WorldWideScience

Sample records for global solar energy

  1. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  2. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  3. GLOBAL IMPACT OF SOLAR ENERGY, CASE STUDY - GERMANY

    Directory of Open Access Journals (Sweden)

    Gheorghe Caralicea Marculescu

    2014-02-01

    Full Text Available Renewable energy is a socially and politically defined category of energy sources. Renewable energy is generally defined as energy that comes from resources which are continually replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat. About 16% of global final energy consumption comes from renewable resources, with 10% of all energy from traditional biomass, mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels accounted for another 3% and are growing rapidly. This paper seeks is aimed at presenting the impact solar energy could have on a world level given the finitude, reachability and ever increasing prices of fossil fuels. As a case study we will present the solar energy industry in Germany emphasizing the advantages and disadvantages this form of energy has in this country and worldwide.

  4. Apollo 2: Solar energy meets the new global challenge

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, R. B [Santa Cruz, CA (United States)

    2000-07-01

    Humanity faces imminent and serious global oil shortages. It is urgent that the solar energy community respond aggressively to fulfill its central role in the transition from a transitory fossil-fuel economy to a sustainable solar future. The intention here is to explain and quantify the oil shortfall, to validate the renewable option, and to calculate the rate at which the capacity of the renewable energy industry must accelerate to counteract the predictable oil deficit. [Spanish] La humanidad se enfrenta a una seria e inminente escasez mundial de petroleo. Es urgente que la comunidad de energia solar responda agresivamente para satisfacer su rol central en la transicion de una economia transitoria de combustibles fosiles a un futuro solar sustentable. La intencion aqui es la de explicar y cuantificar el deficit de petroleo para validar esta opcion renovable y para calcular la velocidad a la que la industria de la energia renovable debe acelerar para contrarrestar el predecible deficit del petroleo.

  5. Global energetics of solar flares. I. Magnetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Aschwanden, Markus J. [Lockheed Martin, Solar and Astrophysics Laboratory, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Xu, Yan; Jing, Ju, E-mail: aschwanden@lmsal.com, E-mail: yan.xu@njit.edu, E-mail: ju.jing@njit.edu [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  6. The role of solar energy in resolving global problems

    International Nuclear Information System (INIS)

    Kendall, H.W.

    1993-01-01

    Solar energy, and other alternate energy sources, including improved energy efficiency, can play a significant role in the solution of the cluster of ''great problems'' that face the present generation. These problems are related to, first, environmental damage, second, management of critical resources, and lastly, spiraling population growth. Some aspects of these linked difficulties are not yet well comprehended, even within the environmental community, though their neglect could prove to be very serious. It was the principal purpose of the paper to address those hidden risks. Seeking prompt and effective solutions to these problems is now a most urgent matter. On November 18, 1992, the Union of Concerned Scientists released a document called ''World Scientists'' ''Warning to Humanity''. The document outlined the most important challenges and set out the principal elements required to deal with them. It was signed by some 1,600 scientists from around the world, including the leaders of a substantial number of national honorary, scientific societies. In what follows, relevant elements of that statement are reviewed to set the stage for a description of solar energy's role in dealing with the situation that the world faces

  7. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  8. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  9. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  10. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  11. Global solar energy radiation in relation with electricity supply in Romania

    International Nuclear Information System (INIS)

    Zoran, Maria

    2001-01-01

    Solar energy is one of the most viable source of renewable energy being both clean and nonpolluting. Spiraling energy use and other human activities have led to measurable effects upon the global environment and climatic changes. There is increasing international concern particularly in the areas of global warming owing to the increase of carbon dioxide (CO 2 ) in the atmosphere and of other greenhouse gases as sulfur dioxide (SO 2 ), oxides of nitrogen (NOx), hydrogen sulfide H 2 S, diethyl sulfide (DMS), chlorofluorocarbons (CFCs), methane CH 4 , as well in the effect of depletion of ozone (O 3 ) layer in the stratosphere. Climatological and global solar radiation analysis for some Romanian zones with great solar energy potential are presented. Remote sensing data provided by satellites are used for radiative fluxes monitoring and solar energy mapping as well as for solar energy use assessment. The realistic technical potential for solar energy applications in Romania is substantial, over 40000 TJyear -1 . As average energy global solar radiation in horizontal plane lies between 1100 and 1300 kWhm -2 year -1 , solar energy using for electrical power supply being a reliable alternative. More than one half of Romania's area has a range of insolation period between 1200 and 1500 hours year -1 , at an overall average daily irradiation of 1000 - 1200 kWh m -2 . The most favorable area in Romania is the North - Western part of Black Sea coast with an insolation period above 2300 hours year -1 . A small part 140 TJyear -1 are used profitably and almost 10% of the installed 10 6 m 2 of collector area, is still in operation. (author)

  12. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  13. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  14. Global Stress Classification System for Materials Used in Solar Energy Applications

    Science.gov (United States)

    Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien

    2016-08-01

    Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.

  15. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  16. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    Science.gov (United States)

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  17. Solar energy

    International Nuclear Information System (INIS)

    Kruisheer, N.

    1992-01-01

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills

  18. Estimation of the Global Solar Energy Potential and Photovoltaic Cost with the use of Open Data

    Directory of Open Access Journals (Sweden)

    Athina Korfiati

    2016-12-01

    Full Text Available There is an increasing demand for renewable electricity sources, due to the global efforts to reduce CO2 emissions. Despite the promising effects, only a limited amount of electricity is currently produced globally from solar power. In order to help countries realize the importance of tapping into solar energy, it is crucial to reveal the potential amount of electricity that could be thus produced. For this reason, open data were used to produce an interactive web map of the global solar energy potential. For the calculation of the potential, the top-down approach, generally used in the literature, was modified by introducing a better way of calculating rooftop areas, and accounting for temperature, which highly reduces PV panels’ efficiency. Mean annual temperature data were introduced to improve its accuracy, and an approach to estimate rooftop and façade areas as a function of GDP was developed. The current global solar potential technically available was estimated at about 613 PWh/y. Furthermore, the cost of photovoltaic generation was computed and extremely low values, 0.03 - 0.2 $/kWh, were derived.

  19. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  20. The solar energy based global economy. A policy leading to the ecological era

    International Nuclear Information System (INIS)

    Scheer, H.

    1999-01-01

    Bound in its fossil energy and raw materials supply chains, the global economy is heading for a global ecological crisis and dramatically aggravating conflicts. Moreover, this exclusive dependence on fossil energy and materials resources forces a global concentration process increasingly undermining democratic and free market systems. But the will to survive is not the only reason to consider a new industrial revolution to be imperative. Such a sweeping change, from a fossil energy based regime to a system relying exclusively on renewable energy sources and raw materials, would open up unique opportunities for the evolution of a peaceful and democratic global economy fostering the development of superior technologies and sustainable regional economic systems. The author of the book elaborates the scenario permitting such a radical change, and explains the necessary basic approaches and appropriate policies relating to technology, the economy, ecology, and the social system. The ultimate goal is that the evolution of the solar energy based global economy will be accompanied by an intrinsic economic driving force eventually leading to an ecological era. (orig./CB) [de

  1. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  2. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    Science.gov (United States)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  3. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  4. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  5. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  7. Energy globalization

    International Nuclear Information System (INIS)

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  8. Solar energy. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Benseman, R.

    1977-10-15

    The potential for solar space heating and solar water heating in New Zealand is discussed. Available solar energy in New Zealand is indicated, and the economics of solar space and water heating is considered. (WHK)

  9. Solar Energy Basics | NREL

    Science.gov (United States)

    Solar Energy Basics Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from the technologies convert sunlight to usable energy for buildings. The most commonly used solar technologies for

  10. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  11. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  12. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  13. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  14. Solar energy - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. [PA Energy A/S, Malling (Denmark)

    2007-05-15

    Solar energy in terms of thermal Solar Hot Water systems and electricity producing Photovoltaics contribute at present only to the global energy supply at a fraction of 1 %. However, the potential for solar energy is immense: the earth receives in 1 hour from the sun the equivalent of the present annual global energy supply. Solar energy is one of the emerging renewable energy technologies still not competitive, but exhibiting both technical and economic potential to be so inside 10-15 years. There is basically no necessary 'technology jumps' as prerequisites, but such a development will demand a favorable political climate. Growing political awareness, driven partly by environmental concerns partly by concerns about security of energy supply, of the need to promote solar energy and renewables, e.g. on global level spurred on by the recent UN/IPCC report and on an EU level by the EC commitment to reach 20 % renewables in the electricity supply by 2010 and 20 % renewables in the overall energy production by 2020, appears to ensure the necessary future political support for renewables, but not necessarily for solar energy technologies, in particular photovoltaics's, which is still not yet competitive to other renewables although exhibiting a tremendous potential. (au)

  15. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    International Nuclear Information System (INIS)

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  16. Solar Energy Perspectives In Egypt

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2010-01-01

    Egypt belongs to the global sun-belt. The country is in advantageous position with solar energy. In 1991 solar atlas for Egypt was issued indicating that the country enjoys 2900-3200 hours of sunshine annually with annual direct normal energy density 1970-3200 kWh/m2 and technical solar-thermal electricity generating potential of 73.6 Peta watt hour (PWh). Egypt was among the first countries to utilize solar energy. In 1910, a practical industrial scale solar system engine was built at Maadi south to Cairo using solar thermal parabolic collectors. The engine was used to produce steam which drove a series of large water pumps for irrigation. Nowadays utilization of solar energy includes use of photovoltaic cells, solar water heating and solar thermal power. Use of solar thermal technology may include both electricity generation and water desalination, which is advantageous for Egypt taking in consideration its shortage in water supply. The article discusses perspectives of solar energy in Egypt and developmental trends till 2050

  17. Energy and global environment

    International Nuclear Information System (INIS)

    Fyfe, W.S.; Powell, M.A.

    1991-01-01

    At present about 90% of the world's energy consumption is met by the fossil carbon fuel used in the form of coal, oil and natural gas. This results into release of vast amounts of waste gas CO 2 into the atmosphere posing a threat to the global environment. Moreover this energy source is not sustainable (renewable) and its use amounts to spending Earth's capital resources. The options to this energy source are biomass energy, hydro power, solar energy, geothermal energy and nuclear energy. The potentials, limitations, geological impact and environmental dangers, if any, of these sources are discussed in brief. Energy conservation through energy efficient systems is also one more option. Problems and potential for change to sustainable energy systems with respect to India and Canada are examined. Finally it is pointed out that the ultimate solution to the world's energy problem lies in population control and population reduction. This will make possible for the world to have a sustainable energy system primarily based on solar energy. (M.G.B.). 15 refs

  18. Que faire? A Bioeconomy and Solar Energy Institute at Italy's Research Council in the Context of the Global Transition to the Solar Economy.

    Science.gov (United States)

    Pagliaro, Mario; Meneguzzo, Francesco

    2017-11-02

    Driven by insight for which new research and education requires new institutional organisation, and drawing on two decades of research and educational efforts, we devise the profile and activities of a new bioeconomy and solar energy institute at Italy's Research Council. We further articulate the institute's activities suggesting avenues on how to deploy sound and giving more useful research, education and policy advice in these crucial fields for making tomorrow's common development sustainable. The outcomes of the study are of general interest, because the transition to a solar economy is of intrinsic global nature and the challenges involved are similar in many countries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen from solar energy

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The long-range options of energy sources are the breeding reactor, nuclear fusion, and solar energy. Concerning solar energy three systems are being developed: First the photovoltaic cells which are almost ready for industrial production, but which are still too expensive - at least today. Secondly the thermal utilization of solar radiation. Compared to these, thirdly, the photobiological and photochemical possibilities of solar energy utilization have been somewhat neglected so far. However, the photolysis of water by solar energy is a very promising option for future energy demands. This can be done by making use of the photo-synthetic splitting of water in technical facilities or with semiconductors.

  20. Limitation of solar energy and wind energy

    International Nuclear Information System (INIS)

    White, R. S.

    2008-01-01

    Wind turbines, solar energy collectors and photovoltaic cells have been popular sources of electricity since the oil crisis in the late seventies, and they are increasingly favored by many scientists and much of the public as methods for reducing global warming. The older wind farms in California are outdated. New wind turbines have not followed, primarily because of competition from lower-cost natural gas. The Times urges increased federal and state subsidies for the wind and solar industries. The primary reason that wind and solar energies have not made inroads in the past, and will never supply more than a few percentage points of the world's electrical energy, is their unpredictable variations in time and their constant need for back-ups. The only non-carbon-dioxide-emitting generator capable of backing up wind and solar energy and replacing coal and gas generators is nuclear fission. Nuclear power may be the practical solution to global warming, after all.

  1. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  2. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  3. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  4. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  5. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  6. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  7. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M; Cuesta-Santianes, M J; Cabrera Jimenez, J A

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  8. Solar energy in Israel

    International Nuclear Information System (INIS)

    Zvirin, Y.; Zamkow, S.

    1993-01-01

    The state of Israel has been a pioneer in the solar energy development and utilization since it was founded. In the 50's solar domestic home heaters became commercially available. At the same time research work has been started in different areas of solar energy, which led to more advanced solar systems for additional applications. The presentation includes some details of commercial utilization of solar energy and a brief description of the main Research and Development projects in industry, universities and research institutes. (authors)

  9. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  10. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  11. Solar energy promises realized?

    International Nuclear Information System (INIS)

    Oudshoff, B.

    2010-01-01

    The US market for solar cells grew 36% in 2009. Thousands of new jobs were created, many millions are invested and new businesses see new opportunities. Optimism among investors, incentivising government policy and new technological developments all contribute to these positive developments. This article provides an update of the incentive measures and their effects and a brief overview of the three solar energy technologies: photovoltaic (PV), solar thermal and concentrated solar power (CSP) [nl

  12. Time-series prediction of global solar radiation and of photovoltaic energy production using artificial neural networks

    International Nuclear Information System (INIS)

    Voyant, Cyril

    2011-01-01

    As Corsica is a non-interconnected island, its energy supply is very special case. Indeed, as all islands, a large part of the electricity production must be generated locally. Often, renewable energies are considered as a good solution to overcome the isolation problem. However, because of their intermittent nature, they are included in a limited way in power systems. Thus, it is necessary to use in addition other energy productions, with main problem the management of the dispatch between these two energy types. This study is related to the solar and PV prediction in order to quantify available energy and to allow the optimal transition between intermittent and conventional energies sources. Throughout this work, we tested different techniques of prediction concerning four horizons interesting the power manager: d+1; h+24, h+1 and m+5. After all these manipulations, we can conclude that according the considered horizon, the prioritization of the different predictors varies. Note that for the d+1 horizon, it is interesting to use an approach based on neural network being careful to make stationary the time series, and to use exogenous variables. For the h+1 horizon, a hybrid methodology combining the robustness of the autoregressive models and the non-linearity of the connectionist models provides satisfactory results. For the h+24 case, neural networks with multiple outputs give very good results. About the m+5 horizon, our conclusions are different. Thus, even if neural networks are the most effective, the simplicity and the relatively good results shown by the persistence-based approach, lead us to recommend it. All the proposed methodologies and results are complementary to the prediction studies available in the literature. In conclusion, we can say that methodologies developed could eventually be included as prediction tools in the global command - control systems of energy sources. (author) [fr

  13. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  14. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  15. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  16. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  17. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  18. Energy. Supermaterial for solar cells, membranes against the global warming, energy conservation in the greenhouse; Energie. Supermaterial fuer Solarzellen, Membranen gegen die globale Erwaermung, Energiesparen im Treibhaus

    Energy Technology Data Exchange (ETDEWEB)

    Roegener, Wiebke; Frick, Frank; Tillemans, Axel; Stahl-Busse, Brigitte

    2010-07-01

    A kaleidoscope of pictures presents highlights from the research at the Forschungszentrum Juelich - from moving into a new computer era over the development of a detector for dangerous liquids up to a new method of treatment against tinnitus. The highlights of this brochure are: (a) An interview with he director of the Oak Ridge National Laboratory on the energy mix of the future; (b) Environment friendly power generation by means of fuel cells; (c) Transfer of knowledge from fusion experiments to greater plants using a supercomputer; (d) Development of powerful batteries for electrically powered cars by means of the know-how from fuel cell research; (e) Investigation of contacting used fuel elements with water; (f) Reduction if energy consumption in a greenhouse using a combination of glass and foils; (g) News on the energy research and environmental research.

  19. Introductory guide to solar energy

    CSIR Research Space (South Africa)

    Cawood, WN

    1976-01-01

    Full Text Available amount of solar energy. It is one thing for environmentalists to advocate a dramatic change over to solar energy but quite another to implement this, as it would obviously be unthinkable to scrap all fossil fuel technology unless a global catastrophe... is one built in New Mexico to suit a climate which is considerably more extreme than that found on the highveld. (See illustration, which applies to the northern hemisphere.) Instead of simply filling the sub-floor level of this home with soil...

  20. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  1. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  2. Environmental and solar energy techniques

    International Nuclear Information System (INIS)

    Zaidi, Z.I.

    2003-01-01

    Technologies for fossil fuel extraction, transportation, processing and their use have harmful impact on the environment which cause direct and indirect negative impact on human heath, animals, crops and structure etc. The end use of all the fossil fuels is combustion irrespective of the final purpose i.e. heating, electricity production and motive power for transportation. The main constituents of fossil fuels are carbon and hydrogen but some other ingredients, which are originally in the fuel e.g. sulfur or are added during refining e.g. lead, alcohol etc. Combustion of the fossil fuel produces various gases (CO/sub x/, SO/sub x/ NO/sub x/, CH,), soot, ash, droplets of tar and other organic compounds, which are all released into the atmosphere. High rate of population growth and industrialization in the developing countries are causing unsustainable use of forest resources and fossil fuels, hence, are serious hurdles in environmental improvement. The situation in Pakistan is even worse as it has very limited fossil fuels and 40% of its commercial energy requirement are to be imported every year. Renewable energy technologies on the other hand, can play a vital role in improving the environmental condition globally. Pakistan Council of Renewable Energy Technologies (PCRET) is working in the field of renewable energy technologies. The Council has developed solar modules and solar thermal devices including solar cookers, solar dryers, solar stills and solar water heaters. The paper describes these devices and contribution they can make towards the improvement of environment. (author)

  3. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  4. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  5. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  6. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  7. The Energy Crisis and Solar Energy

    Science.gov (United States)

    Bockris, J. O'M.

    1974-01-01

    Examines the status of the energy crisis in Australia. Outlines energy alternatives for the 1990's and describes the present status of solar energy research and the economics of solar energy systems. (GS)

  8. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  9. Solar influences on global change

    National Research Council Canada - National Science Library

    Board on Global Change, National Research Council

    ..., but significant uncertainties remain. This book addresses current monitoring and understanding of solar influences on both the climate system and the ozone layer and prioritizes the research effort that will be needed to provide a sound scientific basis for policymaking related to global change issues.

  10. Bright Idea: Solar Energy Primer.

    Science.gov (United States)

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  11. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  12. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  13. Solar Energy Demonstrations

    Science.gov (United States)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  14. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  15. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  16. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  17. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  18. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    The paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  19. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun. 11 references.

