WorldWideScience

Sample records for global stability analysis

  1. Global robust exponential stability analysis for interval recurrent neural networks

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun

    2004-01-01

    This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition

  2. Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

    International Nuclear Information System (INIS)

    Liao Shu; Wang Jin

    2012-01-01

    Highlights: ► Global dynamics of high dimensional dynamical systems. ► A systematic approach for global stability analysis. ► Epidemiological models of environment-dependent diseases. - Abstract: In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

  3. Robust Stability Clearance of Flight Control Law Based on Global Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Liuli Ou

    2014-01-01

    Full Text Available To validate the robust stability of the flight control system of hypersonic flight vehicle, which suffers from a large number of parametrical uncertainties, a new clearance framework based on structural singular value (μ theory and global uncertainty sensitivity analysis (SA is proposed. In this framework, SA serves as the preprocess of uncertain model to be analysed to help engineers to determine which uncertainties affect the stability of the closed loop system more slightly. By ignoring these unimportant uncertainties, the calculation of μ can be simplified. Instead of analysing the effect of uncertainties on μ which involves solving optimal problems repeatedly, a simpler stability analysis function which represents the effect of uncertainties on closed loop poles is proposed. Based on this stability analysis function, Sobol’s method, the most widely used global SA method, is extended and applied to the new clearance framework due to its suitability for system with strong nonlinearity and input factors varying in large interval, as well as input factors subjecting to random distributions. In this method, the sensitive indices can be estimated via Monte Carlo simulation conveniently. An example is given to illustrate the efficiency of the proposed method.

  4. Bifurcation analysis of the simplified models of boiling water reactor and identification of global stability boundary

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vikas; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2017-04-15

    Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and

  5. Bifurcation analysis of the simplified models of boiling water reactor and identification of global stability boundary

    International Nuclear Information System (INIS)

    Pandey, Vikas; Singh, Suneet

    2017-01-01

    Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and

  6. Robust Stability Clearance of Flight Control Law Based on Global Sensitivity Analysis

    OpenAIRE

    Ou, Liuli; Liu, Lei; Dong, Shuai; Wang, Yongji

    2014-01-01

    To validate the robust stability of the flight control system of hypersonic flight vehicle, which suffers from a large number of parametrical uncertainties, a new clearance framework based on structural singular value ( $\\mu $ ) theory and global uncertainty sensitivity analysis (SA) is proposed. In this framework, SA serves as the preprocess of uncertain model to be analysed to help engineers to determine which uncertainties affect the stability of the closed loop system more slightly. By ig...

  7. An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2007-01-01

    This paper considers the robust stability analysis of cellular neural networks with discrete and distributed delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technique, a novel stability criterion guaranteeing the global robust convergence of the equilibrium point is derived. The criterion can be solved easily by various convex optimization algorithms. An example is given to illustrate the usefulness of our results

  8. Stability of fundamental couplings: A global analysis

    Science.gov (United States)

    Martins, C. J. A. P.; Pinho, A. M. M.

    2017-01-01

    Astrophysical tests of the stability of fundamental couplings are becoming an increasingly important probe of new physics. Motivated by the recent availability of new and stronger constraints we update previous works testing the consistency of measurements of the fine-structure constant α and the proton-to-electron mass ratio μ =mp/me (mostly obtained in the optical/ultraviolet) with combined measurements of α , μ and the proton gyromagnetic ratio gp (mostly in the radio band). We carry out a global analysis of all available data, including the 293 archival measurements of Webb et al. and 66 more recent dedicated measurements, and constraining both time and spatial variations. While nominally the full data sets show a slight statistical preference for variations of α and μ (at up to two standard deviations), we also find several inconsistencies between different subsets, likely due to hidden systematics and implying that these statistical preferences need to be taken with caution. The statistical evidence for a spatial dipole in the values of α is found at the 2.3 sigma level. Forthcoming studies with facilities such as ALMA and ESPRESSO should clarify these issues.

  9. A qualitative content analysis of global health engagements in Peacekeeping and Stability Operations Institute's stability operations lessons learned and information management system.

    Science.gov (United States)

    Nang, Roberto N; Monahan, Felicia; Diehl, Glendon B; French, Daniel

    2015-04-01

    Many institutions collect reports in databases to make important lessons-learned available to their members. The Uniformed Services University of the Health Sciences collaborated with the Peacekeeping and Stability Operations Institute to conduct a descriptive and qualitative analysis of global health engagements (GHEs) contained in the Stability Operations Lessons Learned and Information Management System (SOLLIMS). This study used a summative qualitative content analysis approach involving six steps: (1) a comprehensive search; (2) two-stage reading and screening process to identify first-hand, health-related records; (3) qualitative and quantitative data analysis using MAXQDA, a software program; (4) a word cloud to illustrate word frequencies and interrelationships; (5) coding of individual themes and validation of the coding scheme; and (6) identification of relationships in the data and overarching lessons-learned. The individual codes with the most number of text segments coded included: planning, personnel, interorganizational coordination, communication/information sharing, and resources/supplies. When compared to the Department of Defense's (DoD's) evolving GHE principles and capabilities, the SOLLIMS coding scheme appeared to align well with the list of GHE capabilities developed by the Department of Defense Global Health Working Group. The results of this study will inform practitioners of global health and encourage additional qualitative analysis of other lessons-learned databases. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  10. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    International Nuclear Information System (INIS)

    Escobar, D.; Ahedo, E.

    2015-01-01

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods

  11. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  12. Hydrogen energy strategies and global stability and unrest

    International Nuclear Information System (INIS)

    Midilli, A.; Dincer, I.; Rosen, M.A.

    2004-01-01

    This paper focuses on hydrogen energy strategies and global stability and unrest. In order to investigate the strategic relationship between these concepts, two empirical relations that describe the effects of fossil fuels on global stability and global unrest are developed. These relations incorporate predicted utilization ratios for hydrogen energy from non-fossil fuels, and are used to investigate whether hydrogen utilization can reduce the negative global effects related to fossil fuel use, eliminate or reduce the possibilities of global energy conflicts, and contribute to achieving world stability. It is determined that, if utilization of hydrogen from non-fossil fuels increases, for a fixed usage of petroleum, coal and natural gas, the level of global unrest decreases. However, if the utilization ratio of hydrogen energy from non-fossil fuels is lower than 100%, the level of global stability decreases as the symptoms of global unrest increase. It is suggested that, to reduce the causes of global unrest and increase the likelihood of global stability in the future, hydrogen energy should be widely and efficiently used, as one component of plans for sustainable development. (author)

  13. Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2016-01-01

    We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.

  14. Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

    KAUST Repository

    Zhang, Wei

    2016-03-31

    We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.

  15. Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness

    International Nuclear Information System (INIS)

    Li Ke-Zan; Xu Zhong-Pu; Zhu Guang-Hu; Ding Yong

    2014-01-01

    Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results. (interdisciplinary physics and related areas of science and technology)

  16. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.

    Science.gov (United States)

    Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang

    2017-10-01

    This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Global stability of stochastic high-order neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Wang Zidong; Fang Jianan; Liu Xiaohui

    2008-01-01

    High-order neural networks can be considered as an expansion of Hopfield neural networks, and have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks. In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with discrete and distributed time-delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived, which guarantee the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the stochastic high-order delayed neural networks under consideration are globally asymptotically stable in the mean square if two linear matrix inequalities (LMIs) are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also shown that the main results in this paper cover some recently published works. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria

  18. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    International Nuclear Information System (INIS)

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov—Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result. (general)

  19. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  20. Global exponential stability analysis on impulsive BAM neural networks with distributed delays

    Science.gov (United States)

    Li, Yao-Tang; Yang, Chang-Bo

    2006-12-01

    Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.

  1. Global robust stability for shunting inhibitory CNNs with delays.

    Science.gov (United States)

    Wang, Lingna; Lin, Yiping

    2004-08-01

    In this paper, the problem of global robust stability for shunting inhibitory cellular neural networks (SICNNs) is studied. A sufficient condition guaranteeing the network's global robust stability is established. The result can easily be used to verify globally robust stable networks. An example is given to illustrate that the conditions of our results are feasible.

  2. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  3. Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions

    Directory of Open Access Journals (Sweden)

    Xueli Song

    2014-01-01

    Full Text Available This paper researches global asymptotic stability of impulsive cellular neural networks with proportional delays and partially Lipschitz activation functions. Firstly, by means of the transformation vi(t=ui(et, the impulsive cellular neural networks with proportional delays are transformed into impulsive cellular neural networks with the variable coefficients and constant delays. Secondly, we provide novel criteria for the uniqueness and exponential stability of the equilibrium point of the latter by relative nonlinear measure and prove that the exponential stability of equilibrium point of the latter implies the asymptotic stability of one of the former. We furthermore obtain a sufficient condition to the uniqueness and global asymptotic stability of the equilibrium point of the former. Our method does not require conventional assumptions on global Lipschitz continuity, boundedness, and monotonicity of activation functions. Our results are generalizations and improvements of some existing ones. Finally, an example and its simulations are provided to illustrate the correctness of our analysis.

  4. On global exponential stability of high-order neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Baoyong; Xu Shengyuan; Li Yongmin; Chu Yuming

    2007-01-01

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria

  5. On global exponential stability of high-order neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Baoyong [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: baoyongzhang@yahoo.com.cn; Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China)]. E-mail: syxu02@yahoo.com.cn; Li Yongmin [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China) and Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)]. E-mail: ymlwww@163.com; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2007-06-18

    This Letter investigates the problem of stability analysis for a class of high-order neural networks with time-varying delays. The delays are bounded but not necessarily differentiable. Based on the Lyapunov stability theory together with the linear matrix inequality (LMI) approach and the use of Halanay inequality, sufficient conditions guaranteeing the global exponential stability of the equilibrium point of the considered neural networks are presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed stability criteria.

  6. Stability analysis for stochastic BAM nonlinear neural network with delays

    Science.gov (United States)

    Lv, Z. W.; Shu, H. S.; Wei, G. L.

    2008-02-01

    In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.

  7. Stability analysis for stochastic BAM nonlinear neural network with delays

    International Nuclear Information System (INIS)

    Lv, Z W; Shu, H S; Wei, G L

    2008-01-01

    In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria

  8. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    Science.gov (United States)

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  9. Stability of Global Geodetic Results

    Science.gov (United States)

    Herring, T.

    The precision of global geodetic techniques has reached unprecedented levels. Sys- tems capable of millimeter level horizontal and several millimeter vertical precisions are now deployed. The Global Positioning System (GPS) has the most deployed continuously-operating receivers with several hundred providing data through the in- ternet for analysis. However, the satellite system used with GPS evolves with time as new generations of GPS satellites are launched. During the 1990's, the constellation evolved from Block I to Block II and IIA with the most recent generation being Block IIR. There are considerable differences in the size and antenna configurations in the different generations of satellites. The antenna configuration specifically could cause systematic changes in the terrestrial reference system. Results from the ITRF2000 combinations suggest that there are significant time variations in the scale of GPS system possibly due to phase center variations in GPS transmission antennas. These variations could result in height changes of up to 3 mm/yr. We will investigate the stability of the GPS system through combination of GPS results with results from VLBI and SLR. All components of the transformation between the systems, rotation, translation and scale will be investigated.

  10. On global stability criterion for neural networks with discrete and distributed delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI) optimization approach, a new delay-dependent criterion for neural networks with discrete and distributed delays is derived to guarantee global asymptotic stability. The criterion is expressed in terms of LMIs, which can be solved easily by various convex optimization algorithms. Some numerical examples are given to show the effectiveness of proposed method

  11. New Results of Global Exponential Stabilization for BLDCMs System

    OpenAIRE

    Fengxia Tian; Fangchao Zhen; Guopeng Zhou; Xiaoxin Liao

    2015-01-01

    The global exponential stabilization for brushless direct current motor (BLDCM) system is studied. Four linear and simple feedback controllers are proposed to realize the global stabilization of BLDCM with exponential convergence rate; the control law used in each theorem is less conservative and more concise. Finally, an example is given to demonstrate the correctness of the proposed results.

  12. Global robust exponential stability for interval neural networks with delay

    International Nuclear Information System (INIS)

    Cui Shihua; Zhao Tao; Guo Jie

    2009-01-01

    In this paper, new sufficient conditions for globally robust exponential stability of neural networks with either constant delays or time-varying delays are given. We show the sufficient conditions for the existence, uniqueness and global robust exponential stability of the equilibrium point by employing Lyapunov stability theory and linear matrix inequality (LMI) technique. Numerical examples are given to show the approval of our results.

  13. Globally exponential stability of neural network with constant and variable delays

    International Nuclear Information System (INIS)

    Zhao Weirui; Zhang Huanshui

    2006-01-01

    This Letter presents new sufficient conditions of globally exponential stability of neural networks with delays. We show that these results generalize recently published globally exponential stability results. In particular, several different globally exponential stability conditions in the literatures which were proved using different Lyapunov functionals are generalized and unified by using the same Lyapunov functional and the technique of inequality of integral. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed neural networks. Those conditions are less restrictive than those given in the earlier references

  14. Exploring the temporal stability of global road safety statistics.

    Science.gov (United States)

    Dimitriou, Loukas; Nikolaou, Paraskevas; Antoniou, Constantinos

    2018-02-08

    Given the importance of rigorous quantitative reasoning in supporting national, regional or global road safety policies, data quality, reliability, and stability are of the upmost importance. This study focuses on macroscopic properties of road safety statistics and the temporal stability of these statistics at a global level. A thorough investigation of two years of measurements was conducted to identify any unexpected gaps that could highlight the existence of inconsistent measurements. The database used in this research includes 121 member countries of the United Nation (UN-121) with a population of at least one million (smaller country data shows higher instability) and includes road safety and socioeconomic variables collected from a number of international databases (e.g. WHO and World Bank) for the years 2010 and 2013. For the fulfillment of the earlier stated goal, a number of data visualization and exploratory analyses (Hierarchical Clustering and Principal Component Analysis) were conducted. Furthermore, in order to provide a richer analysis of the data, we developed and compared the specification of a number of Structural Equation Models for the years 2010 and 2013. Different scenarios have been developed, with different endogenous variables (indicators of mortality rate and fatality risk) and structural forms. The findings of the current research indicate inconsistency phenomena in global statistics of different instances/years. Finally, the results of this research provide evidence on the importance of careful and systematic data collection for developing advanced statistical and econometric techniques and furthermore for developing road safety policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Global robust stability of delayed recurrent neural networks

    International Nuclear Information System (INIS)

    Cao Jinde; Huang Deshuang; Qu Yuzhong

    2005-01-01

    This paper is concerned with the global robust stability of a class of delayed interval recurrent neural networks which contain time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. A new sufficient condition is presented for the existence, uniqueness, and global robust stability of equilibria for interval neural networks with time delays by constructing Lyapunov functional and using matrix-norm inequality. An error is corrected in an earlier publication, and an example is given to show the effectiveness of the obtained results

  16. Sensitivity of ITER MHD global stability to edge pressure gradients

    International Nuclear Information System (INIS)

    Hogan, J.T.; Martynov, A.

    1994-01-01

    In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution

  17. Global exponential stability for nonautonomous cellular neural networks with delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    In this Letter, by utilizing Lyapunov functional method and Halanay inequalities, we analyze global exponential stability of nonautonomous cellular neural networks with delay. Several new sufficient conditions ensuring global exponential stability of the network are obtained. The results given here extend and improve the earlier publications. An example is given to demonstrate the effectiveness of the obtained results

  18. Topics in stability and transport in tokamaks: Dynamic transition to second stability with auxiliary heating; stability of global Alfven waves in an ignited plasma

    International Nuclear Information System (INIS)

    Fu, G.

    1988-01-01

    The problem of access to the high-beta ballooning second-stability regime by means of auxiliary heating and the problem of the stability of global-shear Alfven waves in an ignited tokamak plasma are theoretically investigated. These two problems are related to the confinement of both the bulk plasma as well as the fusion-product alpha particles an dare fundamentally important to the operation of ignited tokamak plasma. First, a model that incorporates both transport and ballooning mode stability was developed in order to estimate the auxiliary heating power required for tokamak plasma to evolve in time self-consistently into a high-beta, globally self-stabilized equilibrium. The critical heating power needed for access to second stability is found to be proportional to the square root of the anomalous diffusivity induced by the ballooning instability. Next, the full effects of toroidicity are retained in a theoretical description of global-type-shear Alfven modes whose stability can be modified by the fusion-product alpha particles that will present in an ignited tokamak plasma. Toroidicity is found to induce mode coupling and to stabilize the so-called Global Alfven Eigenmodes (GAE)

  19. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach

    International Nuclear Information System (INIS)

    Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    In this paper, global asymptotic stability is discussed for neural networks with time-varying delay. Several new criteria in matrix inequality form are given to ascertain the uniqueness and global asymptotic stability of equilibrium point for neural networks with time-varying delay based on Lyapunov method and Linear Matrix Inequality (LMI) technique. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using recently developed interior-point algorithm. In addition, the proposed results generalize and improve previous works. The obtained criteria also combine two existing conditions into one generalized condition in matrix form. An illustrative example is also given to demonstrate the effectiveness of the proposed results

  20. Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    The convergence dynamical behaviors of Cohen-Grossberg neural network with continuously distributed delays are discussed. By using Brouwer's fixed point theorem, matrix theory and analysis techniques such as Gronwall inequality, some new sufficient conditions guaranteeing the existence, uniqueness of an equilibrium point and its global asymptotic stability are obtained. An example is given to illustrate the theoretical results

  1. Novel global robust stability criteria for interval neural networks with multiple time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Lam, James; Ho, Daniel W.C.

    2005-01-01

    This Letter is concerned with the problem of robust stability analysis for interval neural networks with multiple time-varying delays and parameter uncertainties. The parameter uncertainties are assumed to be bounded in given compact sets and the activation functions are supposed to be bounded and globally Lipschitz continuous. A sufficient condition is obtained by means of Lyapunov functionals, which guarantees the existence, uniqueness and global asymptotic stability of the delayed neural network for all admissible uncertainties. This condition is in terms of a linear matrix inequality (LMI), which can be easily checked by using recently developed algorithms in solving LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method

  2. Global Asymptotic Stability of Switched Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu

    2015-01-01

    Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.

  3. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  4. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  5. Stability analysis for cellular neural networks with variable delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    Some sufficient conditions for the global exponential stability of cellular neural networks with variable delay are obtained by means of a method based on delay differential inequality. The method, which does not make use of Lyapunov functionals, is simple and effective for the stability analysis of neural networks with delay. Some previously established results in the literature are shown to be special cases of the presented result

  6. Stability and Global Hopf Bifurcation Analysis on a Ratio-Dependent Predator-Prey Model with Two Time Delays

    Directory of Open Access Journals (Sweden)

    Huitao Zhao

    2013-01-01

    Full Text Available A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998 for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.

  7. Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties.

    Science.gov (United States)

    Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E

    2018-07-01

    In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Novel results for global robust stability of delayed neural networks

    International Nuclear Information System (INIS)

    Yucel, Eylem; Arik, Sabri

    2009-01-01

    This paper investigates the global robust convergence properties of continuous-time neural networks with discrete time delays. By employing suitable Lyapunov functionals, some sufficient conditions for the existence, uniqueness and global robust asymptotic stability of the equilibrium point are derived. The conditions can be easily verified as they can be expressed in terms of the network parameters only. Some numerical examples are also given to compare our results with previous robust stability results derived in the literature.

  9. THE ROLE OF THE INTERNATIONAL MONETARY FUND IN PROMOTING GLOBAL ECONOMIC STABILITY

    Directory of Open Access Journals (Sweden)

    Alina HAGIU

    2017-12-01

    Full Text Available This paper presents the role that the International Monetary Fund performs in promoting global economic stability. Global economic and financial stability plays a key role in the financial system and the economy as a whole. The increase in the importance of the concept of financial stability by supervisors at both European and global level was concretized by defining a framework for the operationalization of macroprudential policy, together with the establishment of coordination bodies in this field, thus recognizing its role in the mix of established economic policies such as monetary, fiscal or competitive policy.

  10. Global marginal stability of TAEs in the presence of fast ions

    International Nuclear Information System (INIS)

    Villard, L.; Brunner, S.; Vaclavik, J.

    1994-09-01

    The global stability of toroidicity-induced Alfven eigenmodes (TAEs) in the presence of fast ions in realistic tokamak fusion-grade plasmas is analyzed with a global, perturbative approach. Volume averaged fast particle betas for marginal stability are obtained and analyzed for a wide range of plasma parameters such as the fast ion radial density profile width, the ratio of birth velocity to the Alfven velocity on axis and the bulk plasma beta. The different stability behaviour of two types of TAEs ('internal' or 'external') is evidenced. (author) 19 figs., 22 refs

  11. An input-to-state stability approach to verify almost global stability of a synchronous-machine-infinite-bus system.

    Science.gov (United States)

    Schiffer, Johannes; Efimov, Denis; Ortega, Romeo; Barabanov, Nikita

    2017-08-13

    Conditions for almost global stability of an operating point of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. The analysis is conducted by employing the recently proposed concept of input-to-state stability (ISS)-Leonov functions, which is an extension of the powerful cell structure principle developed by Leonov and Noldus to the ISS framework. Compared with the original ideas of Leonov and Noldus, the ISS-Leonov approach has the advantage of providing additional robustness guarantees. The efficiency of the derived sufficient conditions is illustrated via numerical experiments.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  12. Global exponential stability of fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qianhong; Luo Wei

    2009-01-01

    In this paper, a class of fuzzy bidirectional associated memory (BAM) neural networks with time-varying delays are studied. Employing fixed point theorem, matrix theory and inequality analysis, some sufficient conditions are established for the existence, uniqueness and global exponential stability of equilibrium point. The sufficient conditions are easy to verify at pattern recognition and automatic control. Finally, an example is given to show feasibility and effectiveness of our results.

  13. Stabilizing greenhouse gases. Global and regional consequences

    International Nuclear Information System (INIS)

    Alcamo, J.; Krol, M.; Leemans, R.

    1995-01-01

    This paper assesses the environmental consequences of two targets for CO 2 stabilization: 350 ppm by the year 2150 (367 ppm by 2100), and 450 ppm by 2100. As a tool for this investigation we use the IMAGE 2 integrated model of climate change. It was found that these targets lead to much lower regional impacts on crop productivity, natural vegetation, and sea level rise as compared to the baseline case. Nevertheless some negative impacts do occur, and to further reduce these impacts would require more stringent stabilization targets. It was also found that to achieve these stabilization targets in the atmosphere, global emissions should not substantially increase at any time in the future, and eventually they must be significantly reduced. 8 figs., 1 tab., 7 refs., 1 appendix

  14. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    Science.gov (United States)

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  15. Global Stability of Complex-Valued Genetic Regulatory Networks with Delays on Time Scales

    Directory of Open Access Journals (Sweden)

    Wang Yajing

    2016-01-01

    Full Text Available In this paper, the global exponential stability of complex-valued genetic regulatory networks with delays is investigated. Besides presenting conditions guaranteeing the existence of a unique equilibrium pattern, its global exponential stability is discussed. Some numerical examples for different time scales.

  16. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  17. Global asymptotic stability of delayed Cohen-Grossberg neural networks

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results

  18. Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case

    Science.gov (United States)

    Raja, R.; Marshal Anthoni, S.

    2011-02-01

    This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.

  19. Global robust stability of neural networks with multiple discrete delays and distributed delays

    International Nuclear Information System (INIS)

    Gao Ming; Cui Baotong

    2009-01-01

    The problem of global robust stability is investigated for a class of uncertain neural networks with both multiple discrete time-varying delays and distributed time-varying delays. The uncertainties are assumed to be of norm-bounded form and the activation functions are supposed to be bounded and globally Lipschitz continuous. Based on the Lyapunov stability theory and linear matrix inequality technique, some robust stability conditions guaranteeing the global robust convergence of the equilibrium point are derived. The proposed LMI-based criteria are computationally efficient as they can be easily checked by using recently developed algorithms in solving LMIs. Two examples are given to show the effectiveness of the proposed results.

