit bar sheets were cut into rectangular shapes (2.5 × 4.0 cm(2)) using a stainless steel knife and wrapped in polythene paper. Best recipe was selected on the basis of sensory evaluation. For storage, wild apricot fruit bar was packed in aluminium laminated pouches and polyethylene pouches, kept for 6 months and analyzed periodically for changes in quality. Results of the sensory evaluation indicate that a very good quality fruit bar can be prepared by using wild apricot pulp +60% sugar +0.30% pectin and drying the mixture in a mechanical dehydrator at 55 ± 2 °C for 6 h. During 6 months of storage, there was about 3% moisture gain, 6.00 and 9.35% loss in total sugars and vitamin C respectively, along with slight losses in titratable acidity and sensory quality. The changes in chemical and sensory quality attributes were minimum in wild apricot fruit bar, packed in aluminium laminated pouches as compared to those packed in polyethylene pouches, and the product stored under vacuum than that under normal atmosphere. Further, the products were stable up to 6 months during storage under ambient condition.

  15. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  16. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  17. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Rychel, Dwight [Petroleum Tech Transfer Council, Oak Hill, VA (United States)

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  18. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  19. Global income and production impacts of using GM crop technology 1996–2013

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324

  20. Global income and production impacts of using GM crop technology 1996–2014

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697