  20. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  1. Solar energy for Europe

    International Nuclear Information System (INIS)

    Berkmann, Rainer

    1998-01-01

    The virtues of solar energy are extolled. The greenhouse gas aspect is mentioned but the main thrust of the paper is the technology and applications such as domestic water heating, combined water and space heating, swimming pools, industrial heating and air conditioning. Statistical data for the present European market, sales and installed collector area are given. (UK)

  2. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  3. Solar Energy Now.

    Science.gov (United States)

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  4. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  5. Solar energy: a UK assessment

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    A panel convened by UK-ISES to analyze all aspects of solar energy systems and to assess the potential for solar energy utilization and research and development needs in the UK and for export is reported. Topics covered include: solar energy in relation to other energy sources; international solar energy research and development program; the physical nature of solar energy and its availability in the UK and other countries; thermal collection, storage, and low-temperature applications; solar energy and architecture; solar thermal power systems; solar cells; agricultural and biological systems; photochemical systems; social, legal, and political considerations with particular reference to the UK; and future policy on solar research and development for the UK. (WDM)

  6. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  7. Solar energy in Amersfoort, Netherlands

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1997-01-01

    For the first time in the world a newly to be built housing area (Nieuwland in Amersfoort, Netherlands) will be constructed, exclusively on the basis of sustainability. First, the use of three forms of solar energy conversion techniques (thermal solar energy, passive solar energy and photovoltaic energy) is going to be integrated in 50 rental houses. At the end of this century 10,000 m 2 of solar cells will be installed with a capacity of 1 MWp. 2 figs

  8. The Global Energy Challenge

    DEFF Research Database (Denmark)

    Connolly, David

    2011-01-01

    This report gives a brief overview of the global energy challenge and subsequently outlines how and where renewable energy could be developed to solve these issues. The report does not go into a lot of detail on these issues and hence, it is meant as an overview only. The report begins by outlining...... the causes of global climate change, concluding that energy-related emissions are the primary contributors to the problem. As a result, global energy production is analysed in more detail, discussing how it has evolved over the last 30 years and also, how it is expected to evolve in the coming 30 years....... Afterwards, the security of the world’s energy supply is investigated and it becomes clear that there is both an inevitable shortage of fossil fuels and a dangerous separation of supply and demand. The final topic discussed is renewable energy, since it is one sustainable solution to the global energy...

  9. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  10. Solar Energy Development PEIS Information Center

    Science.gov (United States)

    skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern

  11. Solar energy: Technology and applications

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    It is pointed out that in 1970 the total energy consumed in the U.S. was equal to the energy of sunlight received by only 0.15% of the land area of the continental U.S. The utilization of solar energy might, therefore, provide an approach for solving the energy crisis produced by the consumption of irreplaceable fossil fuels at a steadily increasing rate. Questions regarding the availability of solar energy are discussed along with the design of solar energy collectors and various approaches for heating houses and buildings by utilizing solar radiation. Other subjects considered are related to the heating of water partly or entirely with solar energy, the design of air conditioning systems based on the use of solar energy, electric power generation by a solar thermal and a photovoltaic approach, solar total energy systems, industrial and agricultural applications of solar energy, solar stills, the utilization of ocean thermal power, power systems based on the use of wind, and solar-energy power systems making use of geosynchronous power plants.

  12. Public Policies of Solar Energy

    International Nuclear Information System (INIS)

    Bouvier, Yves; Pehlivanian, Sophie; Teissier, Pierre; Chauvin-Michel, Marion; Forget, Marie; Raymond, Roland; Hyun Jin Yu, Julie; Popiolek, Nathalie; Guthleben, Denis

    2013-01-01

    This dossier about the Public Policies of Solar Energy brings together the presentations given in June 2013 at a colloquium organised by the Savoie university of Chambery (France): Introduction (Yves Bouvier, Sophie Pehlivanian); Passive solar energy in the shade of the French energy policy, 1945-1986 (Pierre Teissier); Solar architectures and energy policies in France: from oil crisis to solar crisis (Marion Chauvin-Michel); Sun in media, between promotion and contestation (Sophie Pehlivanian); Public policies of solar energy and territorial jurisdictions: the example of village photovoltaic power plants (Marie Forget); Energy social system and ordinary creative movement (Roland Raymond); The Historical Evolution of South Korea's Solar PV Policies since the 1970's (Julie Hyun Jin Yu, Nathalie Popiolek); Research on solar energy from yesterday to the present day: an historical project (Denis Guthleben); Photovoltaic power: public policies and economical consequences. The French choices in the international context - 1973-2013 (Alain Ricaud)

  13. Solar low energy dwellings

    International Nuclear Information System (INIS)

    Hestnes, Anne Grete

    2000-01-01

    By now, a lot has been learnt about how to reduce energy use in dwellings using solar and low energy technologies, and many good examples can be found throughout Europe. Still, they are not quite the common feature we would expect them to be, i.e. they have not really penetrated the market. The reason for this is in part a result of the fact that the designers and developers of these buildings have not looked at what the market wants and needs, but rather at how to use a set of given technologies. The buildings are the result of a technology push rather than a market pull and have therefore, often, been detached or semidetached dwellings with different solar technologies added on in less than optimal ways. In order to increase market penetration, it is time to look at the market trends and relate to these. Fortunately, quite a few European architects have realized this and have started designing somewhat different residential buildings. The paper focuses on examples of the new trends in solar residential architecture and by that, hopefully, it shows that we are on the right track. (au)

  14. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  15. Solar energy receiver

    Science.gov (United States)

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  16. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  17. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Mark Z., E-mail: jacobson@stanford.ed [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Delucchi, Mark A., E-mail: madelucchi@ucdavis.ed [Institute of Transportation Studies, University of California at Davis, Davis, CA 95616 (United States)

    2011-03-15

    Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that {approx}3,800,000 5 MW wind turbines, {approx}49,000 300 MW concentrated solar plants, {approx}40,000 300 MW solar PV power plants, {approx}1.7 billion 3 kW rooftop PV systems, {approx}5350 100 MW geothermal power plants, {approx}270 new 1300 MW hydroelectric power plants, {approx}720,000 0.75 MW wave devices, and {approx}490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only {approx}0.41% and {approx}0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today. - Research highlights: {yields} Replacing world energy with wind, water, and sun (WWS) reduces world power demand 30%. {yields} WWS for world requires only 0.41% and 0.51% more world land for footprint and spacing, respectively. {yields} Practical to provide 100% new energy with WWS by 2030 and replace existing energy by 2050.

  18. Solar energy implementation in Nigeria

    OpenAIRE

    Museckaite, Rasa; Kevelaitis, Karolis; Obialo, Gaisva R.; Raudonis, Vytautas

    2009-01-01

    This research focuses on energy sector in Nigeria, more precisely, the electricity sector. The current situation in the Nigeria is that energy supply is not covering the energy demand. We made a research to investigate if solar energy could be a solution for the present situation in the mentioned country acting as a supportive energy supply. We analyzed both economical and environmental costs/benefits of implementation of solar energy system. We analyzed environmental aspect by comparing sola...

  19. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  20. Energy efficiency of photovoltaic modules mono and polycrystalline in function of global solar radiation; Eficiencia energetica de modulos fotovoltaicos mono e poli-cristalinos em funcao da radiacao solar global

    Energy Technology Data Exchange (ETDEWEB)

    Seraphim, Odivaldo Jose [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], e-mail: seraphim@fca.unesp.br; Siqueira, Jair Antonio Cruz [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], e-mail: jairsiqueira@fca.unesp.br; Silva, Carliane Diniz e [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Fiorentino, Jair de Jesus [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Engenharia Eletrica], e-mail: jairfiorentino@terra.com.br; Araujo, Joao Alberto Borges de [Faculdade de Tecnologia de Botucatu (FATEC), SP (Brazil). Dept. de Engenharia de Producao

    2004-07-01

    This research proposes a methodology to evaluate the acting of the solar energy conversion in electric energy, generated by photovoltaic modules installed under field conditions, constituted monocrystalline and polycrystalline silicon cells. The modules were appraised with relationship to energy efficiency for different marks and potency levels, in function of the readiness of solar radiation, being used loads sized for the nominal potency level of each module. The energy efficiency values calculated with the data obtained in field, didn't agree with the technical information presented by the makers of the modules monocrystalline, as being more efficient than the polycrystalline. Was ended, therefore, that the modules of the appraised marks presented inferior medium efficiency at 50% of the values supplied by the makers (author)

  1. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  2. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  3. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  4. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  5. SOLAR ENERGY APPLICATION IN WASTE TREATMENT- A REVIEW

    African Journals Online (AJOL)

    This review is an exposure on the various ways that solar energy can be harnessed for numerous waste treatment processes. Almost all forms of waste treatment require energy which is scarcely available considering the global energy crisis. The objective of this study is to enumerate the solar energy applications in waste ...

  6. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  7. Solar energy enters the market

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1995-11-01

    Everybody agrees that there is a bright future for solar energy. After two decades of research and development, the market introduction of solar hot water systems is now taking off. In several countries, including the Netherlands, preparations are also underway for the large-scale introduction of photovoltaic systems. Although the share of thermal and photovoltaic solar energy in the energy supply sector in the Netherlands is very small (0.1 PJ) there are signs of imminent change. According to the Follow-up Policy Document on Energy Conservation, the share of solar energy should increase to 7 PJ by the year 2010. After years of concentrating on research and development, it is now generally recognised that it is time to introduce these technologies onto the market in order to realize the long-term objectives. In this respect, thermal solar energy is ahead of photovoltaics. 4 ills

  8. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  9. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  10. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  11. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating

    International Nuclear Information System (INIS)

    Muller, Richard A.

    2009-01-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights

  12. Global challenges in energy

    International Nuclear Information System (INIS)

    Dorian, James P.; Franssen, Herman T.; Simbeck, Dale R. MD

    2006-01-01

    Environmental and security concerns are stimulating global interest in hydrogen power, renewable energy, and advanced transportation technologies, but no significant movement away from oil and a carbon-based world economy is expected soon. Over the longer-term, however, a transition from fossil fuels to a non-carbon-based economy will likely occur, affecting the type of environment future generations may encounter. Key challenges will face the world's energy industry over the next few decades to ensure a smooth transition-challenges which will require government and industry solutions beginning as early as today. This paper identifies four critical challenges in energy and the choices which will have to be made on how best to confront growing pollution caused by fossil fuels and how to facilitate an eventual revolutionary-like transition to a non-carbon-based global economy

  13. Energy and globalization

    Science.gov (United States)

    Birjandi, Hossein Saremi

    Before the Industrial Revolution, nations required no energy fuel. People relied on human, animal, and wind and waterpower for energy need. Energy (oil) has resettled populations, elected officials in the free world, or changed the governments of the energy rich countries by force. Energy fueled wars, played the major factor in the might of those who have it or more importantly the abilities to acquire it by force. This dissertation researches the primacy of oil as an energy source from the time of oil's discovery to the present times. Between 1945 and 1960, the use of oil and gas doubled as power was generated for industries as steel, cement, metalworking and more important of all filling station hoses into automobiles gas tanks, thus energy swept people and societies quite literally off their feet. One in every six jobs in the industrial world hired by the giant automotive industries. The big five American oil companies spurred on by special tax benefit, these companies grew to gigantic sizes by taking out the best part of the nation's oil. Then, for greater growth, they leaped overseas and built up an immensely profitable system, in alliance with Anglo-Dutch Shell and British Petroleum, known as seven sisters. On the other side of the world, the energy producing nations form an alliance mainly to protect themselves from downward price fluctuations of oil. The struggle for survival in the global energy market forced those countries to get together and form OPEC, which is referred as an "oil cartel".

  14. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  15. Masterplan Solar Energy; Masterplan Zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    Van Amerongen, G. [vAConsult, Rotterdam (Netherlands); Verkaik, P. [BDA Dak- en Gevelopleidingen, Gorinchem (Netherlands); Derksen, A. [ISSO, Rotterdam (Netherlands); Gramsbergen, E. [Gramsbergen Solar, Veldhoven (Netherlands); Cromwijk, J. [DWA installatie- en energieadvies, Bodegraven (Netherlands)

    2009-10-15

    The demand for solar energy installations is increasing. The quality of the offered products and services must therefore be safeguarded. This master plan addresses that need and contributes to a structural improvement of the quality of installed solar energy systems. [Dutch] De vraag naar zonne-energie installaties groeit. De kwaliteit van de aangeboden producten en diensten moet dan ook goed gewaarborgd blijven. Dit masterplan voorziet daarin en draagt bij aan een structurele verbetering van de kwaliteit van geinstalleerde zonne-energiesystemen.

  16. The necessity of solar energy

    International Nuclear Information System (INIS)

    Lovejoy, D.

    1996-01-01

    The idea of limits to growth has, understandably, achieved notoriety since the days of Malthus and, more recently, the Club of Rome. However, there must be some limits to the ability of the Earth to sustain a growing population. Fortunately, population models suggest that the world's population will probably level out at about two to three times the present numbers over the next hundred years. The question is whether the Earth's resources are sufficient to sustain that population at a high standard of living for all. In this the key issue is energy. It is clear that present trends in energy consumption, especially oil, cannot be sustained much longer. Regardless of this, however, prudence demands a drastic reduction in fossil fuel consumption, in view of the possibility of global warming. It can be shown that, combined with greatly improved energy efficiency, a transition to a solar (renewable) energy based economy capable of sustaining the anticipated growth in the world economy, is possible, but the constraints are extremely tight. (Author)

  17. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  18. Solar energy. A way out of the eco-energy dilemma. Sonnenenergie. Ausweg aus dem Oeko-Dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Karamanolis, S

    1991-01-01

    The book gives a comprehensive view of the state of the art of solar research and the uses of solar energy. Thermal applications, photovoltaic energy conversion, energy storage, hydrogen production and solar architecture are discussed in detail. A global solar energy conception is presented as a future outlook. (KW).

  19. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  20. Protocol Monitoring Passive Solar Energy

    International Nuclear Information System (INIS)

    Van den Ham, E.R.; Bosselaar, L.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The contribution was 57 PJ in 1990 and also 57 PJ in 1995. The efficiency of passive solar energy systems increased from -31.5% to -28.1% in the period 1990-1995, mainly as a result of the use of extra insulating glazing. As a result of the reduction of energy consumption for heating in houses it is expected that the extra contribution of 2 PJ will not be realized in the year 2010. It is suggested that the method to determine the absolute contribution of passive solar energy to the energy demand of dwellings is to be included in the protocol monitoring renewable energy. For the method to be included in the energy statistics of Statistics Netherlands (CBS) it can be considered only to take into account the difference compared to 1990. 11 refs

  1. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  2. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  3. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  4. Solar influences on global change

    National Research Council Canada - National Science Library

    Board on Global Change, National Research Council

    .... Important advances over the past decade in our knowledge of the Sun and of the terrestrial responses to solar variability provides the basis for answering this question with unprecedented surety...

  5. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  6. Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material.

    Science.gov (United States)

    Lamnatou, Chr; Motte, F; Notton, G; Chemisana, D; Cristofari, C

    2018-04-15

    Building-integrated solar thermal (BIST) systems are a specific type of solar thermal systems which are integrated into the building and they participate in building functionality. The present article is about the life-cycle assessment of different options of a BIST system (Mediterranean climatic conditions: Ajaccio, France). The environmental profile of the studied configurations is assessed by means of CED (cumulative energy demand), GWP (global warming potential) and EPBT (energy payback time). The proposed configurations (for the collector) include: i) a system without PCM (phase change material) using only rock wool as insulation and ii) a system with PCM (myristic acid) and rock wool. Concerning life-cycle results based on CED and GWP 100a (scenario without recycling), the configuration without PCM shows 0.67 MJ prim /kWh and 0.06 kg CO 2.eq /kWh while the configuration with PCM presents 0.74 MJ prim /kWh and 0.08 kg CO 2.eq /kWh. Regarding EPBT, if the inputs for pumping/auxiliary heating are not taken into account, both configurations (with/without PCM) have almost the same EPBT (about 1.3 years). On the other hand, if the inputs for pumping/auxiliary heating are considered, EPBT is lower for the system with PCM. In addition, scenarios with recycling have been examined and the results demonstrate that recycling considerably improves the environmental profile of the studied configurations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  8. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish; Bakr, Osman; Ramasamy, Karthik; Malik, Mohammad A.

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance

  9. Solar energy. Inexhaustible, clean, profitable

    International Nuclear Information System (INIS)

    Colombo, S.

    2001-01-01

    The growth of US dollar together with the crisis of euro are producing a strong increase in the cost of traditional energy sources: oil and natural gas. Therefore, it is the ideal situation for boosting the alternative energy sources, above all the solar energy which is the most promising [it

  10. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  11. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  12. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  13. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  14. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 3. Observation data on global solar radiation and sunshine duration; 1974 nendo zenten nissharyo, nissho jikan no kansoku shiryo. 3. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report includes observation data on global solar radiation and sunshine duration for R and D on solar energy system. The global solar radiation data include the following measured by bimetal pyranometer in 1954-1970: Monthly and yearly mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. The sunshine duration data include the following measured by Jordan's heliograph in 1941-1970: Monthly and yearly total value, 10-year mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. Annual variations of the global solar radiation at 16 typical sites all over the country are illustrated using the average values, and secular variations of the monthly and yearly mean values at 16 sites are also illustrated. Annual variations of the sunshine duration at 17 typical sites are illustrated using the average values, and secular variations of the monthly and yearly total values at 17 sites are also illustrated. Profiles of the global solar radiation and sunshine duration, and their coefficients of variation are illustrated for every country. (NEDO)

  15. Northeast Solar Energy Market Coalition (NESEMC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabago, Karl R. [Pace Energy and Climate Center Pace University School of Law

    2018-03-31

    The Northeast Solar Energy Market Coalition (NESEMC) brought together solar energy business associations and other stakeholders in the Northeast to harmonize regional solar energy policy and advance the solar energy market. The Coalition was managed by the Pace Energy and Climate Center, a project of the Pace University Elisabeth Haub School of Law. The NESEMC was funded by the U.S. Department of Energy SunShot Initiative as a cooperative agreement through 2017 as part of Solar Market Pathways.