  20. DESCRIBING FUNCTION METHOD FOR PI-FUZZY CONTROLLED SYSTEMS STABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Stefan PREITL

    2004-12-01

    Full Text Available The paper proposes a global stability analysis method dedicated to fuzzy control systems containing Mamdani PI-fuzzy controllers with output integration to control SISO linear / linearized plants. The method is expressed in terms of relatively simple steps, and it is based on: the generalization of the describing function method for the considered fuzzy control systems to the MIMO case, the approximation of the describing functions by applying the least squares method. The method is applied to the stability analysis of a class of PI-fuzzy controlled servo-systems, and validated by considering a case study.

  1. Self-stability analysis of MHTGRs: A shifted-ectropy based approach

    International Nuclear Information System (INIS)

    Dong Zhe

    2012-01-01

    Highlights: ► In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. ► A shifted-ectropy method for self-stability analysis of general thermodynamic systems is established. ► Then it is proved theoretically that the equilibriums of the MHTGR are globally asymptotically stable. ► Numerical verification results are consistent with the theoretical result. - Abstract: Because of the strong inherent safety, the modular high temperature gas-cooled nuclear reactor (MHTGR) has been seen as the chosen technology for the next generation of nuclear power plants (NPPs). Self-stability of a nuclear reactor, which is the ability that the reactor state can converge to an equilibrium point without control input, has great meaning in designing control and operation strategies for the NPPs based on MHTGR technology. In this paper, self-stability of the MHTGR is analyzed from a physical viewpoint. A shifted-ectropy method for analyzing the stability of the equilibriums of general thermodynamic systems is firstly established. Based upon this approach, it is proved theoretically that the equilibriums of the MHTGR dynamics are globally asymptotically stable. Numerical simulation results, which illustrate the MHTGR self-stability feature directly, are consistent with the theoretical result.

  2. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    Science.gov (United States)

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Finite-time analysis of global projective synchronization on coloured ...

    Indian Academy of Sciences (India)

    A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...

  4. Global temperature stability by rule induction: An interdisciplinary bridge

    International Nuclear Information System (INIS)

    Gunn, J.D.; Grzymala-Busse, J.W.

    1994-01-01

    Rules incorporating influences on global temperature, an estimate of radiation balance, were induced from astronomical, geophysical, and anthropogenic variables. During periods of intermediate global temperatures (generally like the present century), the influences assume canceling roles; influences cancel the effects of extreme states potentially imposed by other influences because they are, in aggregate, most likely to be assuming opposite values. This imparts an overall stability to the global temperature. To achieve cold or hot global temperature, influences assume reinforcing roles. CO 2 is an active influence on global temperature. By virtue of its constancy in the atmosphere, it can be expected to sponsor frequent hot years in combination with the other influences as they cycle through their periods. If measures were implemented to maintain warm or cool global temperatures, it could retain the status quo of present global agricultural regions. They are probably more productive than hot world regions would be because of narrow storm tracks

  5. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    Science.gov (United States)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  6. Global Exponential Stability of Periodic Oscillation for Nonautonomous BAM Neural Networks with Distributed Delay

    Directory of Open Access Journals (Sweden)

    Hongli Liu

    2009-01-01

    Full Text Available We derive a new criterion for checking the global stability of periodic oscillation of bidirectional associative memory (BAM neural networks with periodic coefficients and distributed delay, and find that the criterion relies on the Lipschitz constants of the signal transmission functions, weights of the neural network, and delay kernels. The proposed model transforms the original interacting network into matrix analysis problem which is easy to check, thereby significantly reducing the computational complexity and making analysis of periodic oscillation for even large-scale networks.

  7. BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2016-01-01

    We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.

  8. BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack

    KAUST Repository

    Zhang, Wei

    2016-04-04

    We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.

  9. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  10. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.

    Science.gov (United States)

    Beretta, E; Capasso, V; Rinaldi, F

    1988-01-01

    The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.

  11. Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse

    International Nuclear Information System (INIS)

    Huang Zaitang; Luo Xiaoshu; Yang Qigui

    2007-01-01

    Many systems existing in physics, chemistry, biology, engineering and information science can be characterized by impulsive dynamics caused by abrupt jumps at certain instants during the process. These complex dynamical behaviors can be model by impulsive differential system or impulsive neural networks. This paper formulates and studies a new model of impulsive bidirectional associative memory (BAM) networks with finite distributed delays. Several fundamental issues, such as global asymptotic stability and existence and uniqueness of such BAM neural networks with impulse and distributed delays, are established

  12. Novel global robust stability criterion for neural networks with delay

    International Nuclear Information System (INIS)

    Singh, Vimal

    2009-01-01

    A novel criterion for the global robust stability of Hopfield-type interval neural networks with delay is presented. An example illustrating the improvement of the present criterion over several recently reported criteria is given.

  13. On the stability of evolution equations | Egwurube | Global Journal of ...

    African Journals Online (AJOL)

    accretive operator is considered and conditions which guarantee asymptotic stability of its solution in a dense subset of the space are given. Global Jouranl of Mathematical Sciences Vol. 6 (1) 2007: pp. 27-30 ...

  14. Stability and change in political conservatism following the global financial crisis.

    Science.gov (United States)

    Milojev, Petar; Greaves, Lara; Osborne, Danny; Sibley, Chris G

    2015-01-01

    The current study analyzes data from a national probability panel sample of New Zealanders (N = 5,091) to examine stability and change in political orientation over four consecutive yearly assessments (2009-2012) following the 2007/2008 global financial crisis. Bayesian Latent Growth Modeling identified systematic variation in the growth trajectory of conservatism that was predicted by age and socio-economic status. Younger people (ages 25-45) did not change in their political orientation. Older people, however, became more conservative over time. Likewise, people with lower socio-economic status showed a marked increase in political conservatism. In addition, tests of rank-order stability showed that age had a cubic relationship with the stability of political orientation over our four annual assessments. Our findings provide strong support for System Justification Theory by showing that increases in conservatism in the wake of the recent global financial crisis occurred primarily among the poorest and most disadvantaged.

  15. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  16. Stability Analysis Method for Rock Slope with an Irregular Shear Plane Based on Interface Model

    Directory of Open Access Journals (Sweden)

    Changqing Qi

    2018-01-01

    Full Text Available Landslide developed in rock mass usually has irregular shear plane. An approach for calculating distributed factor of safety of the irregular shear plane was put forward in this paper. The presented method can obtain not only the detailed stability status at any grid node of a complex shear plane but also the global safety of the slope. Thus, it is helpful to thoroughly understand the mechanism of slope failure. Comparing with the result obtained through the limit equilibrium method, the presented method was proved to be more accurate and suitable for stability analysis of rock slope with a thin shear plane. The stability of a potentially unstable rock slope was analyzed based on the presented method at the end of this paper. The detailed local stability, global stability, and the potential failure mechanism were provided.

  17. Global Analysis of a Planetary Gear Train

    Directory of Open Access Journals (Sweden)

    Tongjie Li

    2014-01-01

    Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.

  18. Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    Global asymptotic stability of Cohen-Grossberg neural networks with constant and variable delays is studied. Some sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence by using different Lyapunov functionals. Our criteria represent an extension of the existing results in literatures. A comparison between our results and the previous results admits that our results establish a new set of stability criteria for delayed Cohen-Grossberg neural networks. Those conditions are less restrictive than those given in the earlier reference

  19. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  20. Global stabilization of linear continuous time-varying systems with bounded controls

    International Nuclear Information System (INIS)

    Phat, V.N.

    2004-08-01

    This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)

  1. The existence and global exponential stability of a periodic solution of a class of delay differential equations

    International Nuclear Information System (INIS)

    Tang, X H; Zou, Xingfu

    2009-01-01

    By employing Schauder's fixed point theorem and a non-Liapunov method (matrix theory, inequality analysis), we obtain some new criteria that ensure existence and global exponential stability of a periodic solution to a class of functional differential equations. Applying these criteria to a cellular neural network with time delays (delayed cellular neural network, DCNN) under a periodic environment leads to some new results that improve and generalize many existing ones we know on this topic. These results are of great significance in designs and applications of globally stable periodic DCNNs

  2. Stability and Scalability of the CMS Global Pool: Pushing HTCondor and GlideinWMS to New Limits

    Energy Technology Data Exchange (ETDEWEB)

    Balcas, J. [Caltech; Bockelman, B. [Nebraska U.; Hufnagel, D. [Fermilab; Hurtado Anampa, K. [Notre Dame U.; Aftab Khan, F. [NCP, Islamabad; Larson, K. [Fermilab; Letts, J. [UC, San Diego; Marra da Silva, J. [Sao Paulo, IFT; Mascheroni, M. [Fermilab; Mason, D. [Fermilab; Perez-Calero Yzquierdo, A. [Madrid, CIEMAT; Tiradani, A. [Fermilab

    2017-11-22

    The CMS Global Pool, based on HTCondor and glideinWMS, is the main computing resource provisioning system for all CMS workflows, including analysis, Monte Carlo production, and detector data reprocessing activities. The total resources at Tier-1 and Tier-2 grid sites pledged to CMS exceed 100,000 CPU cores, while another 50,000 to 100,000 CPU cores are available opportunistically, pushing the needs of the Global Pool to higher scales each year. These resources are becoming more diverse in their accessibility and configuration over time. Furthermore, the challenge of stably running at higher and higher scales while introducing new modes of operation such as multi-core pilots, as well as the chaotic nature of physics analysis workflows, places huge strains on the submission infrastructure. This paper details some of the most important challenges to scalability and stability that the CMS Global Pool has faced since the beginning of the LHC Run II and how they were overcome.

  3. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    International Nuclear Information System (INIS)

    Liu Haifei; Wang Li

    2006-01-01

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory

  4. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haifei [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: hfliu80@126.com; Wang Li [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)

    2006-09-15

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory.

  5. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A new criterion for global robust stability of interval neural networks with discrete time delays

    International Nuclear Information System (INIS)

    Li Chuandong; Chen Jinyu; Huang Tingwen

    2007-01-01

    This paper further studies global robust stability of a class of interval neural networks with discrete time delays. By introducing an equivalent transformation of interval matrices, a new criterion on global robust stability is established. In comparison with the results reported in the literature, the proposed approach leads to results with less restrictive conditions. Numerical examples are also worked through to illustrate our results

  7. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    Science.gov (United States)

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  8. Globally Asymptotic Stability of Stochastic Nonlinear Systems by the Output Feedback

    Directory of Open Access Journals (Sweden)

    Wenwen Cheng

    2015-01-01

    the traditional mathematical induction method. Indeed, we develop a new method to study the globally asymptotic stability by introducing a series of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.

  9. Stability Analysis of Receiver ISB for BDS/GPS

    Science.gov (United States)

    Zhang, H.; Hao, J. M.; Tian, Y. G.; Yu, H. L.; Zhou, Y. L.

    2017-07-01

    Stability analysis of receiver ISB (Inter-System Bias) is essential for understanding the feature of ISB as well as the ISB modeling and prediction. In order to analyze the long-term stability of ISB, the data from MGEX (Multi-GNSS Experiment) covering 3 weeks, which are from 2014, 2015 and 2016 respectively, are processed with the precise satellite clock and orbit products provided by Wuhan University and GeoForschungsZentrum (GFZ). Using the ISB calculated by BDS (BeiDou Navigation Satellite System)/GPS (Global Positioning System) combined PPP (Precise Point Positioning), the daily stability and weekly stability of ISB are investigated. The experimental results show that the diurnal variation of ISB is stable, and the average of daily standard deviation is about 0.5 ns. The weekly averages and standard deviations of ISB vary greatly in different years. The weekly averages of ISB are relevant to receiver types. There is a system bias between ISB calculated from the precise products provided by Wuhan University and GFZ. In addition, the system bias of the weekly average ISB of different stations is consistent with each other.

  10. Semi-Global Practical Stabilization and Disturbance Adaptation for an Underactuated Ship

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    2001-04-01

    Full Text Available We consider the problem of stabilizing the position and orientation of a ship to constant desired values, when the ship has only two independent controls and also the ship is subject to an environmental force of unknown magnitude. We propose a time-varying feedback control law and a disturbance adaptation law, and show that this provides semi-global practical asymptotic stability. The control and adaptation laws are derived using a combined integrator backstepping and averaging approach. Simulation results are presented.

  11. Tracking performance and global stability guaranteed neural control of uncertain hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Tao Teng

    2016-02-01

    Full Text Available In this article, a global adaptive neural dynamic surface control with predefined tracking performance is developed for a class of hypersonic flight vehicles, whose accurate dynamics is hard to obtain. The control scheme developed in this paper overcomes the limitations of neural approximation region by employing a switching mechanism which incorporates an additional robust controller outside the neural approximation region to pull the transient state variables back when they overstep the neural approximation region, such that globally uniformly ultimately bounded stability can be guaranteed. Especially, the developed global adaptive neural control also improves the tracking performance by introducing an error transformation mechanism, such that both transient and steady-state performance can be shaped according to the predefined bounds. Simulation studies on the hypersonic flight vehicle validate that the designed controller has good velocity modulation and velocity stability performance.

  12. Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation

    International Nuclear Information System (INIS)

    Amjady, Nima; Ansari, Mohammad Reza

    2008-01-01

    The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)

  13. HOURLY STABILITY ANALYSIS AS THE KEY PARAMETER OF LEAN MANUFACTURING AND LOGISTICS

    Directory of Open Access Journals (Sweden)

    Petr Besta

    2015-12-01

    Full Text Available Lean manufacturing belongs to the basic philosophies originating in automotive industry. It was originally based on a number of elementary principles and methods. Companies from other industrial areas have also been gradually trying to apply these principles. This leads to the incorporation of other tools from various areas into this concept. The fundamental techniques of lean manufacturing include the hourly stability (output analysis. This method can be applied in a wide variety of manufacturing fields. The aim is a stable working worker, not a worker working rapidly and with large fluctuations. Speed and sudden changes mean inaccuracy, poor quality and problems to the manufacturing companies. The research has also carried out the hourly stability analysis in a company manufacturing components for a variety of global car manufacturers. The objective of this article is to evaluate the research of hourly stability for the selected workplaces.

  14. Global Exponential Stability of Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2009-01-01

    Full Text Available Based on the theory of calculus on time scales, the homeomorphism theory, Lyapunov functional method, and some analysis techniques, sufficient conditions are obtained for the existence, uniqueness, and global exponential stability of the equilibrium point of Cohen-Grossberg bidirectional associative memory (BAM neural networks with distributed delays and impulses on time scales. This is the first time applying the time-scale calculus theory to unify the discrete-time and continuous-time Cohen-Grossberg BAM neural network with impulses under the same framework.

  15. Globally exponential stability condition of a class of neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liao, T.-L.; Yan, J.-J.; Cheng, C.-J.; Hwang, C.-C.

    2005-01-01

    In this Letter, the globally exponential stability for a class of neural networks including Hopfield neural networks and cellular neural networks with time-varying delays is investigated. Based on the Lyapunov stability method, a novel and less conservative exponential stability condition is derived. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Furthermore, the exponential stability degree is more easily assigned than those reported in the literature. Some examples are given to demonstrate validity and excellence of the presented stability condition herein

  16. Stability analysis of delayed Cohen-Grossberg BAM neural networks with impulses via nonsmooth analysis

    International Nuclear Information System (INIS)

    Wen Zhen; Sun Jitao

    2009-01-01

    In this paper, we investigate the existence and uniqueness of equilibrium point for delayed Cohen-Grossberg bidirectional associative memory (BAM) neural networks with impulses, based on nonsmooth analysis method. And we give the criteria of global exponential stability of the unique equilibrium point for the delayed BAM neural networks with impulses using Lyapunov method. The new sufficient condition generalizes and improves the previously known results. Finally, we present examples to illustrate that our results are effective.

  17. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    International Nuclear Information System (INIS)

    Wan Li; Zhou Qinghua

    2007-01-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established

  18. Global exponential stability of BAM neural networks with time-varying delays and diffusion terms

    Science.gov (United States)

    Wan, Li; Zhou, Qinghua

    2007-11-01

    The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.

  19. Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2004-01-01

    Based on the Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique, some delay-dependent criteria for interval neural networks (IDNN) with multiple time-varying delays are derived to guarantee global robust asymptotic stability. The main results are generalizations of some recent results reported in the literature. Numerical example is also given to show the effectiveness of our results

  20. Globally asymptotically stable analysis in a discrete time eco-epidemiological system

    International Nuclear Information System (INIS)

    Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi

    2017-01-01

    Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.

  1. Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Fear

    Science.gov (United States)

    Panday, Pijush; Pal, Nikhil; Samanta, Sudip; Chattopadhyay, Joydev

    In the present paper, we investigate the impact of fear in a tri-trophic food chain model. We propose a three-species food chain model, where the growth rate of middle predator is reduced due to the cost of fear of top predator, and the growth rate of prey is suppressed due to the cost of fear of middle predator. Mathematical properties such as equilibrium analysis, stability analysis, bifurcation analysis and persistence have been investigated. We also describe the global stability analysis of the equilibrium points. Our numerical simulations reveal that cost of fear in basal prey may exhibit bistability by producing unstable limit cycles, however, fear in middle predator can replace unstable limit cycles by a stable limit cycle or a stable interior equilibrium. We observe that fear can stabilize the system from chaos to stable focus through the period-halving phenomenon. We conclude that chaotic dynamics can be controlled by the fear factors. We apply basic tools of nonlinear dynamics such as Poincaré section and maximum Lyapunov exponent to identify the chaotic behavior of the system.

  2. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility

    KAUST Repository

    Korobeinikov, Andrei; Melnik, Andrey V.

    2013-01-01

    We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.

  3. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    Science.gov (United States)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  4. Global exponential stability and periodicity of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo; Lu Linji

    2009-01-01

    In this paper, global exponential stability and periodicity of a class of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions are studied by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential convergence to 0 of the difference between any two solutions of the original neural networks, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Secondly, we prove periodicity. Sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the equilibrium and periodic solution are given. These conditions are easy to verify and our results play an important role in the design and application of globally exponentially stable neural circuits and periodic oscillatory neural circuits.

  5. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  6. Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    International Nuclear Information System (INIS)

    Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui

    2007-01-01

    This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition

  7. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  8. Existence and global exponential stability of periodic solution of CNNs with impulses

    International Nuclear Information System (INIS)

    Li Yongkun; Xing Zhiwei

    2007-01-01

    Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of cellular neural networks with variable time delays and impulses by using Mawhin's continuation theorem of coincidence degree and by means of a method based on delay differential inequality

  9. Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Song Qiankun

    2008-01-01

    In this paper, the global exponential periodicity and stability of recurrent neural networks with time-varying delays are investigated by applying the idea of vector Lyapunov function, M-matrix theory and inequality technique. We assume neither the global Lipschitz conditions on these activation functions nor the differentiability on these time-varying delays, which were needed in other papers. Several novel criteria are found to ascertain the existence, uniqueness and global exponential stability of periodic solution for recurrent neural network with time-varying delays. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. Some previous results are improved and generalized, and an example is given to show the effectiveness of our method

  10. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  11. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  12. Existence and global exponential stability of periodic solution of CNNs with impulses

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongkun [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China); Xing Zhiwei [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China)

    2007-08-15

    Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of cellular neural networks with variable time delays and impulses by using Mawhin's continuation theorem of coincidence degree and by means of a method based on delay differential inequality.

  13. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.

    Science.gov (United States)

    Huang, Haiying; Du, Qiaosheng; Kang, Xibing

    2013-11-01

    In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.

  14. Sharp conditions for global stability of Lotka-Volterra systems with distributed delays

    Science.gov (United States)

    Faria, Teresa

    We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.

  15. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    Science.gov (United States)

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  17. Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Xiaohu; Xu Daoyi

    2009-01-01

    In this paper, the global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms is considered. By establishing an integro-differential inequality with impulsive initial condition and using the properties of M-cone and eigenspace of the spectral radius of nonnegative matrices, several new sufficient conditions are obtained to ensure the global exponential stability of the equilibrium point for fuzzy cellular neural networks with delays and reaction-diffusion terms. These results extend and improve the earlier publications. Two examples are given to illustrate the efficiency of the obtained results.

  18. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  19. Global stability of an SEIR epidemic model with constant immigration

    Energy Technology Data Exchange (ETDEWEB)

    Li Guihua [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Faculty of Life Science, Southwest China Normal University, Chongqing 400715 (China) and Department of Mathematics, Southwest China Normal University, Chongqing 400715 (China) and Department of Mathematics, North University of China, Taiyuan Shanxi 030051 (China)]. E-mail: liguihua@nuc.edu.cn; Wang Wendi [Department of Mathematics, Southwest China Normal University, Chongqing 400715 (China); Jin Zhen [Department of Mathematics, North University of China, Taiyuan Shanxi 030051 (China)

    2006-11-15

    An SEIR epidemic model with the infectious force in the latent (exposed), infected and recovered period is studied. It is assumed that susceptible and exposed individuals have constant immigration rates. The model exhibits a unique endemic state if the fraction p of infectious immigrants is positive. If the basic reproduction number R is greater than 1, sufficient conditions for the global stability of the endemic equilibrium are obtained by the compound matrix theory.

  20. Global stability of an SEIR epidemic model with constant immigration

    International Nuclear Information System (INIS)

    Li Guihua; Wang Wendi; Jin Zhen

    2006-01-01

    An SEIR epidemic model with the infectious force in the latent (exposed), infected and recovered period is studied. It is assumed that susceptible and exposed individuals have constant immigration rates. The model exhibits a unique endemic state if the fraction p of infectious immigrants is positive. If the basic reproduction number R is greater than 1, sufficient conditions for the global stability of the endemic equilibrium are obtained by the compound matrix theory

  1. Global stability of phase lock near a chaotic crisis in the rf-biased Josephson junction

    International Nuclear Information System (INIS)

    Kautz, R.L.

    1987-01-01

    The global stability of phase lock in the rf-biased Josephson junction is studied through digital simulations. Global stability is determined by calculating the lifetime of the phase-locked state in the presence of thermal noise. This lifetime, the mean time required for thermal noise to induce a 2π phase slip, increases exponentially with inverse temperature in the limit of low temperatures, and the low-temperature asymptote can be parametrized in terms of an activation energy E-script and an attempt time tau 0 . The activation energy is a useful measure of global stability for both periodic and chaotic phase-locked states. The behavior of E-script and tau 0 is studied over a range of critical-current densities which take the system from a region of harmonic motion through a period-doubling cascade and into a region of phase-locked chaotic behavior which is ended by a chaotic crisis. At the crisis point, the activation energy goes to zero and the attempt time goes to infinity. The results are used to determine the optimum critical-current density for series-array voltage standards

  2. Impulsive effects on global asymptotic stability of delay BAM neural networks

    International Nuclear Information System (INIS)

    Chen Jun; Cui Baotong

    2008-01-01

    Based on the proper Lyapunov functions and the Jacobsthal liner inequality, some sufficient conditions are presented in this paper for global asymptotic stability of delay bidirectional associative memory neural networks with impulses. The obtained results are independently of the delay parameters and can be easily verified. Also, some remarks and an illustrative example are given to demonstrate the effectiveness of the obtained results

  3. Aircraft nonlinear stability analysis and multidimensional stability region estimation under icing conditions

    Directory of Open Access Journals (Sweden)

    Liang QU

    2017-06-01

    Full Text Available Icing is one of the crucial factors that could pose great threat to flight safety, and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight. Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition. Firstly, the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability. Secondly, according to the correlation theory about equilibrium points and the stability region, this paper estimates the multidimensional stability region of the aircraft, based on which the stability regions before and after icing are compared. Finally, the results are confirmed by the time history analysis. The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.

  4. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo

    2008-01-01

    In this paper, the global exponential stability and periodicity for a class of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction-diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results

  5. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.

    1983-01-01

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  6. Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework

    Science.gov (United States)

    Beach, R. H.