  16. Global energy demand outlook

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1999-01-01

    Perhaps the most compelling issue the world will face in the next century is the quality of life of the increasing populations of the poorer regions of the world. Energy is the key to generating wealth and protecting the environment. Today, most of the energy generated comes from fossil fuels and there should be enough for an increase in consumption over the next half century. However, this is likely to be impacted by the Kyoto Protocol on carbon dioxide emissions. Various authoritative studies lead to a global energy demand projection of between 850 to 1070 EJ per year in the mid-21 st century, which is nearly three times as much as the world uses today. The studies further indicate that, unless there is a major thrust by governments to create incentives and/or to levy heavy taxes, the use of fossil fuels will continue to increase and there will be a major increase in carbon dioxide emissions globally. Most of the increase will come from the newly industrializing countries which do not have the technology or financial resources to install non-carbon energy sources such as nuclear power, and the new renewable energy technologies. The real issue for the nuclear industry is investment cost. Developing countries, in particular will have difficulty in raising capital for energy projects with a high installed cost and will have difficulties in raising large blocks of capital. A reduction in investment costs of the order of 50% with a short construction schedule is in order if nuclear power is to compete and contribute significantly to energy supply and the reduction of carbon dioxide emissions. Current nuclear power plants and methods are simply not suited to the production of plants that will compete in this situation. Mass production designs are needed to get the benefits of cost reduction. Water cooled reactors are well demonstrated and positioned to achieve the cost reduction necessary but only via some radical thinking on the part of the designers. The reactors of

  17. Solar Energy: Topographical Asset for Pakistan

    International Nuclear Information System (INIS)

    Pervez Hameed Shaikh; Faheemullah Shaikh; Mushtaq Mirani

    2013-01-01

    The primary energy supply of Pakistan in the financial year 2009-10 was 63.088 million tonnes of oil equivalent (MTOE). Globally, renewable energies generation is around (19%) [1]. Pakistan has a yearly average solar energy shining potential of about 19 Mega Joules per square meter, with 7.6 hours per day with an average solar radiation of 5-7 kW h/(m 2 day). An alarming stage for the government to take serious steps to tackle energy demand, in vision to inclining oil markets, depletion of gas reserves, huge electricity demand and supply gap, lessening of forest reserves, calamity (floods, heavy rainfalls, earth quakes, melting of glaciers etc.), Kyoto bindings etc. All these factors are indicating for the transition towards renewable energy technologies. (authors)

  18. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  19. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    Science.gov (United States)

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  20. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  1. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  2. PHOTOELECTROCHEMICAL SOLAR ENERGY CONVERSION ...

    African Journals Online (AJOL)

    Preferred Customer

    on indium-doped tin oxide (ITO) used as a photoactive electrode; amorphous ... The polymer electrolyte was prepared by dissolving 309 mg of POMOE in 25 mL .... The VOC of Bulk heterojunction (BHJ) based solar cells is strongly correlated ...

  3. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating; Physik fuer alle, die mitreden wollen. Ueber Atomkraft, schmutzige Bomben, Weltraumforschung, Solarenergie und die globale Erwaermung

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard A.

    2009-07-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights.

  4. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  5. Renewable Energy: Solar Fuels GRC and GRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2010-02-26

    sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  6. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  7. Solar Energy Measurement Using Arduino

    OpenAIRE

    Jumaat Siti Amely; Othman Mohamad Hilmi

    2018-01-01

    This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR) sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was...

  8. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  9. Solar Energy Evolution and Diffusion Studies Webinars | Solar Research |

    Science.gov (United States)

    NREL Studies Webinars Solar Energy Evolution and Diffusion Studies Webinars These webinars . Department of Energy's Solar Energy Evolution and Diffusion Studies (SEEDS) program. SEEDS 2017-2019 Study Residential Solar July 20, 2017 Presenters: Kiran Lakkaraju, Sandia National Laboratories Yevgeniy Vorobeychik

  10. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  11. Solar Energy-An Everyday Occurrence

    Science.gov (United States)

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  12. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  13. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  14. Solar Panels reduce both global warming and Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Valéry eMasson

    2014-06-01

    Full Text Available The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally ? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels, the impact on the building below and feedback towards the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%. In summer however, the solar panels reduce the energy needed for air-conditioning (by 12% and also the Urban Heat Island (UHI: 0.2K by day and up to 0.3K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.

  15. A survey of some solar energy retrofits.

    Science.gov (United States)

    1981-01-01

    The report briefly describes a survey of some solar energy retrofits, such as solar heaters and Trombe walls, that can be easily adapted into existing buildings belonging to the Department. With their relatively high cost, commercial solar heaters ha...

  16. Solar Energy for Rural Egypt

    Science.gov (United States)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.

  17. Solar energy operated still

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F A

    1977-03-31

    A silicon membrane that is permeable to the vapour of a liquid to be distilled, is seeded with a light-absorbing pigment, and used in conjunction with a light-transparent material in one of three configurations as a solar powered still. In the first configuration, the membrane is in the form of a corrugated surface welded to the transparent material along the corrugations, forming a series of channel-like air chambers. This assembly floats on the liquid, the transparent side being on top and exposed to the sun. Vapour condensing in the channels is collected. In the second configuration, the liquid is contained between a sheet of transparent material on top, and a sheet of membrane material underneath. Vapour condenses in a chamber beneath. In the third configuration, membrane material is in the form of a pipe containing the liquid. A second concentral pipe of transparent material surrounds it and ensures collection of the condensate.

  18. Energy situation and perspectives of using solar energy in Crimea

    International Nuclear Information System (INIS)

    Stoyanova, I.I.; Mashkara, O.G.; Vikhorev, Yu.A.; Sokolovskaya, N.I.

    1997-01-01

    The article presents the talk on the energy situation and perspectives of the use of solar energy in Crimea, Ukraine, given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy is solar energy heating systems developed and produced in Crimea. The project of 100 MWt solar power plant is proposed for construction in Crimea and will improve ecological situation in resort area. (A.A.D.)

  19. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  20. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  1. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  2. Energy Release in Solar Flares,

    Science.gov (United States)

    1982-10-01

    Plasma Research, Stanford University P. Kaufmanu CRAA/CNPq -Conseiho lacional de Desenvolvimento Cientifico e Tecnologico, Slo Paulo, SP, Brasil D.F...three phases of energy release in solar flares (Sturrock, 1980). However, a recent article by Feldman e a.. (1982) points to a significant

  3. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  4. Solar energy in Uruguay. Increase the use of solar panels

    International Nuclear Information System (INIS)

    Matos, V.

    2010-01-01

    This article is about the future of the solar energy in Uruguay. The main aspects of this kind of energy are solar thermic which is used for cooking food and heating water through solar collectors as well as the photovoltaics which allows the generation of electricity

  5. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  6. Global view of energy

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.; Millunzi, A.C.; Perlmutter, A.

    1982-01-01

    This book contains selected papers presented at the fourth interdisciplinary international forum on the Geopolitics of Energy. Topics included: energy demand; energy modeling; urgency of world energy problems; nuclear fission; progress in nuclear fusion; financing energy investments; conservation of energy in developed countries; public safety - risks and benefits; and atmospheric carbon dioxide. A separate abstract was prepared for each of the 25 papers for inclusion in the Energy Data Base; all will appear in Energy Abstracts for Policy Analysis and five in Energy Research Abstracts (ERA)

  7. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  8. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  9. Solar energy R + D programme, 1979-1983. Project F: solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Individual presentations report work in the following areas: production of test reference years for model simulation of solar systems and components; global radiation atlas for horizontal surfaces; radiation data on inclined surfaces; intensity thresholds and cumulative frequency curves; useful energy output from solar collectors; network comparison of pyranometers; measurements of turbidity, spectral radiation, etc.; satellite data. (LEW)

  10. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  11. Villa Design and Solar Energy Utilization

    OpenAIRE

    Olofsson, Martin

    2013-01-01

    This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the real estate that I have drawn for the thesis work. Solar energy is a renewable source of energy from the Sun's light. Energy can be used to produce both heat and electricity through solar collectors and solar cells. Some of the benefits of solar energy is that it is completely free to extract, environmentally friendly and virtually maintenance-free. Disadvantages are that th...

  12. Solar-assisted low energy dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  13. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  14. A Review of Solar Energy and the Built Environment

    Directory of Open Access Journals (Sweden)

    Raha Sulaiman

    2005-12-01

    Full Text Available Solar Energy has been acknowledged as a free and infinite source of energy. In Built Environment (BE, solar energy has been used since pre-historic time. Many improvements and technologies .have been developed with respect to their potential. As solar supplies free energy, the issues with regard to their development in the BE will be examined. The solar energy is used in building either in Passive Solar Design (PSD or Active Solar Design (ASD. Rapid development in BE has caused global warming effect where the heating and cooling of the building contribute to half the total energy consumption of the nation and the construction industry leading to CO2 emission level at 300 million tonnes. It is found that solar energy produces different energy performances which result from different building technique that affected the environment in various ways. Whether or not the energy performances depend on the materials used, the equipment installed in the building or the energy sources supplied to the building , the improvement and development of solar energy still continues and grows.

  15. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  16. Structured luminescent solar energy concentrators : a new route towards inexpensive photovoltaic energy

    NARCIS (Netherlands)

    Tsoi, S.

    2012-01-01

    The solar energy market has grown considerably over the last decade due to increasing global awareness of environmental issues, the effects of greenhouse gases and fossil fuel shortages. More and more areas are now perceived as potential markets for solar energy conversion devices with the ultimate

  17. Meteonorm. Global meteorological database for solar energy and applied climatology. Version 4.0: edition 2000. Software and data on CD-ROM

    International Nuclear Information System (INIS)

    1999-01-01

    This is a comprehensive meteorological planning tool for system design, targeted at engineers, architects, teachers, planners and anyone interested in solar energy and climatology. METEONORM includes data from 2400 meteorological stations worldwide. Version V4.0 is based on over 15 years in the development of meteorological databases for energy. It may be used for solar applications at any desired location in the world, as an interpolation model of solar radiation and additional parameters for any site in the world is included. Also, with up-to-date algorithms, solar radiation incident on surfaces of arbitrary orientation may be calculated at the touch of a button. The local skyline profile may be specified. Five languages are supported: English, French, German, Italian, Spanish. Sites may be selected on map by means of a graphical interface. User data may be imported. 16 different output formats are available. Data, programme, manual, maps and illustrations are incorporated on the CD-ROM which is available for sale

  18. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  19. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  20. The marketing of solar energy

    International Nuclear Information System (INIS)

    Coehoorn, M.; Sinke, W.C.

    1994-01-01

    After two decades of research and development the market introduction of solar water heaters finally is developing rapidly. In a number of progressive countries, amongst which the Netherlands, preparations are made for the large-scale introduction of photovoltaic (PV) power systems. A brief overview is given of market introduction activities with regard to solar energy applications in several countries. Also attention is paid to new technological developments for the improvement of solar boilers: the Integrated Collector Storage system, the integration of the storage tank in the solar water heater (combi-boiler), and the new principle for a combined system for the production of hot tap water and space heating, the so-called solar-gas-combi. The Dutch-developed boilers, however, must compete with the the foreign thermosyphon boilers, although these boilers probably require more maintenance than the Dutch boilers. The market for PV-systems is still in its infancy. The marketing efforts and research activities in Japan, USA and European countries for PV-systems are briefly discussed. Although financial incentives from the national governments are still necessary contributions from other market parties for the development of PV-systems are expected. 4 ills

  1. Solar Energy in the Home. Revised.

    Science.gov (United States)

    Roeder, Allen A.; Woodland, James A.

    Recommended for grades 10-12 physical, earth, or general science classes, this 5-7 day unit is designed to give students a general understanding of solar energy and its use as a viable alternative to present energy sources. Along with this technology, students examine several factors of solar energy which influence the choice of solar home site…

  2. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  3. Implementation Strategy for a Global Solar and Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    In July 2009, Major Economies Forum leaders met to prepare for the COP 15 Copenhagen Conference that took place later that year. At this occasion the Major Economies Forum Global Partnership f or low carbon and climate-friendly technology was founded and Technology Action Plans (TAPs) for ten key low-carbon technologies were drafted. At that juncture Denmark, Germany and Spain took on the responsibility for drafting TAPs for Solar and Wind Energy Technologies. The TAPs were then consolidated and presented at COP 15 that would later take place in December in Copenhagen. Since then, countries that led the development of the Action Plans have started their implementation. During a first Clean Energy Ministerial (CEM) in July 2010 in Washington on the invitation of Steven Chu, US Secretary of Energy, several initiatives were launched. Denmark, Germany and Spain took the lead in the implementation of the TAPs for Solar and Wind Technologies and initiated the Multilateral Working Group on Solar and Wind Energy Technologies (MWGSW). Several countries joined the working group in Washington and afterwards. In two international workshops in Bonn (June 2010) and Madrid (November 2010) and in meetings during the first CEM in Washington (July 2010) and the second CEM in Abu Dhabi (April 2011) the Multilateral Working Group made substantial progress in the two initial fields of action: (1) the Development of a Global Solar and Wind Atlas; and (2) the Development of a Long-term Strategy on Joint Capacity Building. Discussion papers on the respective topics were elaborated involving the Working Group's member countries as well as various international institutions. This led to concrete proposals for several pilot activities in both fields of action. After further specifying key elements of the suggested projects in two expert workshops in spring 2011, the Multilateral Working Group convened for a third international workshop in Copenhagen, Denmark, to discuss the project

  4. Global Energy Trends - 2016 edition

    International Nuclear Information System (INIS)

    2016-01-01

    : if coal remains at a stable and dominant position (43%), renewable energies (+6 points since 2000) and gas (+3 points) gain market share, mainly against nuclear (-6 points). Investments in renewable energy continue, particularly in Asia. Wind power production becomes significant in the global power mix (4%), while solar PV represents 1%

  5. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  6. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  7. Solar Energy: Potential Powerhouse for Jobs

    Science.gov (United States)

    McCallion, Tom

    1976-01-01

    Components of solar energy systems are described, the development of the solar industry discussed, and implications are drawn for employment opportunities in industries (which may expand into new, solar-related areas) and in the professions, from law to sales, upon the advent of solar heating. (AJ)

  8. Research progress about chemical energy storage of solar energy

    Science.gov (United States)

    Wu, Haifeng; Xie, Gengxin; Jie, Zheng; Hui, Xiong; Yang, Duan; Du, Chaojun

    2018-01-01

    In recent years, the application of solar energy has been shown obvious advantages. Solar energy is being discontinuity and inhomogeneity, so energy storage technology becomes the key to the popularization and utilization of solar energy. Chemical storage is the most efficient way to store and transport solar energy. In the first and the second section of this paper, we discuss two aspects about the solar energy collector / reactor, and solar energy storage technology by hydrogen production, respectively. The third section describes the basic application of solar energy storage system, and proposes an association system by combining solar energy storage and power equipment. The fourth section briefly describes several research directions which need to be strengthened.

  9. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  10. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  11. The export of Dutch solar energy technology

    International Nuclear Information System (INIS)

    2000-01-01

    The use of solar energy technology is on the up. In 1997 circa 8000 solar energy systems were installed in the Netherlands, compared to 100 systems in 1988. Solar energy installations, manufactured in the Netherlands, are also sold and installed in other European countries. The market grows by 55% per year. An overview is given of the principles and components of installed and exported solar heating systems, with special attention for the drain-back system

  12. 2007 Global Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lauzon, Jean-Claude; Preng, Richard; Sutton, Bob; Pavlovic, Bojan

    2007-06-15

    The World Energy Council (WEC), in partnership with Korn/Ferry International undertook a survey focussing on the topic ''Tackling the Three S's: Sustainability, Security and Strategy.'' More than 50 senior executives from the world's leading energy companies and their strategic suppliers were interviewed by Korn/Ferry International.

  13. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  14. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A; Nueesch, P; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  15. Solar energy in buildings: Implications for California energy policy

    Science.gov (United States)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  16. Solar energy: an environment friendly reliable and sustainable source

    International Nuclear Information System (INIS)

    Siddique, M.A.; Akhtar, W.

    2011-01-01

    The rapid enhancement in consumption of fossil fuels in order to meet the day-to day increasing energy requirements has blown a danger sign for all nations. Global warming effect has compelled researchers to discover other techniques of energy generation instead of traditional ways in order to reduce adverse effects on global terrain. Renewable energy resources have got attention of global entrepreneurs due to their long lasting availability and environment friendliness. Solar technology is finding increased application in both domestic and military application. This paper discusses the ideas behind the art of design of solar cells and their historical developments. It also covers the kind of techniques/ methodologies used for solar energy conversion into electrical energy with comparison between different renewable technologies and solar technology. This paper gives the brief review of world energy resources and their consumption v/s Solar energy production percentage. Researchers in the field of energy generation have impressed by the Prodigious results of Renewable Energies. Today's most of the high ranked international universities of developed countries in collaboration with government/ industries have been carrying on advance researches in the field of renewable technologies. (author)

  17. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  18. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Vanya Zhivkova

    2013-06-01

    Full Text Available Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  19. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  20. Solar energy in buildings; L'energie solaire dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers the presentations given at the first French national meetings of solar energy for the development of solar systems in buildings. The meeting was organized over two days. The first day comprises 4 workshops about: urbanism and planning, cultural acceptability of solar energy in buildings (the OPAC 38 housing association, point of view on an energy information point, the Freiburg (Germany) solar region and marketing examples), technical integration to the structure (Clipsol solutions), and economical criteria (compared impacts of R and D public photovoltaic programs (USA, Japan, Germany, France, Italy), financing of rehabilitation projects, global approach of solar photovoltaic energy, technical solutions and strategy of products development, why and how to make an economical analysis of solar energy applications in the building industry). The second day comprises a plenary session and a round table: global status of solar energy development in Europe, status of French programs, renewable energies in Europe, the experience of Alsace region (Eastern France), the success of German solar markets, and the tools for the launching of solar energy. Two syntheses for these two days of meetings complete the document. (J.S.)

  1. Solar energy in buildings; L'energie solaire dans le batiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document gathers the presentations given at the first French national meetings of solar energy for the development of solar systems in buildings. The meeting was organized over two days. The first day comprises 4 workshops about: urbanism and planning, cultural acceptability of solar energy in buildings (the OPAC 38 housing association, point of view on an energy information point, the Freiburg (Germany) solar region and marketing examples), technical integration to the structure (Clipsol solutions), and economical criteria (compared impacts of R and D public photovoltaic programs (USA, Japan, Germany, France, Italy), financing of rehabilitation projects, global approach of solar photovoltaic energy, technical solutions and strategy of products development, why and how to make an economical analysis of solar energy applications in the building industry). The second day comprises a plenary session and a round table: global status of solar energy development in Europe, status of French programs, renewable energies in Europe, the experience of Alsace region (Eastern France), the success of German solar markets, and the tools for the launching of solar energy. Two syntheses for these two days of meetings complete the document. (J.S.)

  2. Solar energy in the United States

    International Nuclear Information System (INIS)

    Ochoa, D.; Slaoui, A.; Soler, R.; Bermudez, V.

    2009-01-01

    Written by a group of five French experts who visited several research centres, innovating companies and solar power stations in the United States, this report first proposes an overview of solar energy in the United States, indicating and commenting the respective shares of different renewable energies in the production, focusing on the photovoltaic energy production and its RD sector. The second part presents industrial and research activities in the solar sector, and more specifically photovoltaic technologies (silicon and thin layer technology) and solar concentrators (thermal solar concentrators, photovoltaic concentrators). The last chapter presents the academic research activities in different universities (California Tech Beckman Institute, Stanford, National Renewable Energy Laboratory, Colorado School of Mines)

  3. Renewables in Global Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Renewable energies are essential contributors to the energy supply portfolio as they contribute to world energy supply security, reducing dependency on fossil fuel resources, and provide opportunities for mitigating greenhouse gases. Differences in definition and lack of adequate data complicated the discussion between participants on these key issues. The International Energy Agency believes that this fact sheet can be of use to all to facilitate the debate on the past, current and future place and role of renewables in total energy supply. Our goal is to present as objectively as possible the main elements of the current renewables energy situation. The definitions and coverage of national statistics vary between countries and organisations. In this fact sheet, the renewables definition includes combustible renewables and waste (CRW), hydro, geothermal, solar, wind, tide and wave energy.

  4. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  5. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  6. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  7. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  8. An Integrative STEM Aproach to Teaching Solar Energy Collection

    Science.gov (United States)

    Hughes, Bill; Mona, Lynn; Stout, Heath; Bierly, Mike; McAninch, Steve

    2015-01-01

    "Against the backdrop of the daunting carbon-neutral energy needs of our global future, the largest gap between our present use of solar energy and its enormous undeveloped potential defines a compelling imperative for science and technology in the 21st century" (Lewis & Norcera 2006). Concurrently, the United States educational…

  9. Employment impacts of solar energy in Turkey

    International Nuclear Information System (INIS)

    Cetin, Muejgan; Egrican, Niluefer

    2011-01-01

    Solar energy is considered a key source for the future, not only for Turkey, also for all of the world. Therefore the development and usage of solar energy technologies are increasingly becoming vital for sustainable economic development. The main objective of this study is investigating the employment effects of solar energy industry in Turkey. Some independent reports and studies, which analyze the economic and employment impacts of solar energy industry in the world have been reviewed. A wide range of methods have been used in those studies in order to calculate and to predict the employment effects. Using the capacity targets of the photovoltaic (PV) and concentrated solar power (CSP) plants in the solar Roadmap of Turkey, the prediction of the direct and indirect employment impacts to Turkey's economy is possible. As a result, solar energy in Turkey would be the primary source of energy demand and would have a big employment effects on the economics. That can only be achieved with the support of governmental feed-in tariff policies of solar energy and by increasing research-development funds. - Highlights: → The objective of the study, is investigating employment effects of solar energy. → Using the capacity targets of the PV and CSP plants in solar roadmap of Turkey. → Direct employment has been calculated by constructing of the solar power plant. → If multiplier effect is accepted as 2, total employment will be doubled. → Validity of the figures depends on the government's policies.

  10. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    Science.gov (United States)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  11. Solar Energy Measurement Using Arduino

    Directory of Open Access Journals (Sweden)

    Jumaat Siti Amely

    2018-01-01

    Full Text Available This project aims to develop a measurement of solar energy using Arduino Board technology. In this research, four parameters that been measured are temperature, light intensity, voltage and current. The temperature was measured using temperature sensor. The light intensity was measured using light dependent resistor (LDR sensor. The voltage was measured using the voltage divider because the voltage generated by the solar panel are large for the Arduino as receiver. Lastly for the current was measured using the current sensor module that can sense the current generated by the solar panel. These parameters as the input value for the Arduino and the output was display at the Liquid Crystal Display (LCD screen. The LCD screen display output of the temperature, the light intensity, the voltage and the current value. The purpose of Arduino to convert the analog input of parameter to the digital output and display via LCD screen. Other than that, this project also involve with a design to ensure that device case are easy to be carry around.

  12. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    Science.gov (United States)

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  13. Solar energy. Usage of the solar energy in other forms of energy

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. After a brief description of the solar energy usage, the theory, technology and applications of photovoltaic cells are presented

  14. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  15. Solar energy after Fukushima: the new deal

    International Nuclear Information System (INIS)

    Boisgibault, Louis

    2011-01-01

    This document contains a brief presentation, the preface, and the table of contents of a book which addresses the major technological, regulatory and geostrategic challenges for solar energy in the current energy context. The author outlines the strong emergence of China in this sector, but also that of new opportunities in Africa, and the need for France to strengthen European-Mediterranean collaborations in order not to definitely loose a leadership position. While referring to the environmental context, to practical examples and installations, the author explains the difficult taking off of solar energy before March 2011, why the Fukushima is a turning point for solar energy, and why solar energy will prevail

  16. More Efficient Solar Thermal-Energy Receiver

    Science.gov (United States)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  17. Use of solar energy in agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Nordaunet, L.; Vassbotn, T.; Naavik, G.; Lillevik, O.

    1982-04-01

    The report discusses some materials for utilization of solar energy in agriculture. Accessible data on solar radiation are prepared with a view to practical use in different parts of the country. Physical conditions regarding the mode of operation of different solar collectors are examined, and some methods of transitory storage of solar energy are described. Fields in which practical use of solar energy can be urgent are discussed. These are: water heating and drying of hay and grain. Some practical examples are given. 53 drawings, 9 tables.

  18. New local energy supply as a communal task. Solar statutes between local autonomy and global climatic and resources protection; Neue oertliche Energieversorgung als kommunale Aufgabe. Solarsatzungen zwischen gemeindlicher Selbstverwaltung und globalem Klima- und Ressourcenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Fabio

    2010-07-01

    Cities and communities have a constitutionally secured autonomy. What means this within the range of the protection of climate and resources? May communities take over global tasks, or are these limited in their local sphere of activity? In the meantime, in most German city halls something is done for the employment of renewable energies. Under this aspect, the author of the contribution under consideration reports at first on a comprehensive jurisprudential answer on the fundamental question which local tasks are entitled to the cities and communities and how this affects the range of climate protection and resources protection. Moreover, up-to-date particularly disputed local solar statutes are evaluated legally.

  19. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  20. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  1. Energy: the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Bocheris, J O.M.

    1977-01-01

    The author argues that nuclear and solar energy should begin replacing conventional fossil sources as soon as possible because oil, gas and even coal supplies will be depleted within decades. A hydrogen economy would introduce major technical problems but its chief benefits are that it permits energy storage in a post fossil fuel era when electricity is expected to play a major role. It can be converted to electricity, cleanly and efficiently with fuel cells and in liquid form can be burnt as jet fuel. Hydrogen can also be burnt in internal combustion engines although less efficiently in fuel cells. However, although hydrogen is clean and efficient, technical development is still needed to reduce its cost and to cope with safety problems. The book contains a wealth of technical information and is a valuable reference on a topic of growing importance.

  2. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  3. Teaching Children to Value Solar Energy

    Science.gov (United States)

    Hugerat, Muhamad; Saker, Salem; Odeh, Saeed; Agbaria, Adnan

    2011-01-01

    In this educational initiative, we suggest to build a real model of solar village inside the school, which uses only solar energy. These educational initiatives emphasize the importance of energy for a technological society and the advantage of alternative energy sources. In this scientific educational initiative, the pupils in three elementary…

  4. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  5. Organoruthenium Complexes for Solar Energy Harvesting

    NARCIS (Netherlands)

    Wadman, S.H.|info:eu-repo/dai/nl/304834084

    2008-01-01

    One of the greatest challenges of this time is providing the world with the energy it needs to sustain human kind's current standard of living. Solar energy is the most abundant and ubiquitous renewable energy source available, and as such it holds great promises. Traditionally, the field of solar

  6. Nuclear energy + solar energy, why not?; Energia nuclear + energia solar, por que no?

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, I.; Nelson E, P., E-mail: ihernandezc91@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-09-15

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  7. Solar energy in Primorskiy Krai

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, O.P.; Volkov, A.V. [Inst. of Marine Technology Problems Far Eastern Branch Russian Academic Science (IMTP FEB RAS), Vladivostok (Russian Federation)

    2004-07-01

    In 1979 in the Pacific Oceanological Institute of FESC there were started investigations in the field of renewable energy sources (the group of ocean power-engineering was organized) which have been continued till present time in the laboratory of non-traditional energetics of IMTP FEB RAS. During this time the following expeditions were carried out by research workers: in Tugursky Bay (1981) and in Pendzinky Lip (1982, 1983) for investigations of tidal mode in the places which are promising for building tidal power stations; marine expeditions (1985, 1987) for investigating power resources in the Seychelles area, and an expedition to Cape Shmidt - for carrying out experimental freezing of seawater layers on particular parts of an icy moorage of a sea port in the course of its restoration. Now theoretical and experimental researches in the field of using solar energy, energy due to salinity gradients, biomass energy etc., are being carried out at the laboratory. Experimental installations for transformation of these types of energy were created which were tested both in laboratory and in natural conditions. (orig.)

  8. Adaptive, full-spectrum solar energy system

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  9. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  10. Solar Energy for Pacific Northwest Buildings.

    Science.gov (United States)

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  11. Solar 92: The 1992 American Solar Energy Society annual conference

    International Nuclear Information System (INIS)

    Burley, S.; Arden, M.E.

    1992-01-01

    The purpose of this symposium is to document the lessons learned from federal and state policies and programs in the late 1970's and 1980's aimed at promoting consumer use of solar energy. During this period the primary emphasis was on solar thermal technologies and passive solar design that could be used at the residential level, though there was also some information on stand-alone photovoltaic systems as well

  12. Proceedings of the General Committee for solar thermal energy 2017

    International Nuclear Information System (INIS)

    Loyen, Richard; Gibert, Francois; Porcheyre, Edwige; Laplagne, Valerie; Lambertucci, Stefano; Hauser, Eva; Delmas, Pierre; Mozas, Kevin; Servier, Gerard; Girard, Jean-Paul; Haim, Philippe; Gendron, Marc; Haas, Benjamin; Leclech, Rodrigue; Eberhardt, Mathieu; Bettwy, Fabrice; Berthomieu, Nadine; Barais, Claire; Mingant, Sylvie; Daniel, Charles; GODIN, Olivier; PELe, Charles; Benabdelkarim, Mohamed; Brottier, Laetitia; Cholin, Xavier; Mugnier, Daniel; Marchal, David; Khebchache, Bouzid

    2017-10-01

    The contributions of this conference first proposed an overview of the status and perspectives of the solar thermal energy sector with a presentation of the present situation and perspectives for the French market, and an overview of situations and initiatives in neighbouring European countries. A second session addressed the possible new economical and marketing models able to face challenges of solar thermal energy in 2018 with focuses on heat kWh purchase, on supply portage through a global operator contract (design-realisation-exploitation-maintenance contracts or CREM contracts, energy performance contracts or CPE), and on issues related to building renovation (solar-gas synergy) and to new buildings (regulatory evolution, E+C label). The third session proposed examples of local good practices: development of solar thermal networks in Auvergne-Rhone-Alpes with the development of these networks and a support to commissioners, ADEME's support with patrimony-rehabilitation contracts, and the solar policy implemented by the Brest metropole. A technological focus was then proposed. It addressed communications about the SOCOL approach, concentration-based solar technology (technology, applications, realisations), and solar heating (assets in new and renovated buildings). Before a synthesis, two interventions addressed the production of solar electron and calories, and works performed on the increase of the solar coverage rate

  13. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  14. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  15. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  16. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  17. National Renewable Energy Policy in a Global World

    Science.gov (United States)

    Jeong, Minji

    Increasing trade of renewable energy products has significantly contributed to reducing the costs of renewable energy sources, but at the same time, it has generated protectionist policies, which may negatively affect the trend of the cost reduction. Although a few recent studies examined the rise of renewable energy protectionism and trade disputes, they are limited in addressing the conflict between the original goal of traditional renewable energy policies and the new protectionist policies under the globalized renewable energy industry. To fill this gap, this dissertation explores how the globalized renewable energy industry has changed national renewable energy policies. Through three analyses, three aspects of the globalized renewable energy industry are examined: the rise of multinational corporations, international interactions among actors, and the changes of the global and domestic market conditions. First analysis investigates how multinational renewable energy corporations have affected national policies. A content analysis of the annual reports of 15 solar photovoltaic multinational corporation shows that solar multinationals have been influenced by national policies and have adapted to the changes rather than having attempted to change national policies. Second analysis examines how diverse actors have framed renewable energy trade issues through a network analysis of the Chinese solar panel issue in the United States. The result shows that the Chinese solar panel issue was framed differently from the traditional environmental frame of renewable energy, being dominated by multinational corporations headquartered in other countries. Third analysis explores what has caused the increasing diversity in national renewable energy policies through the case studies of the U.S. and South Korea. The result reveals that the globalization of solar industry has affected the diversification of solar policies in two countries by generating both challenges, which

  18. Solar energy application, economics, and public perception

    CERN Document Server

    Adaramola, Muyiwa

    2015-01-01

    Due to climate change, the rise in energy demand, and issues of energy security, more countries are being forced to reexamine their energy policies and consider more renewable sources of energy. Solar power is expected to play a significant role in the changing face of energy economies, due in a large part to the recent technological advances in the field and the significant decrease in cost. This book describes these advances and examines the current state of solar power from a variety of angles. The various sections of the book cover the following topics: an overview of hybrid solar energy s

  19. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  20. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  1. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  2. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available An attractive and cheaper alternative to siliconbased photovoltaic (PV) cells for the conversion of solar light into electrical energy is to utilise dyeadsorbed, large-band-gap metal oxide materials such as TiO2 to absorb the solar light...

  3. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  4. Protocol Monitoring Passive Solar Energy. Background document

    International Nuclear Information System (INIS)

    Van den Ham, E.R.

    1998-01-01

    A method has been developed by means of which the contribution of passive solar energy to the Dutch energy balance can be quantified univocally. The monitoring will be directed at the absolute amount of used solar energy, the relative contribution of passive solar energy to the energy demand in the Netherlands, and the average efficiency of passive solar energy systems. Based on a model of the total building stock the quantities to be monitored can be determined. The most important parameters in the model are: the window surface per orientation, the average U-value (heat transfer coefficient) of windows, the average ZTA-value (incoming solar radiation factor) of windows, and the presence of sun lounges and atriums

  5. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  6. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  7. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  8. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  9. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  10. The SERI solar energy storage program

    Science.gov (United States)

    Copeland, R. J.; Wright, J. D.; Wyman, C. E.

    1980-01-01

    In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.

  11. Energy principle with global invariants

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Dewar, R.L.

    1981-04-01

    A variational principle is proposed for constructing equilibria with minimum energy in a toroidal plasma. The total energy is minimized subject to global invariants which act as constraints during relaxation of the plasma. These global integrals of motion are preserved exactly for all idea motions and approximately for a wide class of resistive motions. We assume, specifically, that relaxation of the plasma is dominated by a tearing mode of single helicity. Equilibria with realistic current density and pressure profiles may be constructed in this theory, which is also used here to study current penetration in tokamaks. The second variation of the free energy functional is computed. It is shown that if the second variation of any equilibrium constructed in this theory is positive, the equilibrium satisfies the necessary and sufficient conditions for ideal stability

  12. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  13. Solar energy in Norway; Solstroem i Norge

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern; Nordal, Siv Helen; Bugge, Lars; Authen, Mari L.; Bernhard, Peter

    2012-10-15

    Enova SF produced in 2010/11 a report that described the potential of solar energy until 2020. Developments in the market for the production of electricity from solar energy happens so fast that it is prepared a new report describing the market and technology per 2012. (eb)

  14. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  15. Potency of Solar Energy Applications in Indonesia

    OpenAIRE

    Handayani, Noer Abyor; Ariyanti, Dessy

    2012-01-01

    Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but t...

  16. Solar energy for electricity and fuels

    OpenAIRE

    Ingan?s, Olle; Sundstr?m, Villy

    2015-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorga...

  17. The technical use of solar energy

    International Nuclear Information System (INIS)

    Hahne, E.

    1993-01-01

    For all considerations on energy, information on energy-quantity and energy-value is necessary. Such information is presented for Germany as an example for an industrialized country. The application of solar heat for an Institute building is presented for a pilot project at the University Stuttgart. With unglazed solar collectors, a flooded pebble-bed store and a heat pump, about 60% of the Institute's heat demand can be supplied by solar energy. With the experience gained from this project, large district heating systems are designed for two different locations in Germany under differing conditions. For solar assisted house heating and domestic hot water, heat costs are obtained which are about twice the present heat cost in Germany. If solar energy assists domestic hot water production and house heating, costs can be achieved which are below present conventional heat cost. In addition, it will also reduce air pollution. (author). 9 figs., 6 tabs

  18. Solar energy systems: assessment of present and future potential

    International Nuclear Information System (INIS)

    Kuehne, H.-M.; Aulich, H.

    1992-01-01

    This paper discusses the present state and the future potential of solar thermal and photovoltaic (PV) technologies, and examines both the environmental implications of these technologies and the economics which determine their viability in the energy market. Although some significant cost reductions have been achieved, particularly in PV technology, solar conversion technologies are still not generally competitive against conventional fuels, and future cost reductions may be limited. It is argued that fiscal measures will be necessary if solar conversion technologies are to make a significant global impact. (Author)

  19. Global optimization framework for solar building design

    Science.gov (United States)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  20. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  1. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  2. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  3. Solar Energy Delivering Greenhouse with an Integrated NIR filter

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Holterman, H.J.; Tuijl, van B.A.J.; Bot, G.P.A.

    2008-01-01

    The scope of this investigation is the design and development of a new type of greenhouse with an integrated filter for rejecting near infrared radiation (NIR) and a solar energy delivery system. Cooled greenhouses are an important issue to cope with the combination of high global radiation and high

  4. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  5. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  6. Solar Energy a Path to India's Prosperity

    Science.gov (United States)

    Chandra, Yogender Pal; Singh, Arashdeep; Kannojiya, Vikas; Kesari, J. P.

    2018-05-01

    Solar energy technology has grabbed a worldwide interest and attention these days. India also, having a huge solar influx and potential, is not falling back to feed its energy demand through non-conventional energy sources such as concentrating solar power (CSP) and photovoltaic (PV). This work will try to add some comprehensive insight on solar energy framework, policy, outlook and socio-economic challenges of India. This includes its prominent areas of working such as grid independent and `utility-scale' power production using CSP or PV power plants, rural as well as urban electrification using PV, solar powered public transportation systems, solar power in agrarian society—water pumping, irrigation, waste management and so on and so forth. Despite the fact that, a vast legion of furtherance and advancement has been done during the last decade of solar energy maturation and proliferation, improvements could be suggested so as to augment the solar energy usage in contrast to conventional energy sources in India.

  7. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  8. SWOT analysis of the renewable energy sources in Romania - case study: solar energy

    Science.gov (United States)

    Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.

    2016-08-01

    The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.

  9. Global energy perspective of Turkey

    International Nuclear Information System (INIS)

    Sen, H. Mete

    2006-01-01

    Global energy demand is growing rapidly at an average rate of 4% per year in parallel with the economy while EU-25 has only 0,8% during the last decade. Total primary energy supply is 87 818 000 toe of which 72% was imported; in comparison the average dependency rate is 49,5% in the EU. Such excessive dependency creates harmful effects on the national economy. Oil and natural gas imports bill was 19,5 billion US $ in 2005. Primary energy demand growth rate is twice as much of the production rate in the period 1980 2004. Fossil fuels accounts for 86% of Turkeys global energy supply in 2004. Population growth rate is one of the major parameters affecting the energy balance. Energy and electricity consumptions per capita are still one third of the EUs average.. Turkeys coal reserves needs to be utilized at higher rate and hydropower, wind power and geothermal energy potentials should be developed in order to decrease the imported energy dependence, soon. Due to the buy or pay bilateral agreements with suppliers, storage capabilities should be realized for excessive natural gas supply. Turkeys average growth rate of electricity production is 8,1% while installed capacity has 8,5% for the last 25 years. The present total installed capacity is 39 020 MW in which renewables has a share of 34%. Total electricity production was 162 TWh in 2005 of which 75,4% was supplied by thermal power plants. Share of natural gas is 44% of the annual electricity production. Considering the present power plants and the ones under construction, electricity supply and demand will be in balance till the year of 2010 (with high demand scenario) or 2015 (with low demand scenario). Nuclear power is being considered for electricity supply security after 2015. But, the general approach for supply security is first to develop the domestic coal reserves, renewable energy resources.