    2015-12-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative

  7. Global exponential stability of cellular neural networks with mixed delays and impulses

    International Nuclear Information System (INIS)

    Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2007-01-01

    In this paper cellular neural networks with mixed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  8. Stability analysis of stochastic delayed cellular neural networks by LMI approach

    International Nuclear Information System (INIS)

    Zhu Wenli; Hu Jin

    2006-01-01

    Some sufficient mean square exponential stability conditions for a class of stochastic DCNN model are obtained via the LMI approach. These conditions improve and generalize some existing global asymptotic stability conditions for DCNN model

  9. Global exponential stability of BAM neural networks with delays and impulses

    International Nuclear Information System (INIS)

    Li Yongkun

    2005-01-01

    Sufficient conditions are obtained for the existence and global exponential stability of a unique equilibrium of a class of two-layer heteroassociative networks called bidirectional associative memory (BAM) networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. An illustrative example is given to demonstrate the effectiveness of the obtained results

  10. New results on global exponential stability of recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Xu Shengyuan; Chu Yuming; Lu Junwei

    2006-01-01

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples

  11. New results on global exponential stability of recurrent neural networks with time-varying delays

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shengyuan [Department of Automation, Nanjing University of Science and Technology, Nanjing 210094 (China)]. E-mail: syxu02@yahoo.com.cn; Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou, Zhejiang 313000 (China); Lu Junwei [School of Electrical and Automation Engineering, Nanjing Normal University, 78 Bancang Street, Nanjing, 210042 (China)

    2006-04-03

    This Letter provides new sufficient conditions for the existence, uniqueness and global exponential stability of the equilibrium point of recurrent neural networks with time-varying delays by employing Lyapunov functions and using the Halanay inequality. The time-varying delays are not necessarily differentiable. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. The derived stability criteria are expressed in terms of linear matrix inequalities (LMIs), which can be checked easily by resorting to recently developed algorithms solving LMIs. Furthermore, the proposed stability results are less conservative than some previous ones in the literature, which is demonstrated via some numerical examples.

  12. Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular

    NARCIS (Netherlands)

    Blanchini, Franco; Giordano, G.

    2017-01-01

    For a vast class of dynamical networks, including chemical reaction networks (CRNs) with monotonic reaction rates, the existence of a polyhedral Lyapunov function (PLF) implies structural (i.e., parameter-free) local stability. Global structural stability is ensured under the additional

  13. Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas.

    Science.gov (United States)

    Nicholls, Robert J; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A; Haigh, Ivan D; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf

    2018-05-13

    The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  14. Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas

    Science.gov (United States)

    Nicholls, Robert J.; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A.; Haigh, Ivan D.; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf

    2018-05-01

    The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  15. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  16. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    International Nuclear Information System (INIS)

    Sonone, Rupali L.; Jain, Sudhir R.

    2014-01-01

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA

  17. Enumeration and stability analysis of simple periodic orbits in β-Fermi Pasta Ulam lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sonone, Rupali L., E-mail: vaidehisonone@gmail.com; Jain, Sudhir R., E-mail: vaidehisonone@gmail.com [Department of Physics, University of Pune, Pune-411007, India and Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    We study the well-known one-dimensional problem of N particles with a nonlinear interaction. The special case of quadratic and quartic interaction potential among nearest neighbours is the β-Fermi-Pasta-Ulam model. We enumerate and classify the simple periodic orbits for this system and find the stability zones, employing Floquet theory. Such stability analysis is crucial to understand the transition of FPU lattice from recurrences to globally chaotic behavior, energy transport in lower dimensional system, dynamics of optical lattices and also its impact on shape parameter of bio-polymers such as DNA and RNA.

  18. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  19. Epidemic spreading and global stability of an SIS model with an infective vector on complex networks

    Science.gov (United States)

    Kang, Huiyan; Fu, Xinchu

    2015-10-01

    In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.

  20. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  1. A Comprehensive Strategy to Evaluate Compatible Stability of Chinese Medicine Injection and Infusion Solutions Based on Chemical Analysis and Bioactivity Assay.

    Science.gov (United States)

    Li, Jian-Ping; Liu, Yang; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Zhu, Kevin Y; Tang, Yu-Ping; Zhao, Bu-Chang; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-01-01

    Stability of traditional Chinese medicine injection (TCMI) is an important issue related with its clinical application. TCMI is composed of multi-components, therefore, when evaluating TCMI stability, several marker compounds cannot represent global components or biological activities of TCMI. Till now, when evaluating TCMI stability, method involving the global components or biological activities has not been reported. In this paper, we established a comprehensive strategy composed of three different methods to evaluate the chemical and biological stability of a typical TCMI, Danhong injection (DHI). UHPLC-TQ/MS was used to analyze the stability of marker compounds (SaA, SaB, RA, DSS, PA, CA, and SG) in DHI, UHPLC-QTOF/MS was used to analyze the stability of global components (MW 80-1000 Da) in DHI, and cell based antioxidant capability assay was used to evaluate the bioactivity of DHI. We applied this strategy to assess the compatible stability of DHI and six infusion solutions (GS, NS, GNS, FI, XI, and DGI), which were commonly used in combination with DHI in clinic. GS was the best infusion solution for DHI, and DGI was the worst one based on marker compounds analysis. Based on global components analysis, XI and DGI were the worst infusion solutions for DHI. And based on bioactivity assay, GS was the best infusion solution for DHI, and XI was the worst one. In conclusion, as evaluated by the established comprehensive strategy, GS was the best infusion solution, however, XI and DGI were the worst infusion solutions for DHI. In the compatibility of DHI and XI or DGI, salvianolic acids in DHI would be degraded, resulting in the reduction of original composition and generation of new components, and leading to the changes of biological activities. This is the essence of instability compatibility of DHI and some infusion solutions. Our study provided references for choosing the reasonable infusion solutions for DHI, which could contribute the improvement of safety

  2. Modeling and Stability Analysis of Worm Propagation in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Liping Feng

    2015-01-01

    Full Text Available An improved SIRS model considering communication radius and distributed density of nodes is proposed. The proposed model captures both the spatial and temporal dynamics of worms spread process. Using differential dynamical theories, we investigate dynamics of worm propagation to time in wireless sensor networks (WSNs. Reproductive number which determines global dynamics of worm propagation in WSNs is obtained. Equilibriums and their stabilities are also found. If reproductive number is less than one, the infected fraction of the sensor nodes disappears and if the reproduction number is greater than one, the infected fraction asymptotically stabilizes at the endemic equilibrium. Based on the reproduction number, we discuss the threshold of worm propagation about communication radius and distributed density of nodes in WSNs. Finally, numerical simulations verify the correctness of theoretical analysis.

  3. Global robust stability of delayed neural networks: Estimating upper limit of norm of delayed connection weight matrix

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    The question of estimating the upper limit of -parallel B -parallel 2 , which is a key step in some recently reported global robust stability criteria for delayed neural networks, is revisited ( B denotes the delayed connection weight matrix). Recently, Cao, Huang, and Qu have given an estimate of the upper limit of -parallel B -parallel 2 . In the present paper, an alternative estimate of the upper limit of -parallel B -parallel 2 is highlighted. It is shown that the alternative estimate may yield some new global robust stability results

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  5. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  6. Global Uniform Asymptotic Stability of a Class of Switched Linear Systems with an Infinite Number of Subsystems

    Directory of Open Access Journals (Sweden)

    L. F. Araghi

    2014-01-01

    Full Text Available Stability of switching systems with an infinite number of subsystems is important in some structure of systems, like fuzzy systems, neural networks, and so forth. Because of the relationship between stability of a set of matrices and switching systems, this paper first studies the stability of a set of matrices, then and the results are applied for stability of switching systems. Some new conditions for globally uniformly asymptotically stability (GUAS of discrete-time switched linear systems with an infinite number of subsystems are proposed. The paper considers some examples and simulation results.

  7. FINANCIAL STABILITY - A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria Vasilescu

    2012-03-01

    Full Text Available Central banks have become poles of stability and decisive factors of globalization. Financialstability represents a national issue, a public asset, that requires both an intervention of public judicious authoritiesand their cooperation with private sector. Given the integration of financial markets during the last decades in bothdeveloped and developing countries, as direct result of globalization, liberalization and deregulation processes, andthe high degree of innovation they felt over time, a shift in market participants’ perceptions on the importance ofstable financial systems in economic growth arose. The global context characterized by the interdependence ofmarkets and institutions, emergence of new techniques and instruments, increasing international capital flowsstressed the new meanings of the analysis of financial stability.

  8. Wide area stability analysis and control of interconnected power systems with HVDC and FACTS devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong

    2012-11-01

    In order to damp low-frequency oscillations and improve the overall stability of large-scale interconnected power systems, this book investigates the wide-area stability analysis and control methods from different perspectives. The flexible and fast control capability of high-voltage (FACTS) is investigated in detail to implement a wide-area measurement based damping control. A sequential and global mixed optimization method is proposed to simultaneously optimize local and wide area damping controllers. A wide-area robust coordination method is presented to coordinate multiple wide-area damping controllers (WADC). A delay-dependent robust design method is also proposed to handle time-varying delays commonly existing in wide-area signal communication. A closed-loop hardware experiment is used to validate the damping performance. The research activities of this book include power system stability analysis and control, wide-area damping control as well as HVDC and FACTS technologies.

  9. Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays.

    Science.gov (United States)

    Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming

    2012-01-01

    In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Stability analysis and stabilization strategies for linear supply chains

    Science.gov (United States)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  11. Global Stability of an Eco-Epidemiological Model with Time Delay and Saturation Incidence

    Directory of Open Access Journals (Sweden)

    Shuxue Mao

    2011-01-01

    Full Text Available We investigate a delayed eco-epidemiological model with disease in predator and saturation incidence. First, by comparison arguments, the permanence of the model is discussed. Then, we study the local stability of each equilibrium of the model by analyzing the corresponding characteristic equations and find that Hopf bifurcation occurs when the delay τ passes through a sequence of critical values. Next, by means of an iteration technique, sufficient conditions are derived for the global stability of the disease-free planar equilibrium and the positive equilibrium. Numerical examples are carried out to illustrate the analytical results.

  12. Analysis of stability and Hopf bifurcation for a delayed logistic equation

    International Nuclear Information System (INIS)

    Sun Chengjun; Han Maoan; Lin Yiping

    2007-01-01

    The dynamics of a logistic equation with discrete delay are investigated, together with the local and global stability of the equilibria. In particular, the conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. Explicit algorithm for determining the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are derived by using the theory of normal form and center manifold [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.]. Global existence of periodic solutions is also established by using a global Hopf bifurcation result of Wu [Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 350:1998;4799-38.

  13. LAPUR5 BWR stability analysis in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Kunlung Wu; Chunkuan Shih; Wang, J.R.; Kao, L.S.

    2005-01-01

    Full text of publication follows: Unstable oscillation of a nuclear power reactor core is one of the main reasons that causes minor core damage. Stability analysis needs to be performed to predict the potential problem as early as possible and to prevent core instability events from happening. Nuclear Regulatory Commission (NRC) requests all BWR licensees to examine each core reload and to impose operating limitations, as appropriate, to ensure compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions exceeding specified acceptable fuel design limits are either not possible or can be reliably and readily detected and suppressed. Therefore, the core instability is directly related to the fuel design limits. The core and channel DR (decay ratio) calculation are commonly performed to determine system's stability when new fuel designs are introduced in the core. In order to establish the independent analysis technology for BWR licensees and verifications, the Institute of Nuclear Energy Research (INER) has obtained agreement from NRC and implemented the 'Methodology and Procedure for Calculation of Core and Channel Decay Ratios with LAPUR', which was developed by the IBERINCO in 2001. LAPUR5 uses a multi-nodal description of the neutron dynamics, together with a distributed parameter model of the core thermal hydrodynamics to produce a space-dependent representation of the dynamics of a BWR in the frequency domain for small perturbations around a steady state condition. From the output of LAPUR5, the following results are obtained: global core decay ratio, out-of phase core decay ratio, and channel decay ratio. They are key parameters in the determination of BWR core stability

  14. Global exponential stability of cellular neural networks with continuously distributed delays and impulses

    International Nuclear Information System (INIS)

    Wang Yixuan; Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2006-01-01

    In this Letter cellular neural networks with continuously distributed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality techniques. The results of this Letter are new and they complement previously known results

  15. Periodic oscillation and exponential stability of delayed CNNs

    Science.gov (United States)

    Cao, Jinde

    2000-05-01

    Both the global exponential stability and the periodic oscillation of a class of delayed cellular neural networks (DCNNs) is further studied in this Letter. By applying some new analysis techniques and constructing suitable Lyapunov functionals, some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic oscillatory solution of DCNNs. These conditions can be applied to design globally exponentially stable DCNNs and periodic oscillatory DCNNs and easily checked in practice by simple algebraic methods. These play an important role in the design and applications of DCNNs.

  16. A new criterion on the global exponential stability for cellular neural networks with multiple time-varying delays

    International Nuclear Information System (INIS)

    Jiang Haijun; Teng Zhidong

    2005-01-01

    In this Letter, based on the Lyapunov stability theorem as well as some facts about the positive definiteness and inequality of matrices, a new sufficient condition to ensure the global exponential stability of equilibrium point for autonomous delayed CNNs is obtained. This condition is less restrictive than given in the earlier references

  17. Analysis of Nonlinear Duopoly Games with Product Differentiation: Stability, Global Dynamics, and Control

    Directory of Open Access Journals (Sweden)

    S. S. Askar

    2017-01-01

    Full Text Available Many researchers have used quadratic utility function to study its influences on economic games with product differentiation. Such games include Cournot, Bertrand, and a mixed-type game called Cournot-Bertrand. Within this paper, a cubic utility function that is derived from a constant elasticity of substitution production function (CES is introduced. This cubic function is more desirable than the quadratic one besides its amenability to efficiency analysis. Based on that utility a two-dimensional Cournot duopoly game with horizontal product differentiation is modeled using a discrete time scale. Two different types of games are studied in this paper. In the first game, firms are updating their output production using the traditional bounded rationality approach. In the second game, firms adopt Puu’s mechanism to update their productions. Puu’s mechanism does not require any information about the profit function; instead it needs both firms to know their production and their profits in the past time periods. In both scenarios, an explicit form for the Nash equilibrium point is obtained under certain conditions. The stability analysis of Nash point is considered. Furthermore, some numerical simulations are carried out to confirm the chaotic behavior of Nash equilibrium point. This analysis includes bifurcation, attractor, maximum Lyapunov exponent, and sensitivity to initial conditions.

  18. A simplified spatial model for BWR stability

    International Nuclear Information System (INIS)

    Berman, Y.; Lederer, Y.; Meron, E.

    2012-01-01

    A spatial reduced order model for the study of BWR stability, based on the phenomenological model of March-Leuba et al., is presented. As one dimensional spatial dependence of the neutron flux, fuel temperature and void fraction is introduced, it is possible to describe both global and regional oscillations of the reactor power. Both linear stability analysis and numerical analysis were applied in order to describe the parameters which govern the model stability. The results were found qualitatively similar to past results. Doppler reactivity feedback was found essential for the explanation of the different regions of the flow-power stability map. (authors)

  19. Credit Rating As a Factor of Stability in the Global Capital Market

    Directory of Open Access Journals (Sweden)

    Ismail Musabegović

    2014-12-01

    Full Text Available Credit rating has an outstanding importance on the capital market. Opinions and assessments of rating agencies help us to improve growth, stability and efficiency of international and domestic markets, which now include over 80 trillion dollars of rated bonds and other securities with the fixed income. The contribution of the credit agencies to the market stability and efficiency is reflected in their ability to provide accurate, clear and reliable assessments of the solvency of participants on the financial markets. An adequate and proper risk assessment of securities contributes to stability. In order to achieve a given goal and to satisfy its purpose, the assessments should be based on a fundamental understanding of the key components of the credit risk. Also, in order to ensure a reliable framework for making investment decisions, the rating agencies are obliged to offer and to provide a wide range of securities, which are based on a global comparability of rating symbols and onthe support given by the credit rating assignment committee and by the other relevant decision making bodies. Markets for structured products could not have developed without the quality assurance provided by CRAs. When analyzing a securitization program CRAs examine legal and structural protections provided to investors. Since the globalization is an inevitable phenomenon in today’s world the importance of the credit rating becomes more noticeable. On the other hand, the rating agencies have an obligation to reanalyze their decision making models in order to contribute tothe reliability of the evaluation.

  20. Global stability of the coexistence equilibrium for a general class of models of facultative mutualism

    Czech Academy of Sciences Publication Activity Database

    Maxin, D.; Georgescu, P.; Sega, L.; Berec, Luděk

    2017-01-01

    Roč. 11, č. 1 (2017), s. 339-364 ISSN 1751-3758 Institutional support: RVO:60077344 Keywords : mutualistic interaction * global stability * Lyapunov functional Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.279, year: 2016

  1. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  2. Angle Stability Analysis for Voltage-Controlled Converters

    DEFF Research Database (Denmark)

    Lin, Hengwei; Jia, Chenxi; Guerrero, Josep M.

    2017-01-01

    a criterion to analyze the quasi-steady angle stability and the direct current (DC) side stability for VSCs. The operating limit and the angle instability mechanism are revealed, which is generally applicable to the voltage-controlled converters. During the analysis, the influence of the parameters on angle...... stability is studied. Further, the difference on instability mechanism between power electronic converters and synchronous generators are explained in detail. Finally, experiment results with corrective actions verify the analysis....

  3. Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay

    International Nuclear Information System (INIS)

    Feng Wei; Yang, Simon X.; Fu Wei; Wu Haixia

    2009-01-01

    This paper addresses the stability analysis problem for uncertain stochastic neural networks with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded, and the delay factor is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is robustly, globally, asymptotically stable in the mean square. Some stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be effectively solved by some standard numerical packages. Finally, numerical examples are provided to demonstrate the usefulness of the proposed criteria.

  4. Containment vessel stability analysis

    International Nuclear Information System (INIS)

    Harstead, G.A.; Morris, N.F.; Unsal, A.I.

    1983-01-01

    The stability analysis for a steel containment shell is presented herein. The containment is a freestanding shell consisting of a vertical cylinder with a hemispherical dome. It is stiffened by large ring stiffeners and relatively small longitudinal stiffeners. The containment vessel is subjected to both static and dynamic loads which can cause buckling. These loads must be combined prior to their use in a stability analysis. The buckling loads were computed with the aid of the ASME Code case N-284 used in conjunction with general purpose computer codes and in-house programs. The equations contained in the Code case were used to compute the knockdown factors due to shell imperfections. After these knockdown factors were applied to the critical stress states determined by freezing the maximum dynamic stresses and combining them with other static stresses, a linear bifurcation analysis was carried out with the aid of the BOSOR4 program. Since the containment shell contained large penetrations, the Code case had to be supplemented by a local buckling analysis of the shell area surrounding the largest penetration. This analysis was carried out with the aid of the NASTRAN program. Although the factor of safety against buckling obtained in this analysis was satisfactory, it is claimed that the use of the Code case knockdown factors are unduly conservative when applied to the analysis of buckling around penetrations. (orig.)

  5. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  6. Stability analysis of switched linear systems defined by graphs

    NARCIS (Netherlands)

    Athanasopoulos, N.; Lazar, M.

    2014-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,

  7. BWR stability analysis: methodology of the stability analysis and results of PSI for the NEA/NCR benchmark task

    International Nuclear Information System (INIS)

    Hennig, D.; Nechvatal, L.

    1996-09-01

    The report describes the PSI stability analysis methodology and the validation of this methodology based on the international OECD/NEA BWR stability benchmark task. In the frame of this work, the stability properties of some operation points of the NPP Ringhals 1 have been analysed and compared with the experimental results. (author) figs., tabs., 45 refs

  8. Single-shell tank interim stabilization risk analysis

    International Nuclear Information System (INIS)

    Basche, A.D.

    1998-01-01

    The purpose of the Single-Shell Tank (SST) Interim Stabilization Risk Analysis is to provide a cost and schedule risk analysis of HNF-2358, Rev. 1, Single-Shell Tank Interim Stabilization Project Plan (Project Plan) (Ross et al. 1998). The analysis compares the required cost profile by fiscal year (Section 4.2) and revised schedule completion date (Section 4.5) to the Project Plan. The analysis also evaluates the executability of the Project Plan and recommends a path forward for risk mitigation

  9. Global stability and tumor clearance conditions for a cancer chemotherapy system

    Science.gov (United States)

    Valle, Paul A.; Starkov, Konstantin E.; Coria, Luis N.

    2016-11-01

    In this paper we study the global dynamics of a cancer chemotherapy system presented by de Pillis et al. (2007). This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in R+,04 where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle's invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.

  10. Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays

    Science.gov (United States)

    Lv, Qiuyu; Liao, Xiaofeng

    2018-03-01

    In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.

  11. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  12. Exponential stability of uncertain stochastic neural networks with mixed time-delays

    International Nuclear Information System (INIS)

    Wang Zidong; Lauria, Stanislao; Fang Jian'an; Liu Xiaohui

    2007-01-01

    This paper is concerned with the global exponential stability analysis problem for a class of stochastic neural networks with mixed time-delays and parameter uncertainties. The mixed delays comprise discrete and distributed time-delays, the parameter uncertainties are norm-bounded, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. The purpose of the stability analysis problem is to derive easy-to-test criteria under which the delayed stochastic neural network is globally, robustly, exponentially stable in the mean square for all admissible parameter uncertainties. By resorting to the Lyapunov-Krasovskii stability theory and the stochastic analysis tools, sufficient stability conditions are established by using an efficient linear matrix inequality (LMI) approach. The proposed criteria can be checked readily by using recently developed numerical packages, where no tuning of parameters is required. An example is provided to demonstrate the usefulness of the proposed criteria

  13. Global Practical Stabilization and Tracking for an Underactuated Ship - A Combined Averaging and Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Kristin Y. Pettersen

    1999-10-01

    Full Text Available We solve both the global practical stabilization and tracking problem for an underactuated ship, using a combined integrator backstepping and averaging approach. Exponential convergence to an arbitrarily small neighbourhood of the origin and of the reference trajectory, respectively, is proved. Simulation results are included.

  14. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...... to improve their stability while connecting to the other MGs. Simulation results are provided to evaluate the developed models and demonstrate the effectiveness of proposed active stabilization technique....

  15. Stability of GNSS Monumentation: Analysis of Co-Located Monuments in the UNAVCO Plate Boundary Observatory

    Science.gov (United States)

    Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.

    2017-12-01

    Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single

  16. A new delay-independent condition for global robust stability of neural networks with time delays.

    Science.gov (United States)

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

    Directory of Open Access Journals (Sweden)

    Shengbin Yu

    2012-01-01

    Full Text Available We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003 1069–1075 First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.

  18. Voltage stability analysis using a modified continuation load flow ...

    African Journals Online (AJOL)

    This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...

  19. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  20. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  1. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Energy Technology Data Exchange (ETDEWEB)

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  2. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Science.gov (United States)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  3. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    International Nuclear Information System (INIS)

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  4. Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Syed Ali, M.; Balasubramaniam, P.

    2009-01-01

    In this paper, the Takagi-Sugeno (TS) fuzzy model representation is extended to the stability analysis for uncertain Bidirectional Associative Memory (BAM) neural networks with time-varying delays using linear matrix inequality (LMI) theory. A novel LMI-based stability criterion is obtained by LMI optimization algorithms to guarantee the exponential stability of uncertain BAM neural networks with time-varying delays which are represented by TS fuzzy models. Finally, the proposed stability conditions are demonstrated with numerical examples.

  5. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    Science.gov (United States)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case

  6. Global mode decomposition of supersonic impinging jet noise

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  7. Global optimization and sensitivity analysis

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1990-01-01

    A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints

  8. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  9. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    Science.gov (United States)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  10. Global stability of plasmas with helical boundary deformation and net toroidal current against n=1,2 external modes

    International Nuclear Information System (INIS)

    Ardela, A.; Cooper, W.A.