  10. Solar energy for electricity and fuels.

    Science.gov (United States)

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  11. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  12. Advantages of geosynchronous solar power satellites for terrestrial base-load electrical supply compared to other renewable energy sources - or why civilization needs solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, J.K. Jr. [Texas Univ., Austin, TX (United States)

    1998-06-01

    The arguments in favour of using solar power satellites for primary base-load electrical supply are presented and compared with the advantages and drawbacks of other renewable energy sources, especially ground solar and wind systems. Popular misconceptions about energy use and the importation of space solar energy to the Earth`s surface are examined and discounted. Finally an optimal mix of space solar (focusing on geosynchronous solar power satellites), ground solar, and other energy sources is described which, it is argued, would be capable to meet future global energy demand. (UK)

  13. 2012 Global Energy Competitiveness Index

    International Nuclear Information System (INIS)

    Lorot, Pascal; Lauriano do Rego, Wilfrid

    2012-01-01

    The 2012 Global Energy Competitiveness Index, a survey jointly conducted by Institut Choiseul and KPMG, is the first of its kind. It ranks 146 countries, grouping them into 5 categories ranging from the best performers to under-performers. The first edition of this annual study ranks the countries surveyed not only by continent but also according to the quality of their energy mix, electricity access and availability levels and the compatibility of their energy policies with environmental challenges. The governing bodies of the countries in the panel (relevant ministries and regulatory authorities) can gain much from this decision-making support tool that fosters dialogue on energy-related issues. The targeted audience also includes industry professionals, NGOs, international organisations and other economic players such as banks, consulting firms and specialist commercial law firms commercial law firms. Europe is by far the best performing continent ahead of the best performing continent, ahead of the Americas and Americas and even further ahead of Asia/Oceania and Africa. Generally speaking, the Nordic countries are among the best performers: Norway, Canada, Iceland, Denmark, Sweden and Finland rank, in this order, in the global Top 10. Four EU countries are among the global Top 10 (Denmark, Sweden, Finland and France) and five others (the United Kingdom, Austria, Germany, Slovakia and Spain) are in the Top 20. Surprisingly, Colombia stood out as the fifth most competitive country in terms of energy. Its outstanding performance is due to a strong energy mix (ranked second worldwide) and an energy strategy compatible with today's key environmental challenges. The apparent domination of Northern-hemisphere countries needs to be considered in conjunction with the results achieved by the other Seeming domination of be considered in conjunction with the results achieved by the other countries with regard to their energy mix and the environmental compatibility of

  14. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  15. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  16. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  17. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  18. Global wind energy outlook 2008

    International Nuclear Information System (INIS)

    2008-10-01

    An overview is given of the global potential of wind power up to 2050. This potential could play a key part in achieving a decline in emissions by 2020, which the IPCC indicates is necessary to avoid the worst consequences of climate change. By 2020, wind power could save as much as 1.5 billion tonnes of CO2 every year, which would add up to over 10 billion tonnes in this timeframe. The report also explains how wind energy can provide up to 30% of the word's electricity by the middle of the century. More importantly, wind power could save as much as 1.5 billion tonnes of CO2 every year by 2020. GWEO 2008 explores three different scenarios for wind power: a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an Advanced Scenario which assumes that all policy options in favour of renewables have been adopted. These are then set against two demand projections for global energy demand. Wind energy has already become a mainstream power generation source in many regions around the world, and it is being deployed in over 70 countries. In addition to environmental benefits, wind energy also provides a sustainable answer to increasing concerns about security of energy supply and volatile fossil fuel prices. Moreover, wind energy is becoming a substantial factor in economic development, providing more than 350,000 'green collar' jobs today both in direct and indirect employment. By 2020, this figure is projected to increase to over 2 million

  19. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  20. Potency of Solar Energy Applications in Indonesia

    Directory of Open Access Journals (Sweden)

    Noer Abyor Handayani

    2012-07-01

    Full Text Available Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.

  1. Energy. From firewood to solar cell

    International Nuclear Information System (INIS)

    Reijnders, L.

    2006-01-01

    An outline is given of the development of energy and the options to secure the energy supply for the future. Much information is given about energy efficiency, the exploitation of tar sands, reopening of the coal mines in the Netherlands, nuclear fusion and fission, wave energy and solar cells, etc [nl

  2. Lessons learned from solar energy projects in Saudi Arabia

    International Nuclear Information System (INIS)

    Huraib, F.S.; Hasnain, S.M.; Alawaji, S.H.

    1996-01-01

    This paper describes the lessons learned from the major RD and D activities at Energy Research Institute (ERI), King Abdulaziz City for Science and Technology (KACST) in the field of solar energy. Photovoltaic, solar thermal dishes, solar water heating, solar water pumping and desalination, solar hydrogen production and utilization are some of the areas studied for solar energy applications. Recommendations and guidelines for future solar energy research, development, demonstration and dissemination in Saudi Arabia are also given. (Author)

  3. Global patterns of renewable energy innovation, 1990–2009

    OpenAIRE

    Bayer, Patrick; Dolan, Lindsay; Urpelainen, Johannes

    2013-01-01

    Cost-effective approaches to mitigating climate change depend on advances in clean energy technologies, such as solar and wind power. Given increased technology innovation in developing countries, led by China, we focus our attention on global patterns of renewable energy innovation. Utilizing highly valuable international patents as our indicator of innovation, we examine the economic and political determinants of energy innovation in 74 countries across the world, 1990–2009. We find that hi...

  4. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  5. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  6. Solar energy storage researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  7. Solar energy, architecture and climate in Colombia

    International Nuclear Information System (INIS)

    Carrillo B, J.

    1983-01-01

    In Colombia, the climatological conditions are such that with a possible serious appropriate technology to use the solar energy in the cities when the electricity rationing increases, for the illumination, the refrigeration, the electricity production, the heating, etc. The use of the solar energy is also been worth to look for a better adaptation between climate and architecture. In this sense, the article exposes some of the existent possibilities of application of the solar energy for the comfort of the habitat, possibilities of high efficiency and low cost that can be easily applicable in Colombia

  8. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  9. Assessing the Performance of Global Solar Radiation Empirical ...

    African Journals Online (AJOL)

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  10. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  11. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  12. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  13. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  14. Assessment of Solar Energy Dissemination and Application in Zambia

    International Nuclear Information System (INIS)

    1997-12-01

    The study report addresses the following issues in the Zambian context: previous studies on solar energy, government policy on renewable energy, system designs, benefits of solar energy technologies, affordable solar energy equipment by target groups, barriers to solar energy technology diffusion, credit schemes for potential users. 13 refs., 5 figs., 22 tabs

  15. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  17. Solar Energy in the Nineteen Eighties

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    Solar energy is abundant inexhaustible and nonpolluting. Its utilization does not affect the climate, and it does not lend itself to military applications. The solar-thermal, solar-electric and solar-chemical options are available. The production of low-temperature heat for warm water and for space heating, of enormous importance in the energy budget, is economic already now in many situations. Technical progress is still considerable. With the further rise in fuel prices the application will increase dramatically. Use of solar heat for large-scale generation of electricity, i.e. of power on the basis of the solar-thermal option, should be approached cautiously. Possibilities include the tower concept and ocean thermal-electric conversion (OTEC). Investment would be large, and the technology hard. Better long-term chances may be given, for decentralized application in developing countries, to the farm concept. In contrast, the chances for cheap small-scale, and later large-scale, use of solar semiconductor cells (solar-electric option) are most favourable. Technical progress is rapid, and prices drop precipitously. For the production of fuel, the solar-chemical option is in the foreground. Gaseous, liquid and convenient solid fuels can be obtained from biomass, especially by fermentation. At the moment, biogenic wastes are already available in relatively large amounts. Subsequently, energy farming is to be introduced. Biomass converted to hydrogen can be employed for production of electricity by means of fuel cells. In the more distant future, hydrogen is to be made abiotically by photolysis of water, and is to be introduced into a hydrogen economy. Probably the technology will be based on the application of synthetic membranes. It is possible that regenerative solar energy in all its forms can in the end replace all existing energy used by man. This substitution will s however, be a gradual process. (author)

  18. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  19. SOLAR ENERGY: A NECESSARY INVESTMENT IN A ...

    African Journals Online (AJOL)

    Dr Obe

    23, No. 1, March 2004. Okoro and Madueme. 58. SOLAR ENERGY: A NECESSARY INVESTMENT IN A DEVELOPING. ECONOMY ... research on how to develop the non-conventional methods of .... meat, vegetable, and dairy products.

  20. Our prodigal sun. [solar energy technology

    Science.gov (United States)

    1974-01-01

    Characteristics of the sun are reported indicating it as a source of energy. Data from several space missions are discussed, and the solar activity cycle is presented. The corona, flares, prominences, spots, and wind of the sun are also discussed.

  1. Regeneration of desiccants with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  2. Getting down to business with solar energy

    International Nuclear Information System (INIS)

    Niederhaeusern, A.

    2008-01-01

    In this interview with Hans Ruedi Schweizer, President of the Board of Governors of the Swiss Ernst Schweizer AG company and this company's Head of Solar Energy Systems, Andreas Haller, the over thirty year history of the company's solar activities is examined. The company's efforts and its success in the area of solar energy and the efficient use of energy in the company's own facilities are discussed. The other areas of activity of the company cover facade elements, windows and doors through to mailboxes. Competition on the solar collector market and the need for more professional installation experts are discussed, as is the company's patented mounting system for photovoltaic panels. Finally, the wishes of the interviewees with respect to Swiss energy politics are noted.

  3. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  4. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  5. Community impediments to implementation of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M. D.; Armstrong, J. E.

    1979-11-01

    The complete array of institutional problems expected to energy when solar technology are implemented on a national scale is assembled. The findings of the study are presented in two formats. First, the results are organized by the time frames of delays in solar implementation caused by the inherent difficulties a national energy policy would encounter in changing the way a given institution responds to specific solar technologies. Delay categories of 10 years or more, 6 to 8 years, and 3 to 5 years were selected; all were assigned under the assumption that a strong national policy promoting adoption of solar technologies would be in effect. The second format constitutes a description of the difficulties at the community level, associated with implementing each solar technology. (MHR)

  6. School students' knowledge and understanding of the Global Solar ...

    African Journals Online (AJOL)

    Background. The Global Solar Ultraviolet Index (UVI) is a health communication tool used to inform the public about the health risks of excess solar UV radiation and encourage appropriate sun-protection behaviour. Knowledge and understanding of the UVI has been evaluated among adult populations but not among ...

  7. Solar Energy and the Western Asian Countries

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    The Western Asian countries receive the most abundant solar radiation of the world. They also have enormous reserves of oil and natural gas. But the world reserves of those fuels will certainly diminish greatly as the worldwide demand for energy will increase steadily in the coming decades. And the suppliers of energy will have to contend with public concerns about the polluting effects of those fuels and the possible dangers of nuclear energy. Clearly a power source based on an non exhaustible and non-polluting fuel could be expected to find a role. It now appears that such a source is at hand in the solar energy. Here in this paper, under the principles in the United Nations' Agenda 21, we suggest to Western Asian countries, the study and own development of the following technologies based on solar energy; and comment about them: *photo-voltaic solar cell power plants - in the future, its cost per kilowatt-hour will probably be competitive as to other sources of electrical energy. A new technique, the solar non-imaging concentrator, with amorphous silicon-based thin films solar cells at the focus of the concentrators, can collect and intensify solar radiation far better than conventional concentrators do, thus reducing much more the cost; *bio-gas - using biological gas to produce energy and for heating/cooling purposes; *wind generation of electricity - it's nowadays, a non-expensive technique; *water pump for irrigation and human consuming, driving their power from photovoltaic cells; *and the study and own development of solar lasers for peaceful scientific studies. In this new kind of laser, the external necessary pumping energy comes from the high intensity of sunlight, produced with non-imaging concentrators. Solar lasers can give unexpected new great uses for mankind. Those achievements will require international cooperation and transfer of information, sustained research and development work, and some initial subsides by independent governments. Solar

  8. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  9. Solar energy thermalization and storage device

    Science.gov (United States)

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  10. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  11. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  12. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  13. Solar Magnetic Atmospheric Effects on Global Helioseismic ...

    Indian Academy of Sciences (India)

    provide priceless diagnostic tools in the search for hidden aspects of the solar interior ... The overall structure of the helioseismic frequency spectrum, see Figure 1, has not .... 10.7 cm radio flux were used as a proxy of the solar surface activity. All the ..... According to their predictions, at least B = 5 × 105 G field strength is.

  14. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  15. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  16. Bioinspired fractal electrodes for solar energy storages.

    Science.gov (United States)

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  17. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  18. Environmental benefits of domestic solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, Soteris A.

    2004-01-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO 2 and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gasses are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water system the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gasses are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future

  19. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  20. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  1. Who governs energy? The challenges facing global energy governance

    International Nuclear Information System (INIS)

    Florini, Ann; Sovacool, Benjamin K.

    2009-01-01

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems.

  2. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  3. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  4. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any addition...

  5. Passive solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1980-11-01

    The results of a series of telephone interviews with groups of users of information on passive solar heating and cooling are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven passive groups respondents are analyzed in this report: Federally Funded Researchers, Manufacturer Representatives, Architects, Builders, Educators, Cooperative Extension Service County Agents, and Homeowners. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  6. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  7. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  8. VT Renewable Energy Sites - Solar

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  9. The solar energy; L'Energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-07-01

    This document provides information the today technology concerning the photovoltaic cells and presents the research programs in the domain: silver cells, black silicon, spherical cells, mini sensors, solar spectrum cells Hercules europe project of solar energy concentration. Many Internet addresses are provided. (A.L.B.)

  10. Solar energy prediction and verification using operational model forecasts and ground-based solar measurements

    International Nuclear Information System (INIS)

    Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A.

    2015-01-01

    The present study focuses on the predictions and verification of these predictions of solar energy using ground-based solar measurements from the Hellenic Network for Solar Energy and the National Observatory of Athens network, as well as solar radiation operational forecasts provided by the MM5 mesoscale model. The evaluation was carried out independently for the different networks, for two forecast horizons (1 and 2 days ahead), for the seasons of the year, for varying solar elevation, for the indicative energy potential of the area, and for four classes of cloud cover based on the calculated clearness index (k_t): CS (clear sky), SC (scattered clouds), BC (broken clouds) and OC (overcast). The seasonal dependence presented relative rRMSE (Root Mean Square Error) values ranging from 15% (summer) to 60% (winter), while the solar elevation dependence revealed a high effectiveness and reliability near local noon (rRMSE ∼30%). An increment of the errors with cloudiness was also observed. For CS with mean GHI (global horizontal irradiance) ∼ 650 W/m"2 the errors are 8%, for SC 20% and for BC and OC the errors were greater (>40%) but correspond to much lower radiation levels (<120 W/m"2) of consequently lower energy potential impact. The total energy potential for each ground station ranges from 1.5 to 1.9 MWh/m"2, while the mean monthly forecast error was found to be consistently below 10%. - Highlights: • Long term measurements at different atmospheric cases are needed for energy forecasting model evaluations. • The total energy potential at the Greek sites presented ranges from 1.5 to 1.9 MWh/m"2. • Mean monthly energy forecast errors are within 10% for all cases analyzed. • Cloud presence results of an additional forecast error that varies with the cloud cover.

  11. Solar energy activities in the Arab countries

    International Nuclear Information System (INIS)

    Sayigh, A.A.M.

    1991-01-01

    The Arab countries, 22 in total, are divided into three groups. Group one consists of all countries of the Middle East. The second group is the Arabian Peninsula, and the third group consists of all Arab countries in Africa. The paper outlines the solar density and sunshine hours, as well as wind data in the region and compares them with some industrialized countries. Brief surveys of various solar energy projects are tabulated: that is solar, wind and biomass. Several specific major projects in various parts of the Arab World will be discussed. More specifically, the cooling of the solar energy research building in Baghdad (120 tons of solar absorption chillers, 80 tons of heat pumps), the heating of King Abdu-Asis Airborne and Physical Training School near Tabuk, Saudi Arabia, the 350 kW PV. field of the solar energy village near Riyadh and the 100 kW solar thermal plant in Kuwait are discussed. It is worth noting that the present photovoltaic capacity in the Arab world is more than 3.0 MW and the yearly installation potential per year is 2.0 MW. There are at least five photovoltaic production facilities in the Arab countries. Two of them in Saudi Arabia with capacity of 400 kW, one in Iraq with a capacity of 200 kW, one in Tunisia with a capacity of 100 kW and on in Algeria with capacity of 100 kW. The Arab countries can absorb 5MW per year and more countries like Egypt, Sudan, Morocco, Jordan and Libya are thinking of having their own production capabilities. Five desalination plants are also mentioned, plus the Yanbu plant of 240m/day, which is one of the largest in the world. The potential of wind energy utilisation is considered. Obstacles hindering the process of solar energy in the region are also outlined. (author). 11 refs, 1 fig., 4 tabs

  12. Correlations during the day of diffuse solar radiation to the global solar radiation in Vigo (Spain); Correlaciones minutarias, horarias y diarias de la radiacion solar difusa a la radiacion solar global en Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Santos, J.

    2004-07-01

    In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)

  13. Solar energy characteristics and some photovoltaic testing results in Jeddah

    Energy Technology Data Exchange (ETDEWEB)

    Mosalam Shaltout, M A

    1986-01-01

    The data for global radiation were analysed to investigate the correlation with climatological factors. Solar cell module testing under Jeddah climatic conditions was initiated in 1984-1985. The goal of this work was to study the performance and reliability of a commercially-available module in outdoor conditions in order to obtain information on solar cell system design, and to observe the influence of our specific climate conditions on module energy output. The use of results obtained for precise system sizing is discussed.

  14. Better chances for photovoltaic solar energy

    International Nuclear Information System (INIS)

    Sinke, W.C.

    1992-01-01

    There is a growing interest in the use of solar energy based on the policy to reduce the emission of carbon dioxide and acidifying pollutants, and the desire to save energy, in particular with regard to the increase of energy consumption, which can be expected to occur in the near future in developing countries. After a brief introduction on the efficiencies of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si) and amorphous silicon (a-Si) solar cells realized sofar, attention is paid to two remarkable developments in solar cell research. One is at Texas Instruments where silicon balls in aluminium foil are fabricated, for which the average energy efficiency realized sofar is 10% for small surfaces (10 cm 2 ). The cell is called the spheral solar cell. A second development is at the Federal Institute for Technology in Lausanne, Switzerland, where the researchers O'Regan and Graetzel reported on the development of a photo-electrochemical solar cell with a high efficiency and good stability. Their cell is dye sensitized, which means that the light absorption function of the cell is separated from the load transport function. Finally brief attention is paid to the introduction and use of solar home systems in Indonesia. 5 figs

  15. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  16. Global energy and technology trends

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2008-01-01

    Economic development translates into growing demand for energy services. However, more than 1.6 billion people at present still do not have access to modern energy services. Continued population growth compounds this demand for energy, which is central to achieving sustainable development goals. Poverty eradication calls for affordable energy services. There is a need to minimize health and environmental impacts of energy use. Nuclear power's share of global electricity rose to 16% in 1986. Near the end of the 1980s growth stagnated. Regulatory interventions often stretched out licensing times and increased costs. Inflation and rising energy costs resulting from the oil shocks of 1973 and 1979 brought about a significant drop in electricity demand and raised the costs of capital intensive power plants, like nuclear power plants. Some utilities found the regulatory and transaction costs of nuclear power simply too high to manage costs-effectively. The 1979 Three Mile Island accident and the Chernobyl accident in 1986 retarded the expansion of nuclear power. The electricity market liberalization and privatization exposed excess capacity, pushed electricity prices lower and made power plant investments more risky. Other things being equal, nuclear power's front-loaded cost structure was a disadvantage in markets that emphasize short term profits and rapid returns. In the 1990s, growth in nuclear electricity generation exceeded the growth in nuclear capacity as management efficiencies and technological advances progressively raised the average energy availability of the world's nuclear plants. The energy availability factor measures the percentage of time that a power reactor is available to generate electricity, rather than being shutdown for refuelling, maintenance and other reasons. The global average for nuclear power reactors has risen from 67% in 1990 to 81% in 2004. This increase is equivalent to the addition of 34 new 1000 MW reactors. Electricity generation

  17. Energy problems in a global view

    International Nuclear Information System (INIS)

    Dubois, J.-E.

    1976-01-01

    Energy problems in general are examined, considering first the ecosystem of pre-Newtonian societies, then that of industrial societies and their resulting energy consumptions. Primary energy sources are listed and the manner in which they are used is described. New techniques (uranium isotope separation, energy conversion, solar energy, controlled fusion) are discussed as a function of their potential saving in energy expenditure. Solutions are proposed for the future of post-industrial societies [fr

  18. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  19. Charging electric cars from solar energy

    OpenAIRE

    Liang, Xusheng; Tanyi, Elvis; Zou, Xin

    2016-01-01

    Before vehicles were heavily relied on coal, fossil fuels and wind for power.  Now, they are rapidly being replaced by electric vehicles and or plug-in hybrid electric cars. But these electric cars are still faced with the problem of energy availability because they rely on energy from biomass, hydro power and wind turbines for power generation. The abundance of solar radiation and its use as solar energy as a power source in driving these rapidly increasing electric cars is not only an impor...

  20. Wind and solar energy incentives in Iran

    International Nuclear Information System (INIS)

    Taleghani, G.; Kazemi Karegar, H.

    2006-01-01

    Incentive have yet been viewed as a means of supporting technological developments until a new technology becomes cost competitive wind based electricity is not jet generally competitive with alternate sources of electricity such as fossil fuels. This paper presents the potential for wind and solar in Iran and shows how much electric energy is now produced by renewable power plants compared to steam and gas. The importance of renewable energy effects on Iran environment and economy is also discussed and the issue of the contribution of renewable energy for producing electricity in the future will be shown. Also this paper highlights the ability of Iran to manufacture the components of the wind turbine and solar system locally, and its effect on the price of wind turbine and solar energy

  1. Port of Galveston Solar Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Falcioni, Diane [Port of Galveston (POG), Galveston, TX (United States); Cuclis, Alex [Houston Advanced Research Center, The Woodlands, TX (United States); Freundlich, Alex [Univ. of Houston, Houston, TX (United States)

    2014-03-31

    This study on the performance characteristics of existing solar technologies in a maritime environment was funded by an award given to The Port of Galveston (POG) from the U.S. Department of Energy (DOE). The study includes research performed by The Center for Advanced Materials at the University of Houston (UH). The UH researchers examined how solar cell efficiencies and life spans can be improved by examining the performance of a variety of antireflective (AR) coatings mounted on the top of one of the POG’s Cruise Terminals. Supplemental supporting research was performed at the UH laboratories. An educational Kiosk was constructed with a 55” display screen providing information about solar energy, the research work UH performed at POG and real time data from the solar panels located on the roof of the Cruise Terminal. The Houston Advanced Research Center (HARC) managed the project.

  2. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  3. Remarks About Nuclear And Solar Energy

    International Nuclear Information System (INIS)

    Broda, E.

    1974-01-01

    This paper was written by E. Broda for the 24 th Pugwash Conference on Science and World Affairs, which took place in Baden ( Austria), 28 th August-2 nd September in 1974. In this document issues of energy resources and production are discussed. The focus lies especially on nuclear and solar energy. (nowak)

  4. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  5. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  6. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  7. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  8. Thermal solar energy, towards a sunny interval?

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    While its market results are continuously decreasing, the thermal solar sector regains confidence with the perspectives of a new thermal legislation in France, a higher carbon tax and the growing volume of installed equipment. This document contains 5 articles, which themes are: The renewal of the thermal solar energy sector in France, notably for the building market, due to a new regulation and a reduction in costs; Several companies are developing large capacity thermal solar plant for industrial facilities (one of them covers 10000 m 2 ) while another company is developing an all-in-one containerised system (less than 1 MW); Another example is given with a Caribbean chemical company which use thermal solar energy for its processes, with a reduction of the fuel consumption by a 2.5 factor; The return of experience show that hybrid solar panels present some limitations, especially in terms of performances and sizing; A collective building (35 apartments) in the West of France has 100 pc of its heating needs (hot water production and space heating) satisfied with solar energy

  9. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  10. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  11. Solar energy conscious allotting and building

    International Nuclear Information System (INIS)

    Moor, R.; Winter, R.

    1992-10-01

    In order to use solar energy now and in the future several measures should be taken in the field of urban development and housing construction. A number of policy instruments is available to the local governments to stimulate the use of solar energy. However, little use is made of these possibilities so far. In many municipalities there are uncertainties about the financial consequences of solar energy conscious building. In practice it appears that there are hardly any extra costs for the infrastructure if building blocks and roofs are designed and built with south orientation. Also possibilities to minimize the investment barrier for the occupants of the houses are available. An overview is presented of the policy instruments and practical examples are given for the Dutch municipalities Gouda, Schiedam, Heerhugowaard, Delft and Haarlemmermeer. 2 tabs., 2 appendices, 6 refs

  12. Solar energy program evaluation: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    deLeon, P.

    1979-09-01

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the role and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)

  13. The prospective uses of solar energy

    International Nuclear Information System (INIS)

    Masi, M.; Carra, S.

    2007-01-01

    Some aspects inherent the prospective uses of solar energy as renewable energy source are here addressed with particular reference to the technical and economical aspects affecting its use of today and tomorrow. It emerges that neither technical nor availability limitation exist for the extensive use of that primary energy source, but only limitations of economical nature that are indeed under resolution with the installation volumes increase [it

  14. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  15. The Determinant of US Consumers Attitudes toward Solar Energy

    Science.gov (United States)

    Lu, Chao-Lin

    2016-01-01

    Solar energy provides several significant advantages, such as reduction of the CO[subscript 2] emissions, increase of energy supply diversification, security of energy, and regional/national energy independence. Due to the reduced installation cost and the rapid advances in solar energy technology, the installed capacity of solar power has been…

  16. Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco

    Science.gov (United States)

    Bounoua, Z.; Mechaqrane, A.

    2018-05-01

    An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.

  17. Solar energy's economic and social benefits

    International Nuclear Information System (INIS)

    Scheer, H.

    1995-01-01

    There are numerous indications that solar energy is far more than a mere stopgap measure to escape from the present environmental crisis. These include the natural as well as the developed, and still developing, technological potential of solar energy; the vast opportunities offered by abandoning destructive energy sources; and, not least, the new industrial perspectives arising from the conversion of our energy system. In addition to the environmental benefits, solar energy will bring about major economic and social gains. The creation of a solar energy system offers an unexpected and unique chance to release industrial society from the harmful consequences of the Industrial Revolution and to make available its positive accomplishments - particularly the social, democratic and cultural opportunities made possible by freeing mankind from slave labour - to all of mankind. Destruction of the environment is the greatest danger for industrialized societies pursuing economic growth, but it is not the only one. The Western high culture of welfare states is evidently a thing of the past. Created by the pressure of social movements that emerged in the Industrial Revolution, they stabilized capitalism by making it more responsive to the social needs in its strongholds. But both old and new contradictions, as well as the growth of welfare costs, lead to the conclusion that the future of the industrial system is increasingly seen only in terms of jettisoning its social obligations. Political democracy will then once more be in danger. Modern history is unable to provide an example of a stable democracy based on permanent mass misery

  18. The thermal solar energy - September 2010

    International Nuclear Information System (INIS)

    Acket, C.

    2010-01-01

    The author first notices that the use of solar heat to produce electricity is much lesser known than the production of electricity by photovoltaic effect. He also notices that few efforts have been made in France to develop this technology (thermal solar energy, also called helio-thermodynamics). He evokes the Themis project and also some initiatives in Spain and in California. He recalls some data about solar heat, presents the solar concentration technique which either uses a parabolic configuration (point focus concentration) or a cylindrical and parabolic configuration (line concentration system). He briefly presents the different techniques used to transform solar heat into electricity and to store the electricity. He briefly presents different solutions which have been tested over the past years in France, Germany, Spain, California and Israel (tower and air, gas and Stirling cycle, tower and direct vapour production, cylindrical-parabolic collector). He discusses the effect of intermittency and the French context, and questions and discusses the choice between thermal and photovoltaic solar energy (advantages and drawbacks)

  19. SOLAR ENERGY FOR GREEN INDIA

    OpenAIRE

    D. P. Jesudoss Manohar; Dr. T. Jayaprakasam

    2016-01-01

    India a rapidly growing economy with more than 1 billion people is facing a huge also energy demand. The electricity production has expanded over the years but we cannot deny the fact that the population of the country is also expanding. More than 72% of population living in villages and half of the villages remain without electricity. It’s high time that our country should concentrate more on energy efficiency, conservation and renewable energy to fulfill the energy needs of India and bri...

  20. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  1. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  2. Historical Analysis of Investment in Solar Energy Technologies (2000-2007)

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, C. E.; Margolis, R. M.; Bartlett, J. E.

    2008-12-01

    The solar energy industry experienced unprecedented growth in the eight years from 2000 to 2007, with explosive growth occurring in the latter half of this period. From 2004 to 2007, global private sector investment in solar energy increased by almost twenty-fold, marking a dramatic increase in the short span of four years. This paper examines the timing, magnitude, focus and location of various forms of investment in the solar energy sector. It analyzes their trends to provide an understanding of the growth of the solar industry during the past eight years and to identify emerging themes in this rapidly evolving industry.

  3. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  4. GLOBAL SOLAR RADIATION INTERCEPTION BY GRAPEVINES TRAINED TO A VERTICAL TRELLIS SYSTEM

    Directory of Open Access Journals (Sweden)

    CLAUDIA GUIMARÃES CAMARGO CAMPOS

    2016-01-01

    Full Text Available ABSTRACT In this paper we assess the utilization of radiant energy in the growing of grapevines (Cabernet Sauvignon trained to a vertical trellis system, and estimate the global solar radiation interception taking into account the physical characteristics of the training system at different phenological stages. The experiment was based on daily measurements of global solar radiation made by an automatic weather station placed at the vineyard of a winery located in the municipality of São Joaquim, in the southern Brazilian State of Santa Catarina (Villa Francioni winery, 28º 15’ 14” S, 49º 57’ 02” W, 1294m a.s.l.. Growth and phenological development of the shoots were evaluated. The global solar radiation is intercepted by the canopy (trained to a vertical trellis system in different orientations and the accumulated total is slightly greater on the east than on the west face of the canopy, especially after flowering. The daily variability of global solar radiation intercepted by the canopy is greater after flowering. The accumulated solar energy incident on the canopy increases until the onset of ripening. From the results, vineyards trained to a vertical trellis system in the north-south direction provide favorable sunlight exposure to leaves and fruits and are promising in quality and productivity.

  5. Energy Input Flux in the Global Quiet-Sun Corona

    Energy Technology Data Exchange (ETDEWEB)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET-UBA, CC 67—Suc 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Landi, Enrico; Frazin, Richard A. [Department of Climate and Space Sciences and Engineering (CLaSP), University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base ( r ∼ 1.025 R {sub ⊙}) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ∼0.5–2.0 × 10{sup 5} (erg s{sup −1} cm{sup −2}), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  6. Solar thermal energy. Solar pasteurization of dairy products; Energia solar termica. Pasteurizacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, J.; Chemisana, D.

    2009-07-01

    Nicaragua is one of the south America countries with biggest cattle figures; however, it is at the bottom of the list of milk consumers. The cause which explains this is a twofold trouble. First of all, they have not the adequate milk treatment methods to guarantee a proper hygienic and conservation conditions. By the other side, production is distributed in small production centers to serve local consumers. this article proposal is to get a pasteurization treatment with thermal processes arranged by means of the solar energy. (Author) 3 refs.

  7. The core of the global warming problem: energy

    International Nuclear Information System (INIS)

    Hu, E.

    2005-01-01

    From the thermodynamic point of view, the global warming problem is an 'energy balance' problem. The heat (energy) accumulation in the earth and its atmosphere is the cause of global warming. This accumulation is mainly due to the imbalance of (solar) energy reaching and the energy leaving the earth, caused by 'greenhouse effect' in which the CO 2 and other greenhouse gases play a critical role; so that balance of the energy entering and leaving the earth should be the key to solve the problem. Currently in the battle of tackling the global warming, we mainly focus on the development of CO 2 -related measures, i.e., emission reduction, CO 2 sequestration, and CO 2 recycle technologies. It is right in technical aspect, because they are attempting to thin the CO 2 'blanket' around the earth. However, 'Energy' that is the core of the problem has been overlooked, at least in management/policy aspect. This paper is proposing an 'Energy Credit' i.e., the energy measure concept as an alternative to the 'CO 2 credit' that is currently in place in the proposed emission trading scheme. The proposed energy credit concept has the advantages such as covering broad activities related to the global warming and not just direct emissions. Three examples are given in the paper to demonstrate the concept of the energy measure and its advantages over the CO 2 credit concept. (Author)

  8. Nanophysics of solar and renewable energy

    International Nuclear Information System (INIS)

    Wolf, Edward L.

    2012-01-01

    This easy accessible textbook provides an overview of solar to electric energy conversion, followed by a detailed look at one aspect, namely photovoltaics, including the underlying principles and fabrication methods. The author, an experienced author and teacher, reviews such green technologies as solar-heated-steam power, hydrogen, and thermoelectric generation, as well as nuclear fusion. Throughout the book, carefully chosen, up-to-date examples are used to illustrate important concepts and research tools. The opening chapters give a broad and exhaustive survey of long term energy resources, reviewing current and potential types of solar driven energy sources. The core part of the text on solar energy conversion discusses different concepts for generating electric power, followed by a profound presentation of the underlying semiconductor physics and rounded off by a look at efficiency and third-generation concepts. The concluding section offers a rough analysis of the economics relevant to the large-scale adoption of photovoltaic conversion with a discussion of such issues as durability, manufacturability and cost, as well as the importance of storage. The book is self-contained so as to be suitable for students with introductory calculus-based courses in physics, chemistry, or engineering. It introduces concepts in quantum mechanics, atomic and molecular physics, plus the solid state and semiconductor junction physics needed to attain a quantitative understanding of the current status of this field. With its comments on economic aspects, it is also a useful tool for those readers interested in a career in alternative energy. (orig.)

  9. Nanophysics of solar and renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Edward L. [New York Univ., Brooklyn, NY (United States). Polytechnic Institute

    2012-11-01

    This easy accessible textbook provides an overview of solar to electric energy conversion, followed by a detailed look at one aspect, namely photovoltaics, including the underlying principles and fabrication methods. The author, an experienced author and teacher, reviews such green technologies as solar-heated-steam power, hydrogen, and thermoelectric generation, as well as nuclear fusion. Throughout the book, carefully chosen, up-to-date examples are used to illustrate important concepts and research tools. The opening chapters give a broad and exhaustive survey of long term energy resources, reviewing current and potential types of solar driven energy sources. The core part of the text on solar energy conversion discusses different concepts for generating electric power, followed by a profound presentation of the underlying semiconductor physics and rounded off by a look at efficiency and third-generation concepts. The concluding section offers a rough analysis of the economics relevant to the large-scale adoption of photovoltaic conversion with a discussion of such issues as durability, manufacturability and cost, as well as the importance of storage. The book is self-contained so as to be suitable for students with introductory calculus-based courses in physics, chemistry, or engineering. It introduces concepts in quantum mechanics, atomic and molecular physics, plus the solid state and semiconductor junction physics needed to attain a quantitative understanding of the current status of this field. With its comments on economic aspects, it is also a useful tool for those readers interested in a career in alternative energy. (orig.)

  10. 76 FR 60475 - Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy...

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy Project AGENCY: U.S. Department of Energy. ACTION: Record of decision. SUMMARY: The U... and Reinvestment Act of 2009 (Recovery Act), to Tonopah Solar Energy, LLC (TSE), for construction and...

  11. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  12. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  13. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  14. Revisiting Renewable Energy Map in Indonesia: Seasonal Hydro and Solar Energy Potential for Rural Off-Grid Electrification (Provincial Level

    Directory of Open Access Journals (Sweden)

    Agung Wahyuono Ruri

    2018-01-01

    Full Text Available Regarding the acceleration of renewable energy diffusion in Indonesia as well as achieving the national energy mix target, renewable energy map is essential to provide useful information to build renewable energy system. This work aims at updating the renewable energy potential map, i.e. hydro and solar energy potential, with a revised model based on the global climate data. The renewable energy map is intended to assist the design off-grid system by hydropower plant or photovoltaic system, particularly for rural electrification. Specifically, the hydro energy map enables the stakeholders to determine the suitable on-site hydro energy technology (from pico-hydro, micro-hydro, mini-hydro to large hydropower plant. Meanwhile, the solar energy map depicts not only seasonal solar energy potential but also estimated energy output from photovoltaic system.

  15. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  16. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  17. Enerplan, Professional association of solar energy - activity report 2007. Network of solar energy professionals in France

    International Nuclear Information System (INIS)

    2008-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2007 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  18. Enerplan, Professional association of solar energy - activity report 2008. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2009-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2008 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  19. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  20. Solar energy as fuel to move the world; La energia solar como combustible para mover al mundo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Arturo; Gamboa, Sergio [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    Among the technologies that can be used to take properly advantage of the Sun, we have the development of various solar devices, ranging from the solar collectors, equipment that convert the solar radiation into heat, until the solar cells that convert sunlight into electricity. The development and implementation of these devices in various countries of the world, has allowed us to evaluate the technical feasibility of the technologies associated with the development and use of Renewable Energies to solve the global energy problems, and, in this way, achieve the long-awaited energy independence to which aspire all the nations of the planet. [Spanish] Entre las tecnologias que se pueden utilizar para aprovechar de forma adecuada al Sol, tenemos el desarrollo de diversos dispositivos solares, los cuales van desde los captadores solares, equipos que convierten la radiacion solar en calor, hasta las celdas solares, que convierten la luz del Sol en electricidad. El desarrollo e implementacion de estos dispositivos en diversos paises del mundo, han permitido evaluar la factibilidad tecnica de las tecnologias asociadas al aprovechamiento y uso de las Energias Renovables para resolver los problemas energeticos globales, y, de esta forma, conseguir la tan ansiada independencia energetica a la que aspiran todas las naciones del planeta.