    1996-01-01

    In this paper we resume a numerical study of the global stability of plasma with helical boundary deformation and non null net toroidal current. The aim was to see whether external modes with n=1,2 (n toroidal mode number) can be stabilized at values of β inaccessible to the tokamak. L=2,3 configurations with several aspect ratios and different numbers of equilibrium field periods are considered. A large variety of toroidal current densities and different pressure profiles are taken into account. Mercier stability is also investigated. (author) 4 figs., 6 refs

  11. On exponential stability and periodic solutions of CNNs with delays

    Science.gov (United States)

    Cao, Jinde

    2000-03-01

    In this Letter, the author analyses further problems of global exponential stability and the existence of periodic solutions of cellular neural networks with delays (DCNNs). Some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic solutions of DCNNs by applying some new analysis techniques and constructing suitable Lyapunov functionals. These conditions have important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory DCNNs and are weaker than those in the earlier works [Phys. Rev. E 60 (1999) 3244], [J. Comput. Syst. Sci. 59 (1999)].

  12. Mapping the global health employment market: an analysis of global health jobs.

    Science.gov (United States)

    Keralis, Jessica M; Riggin-Pathak, Brianne L; Majeski, Theresa; Pathak, Bogdan A; Foggia, Janine; Cullinen, Kathleen M; Rajagopal, Abbhirami; West, Heidi S

    2018-02-27

    The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.

  13. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15

    Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  14. Stability Analysis for a Multi-Camera Photogrammetric System

    Directory of Open Access Journals (Sweden)

    Ayman Habib

    2014-08-01

    Full Text Available Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  15. Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Chen Ling; Zhao Hongyong

    2008-01-01

    The paper investigates the almost periodicity of shunting inhibitory cellular neural networks with delays and variable coefficients. Several sufficient conditions are established for the existence and globally exponential stability of almost periodic solutions by employing fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  16. New results for global robust stability of bidirectional associative memory neural networks with multiple time delays

    International Nuclear Information System (INIS)

    Senan, Sibel; Arik, Sabri

    2009-01-01

    This paper presents some new sufficient conditions for the global robust asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with multiple time delays. The results we obtain impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. We also give some numerical examples to demonstrate the applicability and effectiveness of our results, and compare the results with the previous robust stability results derived in the literature.

  17. Stability Analysis of the Embankment Model

    Directory of Open Access Journals (Sweden)

    G.S. Gopalakrishna

    2009-01-01

    Full Text Available In analysis of embankment model affected by dynamic force, employment of shaking table is a scientific way in assessment of earthquake behavior. This work focused on saturated loose sandy foundation and enbankment. The results generated through the pore pressure sensors indicated pore water pressure playing main role in creation of liquefaction and stability of the system, and also revealed deformation, settlement, liquefaction intensity and time stability of system in direct correlation with the strength and characteristics of soil. One of the economical methods in stabilization of soil foundation is improvement of some part soil foundation.

  18. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1990-01-01

    This document summarizes progress made on the research of high beta and second region transport and stability. In the area second stability region studies we report on an investigation of the possibility of second region access in the center of TFTR ''supershots.'' The instabilities found may coincide with experimental observation. Significant progress has been made on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies profiles were taken from the TRANSP transport analysis code which analyzes experimental data. Invoking flattening of the pressure profile on mode rational surfaces causes tearing modes to persist into the experimental range of interest. Further, the experimental observation of the modes seems to be consistent with the predictions of the MHD model. In addition, code development in several areas has proceeded

  19. Power system stability modelling, analysis and control

    CERN Document Server

    Sallam, Abdelhay A

    2015-01-01

    This book provides a comprehensive treatment of the subject from both a physical and mathematical perspective and covers a range of topics including modelling, computation of load flow in the transmission grid, stability analysis under both steady-state and disturbed conditions, and appropriate controls to enhance stability.

  20. Thermodynamic analysis of stability in iron removal from kaolin by using oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Ocampo-López

    2013-06-01

    Full Text Available The graphical representation of global stability for a system, or Pourbaix diagram, was constructed to perform a thermodynamic study of iron removal from kaolin using oxalic acid as an oxidant. To do this the free energies of formation of the oxalate complex of the system were calculated, and it was found that the more stable specie is Fe(C2O43-3, with a calculated free energy of formation of -3753.88 kcal/mol. Thermodynamic stability functions were estimated for the system as a function of pH and Eh known as potential of oxide reduction. It was built a global stability diagram for the removal system; it showed that the specie trioxalate Fe(C2O43-3 is the only oxalate in equilibrium with other compounds associated with the removal of iron in kaolin.

  1. Nolinear stability analysis of nuclear reactors : expansion methods for stability domains

    International Nuclear Information System (INIS)

    Yang, Chae Yong

    1992-02-01

    Two constructive methods for estimating asymptotic stability domains of nonlinear reactor models are developed in this study: an improved Chang and Thorp's method based on expansion of a Lyapunov function and a new method based on expansion of any positive definite function. The methods are established on the concept of stability definitions of Lyapunov itself. The first method provides a sequence of stability regions that eventually approaches the exact stability domain, but requires many expansions in order to obtain the entire stability region because the starting Lyapunov function usually corresponds to a small stability region and because most dynamic systems are stiff. The second method (new method) requires only a positive definite function and thus it is easy to come up with a starting region. From a large starting region, the entire stability region is estimated effectively after sufficient iterations. It is particularly useful for stiff systems. The methods are applied to several nonlinear reactor models known in the literature: one-temperature feedback model, two-temperature feedback model, and xenon dynamics model, and the results are compared. A reactor feedback model for a pressurized water reactor (PWR) considering fuel and moderator temperature effects is developed and the nonlinear stability regions are estimated for the various values of design parameters by using the new method. The steady-state properties of the nonlinear reactor system are analyzed via bifurcation theory. The analysis of nonlinear phenomena is carried out for the various forms of reactivity feedback coefficients that are both temperature- (or power-) independent and dependent. If one of two temperature coefficients is positive, unstable limit cycles or multiplicity of the steady-state solutions appear when the other temperature coefficient exceeds a certain critical value. As an example, even though the fuel temperature coefficient is negative, if the moderator temperature

  2. Stability of the stratifield cylindrical annulus flow. [toward a model of global atmospheric circulation

    Science.gov (United States)

    Antar, B. N.

    1980-01-01

    The linear stability analysis for the stratified flow between two rotating circular cylinders is formulated. Two approaches for the stability analysis are presented. The first approach results in an algebraic eigenvalue problem, while the second results in an initial value problem for the perturbation function. The advantages and disadvantages of both approaches are discussed and a preferable numerical solution technique is outlined.

  3. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.

    Science.gov (United States)

    Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W

    2012-02-07

    Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.

  4. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    Science.gov (United States)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  5. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    International Nuclear Information System (INIS)

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  6. Global analysis of muon decay measurements

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.; Williams, N.J.

    2005-01-01

    We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector, and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other nonstandard model interactions are comparable. The value of the Michel parameter η found in the global analysis is -0.0036±0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G F

  7. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  8. Global analysis studies and applications

    CERN Document Server

    Gliklikh, Yuri; Vershik, A

    1992-01-01

    This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm...

  9. Global exponential stability and existence of periodic solutions of CNNs with delays

    Science.gov (United States)

    Dong, Meifang

    2002-07-01

    In this Letter, we establish general sufficient conditions for global exponential stability and existence of periodic solutions of a class of cellular neural networks (CNNs) with delays. The key to proving the sufficient conditions is the construction of a new Lyapunov functional. An elementary inequality, which may be of independent interest, has been employed in the proof. Checking the sufficient conditions is often reduced to checking some algebraic relations among certain set of parameter. Our sufficient conditions recover the known results in literature as special cases. Finally, we give two examples to illustrate the usage of our main results.

  10. Frequency scanning-based stability analysis method for grid-connected inverter system

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion with conside......This paper proposes a frequency scanning-based impedance analysis for stability assessment of grid-connected inverter system, which is able to perform stability assessment without using system mathematical models and inherit the superior feature of impedance-based stability criterion...... with consideration of the inverter nonlinearities. Small current disturbance is injected into grid-connected inverter system in a particular frequency range, and the impedance is computed according to the harmonic-frequency response using Fourier analysis, and then the stability is predicted on the basis...... of the impedance stability criterion. The stability issues of grid-connected inverters with grid-current feedback and the converter-current feedback are addressed using the proposed method. The results obtained from simulation and experiments validate the effectiveness of the method. The frequency scanning...

  11. Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses

    International Nuclear Information System (INIS)

    Huang Zhenkun; Xia Yonghui

    2008-01-01

    In this paper, a class of bidirectional associative memory (BAM) networks with transmission delays and nonlinear impulses are studied. Some new sufficient conditions are established for the existence and global exponential stability of a unique equilibrium, which generalize and improve the previously known results. The sufficient conditions are easy to verify and when the impulsive jumps are linear or absent the results reduce to those of common impulsive or non-impulsive systems. Finally, an example is given to show the feasibility and effectiveness of our results

  12. Multitarget global sensitivity analysis of n-butanol combustion.

    Science.gov (United States)

    Zhou, Dingyu D Y; Davis, Michael J; Skodje, Rex T

    2013-05-02

    A model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets. The combination of species and ignition targets leads to multitarget global sensitivity analysis, which allows for a more complete mechanism validation procedure than we previously implemented. The inclusion of species sensitivity analysis allows for a direct comparison between reaction pathway analysis and global sensitivity analysis.

  13. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillps, M.W.; Todd, A.M.M.; Krishnaswami, J.; Hartley, R.

    1992-09-01

    This report describes ideal and resistive studies of high-beta plasmas and of the second stability region. Emphasis is focused on ''supershot'' plasmas in TFIR where MHD instabilities are frequently observed and which spoil their confinement properties. Substantial results are described from the analysis of these high beta poloidal plasmas. During these studies, initial pressure and safety factor profiles were obtained from the TRANSP code, which is used extensively to analyze experimental data. Resistive MBD stability studies of supershot equilibria show that finite pressure stabilization of tearing modes is very strong in these high βp plasmas. This has prompted a detailed re-examination of linear tearing mode theory in which we participated in collaboration with Columbia University and General Atomics. This finite pressure effect is shown to be highly sensitive to small scale details of the pressure profile. Even when an ad hoc method of removing this stabilizing mechanism is implemented, however, it is shown that there is only superficial agreement between resistive MBD stability computation and the experimental data. While the mode structures observed experimentally can be found computationally, there is no convincing correlation with the experimental observations when the computed results are compared with a large set of supershot data. We also describe both the ideal and resistive stability properties of TFIR equilibria near the transition to the second region. It is shown that the highest β plasmas, although stable to infinite-n ideal ballooning modes, can be unstable to the so called ''infernal'' modes associated with small shear. The sensitivity of these results to the assumed pressure and current density profiles is discussed. Finally, we describe results from two collaborative studies with PPPL. The first involves exploratory studies of the role of the 1/1 mode in tokamaks and, secondly, a study of sawtooth stabilization using ICRF

  14. A stability analysis of ventilated boiling channels

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.; Lahey, R.T. Jr.

    1986-01-01

    A mathematical model has been developed for the linear stability analysis of a system of ventilated parallel boiling channels. This model accounts for subcooled boiling, an arbitrary heat flux distribution, distributed and local hydraulic losses, heated wall dynamics, slip flow, turbulent mixing and arbitrary flow paths for transverse ventilation. The digital computer program MAZDA-NF was written for numerical evaluation of the mathematical model. Comparison of MAZDA-NF results with those obtained form both a closed form analytical solution and experiment, showed good agreement. A parametric study revealed that such phenomena as subcooled boiling, the transverse coupling between channels (due to cross-flow and mixing) and power skewing can have a significant impact on predicted stability margins. An analysis of an advanced BWR fuel, of the ASEA-ATOM SVEA design, has indicated that transverse ventilation may considerably improve channel stability. (orig.)

  15. Stability Analysis of an Advanced Persistent Distributed Denial-of-Service Attack Dynamical Model

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2018-01-01

    Full Text Available The advanced persistent distributed denial-of-service (APDDoS attack is a fairly significant threat to cybersecurity. Formulating a mathematical model for accurate prediction of APDDoS attack is important. However, the dynamical model of APDDoS attack has barely been reported. This paper first proposes a novel dynamical model of APDDoS attack to understand the mechanisms of APDDoS attack. Then, the attacked threshold of this model is calculated. The global stability of attack-free and attacked equilibrium are both proved. The influences of the model’s parameters on attacked equilibrium are discussed. Eventually, the main conclusions of the theoretical analysis are examined through computer simulations.

  16. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    Science.gov (United States)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  17. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    Fu, G.Y.; Van Dam, J.W.

    1989-05-01

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω *α > ω A , where ω A is the shear-Alfven modal frequency and ω *α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  18. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  19. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  20. Non linear stability analysis of parallel channels with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2016-12-01

    Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.

  1. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  2. Stability analysis of fuzzy parametric uncertain systems.

    Science.gov (United States)

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Global/local methods for probabilistic structural analysis

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.

    1993-04-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  4. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  5. Stability Analysis for Car Following Model Based on Control Theory

    International Nuclear Information System (INIS)

    Meng Xiang-Pei; Li Zhi-Peng; Ge Hong-Xia

    2014-01-01

    Stability analysis is one of the key issues in car-following theory. The stability analysis with Lyapunov function for the two velocity difference car-following model (for short, TVDM) is conducted and the control method to suppress traffic congestion is introduced. Numerical simulations are given and results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  7. Stability analysis of a heated channel cooled by supercritical water

    International Nuclear Information System (INIS)

    Magni, M. C.; Delmastro, D. F; Marcel, C. P

    2009-01-01

    A simple model to study thermal-hydraulic stability of a heated cannel under supercritical conditions is presented. Single cannel stability analysis for the SCWR (Supercritical Water Cooled Reactor) design was performed. The drastic change of fluid density in the reactor core of a SCWR may induce DWO (Density Wave Oscillations) similar to those observed in BWRs. Due to the similarities between subcritical and supercritical systems we may treat the supercritical fluid as a pseudo two-phase system. Thus, we may extend the modeling approach often used for boiling flow stability analysis to supercritical pressure operation conditions. The model developed in this work take into account three regions: a heavy fluid region, similar to an incompressible liquid; a zone where a heavy fluid and a light fluid coexist, similar to two-phase mixture; and a light fluid region which behaves like superheated steam. It was used the homogeneous equilibrium model (HEM) for the pseudo boiling zone, and the ideal gas model for the pseudo superheated steam zone. System stability maps were obtained using linear stability analysis in the frequency domain. Two possible instability mechanisms are observed: DWO and excursive Ledinegg instabilities. Also, a sensitivity analysis showed that frictions in pseudo superheated steam zone, together with acceleration effect, are the most destabilizing effects. On the other hand, frictions in pseudo liquid zone are the most important stabilizing effect. [es

  8. Analysis of Chatter Stability in Facing

    Science.gov (United States)

    Kebdani, S.; Sahli, A.; Rahmani, O.; Boutchicha, D.; Belarbi, A.

    This study attempts to develop a chatter model for predicting chatter stability conditions in hard turning. A linear model is developed by introducing non-uniform load distribution on a tool tip to account for the flank wear effect. Stability analysis based on the root locus method and the harmonic balance method is conducted to determine a critical stability parameter. To validate the model, a series of experiment is carried out to determine the stability limits as well as certain characteristic parameters for facing and straight turning. Chatter in hard turning has the feature that the critical stability limits increase very rapidly when the cutting speed is higher than 13 rev sec-1 for all feed directions. The main contributions of the study are threefold. First, chatter-free cutting conditions are predicted and can be used as a guideline for designing tools and machines. Second, the characteristics of chatter in hard turning, which is observed for the first time, helps to broaden our physical understanding of the interactions between the tool and the workpiece in hard turning. Third, experimental stability limits for different flank wear can contribute to lead more reasonable ways to consider the flank wear effect in chatter models of hard turning. Based on these contributions, the proposed linear chatter model will support to improve the productivity in many manufacturing processes. In addition, the chatter experimental data will be useful to develop other chatter models in hard turning.

  9. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  10. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-01-01

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area

  11. Stability analysis of switched linear systems defined by graphs

    OpenAIRE

    Athanasopoulos, Nikolaos; Lazar, Mircea

    2015-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...

  12. Global stability of a two-mediums rumor spreading model with media coverage

    Science.gov (United States)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  13. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    Science.gov (United States)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  14. THE FINANCIAL STABILITY ANALYSIS THROUGH THE WORKING CAPITAL

    Directory of Open Access Journals (Sweden)

    LĂPĂDUŞI MIHAELA LOREDANA

    2012-12-01

    Full Text Available The main goal of any business is to maintain the financial stability not only on the short term but also on medium and long term, in other words to maintain a harmony between financial sources and financial needs, respectively the equality between the assets and liabilities from the balance sheet. On short term, maintaining the financial stability involves correlating the temporary resources with the temporary uses by using the necessary working capital, and on the long-term, the financial stability involves comparing the permanent resources with the permanent uses by working capital indicator. The determination of the financial state of the company at a certain moment represents the key moment in establishing and adopting the economic and financial decisions in the management of the company. Maintaining the financial stability of the company represents one of the main objectives of the financial analysis and management and it also provides the optimum development of the entire economic and financial activity of the company. The analysis of the working capital size is based on the financial statement data and information, and based on this analysis is considered the financial situation of the company, the financial equilibrium state at a certain moment. The purpose of this article is to highlight the fact that the maintenance of the financial stability on medium and long term is subordinated to the “working capital” indicator, its content and interpretation evolving in time and varying differently from one company to another. The results of this research may have broad applicability in the field of the companies’ activity and it materializes in the complex approach of the working capital regarded as a classic indicator, frequently used in the financial analysis and with profound significance in establishing the financial state in general and the equilibrium state in particular.

  15. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  16. ANALYSIS AND OPTIMISATION OF DYNAMIC STABILITY OF MOBILE WORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Peter BIGOŠ

    2014-09-01

    Full Text Available This paper describes an investigation of the dynamic stability, which is specified for the mobile working machines. There are presented the basic theoretical principles of the stability theory together with an introduction of two illustrative examples of the dynamic stability analysis.

  17. STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

    Directory of Open Access Journals (Sweden)

    Damián Fernández

    2014-12-01

    Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

  18. Land Tenure, Gender, and Globalization : Research and Analysis ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Land Tenure, Gender, and Globalization : Research and Analysis from Africa, Asia, and Latin America. Couverture du livre Land Tenure, Gender, and Globalization : Research and Analysis from Africa. Directeur(s) : Dzodzi Tsikata et Pamela Golah. Maison(s) d'édition : Zubaan, CRDI. 29 août 2009. ISBN : 9788189884727.

  19. Global analysis of an impulsive delayed Lotka-Volterra competition system

    Science.gov (United States)

    Xia, Yonghui

    2011-03-01

    In this paper, a retarded impulsive n-species Lotka-Volterra competition system with feedback controls is studied. Some sufficient conditions are obtained to guarantee the global exponential stability and global asymptotic stability of a unique equilibrium for such a high-dimensional biological system. The problem considered in this paper is in many aspects more general and incorporates as special cases various problems which have been extensively studied in the literature. Moreover, applying the obtained results to some special cases, I derive some new criteria which generalize and greatly improve some well known results. A method is proposed to investigate biological systems subjected to the effect of both impulses and delays. The method is based on Banach fixed point theory and matrix's spectral theory as well as Lyapunov function. Moreover, some novel analytic techniques are employed to study GAS and GES. It is believed that the method can be extended to other high-dimensional biological systems and complex neural networks. Finally, two examples show the feasibility of the results.

  20. Linear stability analysis of heated parallel channels

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Isbin, H.S.

    1982-01-01

    An analyis is presented of thermal hydraulic stability of flow in parallel channels covering the range from inlet subcooling to exit superheat. The model is based on a one-dimensional drift velocity formulation of the two phase flow conservation equations. The system of equations is linearized by assuming small disturbances about the steady state. The dynamic response of the system to an inlet flow perturbation is derived yielding the characteristic equation which predicts the onset of instabilities. A specific application is carried out for homogeneous and regional uniformly heated systems. The particular case of equal characteristic frequencies of two-phase and single phase vapor region is studied in detail. The D-partition method and the Mikhailov stability criterion are used for determining the marginal stability boundary. Stability predictions from the present analysis are compared with the experimental data from the solar test facility. 8 references

  1. Stability analysis of the Ghana Research Reactor-1 (GHARR-1)

    International Nuclear Information System (INIS)

    Della, R.; Alhassan, E.; Adoo, N.A.; Bansah, C.Y.; Nyarko, B.J.B.; Akaho, E.H.K.

    2013-01-01

    Highlights: • We developed a theoretical model to study the stability of the Ghana Research Reactor-1. • The neutronics transfer function was described by the point kinetics model for a single group of delayed neutrons. • The thermal hydraulics transfer function was based on the modified lumped parameter concept. • A computer code, RESA (REactor Stability Analysis) was developed. • Results show that the closed-loop transfer function was stable and well damped for variable operating power levels. - Abstract: A theoretical model has been developed to study the stability of the Ghana Research Reactor one (GHARR-1). The closed-loop transfer function of GHARR-1 was established based on the model, which involved the neutronics and the thermal hydraulics transfer functions. The reactor kinetics was described by the point kinetics model for a single group of delayed neutrons, whilst the thermal hydraulics transfer function was based on the modified lumped parameter concept. The inherent internal feedback effect due to the fuel and the coolant was represented by the fuel temperature coefficient and the moderator temperature coefficient respectively. A computer code, RESA (REactor Stability Analysis), entirely in Java was developed based on the model for systems analysis. Stability analysis of the open-loop transfer function of GHARR-1 based on the Nyquist criterion and Bode diagrams using RESA, has shown that the closed-loop transfer function was marginally stable for variable operating power levels. The relative stability margins of GHARR-1 were also identified

  2. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    Science.gov (United States)

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  3. A study of a steering system algorithm for pleasure boats based on stability analysis of a human-machine system model

    International Nuclear Information System (INIS)

    Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki

    2016-01-01

    Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points. (paper)

  4. A study of a steering system algorithm for pleasure boats based on stability analysis of a human-machine system model

    Science.gov (United States)

    Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki

    2016-09-01

    Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.

  5. Effect of corner radius in stabilizing the low-Re flow past a cylinder

    KAUST Repository

    Zhang, Wei

    2017-08-03

    We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of the cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly super-critical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations and very good agreement is achieved.

  6. Effect of corner radius in stabilizing the low-Re flow past a cylinder

    KAUST Repository

    Zhang, Wei; Samtaney, Ravindra

    2017-01-01

    We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of the cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly super-critical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations and very good agreement is achieved.

  7. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  8. Structure and stabilization of hydrogen-rich transverse.

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, Sgouria [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilde, B [Georgia Inst. of Technology, Atlanta, GA (United States); Kolla, Hemanth [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Seitzman, J. [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, T. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    This paper reports the results of a joint experimental and numerical study of the ow characteristics and flame stabilization of a hydrogen rich jet injected normal to a turbulent, vitiated cross ow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air cross ow, the present conditions lead to an autoigniting, burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/cross flow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the reacting JICF. Vorticity spectra extracted from the windward shear layer reveal that the reacting jet is globally unstable and features two high frequency peaks, including a fundamental mode whose Strouhal number of ~0.7 agrees well with previous non-reacting JICF stability studies. The paper concludes with an analysis of the ignition, ame stabilization, and global structure of the burner-attached flame. Chemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after

  9. ТHE MANAGEMENT OF FINANCIAL STABILITY IN NATIONAL STRATEGIES

    Directory of Open Access Journals (Sweden)

    Rodica PERCIUN

    2017-02-01

    Full Text Available In this article authors provide an overview of national strategies that directly or indirectlyconsider the management of financial stability. The actuality of this research topic is based on severalfactors. Firstly, the depth of the global financial crisis that started in 2007 has shown that financialstability must be ensured and monitored by competent authorities. Secondly, the situation of the nationaleconomy has been worsened since 2015, as a result of massive dilapidation of funds and serious violationswith regard to preserving the systemic financial stability of the Republic of Moldova. Under the presentstate the issue of ensuring financial stability becomes more significant and important. The purpose of theresearch is to analyze and synthesize national strategies which reflect the management of financialstability and to detect the existing gaps. The scientific methods used are the following: systemic approach,analysis and synthesis, induction and deduction, logical analysis, critical analysis, etc. The research hasfound that the policy of preserving the systemic financial stability is missing from the current nationalstrategies, and there is a huge gap with regard to banking supervision and the objective of ensuringsystemic financial stability.

  10. Study of orbit stability in the SSRF storage ring

    International Nuclear Information System (INIS)

    Dai Zhimin; Liu Guimin; Huang Nan

    2003-01-01

    In this paper, analysis of the beam orbit stability and conceptual study of the dynamic orbit feedback in the SSRF storage ring are presented. It is shown that beam orbit position movement at the photon source points is smaller than the orbit stability requirements in horizontal plane, but exceeds the orbit stability requirements in vertical plane. A dynamic global orbit feedback system, which consists of 38 high-bandwidth air-coil correctors and 40 high-precise BPMs, is proposed to suppress the vertical beam orbit position movement. Numerical simulations show that this dynamic orbit feedback system can stabilize the vertical beam orbit position movement in the frequency range up to 100 Hz

  11. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    Science.gov (United States)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  12. Existence and globally exponential stability of equilibrium for BAM neural networks with impulses

    International Nuclear Information System (INIS)

    Xia Yonghui; Huang Zhenkun; Han Maoan

    2008-01-01

    In this paper, a class of two-layer heteroassociative networks called bidirectional associative memory (BAM) networks with impulses is studied. Some new sufficient conditions are established for the existence and globally exponential stability of a unique equilibrium, which generalize and improve the previously known results. The sufficient conditions are easy to verify and when the impulsive jumps are absent the results reduce to those of the non-impulsive systems. The approaches are based on employing Banach's fixed point theorem, matrix theory and its spectral theory. Our results generalize and significantly improve the previous known results due to this method. Examples are given to show the feasibility and effectiveness of our results

  13. Ecological network analysis on global virtual water trade.

    Science.gov (United States)

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  14. Improved asymptotic stability analysis for uncertain delayed state neural networks

    International Nuclear Information System (INIS)

    Souza, Fernando O.; Palhares, Reinaldo M.; Ekel, Petr Ya.

    2009-01-01

    This paper presents a new linear matrix inequality (LMI) based approach to the stability analysis of artificial neural networks (ANN) subject to time-delay and polytope-bounded uncertainties in the parameters. The main objective is to propose a less conservative condition to the stability analysis using the Gu's discretized Lyapunov-Krasovskii functional theory and an alternative strategy to introduce slack matrices. Two computer simulations examples are performed to support the theoretical predictions. Particularly, in the first example, the Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability. The second example is presented to illustrate how the proposed approach can provide better stability performance when compared to other ones in the literature

  15. Global/local methods research using a common structural analysis framework

    Science.gov (United States)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  16. Analysis of global warming stabilization scenarios. The Asian-Pacific Integrated Model

    International Nuclear Information System (INIS)

    Kainuma, Mikiko; Morita, Tsuneyuki; Masui, Toshihiko; Takahashi, Kiyoshi; Matsuoka, Yuzuru

    2004-01-01

    This paper analyzes the economic and climatic impacts of the EMF 19 emission scenarios. A reference scenario, three emission scenarios targeting 550 ppmv atmospheric concentration, and three tax scenarios are analyzed. The profiles of energy consumption and economic losses of each policy scenario are compared to the reference scenario. The model also estimates that global mean temperature will increase 1.7-2.9 C in 2100, and the sea level will rise 40-51 cm, compared to the 1990 levels under the EMF scenarios. Impacts on food productivity and malaria infection are estimated to be very severe in some countries in the Asian region

  17. Stability analysis of internal ideal modes in low-shear tokamaks

    International Nuclear Information System (INIS)

    Wahlberg, C.; Graves, J. P.

    2007-01-01

    The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region

  18. Numerical Analysis of Slopes Stability and Shallow Foundations Behavior at Crest under Real Seismic Loading - Reinforcement Effect

    International Nuclear Information System (INIS)

    Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.

    2011-01-01

    The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)

  19. PATRIMONIAL ANALYSIS OF FINANCIAL STABILITY

    Directory of Open Access Journals (Sweden)

    GABRIELA CORINA SLUSARIUC

    2011-01-01

    Full Text Available Patrimonial analysis of financial stability is realized with the help of some indicator determined on the balance: working capital; required working capital and net treasury. These indicators are determined and presented in evolution at two companies with different situations, and there are given conclusions and suggestions concerning achieving and maintaining the financial equilibrium or initiating corrective measures in time, before the imbalance would take irrecoverable forms.

  20. Conference on Convex Analysis and Global Optimization

    CERN Document Server

    Pardalos, Panos

    2001-01-01

    There has been much recent progress in global optimization algo­ rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun­ damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon­ vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en­ dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...

  1. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  3. Consequence and impact of electric utility industry restructuring on transient stability and small-signal stability analysis

    International Nuclear Information System (INIS)

    Vittal, V.

    2000-01-01

    The electric utility industry is undergoing unprecedented changes in its structure worldwide. With the advent of an open market environment and competition in the industry, and restructuring of the industry into separate generation, transmission, and distribution entities, new issues in power system operation and planning are inevitable. One of the major consequences of this new electric utility environment is the greater emphasis on reliability and secure operation of the power system. This paper examines the impact of restructuring on power system dynamic analysis. It specifically addresses issues related to transient stability analysis and small-signal stability analysis. Four major topics to examine the effect on the nature of studies conducted are considered. These topics are (1) system adequacy and security, (2) system modeling data requirements, (3) system protection and control, and (4) system restoration. The consequences and impact of each of these topics on the nature of the studies conducted are examined and discussed. The emphasis on greater reliability has led to a clearer enunciation of standards, measurements, and guides in some countries. These requirements will result in: (1) more measurements on existing systems, (2) rigorous analysis of transient stability and small-signal stability to determine operating limits and plan systems, (3) greater emphasis on studies to verify coordination and proper performance of protection and controls, and (4) development of a detailed plan for system restoration in the case of wide-spread outages

  4. Assessment of the Prony's method for BWR stability analysis

    International Nuclear Information System (INIS)

    Ortiz-Villafuerte, Javier; Castillo-Duran, Rogelio; Palacios-Hernandez, Javier C.

    2011-01-01

    Highlights: → This paper describes a method to determine the degree of stability of a BWR. → Performance comparison between Prony's and common AR techniques is presented. → Benchmark data and actual BWR transient data are used for comparison. → DR and f results are presented and discussed. → The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  5. Stability Analysis of an HIV/AIDS Dynamics Model with Drug Resistance

    Directory of Open Access Journals (Sweden)

    Qianqian Li

    2012-01-01

    Full Text Available A mathematical model of HIV/AIDS transmission incorporating treatment and drug resistance was built in this study. We firstly calculated the threshold value of the basic reproductive number (R0 by the next generation matrix and then analyzed stability of two equilibriums by constructing Lyapunov function. When R0<1, the system was globally asymptotically stable and converged to the disease-free equilibrium. Otherwise, the system had a unique endemic equilibrium which was also globally asymptotically stable. While an antiretroviral drug tried to reduce the infection rate and prolong the patients’ survival, drug resistance was neutralizing the effects of treatment in fact.

  6. The Future of the Global Environment: A Model-based Analysis Supporting UNEP's First Global Environment Outlook

    NARCIS (Netherlands)

    Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment; MNV

    1997-01-01

    This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to

  7. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    Science.gov (United States)

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  8. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  9. Stability and bifurcation analysis for a discrete-time bidirectional ring neural network model with delay

    Directory of Open Access Journals (Sweden)

    Yan-Ke Du

    2013-09-01

    Full Text Available We study a class of discrete-time bidirectional ring neural network model with delay. We discuss the asymptotic stability of the origin and the existence of Neimark-Sacker bifurcations, by analyzing the corresponding characteristic equation. Employing M-matrix theory and the Lyapunov functional method, global asymptotic stability of the origin is derived. Applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the main results.

  10. Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Ken Yeh

    2010-01-01

    Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.

  11. Global exponential stability of a class of retarded impulsive differential equations with applications

    International Nuclear Information System (INIS)

    Xia Yonghui; Wong, Patricia J.Y.

    2009-01-01

    This paper studies the dynamics of a class of retarded impulsive differential equations (IDE), which generalizes the delayed cellular neural networks (DCNN), delayed bidirectional associative memory (BAM) neural networks and some population growth models. Some sufficient criteria are obtained for the existence and global exponential stability of a unique equilibrium. When the impulsive jumps are absent, our results reduce to its corresponding results for the non-impulsive systems. The approaches are based on Banach's fixed point theorem, matrix theory and its spectral theory. Due to this method, our results generalize and improve many previous known results such as . Some examples are also included to illustrate the feasibility and effectiveness of the results obtained

  12. Analysis of stability and quench in HTS devices-New approaches

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Sytnikov, V.E.; Rakhmanov, A.L.; Ilyin, Y.

    2006-01-01

    R and D of HTS devices are in their full steam-more magnets and devices are developed with larger sizes. But analysis of their stability and quench was still old fashioned, based on normal zone determination, analysis of its appearance and propagation. Some peculiarities of HTS make this traditional, quite impractical and inconvenient approach to consideration of HTS devices stability and quench development using normal zone origination and propagation analysis. The novel approaches were developed that consider the HTS device as a cooled medium with non-linear parameters with no mentioning of 'superconductivity' in the analysis. The approach showed its effectiveness and convenience to analyze the stability and quench development in HTS devices. In this paper the analysis of difference between HTS and LTS quench, dependent on index n and specific heat comparison, is followed by the short approach descriptions and by the consequences from it for the HTS devices design. The further development of the method is presented for the analysis of long HTS objects where 'blow-up' regimes may happen. This is important for design and analysis of HTS power cables operations under overloading conditions

  13. Stabilization of flow past a rounded cylinder

    Science.gov (United States)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  14. Static Voltage Stability Analysis by Using SVM and Neural Network

    Directory of Open Access Journals (Sweden)

    Mehdi Hajian

    2013-01-01

    Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.

  15. Robust stability analysis of Takagi—Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays

    International Nuclear Information System (INIS)

    Ali, M. Syed

    2011-01-01

    In this paper, the global stability of Takagi—Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. (general)

  16. Global Stability of an Epidemic Model of Computer Virus

    Directory of Open Access Journals (Sweden)

    Xiaofan Yang

    2014-01-01

    Full Text Available With the rapid popularization of the Internet, computers can enter or leave the Internet increasingly frequently. In fact, no antivirus software can detect and remove all sorts of computer viruses. This implies that viruses would persist on the Internet. To better understand the spread of computer viruses in these situations, a new propagation model is established and analyzed. The unique equilibrium of the model is globally asymptotically stable, in accordance with the reality. A parameter analysis of the equilibrium is also conducted.

  17. Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...

  18. Global sensitivity analysis by polynomial dimensional decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  19. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  20. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    Science.gov (United States)

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  1. Analysis of the gyroscopic stabilization of a system of rigid bodies

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Seyranian, Alexander P.

    1997-01-01

    We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....

  2. Stability Analysis and Stabilization of T-S Fuzzy Delta Operator Systems with Time-Varying Delay via an Input-Output Approach

    Directory of Open Access Journals (Sweden)

    Zhixiong Zhong

    2013-01-01

    Full Text Available The stability analysis and stabilization of Takagi-Sugeno (T-S fuzzy delta operator systems with time-varying delay are investigated via an input-output approach. A model transformation method is employed to approximate the time-varying delay. The original system is transformed into a feedback interconnection form which has a forward subsystem with constant delays and a feedback one with uncertainties. By applying the scaled small gain (SSG theorem to deal with this new system, and based on a Lyapunov Krasovskii functional (LKF in delta operator domain, less conservative stability analysis and stabilization conditions are obtained. Numerical examples are provided to illustrate the advantages of the proposed method.

  3. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  4. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    slope stability analysis, the joint surfaces are assumed to be continuous along the potential ... of rock slope stability has many applications in the design of rock slopes, roofs and walls of .... cases the wedge failure analysis can be applied.

  5. Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2017-01-01

    Full Text Available This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.

  6. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    Science.gov (United States)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  7. Dynamic stability and bifurcation analysis in fractional thermodynamics

    Science.gov (United States)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity

  8. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.

    Science.gov (United States)

    Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger

    2013-04-22

    For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.

  9. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.

  10. Stability analysis of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time varying delays

    International Nuclear Information System (INIS)

    Ali, M. Syed

    2014-01-01

    In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen—Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen—Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples

  11. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  12. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  13. Stability analysis of offshore wind farm and marine current farm

    Science.gov (United States)

    Shawon, Mohammad Hasanuzzaman

    Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new

  14. Impacts of GNSS position offsets on global frame stability

    Science.gov (United States)

    Griffiths, Jake; Ray, Jim

    2014-05-01

    Positional offsets appear in Global Navigation Satellite System (GNSS) time series for a variety of reasons. Antenna or radome changes are the most common cause for these discontinuities. Many others are from earthquakes, receiver changes, and different anthropogenic modifications at or near the stations. Some jumps appear for unknown or undocumented reasons. The accurate determination of station velocities, and therefore geophysical parameters and terrestrial reference frames, requires that positional offsets be correctly found and compensated. Williams (2003) found that undetected offsets introduce a random walk error component in individual station time series. The topic of detecting positional offsets has received considerable attention in recent years (e.g., Detection of Offsets in GPS Experiment; DOGEx), and most research groups using GNSS have adopted a combination of manual and automated methods for finding them. The removal of a positional offset is usually handled by estimating the average station position on both sides of the discontinuity, assuming a constant, continuous velocity. This is sufficient in the absence of time-correlated errors. However, GNSS time series contain systematic and power-law errors (white to random walk noise). In this paper, we aim to evaluate the impact to both individual station results and the overall stability of the global reference frame from adding increasing numbers of positional discontinuities. We use the International GNSS Service (IGS) weekly SINEX files, and iteratively insert positional offset parameters at the midpoint of each data segment. Each iteration includes a restacking of the modified SINEX files using the CATREF software from Institut National de l'Information Géographique et Forestière (IGN) to estimate: regularized station positions, secular velocities, Earth orientation parameters, Helmert frame alignment parameters, and the empirical shifts across all positional discontinuities. A comparison of the

  15. Global qualitative analysis of a quartic ecological model

    NARCIS (Netherlands)

    Broer, Hendrik; Gaiko, Valery A.

    2010-01-01

    in this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles. (C) 2009 Elsevier Ltd. All rights reserved.

  16. The Future of the Global Environment: A Model-based Analysis Supporting UNEP's First Global Environment Outlook

    OpenAIRE

    Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment Programme (UNEP), Nairobi, Kenia; MNV

    1997-01-01

    This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to 2050. The study was carried out in support of the Agenda 21 interim evaluation, five years after 'Rio' and ten years after 'Brundtland'. The scenario analysis is based on only one scenario, Conventional...

  17. Consideration on the price stability – financial stability relationship in the context of financial globalization

    Directory of Open Access Journals (Sweden)

    Marius Apostoaie

    2010-12-01

    Full Text Available This study is focused upon the involvement of the central banks regarding the fulfillment of the two main objectives: price  stability and financial stability. These two key concepts are part of an old and ongoing debate that the current turmoil has revived, and that is whether monetary policy should aim, or not, at ensuring financial stability in parallel to its main objective of price stability. On both sides there are solid and well known arguments. In the beginning of the study I have  considered a literature review with regard to price and financial stability issues. After that I have tried to shed some light (from a theoretical point of view on the nature and dynamics of the fundamental interlinkages between the two aspects and there implications on the central banks and the economy. Finally I outline some general conclusions that have emerged in the present study.

  18. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  19. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  20. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  1. Stability Analysis of Fractional-Order Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.

  2. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Science.gov (United States)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  3. Stability and bifurcation analysis in a kind of business cycle model with delay

    International Nuclear Information System (INIS)

    Zhang Chunrui; Wei Junjie

    2004-01-01

    A kind of business cycle model with delay is considered. Firstly, the linear stability of the model is studied and bifurcation set is drawn in the appropriate parameter plane. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the normal form method and center manifold theorem. Finally, a group conditions to guarantee the global existence of periodic solutions is given, and numerical simulations are performed to illustrate the analytical results found

  4. Safety-oriented global analysis of reactor dynamics

    International Nuclear Information System (INIS)

    Belhadj, M.; Aldemir, T.

    1992-01-01

    It is well known that the asymptotic solutions of the non-linear systems encountered in reactor dynamics can change from stable to periodic or from periodic to chaotic with a very small change in system parameters and/or initial conditions. In that respect, determination of the domains of attraction (DOAs) in the state-space that contains the asymptotic solutions and the identification of the basins of attraction (BOAs) and lead to these DOAs usually requires a global analysis of reactor dynamics (as opposed to a local analysis through perturbation theory). From the standpoint of safety, the DOAs indicate whether the reactor behavior remains within the imposed constraints or not, and the BOAs show which initial conditions lead to safe operation. Due to the lack of a general theory, often the only feasible method for the global analysis of nonlinear systems is the direct integration of governing equations. However, direct integration can be computationally prohibitive, particularly if there is uncertainty on the values of the system parameters to be used in the analysis, and/or asymptotic system behavior is chaotic. In a recent study, a global analysis algorithm was presented to determine the structure of DOAs (and their probability distribution when there is uncertainty on the system parameters) more quickly than by direct integration. This paper shows how the new algorithm can be expanded to determine the BOAs of reactor dynamics equations as well as their DOAs

  5. Greenhouse gas emission reduction scenarios for BC : meeting the twin objectives of temperature stabilization and global equity

    International Nuclear Information System (INIS)

    Campbell, C.R.

    2008-08-01

    Greenhouse gas (GHG) emissions reduction strategies are needed in order to prevent rises in global temperatures. This report presented 6 GHG emission scenarios conducted to understand the kind of contribution that the province of British Columbia (BC) might make towards reducing global warming in the future. Short, medium, and longer term GHG reduction targets were benchmarked. The University of Victoria earth system climate model was used to calculate emission pathways where global average temperature did not exceed 2 degrees C above pre-industrial values, and where atmospheric GHGs were stabilized at 400 ppm of carbon dioxide equivalent (CO 2 e). Global carbon emission budgets of the total amount of GHG emissions permissible between now and 2100 were identified. A carbon emission budget for 2008 to 2100 was then developed based on the population of BC. Average annual emission reduction rates for the world and for BC were also identified. It was concluded that dramatically reduced emissions will be insufficient to achieve an equilibrium temperature less than 2 degrees C above pre-industrial levels. Global reductions of greater than 80 per cent are needed to prevent unacceptable levels of ocean acidification. Results suggested that carbon sequestration technologies may need to be used to remove CO 2 from the atmosphere by artificial means. 38 refs., 5 tabs., 4 figs

  6. Global stability for infectious disease models that include immigration of infected individuals and delay in the incidence

    Directory of Open Access Journals (Sweden)

    Chelsea Uggenti

    2018-03-01

    Full Text Available We begin with a detailed study of a delayed SI model of disease transmission with immigration into both classes. The incidence function allows for a nonlinear dependence on the infected population, including mass action and saturating incidence as special cases. Due to the immigration of infectives, there is no disease-free equilibrium and hence no basic reproduction number. We show there is a unique endemic equilibrium and that this equilibrium is globally asymptotically stable for all parameter values. The results include vector-style delay and latency-style delay. Next, we show that previous global stability results for an SEI model and an SVI model that include immigration of infectives and non-linear incidence but not delay can be extended to systems with vector-style delay and latency-style delay.

  7. Stability analysis of CMFD acceleration for the wavelet expansion method of neutron transport equation

    International Nuclear Information System (INIS)

    Zheng Youqi; Wu Hongchun; Cao Liangzhi

    2013-01-01

    This paper describes the stability analysis for the coarse mesh finite difference (CMFD) acceleration used in the wavelet expansion method. The nonlinear CMFD acceleration scheme is transformed by linearization and the Fourier ansatz is introduced into the linearized formulae. The spectral radius is defined as the stability criterion, which is the least upper bound (LUB) of the largest eigenvalue of Fourier analysis matrix. The stability analysis considers the effect of mesh size (spectral length), coarse mesh division and scattering ratio. The results show that for the wavelet expansion method, the CMFD acceleration is conditionally stable. The small size of fine mesh brings stability and fast convergent. With the increase of the mesh size, the stability becomes worse. The scattering ratio does not impact the stability obviously. It makes the CMFD acceleration highly efficient in the strong scattering case. The results of Fourier analysis are verified by the numerical tests based on a homogeneous slab problem.

  8. Current issues and challenges in global analysis of parton distributions

    International Nuclear Information System (INIS)

    Tung, Wu-Ki

    2007-01-01

    A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed. (author)

  9. An Analysis of Yip's Global Strategy Model, Using Coca-Cola ...

    African Journals Online (AJOL)

    Analysis of the selected business cases suggest a weak fit between the Yip model of a truly Global strategy ... like Coca-Cola in the beverage industry for effective implementation of a global strategy. ... Keywords: Global Strategy, Leadership.

  10. Do forests have a say in global carbon markets for climate stabilization policy?

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, M.; Bosetti, V. [Fondazione Eni Enrico Mattei, FEEM (Italy); Sohngen, B. [Ohio State Univ., Dept. of Agr., Env., and Dev. Economics (United States)

    2007-05-15

    While carbon sequestration was included in the Kyoto Protocol, its potential scope as a mitigation activity has been highly debated in subsequent negotiations. Notwithstanding the widespread research suggesting that biological sequestration of carbon can play an important role for reducing greenhouse gas emissions, the nations in the Kyoto Protocol have so far only haltingly incorporated forestry measures, for a variety of reasons. One concern revolved around the validity of measuring and monitoring land-based activities to prove that they provided additional carbon storage, as for example error bounds for measuring and monitoring carbon in forests are fairly large. A second reason for the setbacks to forest sequestration regarded whether carbon sequestration would reduce carbon prices and consequently the quantity of abatement provided by the energy sector. Only the energy sector, after all, can ensure permanent reductions in CO{sub 2} emissions. This concern implies that forest carbon sequestration could be large enough to influence carbon prices in a global carbon market. Clearly, if prices are lower the deployment of low carbon measures and technologies could be delayed, for example by reducing incentives for technological evolution. Yet, enriching the mitigation portfolio with forestry could bring a significant contribution. Global policies meant to stabilize greenhouse gas concentrations in the future will arguably require a vast bundle of measures to meet ambitious targets. The first set of concerns has been widely addressed in a range of publications, including those of the Intergovernmental Panel on Climate Change. Remarkably less attention has been devoted to the second set of concerns. In this article we try to fill the gap by analyzing the impact biological carbon sequestration has on a policy to stabilize carbon emissions. In doing so we are able to evaluate a potentially attractive mitigation option like carbon sinks accounting for the influence the

  11. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  12. Mathematical modelling and linear stability analysis of laser fusion cutting

    International Nuclear Information System (INIS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-01-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  13. Linear and nonlinear stability analysis, associated to experimental fast reactors

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  14. Mathematical modelling and linear stability analysis of laser fusion cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

    2016-06-08

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  15. Is globalization healthy: a statistical indicator analysis of the impacts of globalization on health.

    Science.gov (United States)

    Martens, Pim; Akin, Su-Mia; Maud, Huynen; Mohsin, Raza

    2010-09-17

    It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.

  16. Is globalization healthy: a statistical indicator analysis of the impacts of globalization on health

    Directory of Open Access Journals (Sweden)

    Martens Pim

    2010-09-01

    Full Text Available Abstract It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.