  1. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  2. Energy in Mexico: a profile of solar energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  3. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  4. Solar Energy Education. Reader, Part IV. Sun schooling

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which focus on solar energy is presented. This is the final book of the four part series of the Solar Energy Reader. The articles include brief discussions on energy topics such as the sun, ocean energy, methane gas from cow manure, and solar homes. Instructions for constructing a sundial and a solar stove are also included. A glossary of energy related terms is provided. (BCS)

  5. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Rittstieg, G.

    1980-12-01

    A briefly commented data collection is presented. The following diagrams are related to energy requirements and consumption as well as primary energy reserves. Finally some comments referring to nuclear energy are given. (UA) [de

  6. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  7. Solar Energy Installers Curriculum Guides. Final Report.

    Science.gov (United States)

    Walker, Gene C.

    A project was conducted to develop solar energy installers curriculum guides for use in high school vocational centers and community colleges. Project activities included researching job competencies for the heating, ventilation, and air conditioning industry and determining through interviews and manufacturers' literature what additional…

  8. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  9. Utilization of solar energy in South Africa

    CSIR Research Space (South Africa)

    Whillier, A

    1953-04-01

    Full Text Available Design curves based on measurements of solar irradiation in South Africa are presented for two geographic areas, the highveld and the Cape Peninsula, giving data on the amount of thermal energy that can be collected from the sun by use of flat...

  10. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  11. Global Solar UV Index (invited paper)

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2000-01-01

    Excessive solar ultraviolet (UV) radiation exposure produces a significant burden of disease to the skin, eyes and immune system. Effective programmes for the reduction of UV exposure are needed to reduce this disease burden and the associated health care costs. The UV index is seen as an effective tool for communicating important protection information to the public through its use in media news and weather information. The index is described and it is suggested that universally common messages should be associated with its ranges. (author)

  12. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  13. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  14. The potential of solar energy in the Netherlands

    International Nuclear Information System (INIS)

    Sinke, W.C.; De Geus, A.C.

    1993-01-01

    Solar energy in the Netherlands is not yet a well-known phenomenon. Still, the potential of solar energy to save or generate energy is large. Several forms of solar energy, as well as its possibilities and limitations, are introduced in this article. Attention is paid to active and passive thermal solar energy, and photovoltaic solar energy. Also the involvement of different parties in introducing solar energy is discussed. The next 10-20 years will be characterized by large-scale practical experiments and market introduction. The application of solar energy should be taken into account when planning urban areas. It is expected that ongoing developments in all fields of solar energy will result in a considerable improvement of the price/performance ratio and many new possibilities. 4 figs., 4 ills., 14 refs

  15. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  16. Measurement of global solar radiation over Brunei Darussalam

    International Nuclear Information System (INIS)

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  17. A Comprehensive Plan for Global Energy Revolution

    Science.gov (United States)

    Blees, T.

    2009-05-01

    There is no dearth of information regarding the grave crises faced by humanity in the 21st century. There is also growing consensus that the wholesale burning of fossil fuels must come to an end, either because of climate change or other still-salient reasons such as air pollution or major conflicts over dwindling reserves of cheaply recoverable oil and gas resources. At the same time, global demographics predict with disquieting certainty a world with up to 9 or 10 billion souls by mid-century. The vast expansion of energy consumption that this population represents, along with further increases in already-unacceptable levels of atmospheric carbon dioxide from fossil fuel burning, demands that we quickly develop almost limitless sources of clean, economical power. What is sorely lacking in the public debate are realistic solutions. Expanding wind and solar generating capacity is an important near-term goal, but neither of these technologies represents a viable solution for generating base load power at the vast scales that will be required. Energy efficiency measures are likewise well-directed, but the combination of rising population along with increasingly energy-intensive economic activity by the large fraction of Earth's current population residing in developing nations suggests that absolute energy demand will continue to rise even with radically improved energy efficiency. Fortunately we have the technologies available to provide virtually unlimited clean energy, and to utilize and recycle our resources so that everyone can improve their standard of living. The Integral Fast Reactor (IFR), developed at the Argonne National Laboratory in the 80's and 90's and currently championed by General Electric, is a technology that fills the bill on every count, and then some. IFRs are safe, environmentally clean, economical, and free of conflict over fuel supply. IFRs can safely consume as fuel the nuclear waste from the current installed base of light-water reactors

  18. Energy Decisions: Is Solar Power the Solution?

    Science.gov (United States)

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…

  19. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  20. Global status of recycling waste solar panels: A review.

    Science.gov (United States)

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Solar architecture and energy policies in France: from the oil crisis to the solar crisis

    International Nuclear Information System (INIS)

    Chauvin-Michel, Marion

    2013-01-01

    In 1973, the oil crisis creates a focus on energy efficiency policy. Public institutions implement studies on solar architecture and launch experiments and training campaigns to promote the solar equipment. But the presidential election of 1981 leads to a change in energy policy, plunging the solar sector in crisis, causing the disappearance of solar architecture

  2. Global solar radiation in Sierra Leone (West Africa)

    International Nuclear Information System (INIS)

    Massaquoi, J.G.M.

    1987-09-01

    A correlation equation of the Angstrom type has been developed to predict the monthly average daily global solar irradiation incident on a horizontal surface in Freetown, Sierra Leone. Measurements of the global insolation have been compared with those predicted using the equation. A good agreement (greater than 95% in most cases) was observed between the measured values and the predicted ones. (author). 15 refs, 2 tabs

  3. Proceedings of the General Committee for solar thermal energy 2015

    International Nuclear Information System (INIS)

    Gibert, Francois; Loyen, Richard; Khebchache, Bouzid; Cholin, Xavier; Leicher, David; Mozas, Kevin; Leclercq, Martine; Laugier, Patrick; Dias, Pedro; Kuczer, Eric; Benabdelkarim, Mohamed; Brottier, Laetitia; Soussana, Max; Cheze, David; Mugnier, Daniel; Laplagne, Valerie; Mykieta, Frederic; Ducloux, Antoine; Egret, Dominique; Noisette, Nadege; Peneau, Yvan; Seguis, Anne-Sophie; Gerard, Roland

    2017-10-01

    After an introducing contribution which discussed the difficult evolution of the solar thermal energy sector in 2015, contributions addressed development plans for SOCOL (a plan for collective solar thermal and solar heat) which aims at reviving the market and at opening new markets. A next set of contributions discussed how solar thermal energy can be at the service of energy transition. Following sessions addressed issues like innovation at the service of solar thermal energy, energetic display of solar systems and application of the Ecodesign and Labelling directives, and the reduction of carbon footprint and the energy dependence of territories

  4. Energy: global prospects 1985-2000

    International Nuclear Information System (INIS)

    Wilson, C.L.

    1978-01-01

    The results from the evaluation of global energy resources up to year 2000, done by the Group of Energetic Strategy of Energy Studies are presented. The studies were concentrated in the fuel supply and demand for the next 25 years, such as: petroleum, natural gas, coal and nuclear energy. The national and international energy policy are studied. (E.G.) [pt

  5. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  6. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  7. Solar energy options: Technical economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Visentin, R

    1982-01-01

    A general system approach on the earth suggests the conversion and distribution of solar energy as electricity, gas, solid and liquid fuels; the historical trend in energy management techniques is in favour of this hard technical proposal, because experience there exists on methods of transmission or transportation of previous kinds of energy vectors mentioned, and small changes in lifestyles toward energy conservation have to be considered in the final uses of the energy. Less hard system technologies will permit direct heat and electricity production close to the channels of energy consumptions; these systems will function as energy savers and their full exploitation implies greater impacts on energy use and lifestyles. As a general trend for government policies as well as for public decision impact on the social decision process, the proliferation of solar systems would permit to produce energy for the 'flowing energetic consumptions' (civil, transportation, agriculture, telecommunications, lighting, etc.) while the not renewable fuels could be properly invested in the production of strategic or durable materials; in this scheme the role of renewable resources is well defined to stabilize the whole civil system in which we are at present organized.

  8. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  9. Solar energy legal bibliography. Final report. [160 references

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

    1979-03-01

    The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  10. Solar energy`s economic and social benefits

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H. [Bundeshaus, Bonn (Germany)

    1995-08-01

    There are numerous indications that solar energy is far more than a mere stopgap measure to escape from the present environmental crisis. These include the natural as well as the developed, and still developing, technological potential of solar energy; the vast opportunities offered by abandoning destructive energy sources; and, not least, the new industrial perspectives arising from the conversion of our energy system. In addition to the environmental benefits, solar energy will bring about major economic and social gains. The creation of a solar energy system offers an unexpected and unique chance to release industrial society from the harmful consequences of the Industrial Revolution and to make available its positive accomplishments - particularly the social, democratic and cultural opportunities made possible by freeing mankind from slave labour - to all of mankind. Destruction of the environment is the greatest danger for industrialized societies pursuing economic growth, but it is not the only one. The Western high culture of welfare states is evidently a thing of the past. Created by the pressure of social movements that emerged in the Industrial Revolution, they stabilized capitalism by making it more responsive to the social needs in its strongholds. But both old and new contradictions, as well as the growth of welfare costs, lead to the conclusion that the future of the industrial system is increasingly seen only in terms of jettisoning its social obligations. Political democracy will then once more be in danger. Modern history is unable to provide an example of a stable democracy based on permanent mass misery

  11. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  12. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  13. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  14. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  15. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  16. Energy - New business for solar energy

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2014-01-01

    This article proposes an overview of the current status and perspectives for the photovoltaic industries. After a very difficult period (2011-2013), the photovoltaic market is growing again and becomes profitable again. In the same time, the sector has been deeply transformed, and new business models are emerging. If Europe was the location for 70 per cent of new installations in 2011, it only represents 29 per cent in 2013, and this share should not be greater than 25 per cent by 2018. Asia leads the market and price reduction makes photovoltaic energy more competitive. China and Asia are largely the leaders in array production (two thirds of world production in China, 90 per cent in Asia, only one western company in the producers' top 10). In terms of strategy and business model, the business is now aimed on sales of electricity rather than only sales of arrays

  17. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan; Hanna, Amir; Sun, Xingshu; Alam, Muhammad A.

    2017-01-01

    10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a

  18. Solar applications of thermal energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

    1979-01-01

    A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

  19. Solar energy converter using surface plasma waves

    Science.gov (United States)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  20. Diffusion of solar energy use in the urban built environment supported by new design

    NARCIS (Netherlands)

    van Geenhuizen, Marina; Schoonman, Joop; Reinders, Angèle

    2012-01-01

    Places of large potentials of sustainable energy production and places of energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV technology and actual energy

  1. Solar energy research and development: program balance. Annex, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

  2. Global solar radiation in Trieste (Italy)

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1986-04-01

    Global irradiation data recorded at Trieste (CNR - Istituto Talassografico di Trieste) during 11-year period are grouped into ''summer'' and ''winter'' periods and are compared with values generated from seven different models and empirical correlations proposed by earlier investigations. Climatological parameters like sunshine duration, relative humidity, cloud cover and maximum air temperature are the models input. The calculated values obtained from correlations according to Angstrom and Black give better agreement with measured data in summer. Agreements are within +-3% and +-4%. In winter a quadratic equation is in better agreement with measured values. Agreement is within +7%

  3. Estimation of diffuse from measured global solar radiation

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  4. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  5. Global Warming; Can Nuclear Energy Help?

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    Kyoto conference is setting the targets and limits for CO 2 emission. In the same time energy consumption is increasing, especially in developing world. If developing countries attain even a moderate fraction of energy consumption of developed countries, this will lead into large increase of total CO 2 emission, unless there is a strong increase of energy production by CO 2 non-emitting sources. Of two major candidates, solar and nuclear energy, the second is technically and economically much closer to ability to accomplish the task. The requirements for a large scale use of nuclear energy and the role of IAEA are discussed. (author)

  6. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  7. Who governs energy? The challenges facing global energy governance

    Energy Technology Data Exchange (ETDEWEB)

    Florini, Ann; Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-12-15

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems. (author)

  8. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  9. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  10. GPP Webinar: The Solar Roadmap—Navigating the Evolving Solar Energy Market

    Science.gov (United States)

    GPP and State & Local Climate and Energy Branch webinar on the Solar Roadmap and the evolving solar energy market. This webinar discussed local and state government’s success stories and opportunities for progress in renewable energy goals using the Solar

  11. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  12. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Barthelt, K.

    1990-01-01

    The text of a speech celebrating the 10 years operation of the nuclear power plant in Goesgen. The author expresses his opinion on the future of nuclear energy, on the responsibility towards the next generation and on the energy supply for the Third World. He draws attention to the gap between north and south and to the limited amount of resources and mention the CO2-problem and the potential of nuclear energy

  13. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  14. Synergies of solar energy across a land-food-energy-water nexus

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2017-12-01

    Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.

  15. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  16. Solar energy in Italy: a profile of renewable energy activity in its national context

    Energy Technology Data Exchange (ETDEWEB)

    Shea, C.A.

    1980-12-01

    The following are included: country overview; energy summary; Italian Republic-geopolitical, economic, and cultural aspects; the energy profile; imported energy sources; solar energy research and development; solar energy organizations; solar energy related legislation and administration policies; and international agreements, contacts, manufacturers, and projects. (MHR)

  17. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  18. Uses of solar energy in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Nandwani, Shyam S. [Laboratorio de Energia Solar, Departamento de Fisica, Universidad Nacional Heredia, P.O. Box 728, 3000 Heredia (Costa Rica)

    2006-04-15

    Costa Rica, a small country with the population of 4 million, and without military and hence no military expenditure, promotes the use of renewable sources like Hydro, Mini hydro, Wind, Geothermal and Sun, mainly for electricity generation. Almost 90% of the electricity is produced from these renewable sources. Through different policies and some incentives, etc., private generation is also encouraged and there are some decentralized systems like solar water heaters, swimming pool heaters, cookers, dryers and stills and also photo voltaic panels. The last ones are mostly for the population where there is no electric grid. Depending on the province, 91-99.5% of the population is electrified. Government also encourages the use of energy saving devices specially at domestic and industrial sector. In addition to provide these data, some of the solar energy systems are mentioned. [Author].

  19. Solar Energy Education. Reader, Part I. Energy, Society, and the Sun

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A collection of magazine articles which were selected for information on solar energy is presented in this booklet. This booklet is the first of a four part series of the Solar Energy Reader. The articles provide brief discussions on topics such as the power of the sun, solar energy developments for homes, solar energy versus power plants, solar access laws, and the role of utilities with respect to the sun's energy. (BCS)

  20. 76 FR 78021 - Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar...

    Science.gov (United States)

    2011-12-15

    ... LVRWB10B3780] Notice of Availability of the Record of Decision for the Rice Solar Energy, LLC, Rice Solar... Solar Energy, LLC, a subsidiary of SolarReserve, LLC plans to construct a 150 megawatt (MW) solar... allows solar energy to be captured throughout the day and retained in a molten salt heat transfer fluid...

  1. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  2. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan

    International Nuclear Information System (INIS)

    Gadiwala, M.S.; Usman, A.; Akhtar, M.; Jamil, K.

    2013-01-01

    In developing countries like Pakistan the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Only five long-period locations data of solar radiation data is available in Pakistan (Karachi, Quetta, Lahore, Multan and Peshawar). These locations almost encompass the different geographical features of Pakistan. For this reason in this study the Mean monthly global solar radiation has been estimated using empirical models of Angstrom, FAO, Glover Mc-Culloch, Sangeeta & Tiwari for the diversity of approach and use of climatic and geographical parameters. Empirical constants for these models have been estimated and the results obtained by these models have been tested statistically. The results show encouraging agreement between estimated and measured values. The outcome of these empirical models will assist the researchers working on solar energy estimation of the location having similar conditions

  3. Global Energy Assessment. Toward a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, T B; Nakicenovic, N; Patwardhan, A; Gomez-Echeverri, L [eds.

    2012-11-01

    The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy challenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is an invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

  4. Solar energy collector/storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  5. Solar energy: from shadow to bright spot?

    International Nuclear Information System (INIS)

    2005-10-01

    It seems that the solar energy is developing, especially more in the thermal sector that in the photovoltaic. The result is a bad place for the France. In 200 the national production part was only 10% of the world production and 2% in 2002. The France passed from fifth to tenth place in five years. This document takes stock on the technology and the economical sector. Examples are presented. (A.L.B.)

  6. Solar energy parking canopy demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Cylwik, Joe [City of Big Bear Lake, Big Bear, CA (United States); David, Lawrence [City of Big Bear Lake, Big Bear, CA (United States)

    2015-09-24

    The goal of this pilot/demonstration program is to measure the viability of using solar photovoltaic (PV) technology at three locations in a mountain community environment given the harsh weather conditions. An additional goal is to reduce long-term operational costs, minimize green house gas emissions, lower the dependency on energy produced from fossil fuels, and improve the working environment and health of city employees and residents.

  7. LENS spectroscopy of low energy solar neutrinos

    CERN Document Server

    Schönert, S

    2001-01-01

    The LENS experiments will measure energy resolved sub-MeV solar electron-neutrinos ( nu /sub e/) in real time via inverse beta - transition populating an isomeric state in the daughter nuclei. The subsequent de-excitation provides a delayed coincidence tag which discriminates against background. A liquid scintillation detector loaded with 20 t of Yb would yield an event rate of 190 pp- and 175 /sup 7/Be neutrinos per year. Essential information on neutrino mixing and masses can be derived.

  8. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  9. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  10. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  11. Our global energy future and the role of nuclear energy

    International Nuclear Information System (INIS)

    Foster, J.S.

    1991-01-01

    An extension in the use of energy, on even a fairly moderate basis, will, for several decades at least, require the use of all our present energy sources at rates that are a natural extension of historical rates, trending toward maximum practicable exploitation for all but nuclear energy. Regardless of what happens with the fossil hydrocarbons nuclear energy will play a major role in the supply of energy. When the fossil hydrocarbons have run their course nuclear and possibly some solar energy, through the media of electricity, hydrogen and synthetic hydrocarbons, will provide the bulk of the world's controlled energy and in sufficient quantity to provide ample energy for all. The burning question, however, is what will happen in the next few decades. There is a wonderful opportunity for nuclear energy, as the world requirement for energy, and particularly electrical energy, grows

  12. The cost - effective solar energy applications in Canada

    International Nuclear Information System (INIS)

    Pape, A.