  17. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  18. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  19. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  20. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  1. High beta and second stability region transport and stability analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  2. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  3. Flows method in global analysis

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1994-12-01

    We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs

  4. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    Science.gov (United States)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  5. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    Science.gov (United States)

    Munday, Phillip M.

    definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the

  6. Advances in Computational Stability Analysis of Composite Aerospace Structures

    International Nuclear Information System (INIS)

    Degenhardt, R.; Araujo, F. C. de

    2010-01-01

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  7. Economic impact analysis for global warming: Sensitivity analysis for cost and benefit estimates

    International Nuclear Information System (INIS)

    Ierland, E.C. van; Derksen, L.

    1994-01-01

    Proper policies for the prevention or mitigation of the effects of global warming require profound analysis of the costs and benefits of alternative policy strategies. Given the uncertainty about the scientific aspects of the process of global warming, in this paper a sensitivity analysis for the impact of various estimates of costs and benefits of greenhouse gas reduction strategies is carried out to analyze the potential social and economic impacts of climate change

  8. Stability analysis of cylinders with circular cutouts

    Science.gov (United States)

    Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.

    1973-01-01

    The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.

  9. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  10. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Zidong; Liu Yurong; Yu Li; Liu Xiaohui

    2006-01-01

    In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions

  11. A Study on Stability of Limit Cycle Walking Model with Feet: Parameter Study

    Directory of Open Access Journals (Sweden)

    Yonggwon Jeon

    2013-01-01

    Full Text Available In this paper, two kinds of feet, namely, curved and flat feet, are added to limit cycle walking model to investigate its stability properties. Although both models are already proposed and are investigated, most previous works are focused on efficiency and gait behaviors. Only the stability properties of the simplest walking model conceived Garcia et al. are well defined. Therefore, there is still a need for a precise research on the effect of feet, especially in the view of local stability, bifurcation route to chaos, global stability, falling boundary and energy balance line. Therefore, this article revisits the stability analysis of limit cycle walking model with various foot shape. To analyze the effects of feet, we re-derive the equation of motion of modified models by adding one more parameter of foot shape than the simplest walking model. Also, the falling boundary and energy balance line of modified models are derived to get proper initial conditions for stable walking and to explain global stability. Simulation results show us that the curved feet can enlarge both stable walking range and area of basin of attraction while the case of flat feet depends on foot shape parameter.

  12. DEVELOPMENT OF METHODS FOR STABILITY ANALYSIS OF TOWER CRANES

    Directory of Open Access Journals (Sweden)

    Sinel'shchikov Aleksey Vladimirovich

    2018-01-01

    Full Text Available Tower cranes are one of the main tools for execution of reloading works during construction. Design of tower cranes is carried out in accordance with RD 22-166-86 “Construction of tower cranes. Rules of analysis”, according to which to ensure stability it is required not to exceed the overturning moment upper limit. The calculation of these moments is carried out with the use of empirical coefficients and quite time-consuming. Moreover, normative methodology only considers the static position of the crane and does not take into account the presence of dynamic transients due to crane functioning (lifting and swinging of the load, boom turning and the presence of the dynamic external load (e.g. from wind for different orientations of the crane. This paper proposes a method of determining the stability coefficient of the crane based on acting reaction forces at the support points - the points of contact of wheels with the crane rail track, which allows us, at the design stage, to investigate stability of tower crane under variable external loads and operating conditions. Subject: the safety of tower cranes operation with regard to compliance with regulatory requirements of ensuring their stability both at the design stage and at the operational stage. Research objectives: increasing the safety of operation of tower cranes on the basis of improving methodology of their design to ensure static and dynamic stability. Materials and methods: analysis and synthesis of the regulatory framework and modern research works on provision of safe operation of tower cranes, the method of numerical simulation. Results: we proposed the formula for analysis of stability of tower cranes using the resulting reaction forces at the supports of the crane at the point of contact of the wheel with the rail track.

  13. Linear stability analysis of a levitated nanomagnet in a static magnetic field: Quantum spin stabilized magnetic levitation

    Science.gov (United States)

    Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

  14. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  15. Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models

    Directory of Open Access Journals (Sweden)

    Kruthika H.A.

    2017-03-01

    Full Text Available In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the networks around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commensurate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.

  16. Stability Analysis of Periodic Systems by Truncated Point Mappings

    Science.gov (United States)

    Guttalu, R. S.; Flashner, H.

    1996-01-01

    An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.

  17. Mathematical Model and Stability Analysis of Inverter-Based Distributed Generator

    Directory of Open Access Journals (Sweden)

    Alireza Khadem Abbasi

    2013-01-01

    Full Text Available This paper presents a mathematical (small-signal model of an electronically interfaced distributed generator (DG by considering the effect of voltage and frequency variations of the prime source. Dynamic equations are found by linearization about an operating point. In this study, the dynamic of DC part of the interface is included in the model. The stability analysis shows with proper selection of system parameters; the system is stable during steady-state and dynamic situations, and oscillatory modes are well damped. The proposed model is useful to study stability analysis of a standalone DG or a Microgrid.

  18. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-12-01

    Studies on crisis stability, deterrence, and latency are presented in chronological order, which also reflects their logical order of development, captures the main features of stability analysis; relates first strike, crisis, and arms control stability as seen from US and Russian perspective; and addresses questions such as whether uncertainty in damage preference or defense deployment can be destabilizing. It illustrates the problems with alternative metrics, latency and reconstitution, and deep unilateral and proportional force reductions.

  19. Analysis and Research on Several Global Subdivision Grids

    Directory of Open Access Journals (Sweden)

    SONG Shuhua

    2016-12-01

    Full Text Available In order to solve the problem that lacking of an unified organization frame about global remote sensing satellite image data, this paper introduces serval global subdivision grids as the unified organization frame for remote sensing image. Based on the characteristics of remote sensing image data, this paper analyzes and summarizes the design principles and difficulties of the organization frame. Based on analysis and comparison with these grids, GeoSOT is more suitable as the unified organization frame for remote sensing image. To provide a reference for the global remote sensing image organization.

  20. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    Science.gov (United States)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  1. Aeroelastic stability analysis of a Darrieus wind turbine

    Science.gov (United States)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis was developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  2. Aeroelastic stability analysis of a Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  3. The MHD stability analysis of type I ELMS in ASDEX Upgrade Tokamak

    International Nuclear Information System (INIS)

    Saarelma, S.

    2000-01-01

    The ELMs or edge localized modes are plasma instabilities localized in the edge region of a tokamak plasma. They cause periodic expulsions of particles and energy. The ELMs play a significant role in the confinement of the plasma, helium exhaust and diverter erosion. These are crucial issues in tokamak operation and, thus, understanding the underlying physical mechanism behind the ELM phenomenon is very important. The ELMs are classified into three different types based on the plasma conditions, where they are observed, and, on the ELM frequency response to the heating power. In this thesis, type I ELMs which are the most intense and the most damaging to the diverters, are studied. A model for the ELMs presented by Connor et al. is tested in experimental ASDEX Upgrade plasmas. In the Connor model, the ELMs are explained as a result of two instabilities, ballooning and peeling modes. Also a phenomenon called the bootstrap current plays a significant role by being the destabilising trigger to the peeling modes. The method used to study the model is MHD or magnetohydrodynamics. The theory of the ideal MHD equilibrium and the linear stability analysis is described. Inclusion of the bootstrap current to the equilibrium construction is introduced. The equilibria are created using experimental data from plasma shots that display type I ELMs. The stability analysis indicates that the investigated ELM model is a feasible explanation for type I ELMs. The pressure gradient near the plasma edge was found to be close to the ballooning stability boundary as predicted by the model. The peeling mode stability analysis confirms the prediction of the model that as the bootstrap current increases, the plasma becomes unstable for peeling modes with low to intermediate toroidal mode numbers. The mode numbers agree with the experimental results. In the experiments with high triangularity, low ELM frequency and ELM-free periods were observed. This indicates better stability of the plasma

  4. Reproducibility analysis of the stability and treatment of vertebral metastatic lesions

    Directory of Open Access Journals (Sweden)

    Raphael de Rezende Pratali

    2014-09-01

    Full Text Available OBJECTIVES: To investigate the reproducibility among spine surgeons in defining the treatment of vertebral metastatic lesions, taking into account the mechanical stability of injuries. METHODS: Twenty cases of isolated vertebral metastatic lesions were presented to ten experts. Their opinion was then asked about the stability of the lesion, as well as their treatment option. RESULTS: The interobserver Kappa coefficient obtained both for stability analysis as to the decision of the treatment was poor (0.334 and 0.248, respectively. CONCLUSIONS: Poor interobserver reproducibility was observed in deciding the treatment of vertebral metastatic lesions when considering the stability of the lesions.

  5. Advanced techniques for the analysis of crisis stability, deterrence, and latency

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The principal results of studies on crisis stability, deterrence, and latency are presented in their order of development. They capture the main features of stability analysis; relate first strike, crisis, and arms control stability as seen from US and Russian perspective; and address whether different metrics, uncertain damage preferences, or the deployment of defenses can be destabilizing. The report explores differences between unilateral and proportional force reductions in the region of deep reductions where concern shifts from stability to latency.

  6. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Science.gov (United States)

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  7. Small-Signal Stability Analysis of Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2009-01-01

    focus since the share of wind power increases substituting power generation from conventional power plants. Here, a study based on modal analysis is presented which investigate the effect of large scale integration of full-load converter interfaced wind turbines on inter-area oscillations in a three...... generator network. A detailed aggregated wind turbine model is employed which includes all necessary control functions. It is shown that the wind urbines have very low participation in the inter-area power oscillation.......Power system stability investigations of wind farms often cover the tasks of low-voltage-fault-ride-through, voltage and reactive power control, and power balancing, but not much attention has yet been paid to the task of small-signal stability. Small-signal stability analysis needs increasing...

  8. Stability analysis of delayed genetic regulatory networks with stochastic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qi, E-mail: zhouqilhy@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chen Bing [Institute of Complexity Science, Qingdao University, Qingdao 266071, Shandong (China); Li Hongyi [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2009-10-05

    This Letter considers the problem of stability analysis of a class of delayed genetic regulatory networks with stochastic disturbances. The delays are assumed to be time-varying and bounded. By utilizing Ito's differential formula and Lyapunov-Krasovskii functionals, delay-range-dependent and rate-dependent (rate-independent) stability criteria are proposed in terms of linear matrices inequalities. An important feature of the proposed results is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another important feature is that the obtained stability conditions are less conservative than certain existing ones in the literature due to introducing some appropriate free-weighting matrices. A simulation example is employed to illustrate the applicability and effectiveness of the proposed methods.

  9. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  10. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1991-01-01

    This document describes ideal and resistive MHD studies of high-beta plasmas and of the second stability region. Significant progress is reported on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies initial profiles were taken from the TRANSP code which is used extensively to analyze experimental data. When an ad hoc method of removing the finite pressure stabilization of tearing modes is implemented it is shown that there is substantial agreement between MHD stability computation and experiment. In particular, the mode structures observed experimentally are consistent with the predictions of the resistive MHD model. We also report on resistive stability near the transition to the second region in TFTR. Tearing modes associated with a nearby infernal mode may explain the increase in MHD activity seen in high beta supershots and which impede the realization of Q∼1. We also report on a collaborative study with PPPL involving sawtooth stabilization with ICRF

  11. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  12. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif; Ritter, Laura; Walton, Jay R.

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross

  13. Stability analysis of natural convection in superposed fluid and porous layers

    International Nuclear Information System (INIS)

    Hirata, S.C.; Goyeau, B.; Gobin, D.; Cotta, R.M.

    2005-01-01

    A linear stability analysis of the onset of thermal natural convection in superposed fluid and porous layers is called out. The resulting eigenvalue problem is solved using a integral transformation technique. The effect of the variation of the Darcy number on the stability of the system is analyzed. (authors)

  14. Stability analysis of natural convection in superposed fluid and porous layers

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, S.C.; Goyeau, B.; Gobin, D. [Paris-11 Univ. - Paris-6, FAST - UMR CNRS 7608, 91 - Orsay (France); Cotta, R.M. [Rio de Janeiro Univ. (LTTC/PEM/EE/COPPE/UFRJ), RJ (Brazil)

    2005-07-01

    A linear stability analysis of the onset of thermal natural convection in superposed fluid and porous layers is called out. The resulting eigenvalue problem is solved using a integral transformation technique. The effect of the variation of the Darcy number on the stability of the system is analyzed. (authors)

  15. Global meta-analysis of transcriptomics studies.

    Directory of Open Access Journals (Sweden)

    José Caldas

    Full Text Available Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy, based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.

  16. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  17. Tear film stability analysis system: introducing a new application for videokeratography.

    Science.gov (United States)

    Goto, Tomoko; Zheng, Xiaodong; Okamoto, Shigeki; Ohashi, Yuichi

    2004-11-01

    To review our previous studies regarding the development of a tear stability analysis system (TSAS) using videokeratography and the clinical application of TSAS for evaluation of tear film stability in patients subject to laser in situ keratomileusis (LASIK). New software, namely TSAS, was developed for the videokeratography system TMS-2N (topographic modeling system). TSAS automatically captures consecutive corneal surface images every second for 10 seconds. Corneal topographs were analyzed for tear breakup time (TMS-BUT) and tear breakup area (TMS-BUA, the ratio of breakup area to entire color-code area). First, we recruited volunteers to test the sensitivity and specificity of this new system in comparison with the routine method for tear stability analysis, tear film breakup time evaluation by slit-lamp microscope (SLE-BUT), with fluorescence staining. Second, we investigated the practicability of TSAS in dynamic evaluation of tear film stability before and after LASIK. TMS-BUT had a positive correlation with SLE-BUT, whereas TMS-BUA showed a negative correlation. Although they showed similar rates of specificity as SLE-BUT, the sensitivity rates of TMS-BUT and TMS-BUA were 97.5% and 95%, respectively, significantly higher than that of SLE-BUT (75%). The study on patients subject to LASIK showed that tear film stability significantly decreased during the early time period following LASIK and resolved at 6 months after surgery. Eyes that had abnormal TSAS evaluation tended to have higher risk of developing superficial punctuate keratitis and dry eye symptoms after LASIK, and their responses to treatment were slow. TSAS is a noninvasive and objective method with higher sensitivity for tear film stability analysis than SLE-BUT.

  18. [Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].

    Science.gov (United States)

    Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping

    2014-06-01

    The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.

  19. Yield stability analysis of pearl millet hybrids in Nigeria

    African Journals Online (AJOL)

    hope&shola

    2006-02-02

    .] was ... Genotype x environment interaction was observed, a large component of which was accounted ... The importance of evaluating many potential genotypes .... Pooled analysis of variance for stability of grain yield (t/ha).

  20. Global plastic models for computerized structural analysis

    International Nuclear Information System (INIS)

    Roche, R.L.; Hoffmann, A.

    1977-01-01

    In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text

  1. Adjusting Mitigation Pathways to Stabilize Climate at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    Science.gov (United States)

    Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.

    2018-03-01

    To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.

  2. Analysis and improvement of digital control stability for master-slave manipulator system

    International Nuclear Information System (INIS)

    Yoshida, Koichi; Yabuta, Tetsuro

    1992-01-01

    Some bilateral controls of master-slave system have been designed, which can realize high-fidelity telemanipulation as if the operator were manipulating the object directly. While usual robot systems are controlled by software-servo system using digital computer, little work has been published on design and analysis for digital control of these systems, which must consider time-delay of sensor signals and zero order hold effect of command signals on actuators. This paper presents a digital control analysis for single degree of freedom master-slave system including impedance models of both the human operator and the task object, which clarifies some index for the stability. The stability result shows a virtual master-slave system concepts, which improve the digital control stability. We first analyze a dynamic control method of master-slave system in discrete-time system for the stability problem, which can realize high-fidelity telemanipulation in the continuous-time. Secondly, using the results of the stability analysis, the robust control scheme for master-slave system is proposed, and the validity of this scheme is finally confirmed by the simulation. Consequently, it would be considered that any combination of master and slave modules with dynamic model of these manipulators is possible to construct the stable master-slave system. (author)

  3. Stability Analysis of a Type of Takagi-Sugeno PI Fuzzy Control Systems Using Circle Criterion

    Directory of Open Access Journals (Sweden)

    Kairui Cao

    2011-04-01

    Full Text Available A type of Takagi-Sugeno (T-S Proportional-Integral (PI fuzzy controllers is studied. The T-S PI fuzzy controller is formed by a T-S Proportional-Derivative (PD fuzzy controller connected with an integrator. In this particular structure, the T-S PD fuzzy controller is a weighted sum of some linear PD sub-controllers. The mathematical properties of our T-S PI fuzzy controller are also investigated. Based on these properties, the global asymptotic stability of the fuzzy control systems, in which the T-S PI fuzzy controllers are employed, are analyzed by using the well-known circle criterion. A sufficient condition with an elegant graphical interpretation in the frequency domain is further derived to guarantee the global asymptotic stability of the above fuzzy control systems. Finally, two numerical examples are provided to demonstrate how to deploy this method in analyzing the T-S PI fuzzy control systems in the frequency domain with the aid of some simple graphs.

  4. Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays.

    Science.gov (United States)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E

    2018-06-01

    This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Genotype x environment interaction and stability analysis for yield ...

    African Journals Online (AJOL)

    etc

    2015-05-06

    . Combined analysis of variance (ANOVA) for yield and yield components revealed highly significant .... yield stability among varieties, multi-location trials with ... Mean grain yield (kg/ha) of 17 Kabuli-type chickpea genotypes ...

  6. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  7. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  8. Simulation analysis of globally integrated logistics and recycling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Song, S.J.; Hiroshi, K. [Hiroshima Inst. of Tech., Graduate School of Mechanical Systems Engineering, Dept. of In formation and Intelligent Systems Engineering, Hiroshima (Japan)

    2004-07-01

    This paper focuses on the optimal analysis of world-wide recycling activities associated with managing the logistics and production activities in global manufacturing whose activities stretch across national boundaries. Globally integrated logistics and recycling strategies consist of the home country and two free trading economic blocs, NAFTA and ASEAN, where significant differences are found in production and disassembly cost, tax rates, local content rules and regulations. Moreover an optimal analysis of globally integrated value-chain was developed by applying simulation optimization technique as a decision-making tool. The simulation model was developed and analyzed by using ProModel packages, and the results help to identify some of the appropriate conditions required to make well-performed logistics and recycling plans in world-wide collaborated manufacturing environment. (orig.)

  9. A general first-order global sensitivity analysis method

    International Nuclear Information System (INIS)

    Xu Chonggang; Gertner, George Zdzislaw

    2008-01-01

    Fourier amplitude sensitivity test (FAST) is one of the most popular global sensitivity analysis techniques. The main mechanism of FAST is to assign each parameter with a characteristic frequency through a search function. Then, for a specific parameter, the variance contribution can be singled out of the model output by the characteristic frequency. Although FAST has been widely applied, there are two limitations: (1) the aliasing effect among parameters by using integer characteristic frequencies and (2) the suitability for only models with independent parameters. In this paper, we synthesize the improvement to overcome the aliasing effect limitation [Tarantola S, Gatelli D, Mara TA. Random balance designs for the estimation of first order global sensitivity indices. Reliab Eng Syst Safety 2006; 91(6):717-27] and the improvement to overcome the independence limitation [Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 2007, accepted for publication]. In this way, FAST can be a general first-order global sensitivity analysis method for linear/nonlinear models with as many correlated/uncorrelated parameters as the user specifies. We apply the general FAST to four test cases with correlated parameters. The results show that the sensitivity indices derived by the general FAST are in good agreement with the sensitivity indices derived by the correlation ratio method, which is a non-parametric method for models with correlated parameters

  10. Stability and Hopf bifurcation analysis of a new system

    International Nuclear Information System (INIS)

    Huang Kuifei; Yang Qigui

    2009-01-01

    In this paper, a new chaotic system is introduced. The system contains special cases as the modified Lorenz system and conjugate Chen system. Some subtle characteristics of stability and Hopf bifurcation of the new chaotic system are thoroughly investigated by rigorous mathematical analysis and symbolic computations. Meanwhile, some numerical simulations for justifying the theoretical analysis are also presented.

  11. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Science.gov (United States)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  12. Coastal flood implications of 1.5°C, 2°C and 2.5°C global mean temperature stabilization targets for small island nations

    Science.gov (United States)

    Rasmussen, D.; Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.

    2017-12-01

    Sea-level rise (SLR) is magnifying the frequency and severity of flooding in coastal regions. The rate and amount of global-mean SLR is a function of the trajectory of the global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g., 1.5°C or 2°C, as from the Paris Agreement) have important implications for regulating coastal flood risk. Quantifying the differences in the impact from SLR between these and other GMST stabilization targets is necessary for assessing the benefits and harms of mitigation goals. Low-lying small island nations are particularly vulnerable to inundation and coastal flooding from SLR because building protective and resilient infrastructure may not be physically or economically feasible. For small island nations, keeping GMST below a specified threshold may be the only option for maintaining habitability. Here, we assess differences in the return levels of coastal floods for small island nations between 1.5°C, 2.0°C, and 2.5°C GMST stabilization. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to construct estimates of local flood risk. We then estimate the number of small island nations' inhabitants at risk for permanent inundation under different GMST stabilization targets.

  13. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Science.gov (United States)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  14. Phase stability analysis of liquid-liquid equilibrium with stochastic methods

    Directory of Open Access Journals (Sweden)

    G. Nagatani

    2008-09-01

    Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.

  15. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  16. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  17. Revealing the underlying drivers of disaster risk: a global analysis

    Science.gov (United States)

    Peduzzi, Pascal

    2017-04-01

    Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL

  18. Resistive MHD Stability Analysis in Near Real-time

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  19. State fusion entropy for continuous and site-specific analysis of landslide stability changing regularities

    Science.gov (United States)

    Liu, Yong; Qin, Zhimeng; Hu, Baodan; Feng, Shuai

    2018-04-01

    Stability analysis is of great significance to landslide hazard prevention, especially the dynamic stability. However, many existing stability analysis methods are difficult to analyse the continuous landslide stability and its changing regularities in a uniform criterion due to the unique landslide geological conditions. Based on the relationship between displacement monitoring data, deformation states and landslide stability, a state fusion entropy method is herein proposed to derive landslide instability through a comprehensive multi-attribute entropy analysis of deformation states, which are defined by a proposed joint clustering method combining K-means and a cloud model. Taking Xintan landslide as the detailed case study, cumulative state fusion entropy presents an obvious increasing trend after the landslide entered accelerative deformation stage and historical maxima match highly with landslide macroscopic deformation behaviours in key time nodes. Reasonable results are also obtained in its application to several other landslides in the Three Gorges Reservoir in China. Combined with field survey, state fusion entropy may serve for assessing landslide stability and judging landslide evolutionary stages.

  20. Contributions to fuzzy polynomial techniques for stability analysis and control

    OpenAIRE

    Pitarch Pérez, José Luis

    2014-01-01

    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...

  1. Joint analysis of epistemic and aleatory uncertainty in stability analysis for geo-hazard assessments

    Science.gov (United States)

    Rohmer, Jeremy; Verdel, Thierry

    2017-04-01

    Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e

  2. Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks

    International Nuclear Information System (INIS)

    Hua-Guang, Zhang; Tie-Dong, Ma; Jie, Fu; Shao-Cheng, Tong

    2009-01-01

    In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method

  3. Global processing takes time: A meta-analysis on local-global visual processing in ASD.

    Science.gov (United States)

    Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan

    2015-05-01

    What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).

  4. Classical linear-control analysis applied to business-cycle dynamics and stability

    Science.gov (United States)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  5. BWR stability analysis: methodology of the stability analysis and results of PSI for the NEA/NCR benchmark task; SWR Stabilitaetsanalyse: Methodik der Stabilitaetsanalyse und PSI-Ergebnisse zur NEA/NCR Benchmarkaufgabe

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, D.; Nechvatal, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-09-01

    The report describes the PSI stability analysis methodology and the validation of this methodology based on the international OECD/NEA BWR stability benchmark task. In the frame of this work, the stability properties of some operation points of the NPP Ringhals 1 have been analysed and compared with the experimental results. (author) figs., tabs., 45 refs.

  6. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases

    Science.gov (United States)

    Vriend, Gert; Eijsink, Vincent

    1993-08-01

    Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability

  7. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    International Nuclear Information System (INIS)

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  8. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  9. The stabilizing effect of core pressure on the edge pedestal in MAST plasmas

    International Nuclear Information System (INIS)

    Chapman, I.T.; Simpson, J.; Saarelma, S.; Kirk, A.; O'Gorman, T.; Scannell, R.

    2015-01-01

    The pedestal pressure measured in Mega Ampere Spherical Tokamak plasmas has been shown to increase as the global plasma pressure increases. By deliberately suppressing the transition into the high-confinement regime, the core plasma pressure was systematically altered at the time of the first edge localized mode. Stability analysis shows that the enhanced Shafranov shift at higher core pressure stabilizes the ballooning modes driven by the pedestal pressure gradient, consequently allowing the pedestal to reach higher pressures. (paper)

  10. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    Science.gov (United States)

    Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

    2012-12-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

  11. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

    International Nuclear Information System (INIS)

    Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

    2012-01-01

    This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)

  12. Stability Analysis for Hybrid Automata Using Conservative Gains

    NARCIS (Netherlands)

    Langerak, Romanus; Engell, S.; Guegen, H.; Polderman, Jan W.; Krilavicius, T.; Zaytoon, J.

    2003-01-01

    This paper presents a stability analysis approach for a class of hybrid automata. It is assumed that the dynamics in each location of the hybrid automaton is linear and asymptotically stable, and that the guards on the transitions are hyperplanes in the state space. For each pair of ingoing and

  13. Impulsive effect on global exponential stability of BAM fuzzy cellular neural networks with time-varying delays

    Science.gov (United States)

    Li, Kelin

    2010-02-01

    In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.

  14. Fixed-Time Stability Analysis of Permanent Magnet Synchronous Motors with Novel Adaptive Control

    Directory of Open Access Journals (Sweden)

    Maoxing Liu

    2017-01-01

    Full Text Available We firstly investigate the fixed-time stability analysis of uncertain permanent magnet synchronous motors with novel control. Compared with finite-time stability where the convergence rate relies on the initial permanent magnet synchronous motors state, the settling time of fixed-time stability can be adjusted to desired values regardless of initial conditions. Novel adaptive stability control strategy for the permanent magnet synchronous motors is proposed, with which we can stabilize permanent magnet synchronous motors within fixed time based on the Lyapunov stability theory. Finally, some simulation and comparison results are given to illustrate the validity of the theoretical results.

  15. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    Science.gov (United States)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  16. ORIGINAL ARTICLE Stability Analysis of Delayed Cournot Model in ...

    African Journals Online (AJOL)

    HP

    and Lyapunov method of nonlinear stability analysis are employed. It is ascertained ... and the rival player makes decision without delay, it leads to instability of the dynamic system at ... phenomena such as economic growth, prediction and ...

  17. Characterization and stability analysis of zinc oxide nanoencapsulated conjugated linoleic acid.

    Science.gov (United States)

    Choy, Jin-Ho; Shin, Jiwon; Lim, Seung-Yong; Oh, Jae-Min; Oh, Mi-Hwa; Oh, Sangsuk

    2010-08-01

    Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 degrees C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 A through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn(4.86)(OH)(8.78)(CLA)(0.94). By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.

  18. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty

    International Nuclear Information System (INIS)

    Huang He; Qu Yuzhong; Li Hanxiong

    2005-01-01

    With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results

  19. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    Science.gov (United States)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  20. stability analysis of ssss thin rectangular plate using multi

    African Journals Online (AJOL)

    user

    The stability analysis of all four edges simply supported (SSSS) thin ... average percentage difference of K – values from two previous works and the present study when compared with ... freedom eigen value problem of the elastic buckling of.

  1. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  2. Stability Analysis of the EBR-I Mark-II Core Meltdown Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.

  3. Effects of protein phosphorylation on color stability of ground meat.

    Science.gov (United States)

    Li, Meng; Li, Xin; Xin, Jianzeng; Li, Zheng; Li, Guixia; Zhang, Yan; Du, Manting; Shen, Qingwu W; Zhang, Dequan

    2017-03-15

    The influence of protein phosphorylation on meat color stability was investigated in this study. Phosphatase and protein kinase inhibitors were added to minced ovine Longissimus thoracis et lumborum (LTL) muscle to manipulate the global phosphorylation of sarcoplasmic proteins. The data obtained show that the rate and extent of pH decline, along with lactate accumulation in postmortem muscle, were related to protein phosphorylation. Analysis of meat color and the relative content of myoglobin redox forms revealed that meat color stability was inversely related to the phosphorylation of sarcoplasmic proteins. Thus, this study suggests that protein phosphorylation may be involved in meat color development by regulating glycolysis and the redox stability of myoglobin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  5. Development and verification of local/global analysis techniques for laminated composites

    Science.gov (United States)

    Griffin, O. Hayden, Jr.

    1989-01-01

    Analysis and design methods for laminated composite materials have been the subject of considerable research over the past 20 years, and are currently well developed. In performing the detailed three-dimensional analyses which are often required in proximity to discontinuities, however, analysts often encounter difficulties due to large models. Even with the current availability of powerful computers, models which are too large to run, either from a resource or time standpoint, are often required. There are several approaches which can permit such analyses, including substructuring, use of superelements or transition elements, and the global/local approach. This effort is based on the so-called zoom technique to global/local analysis, where a global analysis is run, with the results of that analysis applied to a smaller region as boundary conditions, in as many iterations as is required to attain an analysis of the desired region. Before beginning the global/local analyses, it was necessary to evaluate the accuracy of the three-dimensional elements currently implemented in the Computational Structural Mechanics (CSM) Testbed. It was also desired to install, using the Experimental Element Capability, a number of displacement formulation elements which have well known behavior when used for analysis of laminated composites.

  6. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Directory of Open Access Journals (Sweden)

    M. Wehner

    2018-03-01

    Full Text Available The half a degree additional warming, prognosis and projected impacts (HAPPI experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  7. Bundle Adjustment-Based Stability Analysis Method with a Case Study of a Dual Fluoroscopy Imaging System

    Science.gov (United States)

    Al-Durgham, K.; Lichti, D. D.; Detchev, I.; Kuntze, G.; Ronsky, J. L.

    2018-05-01

    A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system's calibration parameters. This is essential to validate the repeatability of the parameters' estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system - for a single camera analysis - was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors' best knowledge that this work is the first to address the topic of DF stability analysis.

  8. Stability analysis for tidal inlets of Thuan An and Tu Hien using Escoffier diagram

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2004-01-01

    Stability analysis of tidal inlets is very important in providing knowledge on the behaviour of tidal inlet and lagoon systems. The analysis results can help to plan and manage the system effectively as well as to provide information for stability design of the inlets. This paper presents a method

  9. Lattice Boltzmann methods for global linear instability analysis

    Science.gov (United States)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  10. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  11. Fast simulation of wind generation for frequency stability analysis in island power systems

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, James [EirGrid, Dublin (Ireland)

    2010-07-01

    Frequency stability is a major issue for power system planning and operation in an island power system such as Ireland. As increasing amounts of variable speed wind generation are added to the system, this issue becomes more prominent, as variable speed wind generation does not provide an inherent inertial response. This lack of an inertial response means that simplified models for variable speed wind farms can be used for investigating frequency stability. EirGrid uses DIgSILENT Power Factory (as well as other software tools) to investigate frequency stability. In PowerFactory, an automation program has been created to convert detailed wind farm representation (as necessary for other types of analysis) to negative load models for frequency stability analysis. The advantage of this approach is much-improved simulation speed without loss of accuracy. This approach can also be to study future wind energy targets, and long-term simulation of voltage stability. (orig.)

  12. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    Science.gov (United States)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  13. Landslide stability analysis on basis of LIDAR data extraction

    Science.gov (United States)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  14. Global sensitivity analysis using emulators, with an example analysis of large fire plumes based on FDS simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Adrian [Health and Safety Laboratory, Harpur Hill, Buxton (United Kingdom)

    2015-12-15

    Uncertainty in model predictions of the behaviour of fires is an important issue in fire safety analysis in nuclear power plants. A global sensitivity analysis can help identify the input parameters or sub-models that have the most significant effect on model predictions. However, to perform a global sensitivity analysis using Monte Carlo sampling might require thousands of simulations to be performed and therefore would not be practical for an analysis based on a complex fire code using computational fluid dynamics (CFD). An alternative approach is to perform a global sensitivity analysis using an emulator. Gaussian process emulators can be built using a limited number of simulations and once built a global sensitivity analysis can be performed on an emulator, rather than using simulations directly. Typically reliable emulators can be built using ten simulations for each parameter under consideration, therefore allowing a global sensitivity analysis to be performed, even for a complex computer code. In this paper we use an example of a large scale pool fire to demonstrate an emulator based approach to global sensitivity analysis. In that work an emulator based global sensitivity analysis was used to identify the key uncertain model inputs affecting the entrainment rates and flame heights in large Liquefied Natural Gas (LNG) fire plumes. The pool fire simulations were performed using the Fire Dynamics Simulator (FDS) software. Five model inputs were varied: the fire diameter, burn rate, radiative fraction, computational grid cell size and choice of turbulence model. The ranges used for these parameters in the analysis were determined from experiment and literature. The Gaussian process emulators used in the analysis were created using 127 FDS simulations. The emulators were checked for reliability, and then used to perform a global sensitivity analysis and uncertainty analysis. Large-scale ignited releases of LNG on water were performed by Sandia National

  15. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  16. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  17. Comparative profiling of sarcoplasmic phosphoproteins in ovine muscle with different color stability.

    Science.gov (United States)

    Li, Meng; Li, Zheng; Li, Xin; Xin, Jianzeng; Wang, Ying; Li, Guixia; Wu, Liguo; Shen, Qingwu W; Zhang, Dequan

    2018-02-01

    The phosphorylation of sarcoplasmic proteins in postmortem muscles was investigated in relationship to color stability in the present study. Although no difference was observed in the global phosphorylation level of sarcoplasmic proteins, difference was determined in the phosphorylation levels of individual protein bands from muscles with different color stability. Correlation analysis and liquid chromatography - tandem mass spectrometry (LC-MS/MS) identification of phosphoproteins showed that most of the color stability-related proteins were glycolytic enzymes. Interestingly, the phosphorylation level of myoglobin was inversely related to meat color stability. As the phosphorylation of myoglobin increased, color stability based on a ∗ value decreased and metMb content increased. In summary, the study revealed that protein phosphorylation might play a role in the regulation of meat color stability probably by regulating glycolysis and the redox stability of myoglobin, which might be affected by the phosphorylation of myoglobin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  19. Global warming: Towards a strategy for Ontario

    International Nuclear Information System (INIS)

    1990-01-01

    A discussion paper is provided as background to a proposed public review of a strategy for Ontario's response to global warming. Global warming arises from the generation of greenhouse gases, which come from the use of fossil fuels, the use of chlorofluorocarbons, and deforestation. Energy policy is the backbone of achieving climate stability since the burning of fossil fuels releases most of the greenhouse gases, mainly carbon dioxide. Canada is, by international standards, a very energy-intensive country and is among the world's largest emitters of carbon dioxide on a per capita basis. Ontario is the largest energy-using province in Canada, and fossil fuels represent over 80% of provincial energy use. A proposed goal for Ontario is to provide leadership in stabilizing atmospheric concentrations of the greenhouse gases, while minimizing the social, economic, and environmental costs in Ontario of adapting to global warming. A proposed first step to address global warming is to achieve reductions in expected emissions of the greenhouse gases, especially carbon dioxide, so that levels by the year 2000 are lower than in 1989. Current policies and regulations helping to reduce the greenhouse effect include some of the current controls on automotive emissions and the adoption by the provincial electric utility of targets to reduce electricity demand. New initiatives include establishment of minimum energy efficiency standards and reduction of peak-day electricity use. Action steps for future consideration are detailed in the categories of greenhouse gas emissions reductions, carbon dioxide absorption, and research and analysis into global warming

  20. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  1. A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja E. M.

    2015-11-21

    Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  2. A global sensitivity analysis approach for morphogenesis models.

    Science.gov (United States)

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  3. LOFT pump speed controller stability and accuracy analysis

    International Nuclear Information System (INIS)

    Good, R.R.

    1978-01-01

    Two system modifications to the primary coolant pumps motor generators control systems have recently been completed. The range of pump speed operation has been extended and the scoop tube positioner motor replaced. This has necessitated a re-analysis of PSMG stability throughout its range of operation. System accuracy requirements of less than 4 Hz differential pump speed when operating at less than 35 Hz and 8.5 Hz differential pump speed when operating at greater than 35 Hz can be guaranteed by specifying the gain of the system. The installation of the new scoop tube positioner motor will increase the PSMG system's bandwidth and stability. Low speed pump trips should be carefully evaluated if the pump's operational range is to extend to 10 Hz

  4. Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-storey buildings

    Directory of Open Access Journals (Sweden)

    M. C. Marin

    Full Text Available This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.

  5. Stability and bifurcation analysis of a generalized scalar delay differential equation.

    Science.gov (United States)

    Bhalekar, Sachin

    2016-08-01

    This paper deals with the stability and bifurcation analysis of a general form of equation D(α)x(t)=g(x(t),x(t-τ)) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.

  6. Global stability of discrete-time recurrent neural networks with impulse effects

    International Nuclear Information System (INIS)

    Zhou, L; Li, C; Wan, J

    2008-01-01

    This paper formulates and studies a class of discrete-time recurrent neural networks with impulse effects. A stability criterion, which characterizes the effects of impulse and stability property of the corresponding impulse-free networks on the stability of the impulsive networks in an aggregate form, is established. Two simplified and numerically tractable criteria are also provided

  7. Stability and Change in Work Values: A Meta-Analysis of Longitudinal Studies

    Science.gov (United States)

    Jin, Jing; Rounds, James

    2012-01-01

    A meta-analysis of longitudinal studies was conducted to investigate stability and change in work values across the life span. Both rank-order stability and mean-level change were investigated using an integrative classification for intrinsic, extrinsic, social and status work values (Ross, Schwartz, & Surkis, 1999). Results of rank-order…

  8. Stabilization diagrams using operational modal analysis and sliding filters

    DEFF Research Database (Denmark)

    Olsen, Peter; Juul, Martin Ørum Ørhem; Tarpø, Marius Glindtvad

    2017-01-01

    This paper presents a filtering technique for doing effective operational modal analysis. The result of the filtering method is construction of stabilization diagram that clearly separates physical poles from spurious noise poles needed for unbiased fitting. A band pass filter is moved slowly over...

  9. On the stability analysis of a general discrete-time population model involving predation and Allee effects

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a general discrete-time population dynamics involving predation with and without Allee effects which occur at low population density. The mathematical analysis and numerical simulations show that the Allee effect has a stabilizing role on the local stability of the positive equilibrium points of this model.

  10. Stability analysis for single-phase liquid metal rectangular natural circulation loops

    International Nuclear Information System (INIS)

    Lu, Daogang; Zhang, Xun; Guo, Chao

    2014-01-01

    Highlights: • The stability for asymmetric liquid metal natural circulation loops is analyzed. • The Na and NaK loops have higher critical Reynolds number than Pb and LBE loops. • Decreasing the ratio of height to width of loop can increase loop stability. • The length of heater would not affect the loop stability obviously. • Adding the length or heat transfer coefficient of cooler can increase loop stability. - Abstract: Natural circulation systems are preferred in some advanced nuclear power plants as they can simplify the designs and improve the inherent safety. The stability and steady-state characteristics of natural circulation are important for the applications of natural circulation loops (NCLs). A linear stability analysis method was used to study the stability behavior of liquid metal NCLs. The influences of the types of working fluids and loop geometry parameters on the stability of NCLs were evaluated. The liquid sodium (Na) loop and sodium–potassium alloy (NaK) loop would be more stable than lead bismuth eutectics (LBE) loop. The pressure drop could stabilize the loop behavior and also lead an increase of operating temperature for the loop. The NCL with a lower aspect ratio (ratio of vertical center distance between the heating and cooling section to the horizontal length of loop) is supposed to be more stable. It was found that the length of heating section would not have an obvious effect on the stability of NCL. However, the loop behavior could be stabilized by adding the length or heat transfer coefficient of the cooling section

  11. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    Science.gov (United States)

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  12. Delay-independent stability of genetic regulatory networks.

    Science.gov (United States)

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  13. RISKS AND CONSTRAINTS FOR THE MONETARY STABILITY

    Directory of Open Access Journals (Sweden)

    Camelia MILEA

    2013-09-01

    Full Text Available Starting from the definition according to which monetary stability requires an appropriate level of liquidity in an economy with dynamic objectives, of growth and job creation, non-inflationary in terms of price stability, based on the analysis of the effects of some relevant economic phenomena and on the economic literature, in this article, the author has highlighted some of the risks to monetary stability. One of the major risks is represented by the loss of its instruments, i.e. the instruments for liquidity management, through monetary and exchange rate policies. Another important risk is represented by the capital fluctuation due to various shocks: exchange rate, political, financial and capital account liberalization. Also, as a result of the analysis of relevant studies and of the effects of the European integration in terms of monetary stability, the author has shown the elements on which depends monetary stability. Among these, there are: the existence of an institutional framework with a clear goal and a proper degree of responsibility, strong operational independence of monetary policy, monetary policy implementation with a view to ensuring an appropriate balance between discipline and discretion, the level of the interest rate of monetary policy, the efficiency of the transmission mechanism of monetary policy, the existence of a viable and stable financial system, the existence of enough instruments at hand for the central bank, the structure and soundness of the financial and banking system. The paper is a capitalization of the research project “Global Risks for the Financial and Monetary Stability. Implications for Romania and European Union” elaborated in 2013, at “Victor Slăvescu” Centre for Financial and Monetary Research.

  14. Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid model

    International Nuclear Information System (INIS)

    Sotnikov, V.I.; Paraschiv, I.; Makhin, V.; Bauer, B.S.; Leboeuf, J.N.; Dawson, J.M.

    2002-01-01

    A systematic study of the linear stage of sheared flow stabilization of Z-pinch plasmas based on the Hall fluid model with equilibrium that contains sheared flow and an axial magnetic field is presented. In the study we begin with the derivation of a general set of equations that permits the evaluation of the combined effect of sheared flow and axial magnetic field on the development of the azimuthal mode number m=0 sausage and m=1 kink magnetohydrodynamic (MHD) instabilities, with the Hall term included in the model. The incorporation of sheared flow, axial magnetic field, and the Hall term allows the Z-pinch system to be taken away from the region in parameter space where ideal MHD is applicable to a regime where nonideal effects tend to govern stability. The problem is then treated numerically by following the linear development in time of an initial perturbation. The numerical results for linear growth rates as a function of axial sheared flow, an axial magnetic field, and the Hall term are reported

  15. Stability analysis of rubblemound breakwater using ANN

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.; Kim, D.H.

    relation is not clear. In more practical terms networks are non-linear modeling tools and they can be used to model complex relationship between input and output system. Earlier applications of neural networks for stability analysis of rubble mound.... WORKING PRINCIPLE OF NEURAL NETWORK The feed forward neural networks have ability to approximate any continuous function or complex phenomena into a simple one. The working of neural network as described below. A feed forward neural network as shown...

  16. Delay-dependent exponential stability of cellular neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2005-01-01

    The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results

  17. A tutorial on incremental stability analysis using contraction theory

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Fossen, Thor I.

    2010-01-01

    This paper introduces a methodology for dierential nonlinear stability analysis using contraction theory (Lohmiller and Slotine, 1998). The methodology includes four distinct steps: the descriptions of two systems to be compared (the plant and the observer in the case of observer convergence...... on several simple examples....

  18. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  19. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  20. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  1. Application of linearized model to the stability analysis of the pressurized water reactor

    International Nuclear Information System (INIS)

    Li Haipeng; Huang Xiaojin; Zhang Liangju

    2008-01-01

    A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

  2. Facilitation of the PED analysis of large molecules by using global coordinates.

    Science.gov (United States)

    Jamróz, Michał H; Ostrowski, Sławomir; Dobrowolski, Jan Cz

    2015-10-05

    Global coordinates have been found to be useful in the potential energy distribution (PED) analyses of the following large molecules: [13]-acene and [33]-helicene. The global coordinate is defined based on much distanced fragments of the analysed molecule, whereas so far, the coordinates used in the analysis were based on stretchings, bendings, or torsions of the adjacent atoms. It has been shown that the PED analyses performed using the global coordinate and the classical ones can lead to exactly the same PED contributions. The global coordinates may significantly improve the facility of the analysis of the vibrational spectra of large molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests.

    Directory of Open Access Journals (Sweden)

    Laura J Falkenberg

    Full Text Available Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp would continue to inhibit a key competitor (turf-forming algae under moderately increased local (nutrient and near-future forecasted global pollution (CO(2. Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2. The positive effects of nutrient and CO(2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.

  4. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  5. Global analysis of the protection status of the world's forests

    DEFF Research Database (Denmark)

    Schmitt, Christine B.; Burgess, Neil David; Coad, Lauren

    2009-01-01

    This study presents a global analysis of forest cover and forest protection. An updated Global Forest Map (using MODIS2005) provided a current assessment of forest cover within 20 natural forest types. This map was overlaid onto WWF realms and ecoregions to gain additional biogeographic information...... on forest distribution. Using the 2008 World Database on Protected Areas, percentage forest cover protection was calculated globally, within forest types, realms and ecoregions, and within selected areas of global conservation importance. At the 10% tree cover threshold, global forest cover was 39 million...... km2. Of this, 7.7% fell within protected areas under IUCN management categories I-IV. With the inclusion of IUCN categories V and VI, the level of global forest protection increased to 13.5%. Percentage forest protection (IUCN I-IV) varied greatly between realms from 5.5% (Palearctic) to 13...

  6. Analysis of natural circulation stability in a low pressure thermohydraulic test loop

    International Nuclear Information System (INIS)

    Jafari, J.; D'Auria, F.; Kazeminejad, H.; Davilu, H.

    2002-01-01

    This paper discusses an instability study of a natural circulation (NC) loop performed with the aid of Relap5 thermal-hydraulic system code. This loop has been designed and constructed for the analysis of relevant thermohydraulic parameters of a nuclear reactor. In this study, the main parameters for the stability of NC are identified and characterized through the execution of proper code runs. The obtained stability boundary (SB) in the dimensionless Zuber- Sub-cooling plane is compared with the SB reported in referenced literature. The agreement of predicted NC stability boundaries with the results of independent studies demonstrates both the capability of the mentioned code in assessing NC loop stability and the quality of the performed calculations.(author)

  7. Global analysis of all linear stable settings of a storage ring lattice

    Directory of Open Access Journals (Sweden)

    David S Robin

    2008-02-01

    Full Text Available The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straightforward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS (GLobal scan of All Stable Settings that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices—the triple bend achromat of the Advanced Light Source and the double bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some cases previously unknown stability regions.

  8. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  9. Ideal MHD stability analysis of KSTAR target AT mode

    International Nuclear Information System (INIS)

    Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.

    2009-01-01

    Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)

  10. Stability of Almost Periodic Solution for a General Class of Discontinuous Neural Networks with Mixed Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2013-01-01

    Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.

  11. Stability Analysis of Static Slip-Energy Recovery Drive via ...

    African Journals Online (AJOL)

    The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...

  12. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    International Nuclear Information System (INIS)

    Zhou Tiejun; Chen Anping; Zhou Yuyuan

    2005-01-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible

  13. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    Science.gov (United States)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  14. Analysis method of beam pointing stability based on optical transmission matrix

    Science.gov (United States)

    Wang, Chuanchuan; Huang, PingXian; Li, Xiaotong; Cen, Zhaofen

    2016-10-01

    Quite a lot of factors will make effects on beam pointing stability of an optical system, Among them, the element tolerance is one of the most important and common factors. In some large laser systems, it will make final micro beams spot on the image plane deviate obviously. So it is essential for us to achieve effective and accurate analysis theoretically on element tolerance. In order to make the analysis of beam pointing stability convenient and theoretical, we consider transmission of a single chief ray rather than beams approximately to stand for the whole spot deviation. According to optical matrix, we also simplify this complex process of light transmission to multiplication of many matrices. So that we can set up element tolerance model, namely having mathematical expression to illustrate spot deviation in an optical system with element tolerance. In this way, we can realize quantitative analysis of beam pointing stability theoretically. In second half of the paper, we design an experiment to get the spot deviation in a multipass optical system caused by element tolerance, then we adjust the tolerance step by step and compare the results with the datum got from tolerance model, finally prove the correction of tolerance model successfully.