    1999-01-01

    This paper outlines several cost-effective solar energy application in Canada, and estimates the GHG emission reduction potential for each. The applications include: (1) passive solar building design; (2) solar water heating applications; (3) solar photovoltaics for remote power; and (4) solar assisted space heating and cooling in industrial buildings. Each technology is briefly profiled in terms of functionality, cost characteristics, energy production characteristics and potential emission reduction benefits. Real-life examples of each application are also included. Finally, the paper concludes on the potential role of solar energy in the reduction of Canadian GHG emissions. (author)

  13. Here comes the sun. Solar energy technology in the USA

    International Nuclear Information System (INIS)

    Van der Wees, G.

    1998-01-01

    An overview is given of the energy policy in the USA with respect to solar energy technology and the marketing of solar energy applications. In particular, attention is paid to the Million Solar Roofs programme, small-scale and medium-scale photovoltaic (PV) systems (Residential PV and Utility Scale PV), solar thermal systems (Parabolic Trough, Power tower, and Solar Dish/Engine). Also examples of passive solar systems are given. Finally, a number of aspects with regard to market implementation, e.g. net-metering. 9 refs

  14. Perspectives for a global energy supply

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    The economic development of the industrial world and the population explosion in the Third World will lead to a further increase in world energy consumption. Up to the year 2020 a doubling of today's consumption must be reckoned with. Further increases may be necessary in order to raise the per capita consumption of the population in the Third World. In order to meet this increasing demand it is necessary to consider all available energy sources. The nonrenewable energy sources oil, coal, gas and uranium will have to carry a greater proportion than the current 80 %. The resources suffice for that. However many obstacles must be surmounted in order to secure an essentially increasing energy production. Shortage symptoms with oil are to be expected within a foreseeable space of time. Only coal and nuclear energy can close the gap. In order to avert adverse effects on the climate, CO 2 emissions must be controlled. This can best be achieved by promoting water power, solar energy and nuclear energy as the principal sources. The postulates of the Swiss energy policy 'saving', 'substitution', 'research' and 'provision' seek to guarantee the energy supply. The promotion of hydro, solar and nuclear power must be added. The postulate of a withdrawal from nuclear energy is untenable considering its worldwide development. It would retard Switzerland in its pursuit of supply security and a better environment. 6 figs

  15. Global Energy Trends - 2016 report. Towards a Peak in Energy Demand and CO2 Emissions?

    International Nuclear Information System (INIS)

    2016-06-01

    Celebrating the 20. anniversary of this yearly publication, Enerdata has newly released its annual Global Energy Trends publication for 2016. The full report presents in-depth information on the energy markets as well as upcoming trends for all energies in the G20. With over 400 premium sources, Enerdata analysts highlight major developments in 2015 concerning global demand, supply and key indicators across the globe. The main trends outlined in the report are: - Economic slowdown: the lowest growth since 2002; - Almost no growth in energy consumption; - New decrease of energy intensity; - Stabilization of CO 2 -energy emissions; - INDC targets achievement requires a double breakthrough. The Global Energy Trends Analysis also provides additional graphs about trends by energy: - Coal: most consumed energy source in G20 countries; - Oil: fall in prices to around 40-50 US$/bbl; - Oil production: USA overtake Russia and catch up with Saudi Arabia; - Gas: Stabilisation of gas demand for the 2. consecutive year; - Electricity: Stagnation of electricity consumption; - Wind Power and Solar PV: Asia engine of development. Growth in energy consumption (%/year) for G20 countries: - Second consecutive year of decline: low growth and decrease in energy intensity; - India drives the energy consumption growth; - Near stagnation in China (after a first sharp slowdown in 2014); - Economic recession in Brazil and Russia; - USA: decrease primarily linked to the industrial sector (energy efficiency + less energy-intensive industry); - Rebound in Europe: economic growth + climate effect 2015/2014

  16. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  17. Remarks - Global energy outlook and externalities

    International Nuclear Information System (INIS)

    Gray, J.E.

    1994-01-01

    The author presents a global energy outlook, for the period 1990-2010. Then, he presents some views on the subject of externalities, some regulations and proscriptions about internalization of costs are detailed. (TEC)

  18. Global energy confinement in TORE SUPRA

    International Nuclear Information System (INIS)

    Hoang, G.T.; Bizarro, J.P.; Genile, B. de; Hutter, Th.; Laurent, L.; Litaudon, X.; Moreau, D.; Peysson, Y.; Tonon, G.; Houtte, D. van

    1992-01-01

    The global energy confinement behaviour of mixed Ohmic/Lower Hybrid driven Tore Supra plasmas has been analysed at various densities. In contradiction with L-mode ITER scaling law, this analysis indicates that the global energy confinement time depends strongly on the plasma density and the isotopic dependence seems not to be observed. The thermal electron energy content of steady-state discharges is in good agreement with the offset linear Rebut-Lallia scaling law. During current ramp experiments, the global energy confinement time was found to depend on the internal self-inductance (li). Improved confinement has been obtained for a steady-state 0.8 MA plasma where the plasma current profile is peaked by LH waves (li ∼1.8). In this case, the global confinement time is found to be about 40% higher than the value predicted by the Rebut-Lallia scaling law. (author) 3 refs., 6 figs

  19. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  20. Green cooperative communication network using solar energy sources

    OpenAIRE

    Sanjay kumar; jaya diptilal; S.V charhate

    2016-01-01

    Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other ...

  1. Solar Energy and the United Nations

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    Some applications of solar power have an easy technology, and are a matter for the present or immediate future. The methods for the large-scale production of electricity, however, cannot mature before the end of the century, even if determined efforts are begun now. May it be recalled that some 30 years also elapsed between the discovery of nuclear fission and the start of the first economic nuclear power stations. Investments into R and D were thus needed for decades. In nuclear science, it was relatively easy to find the finance because the military was interested. But in view of its tremendous importance for the welfare of mankind it should be at least equally easy to bridge the gap in respect to solar power. May it be underlined that far more money has indeed been found, and is being found, for CERN in Geneva, which is of purely scientific-academic interest and cannot promise much valuable practical 'spin-off'. The United Nations, the countries of the First, Second and Third World, ought to shoulder their responsibility in respect to solar energy. Energetic steps towards the founding of the International Solar Power Institute should be taken right now. (author)

  2. Solar-energy potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-01-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 → 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R 2 value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R 2 =0.9998). The MAPE and R 2 for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely

  3. Solar energy in the Northern Cameroon

    International Nuclear Information System (INIS)

    Djuikom, M.; Ndjomaha, Ch.; Vandenbergh, M.

    2004-01-01

    In 2003, the Cameroon Ministry of the Environment and Forestry has initiated a research project for studying the promotion of renewable energies and their impact on rural development. This work has been realized jointly with the department of Economy and Rural Development of the Agronomic University of Gembloux (Belgium), the Centre Des Etudes de L'Environnement et de Developpement du Cameroun (CEDC, Maroua) and the Institut fur Solare Energieversorgungstechnik (ISET, Germany). This initiative comes when the electricity sector in Cameroon has been facing important changes (Privatization of the national company of electricity, creation of a rural electrification agency, multiplication of the dialogues and seminars around the strategies of promotion for renewable energies, frequent black-outs during the dry season). The first objective of the project is to contribute to a better knowledge of the situation of the use of renewable energies in Cameroon. Therefore, Mrs Marthe Djuikom undertook from July to September 2003 a socio-economic survey on the use of solar energy in the northern Cameroon. The next step will be the creation of an energy program at the CEDC with the following tasks: promotion of photovoltaic technology, support of local and international synergies on the organisational aspects, training, information and coordination of reflexions at the local level for the promotion of rural electrification projects. (authors)

  4. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  5. Solar energy in the context of energy use, energy transportation and energy storage.

    Science.gov (United States)

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  6. Global energy perspectives until 2050

    International Nuclear Information System (INIS)

    Schiffer, H.W.

    2008-01-01

    A sustained energy supply must do equal justice to the goals of economic, environmental and social compatibility. If there is a conflict of goals, the object cannot be to maximize one parameter from this bundle of goals; a balance should rather be sought between the set targets. An analysis of long-term projections for world energy supply shows that a greater convergence between expected developments and those considered necessary for climate policy reasons can only be reached by consistently pursuing all approaches suitable for achieving the targets set - e. g. in climate protection - at a minimum cost. The solution is not one of 'either - or' but of 'both - and'. (orig.)

  7. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A. [Washington International Energy Group, Washington, DC (United States)

    1997-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  8. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A [Washington International Energy Group, Washington, DC (United States)

    1998-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  9. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  10. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2015-12-01

    Full Text Available Solar energy, as a clean and renewable resource is becoming increasingly important in the global context of climate change and energy crisis. Utilization of solar energy in urban areas is of great importance in urban energy planning, environmental conservation, and sustainable development. However, available spaces for solar panel installation in cities are quite limited except for building roofs. Furthermore, complex urban 3D morphology greatly affects sunlit patterns on building roofs, especially in downtown areas, which makes the determination of roof solar energy potential a challenging task. The object of this study is to estimate the solar radiation on building roofs in an urban area in Shanghai, China, and select suitable spaces for installing solar panels that can effectively utilize solar energy. A Graphic Processing Unit (GPU-based solar radiation model named SHORTWAVE-C simulating direct and non-direct solar radiation intensity was developed by adding the capability of considering cloud influence into the previous SHORTWAVE model. Airborne Light Detection and Ranging (LiDAR data was used as the input of the SHORTWAVE-C model and to investigate the morphological characteristics of the study area. The results show that the SHORTWAVE-C model can accurately estimate the solar radiation intensity in a complex urban environment under cloudy conditions, and the GPU acceleration method can reduce the computation time by up to 46%. Two sites with different building densities and rooftop structures were selected to illustrate the influence of urban morphology on the solar radiation and solar illumination duration. Based on the findings, an object-based method was implemented to identify suitable places for rooftop solar panel installation that can fully utilize the solar energy potential. Our study provides useful strategic guidelines for the selection and assessment of roof solar energy potential for urban energy planning.

  11. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  12. Community Solar Program Final Report for Austin Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-02-10

    Austin Energy seeks to expand its portfolio of renewable programs with an innovative community solar program. The program provides an opportunity for Austin Energy's customers, who are unable or uninterested in installing solar on their own premises, to purchase solar power.

  13. The global and Canadian energy outlook

    International Nuclear Information System (INIS)

    Stewart, M.J.

    2006-01-01

    The global energy situation is rapidly changing. Global oil and gas trade is increasing, in an environment of rising prices, higher costs, greater environmental concerns, and growing security uncertainties. While predictions of shortages through depletion of oil and gas reserves are unfounded, the world must adapt to higher prices and changing trade patterns, as conventional reserves are increasingly being replaced un-conventional resources. Canada, drawing upon its vast natural resources and technological innovation, is positioned to be an even more important global energy leader in the 21st century. (author)

  14. Using of solar energy in Republic of Georgia

    International Nuclear Information System (INIS)

    Meladze, N.

    1997-01-01

    The article presents the talk on the use of solar energy in Georgia given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. The main use of solar energy in the Republic is in solar heating systems developed and produced in Georgia. Presently 12 projects are in progress for effective use of renewable energy sources. Among them the research and development on photovoltaic cells on the basis of silicon and gallium arsenide solar cells. (A.A.D.)

  15. Energy balance in solar and stellar chromospheres

    Science.gov (United States)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  16. Economic opportunities resulting from a global deployment of concentrated solar power (CSP) technologies-The example of German technology providers

    International Nuclear Information System (INIS)

    Vallentin, Daniel; Viebahn, Peter

    2010-01-01

    Several energy scenario studies consider concentrated solar power (CSP) plants as an important technology option to reduce the world's CO 2 emissions to a level required for not letting the global average temperature exceed a threshold of 2-2.4 o C. A global ramp up of CSP technologies offers great economic opportunities for technology providers as CSP technologies include highly specialised components. This paper analyses possible value creation effects resulting from a global deployment of CSP until 2050 as projected in scenarios of the International Energy Agency (IEA) and Greenpeace International. The analysis focuses on the economic opportunities of German technology providers since companies such as Schott Solar, Flabeg or Solar Millennium are among the leading suppliers of CSP technologies on the global market.

  17. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  18. Global solar radiation estimation in Lavras region, Minas Gerais

    International Nuclear Information System (INIS)

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  19. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  20. Energy Conservation and Passive Solar Techniques in Campus Renovation.

    Science.gov (United States)

    Probasco, Jack; And Others

    1981-01-01

    The analysis of a building from an energy conservation and passive solar potential has three aspects: building envelope, landscaping, and room utilization. Typical conservation and solar control modifications are listed. (Author/MLF)

  1. The solar greenhouse: a survey of energy saving methods

    NARCIS (Netherlands)

    Saye, A.; Loon, van W.K.P.; Bot, G.P.A.; Zwart, de H.F.

    2000-01-01

    The solar greenhouse project is aimed at the development of a greenhouse concept for the Netherlands with zero-fossil energy consumption. The solar greenhouse is formulated as a combination of a low energy demand greenhouse, an energy recovery installation and an energy storage facility. In this

  2. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  3. Solar energy market penetration models - Science or number mysticism

    Science.gov (United States)

    Warren, E. H., Jr.

    1980-01-01

    The forecast market potential of a solar technology is an important factor determining its R&D funding. Since solar energy market penetration models are the method used to forecast market potential, they have a pivotal role in a solar technology's development. This paper critiques the applicability of the most common solar energy market penetration models. It is argued that the assumptions underlying the foundations of rigorously developed models, or the absence of a reasonable foundation for the remaining models, restrict their applicability.

  4. Diffusion of solar energy use in the built environment supported by new design

    NARCIS (Netherlands)

    van Geenhuizen, Marina; Schoonman, Joop; Reinders, Angèle

    2014-01-01

    Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology

  5. Proceedings of the IASTED international conference on solar energy : SOE 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M.H. [International Association of Science and Technology for Development, Calgary, AB (Canada)] (ed.)

    2009-07-01

    This solar energy conference was attended by international researchers and practitioners working with leading edge solar energy technology as well as related areas such as renewable energy and clean energy. The topics of discussion included nanotechnologies for solar energy; photovoltaic energy; solar fuel cells; solar-powered vehicles; solar thermal energy; thin film batteries; desalination systems; solar cooling; clean energy; renewable energy; biomass energy; sustainability; flexible solar cells; hybrid power generation; organic solar cells; remote sensing of solar radiation; solar thermal conversion; sustainable buildings; and thin film silicon solar cells. Some of the presentations discussed the application of solar energy in agriculture, environment, economics and home construction. The sessions were entitled: grid connection and energy conversion; photovoltaic and nanotechnology; solar energy and applications; and solar thermal energy. Seventeen of the 18 presentations have been catalogued separately for inclusion in this database.

  6. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    International Nuclear Information System (INIS)

    Hohmeyer, O.H.

    1994-01-01

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation

  7. Solar energy potential in Macedonia, experience of utilization and possibility for development

    International Nuclear Information System (INIS)

    Markovska, Natasha

    2004-01-01

    In the paper, a correlation between solar energy and sustain development has been considered, based on the concept of negentropy. Namely, the introduction of solar energy and renewable s in general corresponds to the proposed negentropic extension of the standard pathways in world metabolism, including science and technology as a supplementary negentropic resource. In addition the solar global irradiation in R. Macedonia is estimated and some favorable fields for photovoltaic application are emphasized. Recently, the interest in building integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts

  8. Questions of economics. [solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Graeff, P

    1976-05-01

    The essay deals with questions of profitability in connection with the use of solar energy to heat buildings or to prepare hot water. The total problem is approached from 3 points of view: 1. General national economy point of view: Judgment by politicians determines the possibilities of support by the government. 2. The business economy aspect: Here the most important matter is to construct the plants with dimensions permitting to obtain the highest profits possible. 3. The financing model: possible incentives must be taken into consideration as well as technical aspects, e.g. the service life of the plants.

  9. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  10. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  11. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  12. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  13. Vertical bifacial solar farms: Physics, design, and global optimization

    KAUST Repository

    Khan, M. Ryyan

    2017-09-04

    There have been sustained interest in bifacial solar cell technology since 1980s, with prospects of 30–50% increase in the output power from a stand-alone panel. Moreover, a vertical bifacial panel reduces dust accumulation and provides two output peaks during the day, with the second peak aligned to the peak electricity demand. Recent commercialization and anticipated growth of bifacial panel market have encouraged a closer scrutiny of the integrated power-output and economic viability of bifacial solar farms, where mutual shading will erode some of the anticipated energy gain associated with an isolated, single panel. Towards that goal, in this paper we focus on geography-specific optimization of ground-mounted vertical bifacial solar farms for the entire world. For local irradiance, we combine the measured meteorological data with the clear-sky model. In addition, we consider the effects of direct, diffuse, and albedo light. We assume the panel is configured into sub-strings with bypass-diodes. Based on calculated light collection and panel output, we analyze the optimum farm design for maximum yearly output at any given location in the world. Our results predict that, regardless of the geographical location, a vertical bifacial farm will yield 10–20% more energy than a traditional monofacial farm for a practical row-spacing of 2 m (corresponding to 1.2 m high panels). With the prospect of additional 5–20% energy gain from reduced soiling and tilt optimization, bifacial solar farm do offer a viable technology option for large-scale solar energy generation.

  14. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  15. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  16. A study of solar energy entrepreneurs and financing

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    2005-12-01

    In this paper, a description is given about entrepreneurs to start a business of renewable energy technologies as solar photovoltaic, solar water heating systems which are well established products in the market. Some points are mentioned to establish a successful business as quality assurance, marketing and sell skills etc. The purpose of this study is to boost the confidence in solar energy entrepreneurs. Technical specifications of solar home systems, solar street lighting system, solar photovoltaic water pumping and 2.5 KW solar photovoltaic power plant have been provided in Annexure-I. The list of maximum prices has been given in Annexure-ll and a list of empanelled manufactures/suppliers of various solar photovoltaic (SPV) systems under the Ministry of Non-Conventional Energy Sources, MNES (Government of India) has been also mentioned in Annexure-lll. (author)

  17. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  18. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  19. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  20. A hybrid solar and chemical looping combustion system for solar thermal energy storage

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2013-01-01

    Highlights: ► A novel solar–CLC hybrid system is proposed which integrates a CLC with solar thermal energy. ► The oxygen carrier particles are used as storage medium for thermal energy storage. ► A solar cavity reactor is proposed for fuel reactor. ► The absorbed solar energy is stored in the particles to produce a base heat load. -- Abstract: A novel hybrid of a solar thermal energy and a chemical looping combustion (CLC) system is proposed here, which employs the oxygen carrier particles in a CLC system to provide diurnal thermal energy storage for concentrated solar thermal energy. In taking advantage of the chemical and sensible energy storage systems that are an inherent part of a CLC system, this hybrid offers potential to achieve cost effective, base load power generation for solar energy. In the proposed system, three reservoirs have been added to a conventional CLC system to allow storage of the oxygen carrier particles, while a cavity solar receiver has been chosen for the fuel reactor. The performance of the system is evaluated using ASPEN PLUS software, with the model being validated using independent simulation result reported previously. Operating temperature, solar efficiency, solar fraction, exergy efficiency and the fraction of the solar thermal energy stored for a based load power generation application are reported.