  15. Comparison of global sensitivity analysis techniques and importance measures in PSA

    International Nuclear Information System (INIS)

    Borgonovo, E.; Apostolakis, G.E.; Tarantola, S.; Saltelli, A.

    2003-01-01

    This paper discusses application and results of global sensitivity analysis techniques to probabilistic safety assessment (PSA) models, and their comparison to importance measures. This comparison allows one to understand whether PSA elements that are important to the risk, as revealed by importance measures, are also important contributors to the model uncertainty, as revealed by global sensitivity analysis. We show that, due to epistemic dependence, uncertainty and global sensitivity analysis of PSA models must be performed at the parameter level. A difficulty arises, since standard codes produce the calculations at the basic event level. We discuss both the indirect comparison through importance measures computed for basic events, and the direct comparison performed using the differential importance measure and the Fussell-Vesely importance at the parameter level. Results are discussed for the large LLOCA sequence of the advanced test reactor PSA

  16. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  17. Validation of SIMULATE-3K for stability analysis of Laguna Verde nuclear plant

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2013-12-15

    Highlights: • Neutronic/thermal hydraulic event in Laguna Verde is modeled. • A good agreement is obtained between SIMULATE-3K results and data plant for frequency and DR. • Other noise analysis techniques are used for the same purpose with good agreement. • Validation of SIMULATE-3K for stability analysis of Laguna Verde is confirmed - Abstract: Boiling Water Reactors are two phase flow systems which are susceptible to different types of flow instabilities. Among these are the coupled neutronic/thermal-hydraulic instabilities, these may compromise established fuel safety limits. These instabilities are characterized by periodic core-power and hydraulic oscillations. SIMULATE-3K code has been tested for stability analysis for several benchmarks, however to qualify the SIMULATE-3K code for a particular power plant a specific reactor plant analysis must be done. In this paper, the plant model of Laguna Verde Nuclear Power Plant is built and SIMULATE-3K is tested against the 1995 coupled neutronic/thermal-hydraulic instability event of Laguna Verde. Results obtained show the adequacy of this code to specific Laguna Verde power plant stability analysis.

  18. Global Financial Crisis – Policy Response

    Directory of Open Access Journals (Sweden)

    Dakić Milojica

    2014-01-01

    Full Text Available Six years after the outbreak of the financial crisis that had shaken the global financial system, experts and analysts all over the world continue discussing the effectiveness, scope and adequacy of mechanisms and measures implemented in the meantime, as well as the adequacy of the underlying theoretical concept. A global consent has been reached on ensuring financial stability through the interaction of monetary, fiscal and prudential policy to ensure the necessary macroprudential dimension of regulatory and supervisory frameworks. The USA crisis spilled over to Europe. Strong support of governments to bail out banks quickly resulted in sovereign debt crises in some peripheral EU Member States. Fiscal insolvency of these countries strongly shook the EU and increased doubts in the monetary union survival. The European Union stood united to defend the euro and responded strongly with a new complex and comprehensive financial stability framework. This supranational framework is a counterpart to the global financial stability framework created by the G20 member countries. Starting from the specific features of the monetary policy whose capacities are determined by euroisation, available instruments and resources for preventive supervisory activities, as well as the role of the government in crisis management, Montenegro created a framework for maintaining financial stability and prescribed fostering and maintaining financial stability as the main objective of the Central Bank of Montenegro.

  19. Stability analysis of cylindrical Vlasov equilibria

    International Nuclear Information System (INIS)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma

  20. Stability analysis of cylindrical Vlasov equilibria

    International Nuclear Information System (INIS)

    Short, R.W.

    1979-01-01

    A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by clindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma

  1. The effect of the virtual mass force term on the stability of transient two-phase flow analysis

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Hirano, Masashi; Tanabe, Fumiya

    1989-08-01

    The effect of the virtual mass force term on the stability of transient two-phase flow analysis is studied. The objective form of the virtual mass acceleration is used. The virtual mass coefficient is determined from the stability condition of basic equations against infinitesimal high wave-number perturbations. The parameter is chosen so that a reasonable agreement between the analytical and experimental sound speed in two-phase flows can be obtained. A one-dimensional sedimentation problem is simulated by the MINCS code which is a tool for transient two-phase flow analysis. The stability analysis is performed for the numerical procedure. It is shown that calculated results are stabilized so long as the virtual mass coefficient satisfies the stability condition of differential equations. (author)

  2. Intertemporal social choice and climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, R.B. [Dartmouth College, Hanover, NH (United States). Environmental Studies Program

    2001-07-01

    This paper examines the implications of alternative approaches to intertemporal social choice in a numerically calibrated model of interactions between global climate change and the world economy. Under cost-benefit analysis, relatively modest steps towards greenhouse gas emissions abatement are justified as economically efficient. Under classical utilitarianism and the precautionary principle, in contrast, aggressive steps towards climate stabilization emerge as socially optimal. The paper reviews the value judgement that support each of these normative approaches, arguing that the precautionary principle is most loosely tied to the goals and objectives of the Framework Convention on Climate Change. (Author)

  3. Competition, transmission and pattern evolution: A network analysis of global oil trade

    International Nuclear Information System (INIS)

    Zhang, Hai-Ying; Ji, Qiang; Fan, Ying

    2014-01-01

    This paper studies the competition among oil importers using complex network theory, combined with several alternative measures of competition intensity, to analyze the evolution of the pattern and transmission of oil-trading competition. The results indicate that oil trade has formed a global competition pattern and that the role played by the Asian-Pacific region in the evolution of this competition pattern is becoming increasingly prominent. In addition, global competition intensity has continued to rise, and non-OECD countries have become the main driving force for this increase in global competition intensity. The large oil importers are the most significant parts of the global oil-trading competition pattern. They are not only the major participants in the competition for oil resources but also play important roles in the transmission of oil-trading competition. China and the United States especially display the feature of globalization, whose impacts of transmission reach across the whole oil-trading competition network. Finally, a “5C” (changeability, contestability, cooperation, commitment and circumstances) policy framework is put forward to maintain the stability of oil trade and improve the energy security of oil importers in various aspects. - Highlights: • An oil-trading competition network is constructed using complex network theory. • Oil trade has formed a global competition pattern and its intensity has kept rising. • The status of the Asian-Pacific region in the competition pattern becomes prominent. • Large oil importers play important roles in transmitting the trading competition. • A “5C” policy framework is put forward to cope with the intensive competition

  4. Analysis of the hydrodynamic stability of natural circulation

    International Nuclear Information System (INIS)

    Olive, J.; Baby, J.P.

    1980-01-01

    A mathematical model (EOLE) for the analysis of the stability of boilers with natural circulation is discussed. The method employed consists in linearizing one-dimensional flow equations and in integrating them while employing the Laplace transformation. The properties of a two-phase fluid are schematized by a homogeneous model with slip. The computation results in the circulation loop transfer functions and its natural modes of oscillation (frequency and damping). A discussion follows which compares results obtained with this method to those of other existing models in the case of a straight pipe with forced circulation. Agreement proved to be satisfactory. The results are then given of a parametric study involving the stability of a PWR natural circulation steam generator. These results show that the model can satisfy, at least qualitatively, trends observed empirically or obtained with other more complex theoretical models. (author)

  5. Nonlinear Stability Analysis of a Composite Girder Cable-Stayed Bridge with Three Pylons during Construction

    Directory of Open Access Journals (Sweden)

    Xiaoguang Deng

    2015-01-01

    Full Text Available Based on the nonlinear stability analysis method, the 3D nonlinear finite element model of a composite girder cable-stayed bridge with three pylons is established to research the effect of factors including geometric nonlinearity, material nonlinearity, static wind load, and unbalanced construction load on the structural stability during construction. Besides, the structural nonlinear stability in different construction schemes and the determination of temporary pier position are also studied. The nonlinear stability safety factors are calculated to demonstrate the rationality and safety of construction schemes. The results show that the nonlinear stability safety factors of this bridge during construction meet the design requirement and the minimum value occurs in the maximum double cantilever stage. Besides, the nonlinear stability of the structure in the side of edge-pylon meets the design requirement in the two construction schemes. Furthermore, the temporary pier can improve the structure stability, effectively, and the actual position is reasonable. In addition, the local buckling of steel girder occurs earlier than overall instability under load in some cable tension stages. Finally, static wind load and the unbalanced construction load should be considered in the stability analysis for the adverse impact.

  6. Transverse beam stability measurement and analysis for the SNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zaipeng [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States); Deibele, Craig, E-mail: deibele@ornl.gov [Oak Ridge National Laboratory, PO BOX 2008 MS6483, Oak Ridge, TN 37831-6461 (United States); Schulte, Michael J.; Hu, Yu-Hen [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States)

    2015-07-11

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring.

  7. Transverse beam stability measurement and analysis for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; Hu, Yu-Hen

    2015-01-01

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring

  8. ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Verbytskiyi

    2011-01-01

    Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.

  9. Stability analysis for a general age-dependent vaccination model

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    An SIR epidemic model of a general age-dependent vaccination model is investigated when the fertility, mortality and removal rates depends on age. We give threshold criteria of the existence of equilibriums and perform stability analysis. Furthermore a critical vaccination coverage that is sufficient to eradicate the disease is determined. (author). 12 refs

  10. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  11. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  12. Stability analysis of maize hybrids across north west of Pakistan

    International Nuclear Information System (INIS)

    Rahman, H.; Durreshawar; Ali, S.; Iftikhar, F.; Khalil, I.H.; Shah, S.M.A.; Ahmad, H.

    2010-01-01

    Stability analysis was carried out to study stability in performance and genotype x environment interactions for 18 maize hybrids across three locations of NWFP i.e., Agricultural University Peshawar (AUP), Agricultural Research Station (ARS), Baffa, (Mansehra) and Cereal Crops Research Institute (CCRI), Pirsabak (Nowshera), during 2006. Data were recorded on different morphological and yield parameters. Analysis of variance indicated significant differences among the three locations for all the traits studied. Hybrids showed significant differences for all parameters except anthesis silking interval (ASI) and ear height, which were non significant across the three locations. The hybrid x location interactions also revealed significant differences for days to 50% silking, days to 50% anthesis, ASI, grain moisture at harvest and grain yield per hectare while non significant differences were observed for plant height and ear height. Based on yield performance of hybrids across the three locations, Baffa ranked first as compared to the other two locations. Hybrid DK-1 x EV-9806 was the highest yielding across the three locations followed by hybrid AGB-108, while the lowest yield was observed for hybrid CSCY. Stability in performance was evident for hybrid CS-2Y2 with regard to days required for silking and anthesis. Stability in anthesis silking interval (ASI) was manifested for hybrid CS-222. Hybrid AGB-108 was comparatively stable for grain yield across the tested locations. Remaining hybrids seemed to be considerably influenced by Genotype x environment interactions encountered at the tested locations and location specific selection has to be made while selecting a maize hybrid for a particular location. (author)

  13. STABILITY AND GROWTH PACT, COMMUNITY DOCUMENT „REVIVED” IN THE CURRENT GLOBAL ECONOMIC CRISIS”

    Directory of Open Access Journals (Sweden)

    ROXANA-DANIELA PAUN

    2011-04-01

    Full Text Available The article proposes to make a reasoned radiography Stability and Growth Pact, EU document revived therefore need to strengthen financial discipline and budget 6 to 7 September 2010 meeting of the Economic and Financial Affairs Council (ECOFIN. He talked about the introduction of the Stability and Growth in a 'European quarter' which will be monitored in structural and fiscal policies of the Member States. He also held a first exchange of views about the possible introduction of a levy on banks and a tax on financial transactions. Thus, the European Union has moved to create the world's first supranational system of control over the financial markets, particularly in order to reduce the risk of global financial crisis. The system will act in early 2011. For the first time in history, European financial control agencies will have more seats than national governments. In addition, the European Central Bank will see a branch that will track the emergence of crisis risk.The financial crisis has diminished the EU's growth potential, and made it clear just how interdependent its members' economies are, particularly inside the eurozone. The most important priority now is to restore growth and create effective mechanisms for regulating financial markets - in Europe and internationally. In strengthening its system of economic governance, Europe must learn from previous shortcomings which have put the financial stability of the whole eurozone at risk:- poor observance of the EU's sound rules and procedures for economic policy coordination- insufficient reduction in public debt during the good times – with peer pressure proving an adequate incentive- failure to deal effectively with the build-up of macroeconomic imbalances - despite the Commission's warnings – resulting in high current account deficits, large external indebtedness and high public debt levels in a number of countries (above the official 60% limit for eurozone countries. Greater economic

  14. Analysis and Prediction of Micromilling Stability with Variable Tool Geometry

    Directory of Open Access Journals (Sweden)

    Ziyang Cao

    2014-11-01

    Full Text Available Micromilling can fabricate miniaturized components using micro-end mill at high rotational speeds. The analysis of machining stability in micromilling plays an important role in characterizing the cutting process, estimating the tool life, and optimizing the process. A numerical analysis and experimental method are presented to investigate the chatter stability in micro-end milling process with variable milling tool geometry. The schematic model of micromilling process is constructed and the calculation formula to predict cutting force and displacements is derived. This is followed by a detailed numerical analysis on micromilling forces between helical ball and square end mills through time domain and frequency domain method and the results are compared. Furthermore, a detailed time domain simulation for micro end milling with straight teeth and helical teeth end mill is conducted based on the machine-tool system frequency response function obtained through modal experiment. The forces and displacements are predicted and the simulation result between variable cutter geometry is deeply compared. The simulation results have important significance for the actual milling process.

  15. Control and Stabilization of the Benjamin-Ono Equation in {L^2({{T})}}

    Science.gov (United States)

    Laurent, Camille; Linares, Felipe; Rosier, Lionel

    2015-12-01

    We study the control and stabilization of the Benjamin-Ono equation in {L^2({T})}, the lowest regularity where the initial value problem is well-posed. This problem was already initiated in Linares and Rosier (Trans Am Math Soc 367:4595-4626, 2015) where a stronger stabilization term was used (that makes the equation of parabolic type in the control zone). Here we employ a more natural stabilization term related to the L 2-norm. Moreover, by proving a theorem of controllability in L 2, we manage to prove the global controllability in large time. Our analysis relies strongly on the bilinear estimates proved in Molinet and Pilod (Anal PDE 5:365-395, 2012) and some new extension of these estimates established here.

  16. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  17. Truck Roll Stability Data Collection and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using

  18. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  19. Application of wavelet analysis in determining the periodicity of global warming

    Science.gov (United States)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  20. Stability and stabilization of linear systems with saturating actuators

    CERN Document Server

    Tarbouriech, Sophie; Gomes da Silva Jr, João Manoel; Queinnec, Isabelle

    2011-01-01

    Gives the reader an in-depth understanding of the phenomena caused by the more-or-less ubiquitous problem of actuator saturation. Proposes methods and algorithms designed to avoid, manage or overcome the effects of actuator saturation. Uses a state-space approach to ensure local and global stability of the systems considered. Compilation of fifteen years' worth of research results.

  1. Stability indicators in network reconstruction.

    Directory of Open Access Journals (Sweden)

    Michele Filosi

    Full Text Available The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a 'gold standard' is available to measure how close the reconstructed network is to the ground truth. One measure of this is the stability of these predictions to data resampling approaches. We introduce NetSI, a family of Network Stability Indicators, to assess quantitatively the stability of a reconstructed network in terms of inference variability due to data subsampling. In order to evaluate network stability, the main NetSI methods use a global/local network metric in combination with a resampling (bootstrap or cross-validation procedure. In addition, we provide two normalized variability scores over data resampling to measure edge weight stability and node degree stability, and then introduce a stability ranking for edges and nodes. A complete implementation of the NetSI indicators, including the Hamming-Ipsen-Mikhailov (HIM network distance adopted in this paper is available with the R package nettools. We demonstrate the use of the NetSI family by measuring network stability on four datasets against alternative network reconstruction methods. First, the effect of sample size on stability of inferred networks is studied in a gold standard framework on yeast-like data from the Gene Net Weaver simulator. We also consider the impact of varying modularity on a set of structurally different networks (50 nodes, from 2 to 10 modules, and then of complex feature covariance structure, showing the different behaviours of standard reconstruction methods based on Pearson correlation, Maximum Information Coefficient (MIC and False Discovery Rate (FDR strategy. Finally, we demonstrate a strong combined effect of different reconstruction methods and phenotype subgroups on a hepatocellular carcinoma miRNA microarray dataset (240 subjects, and we

  2. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    Science.gov (United States)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  3. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  4. Experimental bifurcation analysis of an impact oscillator – Determining stability

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Elmegård, Michael

    2014-01-01

    We propose and investigate three different methods for assessing stability of dynamical equilibrium states during experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off the control at an equilibrium state and study the resulting behavior...

  5. Dynamic Stability Analysis of Autonomous Medium-Voltage Mixed-Source Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2015-01-01

    -space model of the autonomous MV mixed-source microgrid containing diesel generator set (DGS), grid-supporting battery energy storage system (BESS), squirrel cage induction generator (SCIG) wind turbine and network is developed. Sensitivity analysis is carried out to reveal the dynamic stability margin...

  6. Transient stability analysis of a distribution network with distributed generators

    NARCIS (Netherlands)

    Xyngi, I.; Ishchenko, A.; Popov, M.; Sluis, van der L.

    2009-01-01

    This letter describes the transient stability analysis of a 10-kV distribution network with wind generators, microturbines, and CHP plants. The network being modeled in Matlab/Simulink takes into account detailed dynamic models of the generators. Fault simulations at various locations are

  7. Risk Assessment Method for Offshore Structure Based on Global Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zou Tao

    2012-01-01

    Full Text Available Based on global sensitivity analysis (GSA, this paper proposes a new risk assessment method for an offshore structure design. This method quantifies all the significances among random variables and their parameters at first. And by comparing the degree of importance, all minor factors would be negligible. Then, the global uncertainty analysis work would be simplified. Global uncertainty analysis (GUA is an effective way to study the complexity and randomness of natural events. Since field measured data and statistical results often have inevitable errors and uncertainties which lead to inaccurate prediction and analysis, the risk in the design stage of offshore structures caused by uncertainties in environmental loads, sea level, and marine corrosion must be taken into account. In this paper, the multivariate compound extreme value distribution model (MCEVD is applied to predict the extreme sea state of wave, current, and wind. The maximum structural stress and deformation of a Jacket platform are analyzed and compared with different design standards. The calculation result sufficiently demonstrates the new risk assessment method’s rationality and security.

  8. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  9. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  10. Complex Lyapunov exponents from short and noisy sets of data. Application to stability analysis of BWRs

    International Nuclear Information System (INIS)

    Verdu, G.; Ginestar, D.; Bovea, M.D.; Jimenez, P.; Pena, J.; Munoz-Cobo, J.L.

    1997-01-01

    The dynamics reconstruction techniques have been applied to systems as BWRs with a big amount of noise. The success of this methodology was limited due to the noise in the signals. Recently, new techniques have been introduced for short and noisy data sets based on a global fit of the signal by means of orthonormal polynomials. In this paper, we revisit these ideas in order to adapt them for the analysis of the neutronic power signals to characterize the stability regime of BWR reactors. To check the performance of the methodology, we have analyzed simulated noisy signals, observing that the method works well, even with a big amount of noise. Also, we have analyzed experimental signals from Ringhals 1 BWR. In this case, the reconstructed phase space for the system is not very good. A modal decomposition treatment for the signals is proposed producing signals with better behaviour. (author)

  11. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Science.gov (United States)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  12. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  13. The beauty of simple adaptive control and new developments in nonlinear systems stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barkana, Itzhak, E-mail: ibarkana@gmail.com [BARKANA Consulting, Ramat Hasharon (Israel)

    2014-12-10

    Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measure of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.

  14. stability analysis of food barley genotypes in northern ethiopia

    African Journals Online (AJOL)

    ACSS

    interaction and stability for barley grain yield and yield related traits in the growing ... that the environments were diverse; causing most of the variation in grain yield. ... component axes IPCA1, IPCA2 and IPCA3, which explained 58.06, 27.11 and ..... AMMI analysis of variance for grain yield (t ha-1) of food barley genotypes ...

  15. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    OpenAIRE

    Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai

    2014-01-01

    The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...

  16. 4th Global CRO Council for Bioanalysis: coadministered drugs stability, EMA/US FDA guidelines, 483s and carryover.

    Science.gov (United States)

    Lowes, Steve; Jersey, Jim; Shoup, Ronald; Garofolo, Fabio; Needham, Shane; Couerbe, Philippe; Lansing, Tim; Bhatti, Masood; Sheldon, Curtis; Hayes, Roger; Islam, Rafiq; Lin, Zhongping; Garofolo, Wei; Moussallie, Marc; Teixeira, Leonardo de Souza; Rocha, Thais; Jardieu, Paula; Truog, James; Lin, Jenny; Lundberg, Richard; Breau, Alan; Dilger, Carmen; Bouhajib, Mohammed; Levesque, Ann; Gagnon-Carignan, Sofi; Jenkins, Rand; Nicholson, Robert; Lin, Ming Hung; Karnik, Shane; DeMaio, William; Smith, Kirk; Cojocaru, Laura; Allen, Mike; Fatmi, Saadya; Sayyarpour, Farhad; Malone, Michele; Fang, Xinping

    2012-04-01

    The Global CRO Council for Bioanalysis (GCC) was formed in September 2010. Since then, the representatives of the member companies come together periodically to openly discuss bioanalysis and the regulatory challenges unique to the outsourcing industry. The 4th GCC Closed Forum brought together experts from bioanalytical CROs to share and discuss recent issues in regulated bioanalysis, such as the impact of coadministered drugs on stability, some differences between European Medicines Agency and US FDA bioanalytical guidance documents and lessons learned following recent Untitled Letters. Recent 483s and agency findings, as well as issues on method carryover, were also part of the topics discussed.

  17. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  18. Stability analysis of jointed rock slope by the block theory

    International Nuclear Information System (INIS)

    Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.

    1990-01-01

    The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)

  19. Method for stability analysis based on the Floquet theory and Vidyn calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ganander, Hans

    2005-03-01

    This report presents the activity 3.7 of the STEM-project Aerobig and deals with aeroelastic stability of the complete wind turbine structure at operation. As a consequence of the increase of sizes of wind turbines dynamic couplings are being more important for loads and dynamic properties. The steady ambition to increase the cost competitiveness of wind turbine energy by using optimisation methods lowers design margins, which in turn makes questions about stability of the turbines more important. The main objective of the project is to develop a general stability analysis tool, based on the VIDYN methodology regarding the turbine dynamic equations and the Floquet theory for the stability analysis. The reason for selecting the Floquet theory is that it is independent of number of blades, thus can be used for 2 as well as 3 bladed turbines. Although the latter ones are dominating on the market, the former has large potential when talking about offshore large turbines. The fact that cyclic and individual blade pitch controls are being developed as a mean for reduction of fatigue also speaks for general methods as Floquet. The first step of a general system for stability analysis has been developed, the code VIDSTAB. Together with other methods, as the snap shot method, the Coleman transformation and the use of Fourier series, eigenfrequences and modes can be analysed. It is general with no restrictions on the number of blades nor the symmetry of the rotor. The derivatives of the aerodynamic forces are calculated numerically in this first version. Later versions would include state space formulations of these forces. This would also be the case for the controllers of turbine rotation speed, yaw direction and pitch angle.

  20. Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis

    Science.gov (United States)

    Zhou, J.

    2018-06-01

    The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.